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Abstract

Magnetorheological elastomers (MREs) are multifunctional composites that consist of an elas-

tomeric matrix filled with magnetic particles. These materials respond to an external magnetic

field by mechanically deforming and/or changing their magnetorheological properties. Such a

multi-physical response has made them extraordinary candidates for a wide variety of applica-

tions in soft robotics and bioengineering. However, there are still some gaps of knowledge that

prevent the optimal design and application of these MREs. In this regard, the effect of viscoelas-

tic mechanisms remains elusive from a microstructural perspective. To the best of the authors’

knowledge, this work provides for the first time a numerical homogenization analysis for various

magneto-active microstructures accounting for viscous deformation mechanisms. To this end, we

propose an incremental variational formulation that incorporates viscoelasticity via internal vari-

ables, which is properly modified to deal with the continuity of Maxwell stresses. The proposed

framework is applied to study the magneto-mechanical couplings in extremely soft MREs (stiffness

< 10 kPa). Such soft matrix promotes microstructural rearrangements while transmitting internal

forces leading to macrostructural synergistic responses. The constitutive parameters are calibrated

with experimental tests taken from a previous work by the authors. The numerical results are

accompanied with original magnetostriction tests considering different sample geometries and con-

fined magneto-mechanical tests, reporting the macroscopic response. The results obtained in this

work suggest that the effective magneto-mechanical response of the MRE is the outcome of a com-
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petition between macrostructural and local microstructural responses, where viscous mechanisms

play a relevant role.

Keywords: Magnetorheological elastomer (MRE), Constitutive modeling, Multifunctional

composites, Viscoelasticity, Microstructural Homogenization

1. Introduction

Magnetorheological elastomers (MREs) are multifunctional composites that consist of an elas-

tomeric matrix filled with magnetic particles. The MREs respond to magnetic fields offering pos-

sibilities of remote and reversible stimulation [1, 2, 3]. This allows for varying their mechanical

properties, such as the stiffness, the natural frequency, or the damping capacity, which can signif-

icantly change when subjected to external magnetic fields [4, 5]. The magnetic fillers contained

within the composite are responsible for their magnetostrictive response (mechanical deformation

under applied magnetic fields) [6, 7]. Among the rather general class of MREs, magnetically and

mechanically soft responsive materials or soft MREs1 have become a subject of interest in recent

years due to the wide range of applications in soft robotics, bio-medicine or industrial components

[8, 9, 10, 11]. These stimuli-responsive smart materials enable untethered, fast, and reversible

actuation and/or changes in mechanical properties. MREs can be manufactured by embedding

magnetizable particles into highly compliant matrices (stiffness below 100 kPa) [12, 13]. Compared

to conventional stiffer MREs, the response of these mechanically and magnetically soft MREs can

be governed by different magnetic actuation mechanisms. The soft and compliant matrix allows

for large deformations when external environmental forces and magnetic stimuli are applied, which

facilitates potential rearrangements of particles [14, 15, 16].

A comprehensive characterization of the MREs is indispensable to understand their exceptional be-

havior [17, 18]. Regarding the experimental works investigating their magneto-mechanical behavior,

seminal publications were focused on the change of properties, i.e., Young’s modulus [2, 19, 20].

Regarding the viscoelastic properties of MREs, some experimental works measured their storage

1We would like to note that henceforth the word “soft” will be used to insist on the mechanically very soft response
of the MRE materials, while the magnetic response is also soft, ie., does not exhibit any magnetic dissipation.
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and loss moduli when subjected to tensile, compression or shear deformation modes under the ap-

plication of external magnetic fields [21, 22, 23, 24]. However, the magnetostrictive response of the

soft MREs (below 100 kPa) is extremely complex since, depending on the experimental conditions

such as sample geometry or test conditions, they can show either compressive [25, 26] or expan-

sive [27] behaviors when applying magnetic fields. Moreover, when composed of viscous compliant

matrices, they also provide an unusual time-dependent response [27, 28]. This complex behavior

can only be explained by microscopic particle interactions in combination with macroscopic effects.

Thus, careful modeling studies are needed to understand the coupled magneto-mechanical behavior

occurring at the microscale and its effect by scaling up to the macroscale level.

The mathematical modeling of the coupled mechanical and magnetic effects in MREs has been

addressed by different modeling approaches [29, 30]. From a macroscopic point of view, the com-

posite can be considered as a homogeneous continuum. This enables the representation of real

structures under complex loading conditions with a reasonable computational effort, where effects

of the underlying microstructure are captured implicitly via magneto-mechanical coupling terms

[31, 32, 33, 34, 35]. Regarding the modeling of the magneto-visco-elastic coupled behavior of MREs,

based on Dorfmann and Ogden’s formulation [32], Saxena et al. [36] proposed a formulation for

finite deformation magneto-viscoelasticity. This work considers dissipation due to mechanical vis-

coelasticity of the polymeric matrix and the resistance of the material to overall magnetization.

These continuum models can phenomenologically capture the magneto-visco-elastic coupling but

do not account explicitly for microstructural features. From a microscopic point of view, two main

approaches can be differentiated: particle interaction (or lattice based) and full-field homogeniza-

tion models. Particle interaction models were presented in previous works [37, 38, 39, 40], which are

based on magneto-mechanical energy minimization taking the assumption that the magnetizable

particles behave as dipoles. These incorporate microstructural information, but do not account for

the heterogeneities in the magnetic field that appear as a function of the particles distributions as

well as long range interactions between particles. Garcia-Gonzalez and Hossain [41] extended this

approach to consider viscoelasticity and predict relaxation responses in soft MREs, and later in

hard magnetic MREs [42]. However, these lattice-based models, albeit extremely useful since they

3



are explicit in nature, present limitations such as the modeling of particles-matrix interactions in

heterogeneous spatial distributions of particles, spatial fluctuations of magnetic fields within the

MRE, and limitations in the nature of the modeled dipole-dipole interactions.

Another microstructural approach is the homogenization of the magneto-mechanical problem. This

approach is divided into full-field numerical approaches [43, 44, 45, 46, 47, 48, 49, 50] and analytical

ones in two dimensions [51, 52] and in three dimensions [53, 54, 49, 55]. The full-field numerical

modeling naturally accounts for microstructural features such as magnetic particle distributions

and interactions with the matrix phase but tends to be extremely time consuming especially if

more realistic random microstructures are considered. The analytical models usually describe the

interactions in an average manner and thus do not provide insight into the local micro-deformation

mechanisms. Yet, they are extremely powerful when those are explicit since they can be used to

analyze complex non-linear magneto-mechanical Boundary Value Problems (BVPs) by their proper

implementation in general purpose Finite Element Method (FEM) software [56]. Despite the great

potential of the previously-mentioned homogenization full-field models, to the best of the authors’

knowledge, there are no homogenization frameworks accounting for the viscous behavior of the

matrix and nor applications for extremely soft MREs (below 10 kPa), save for a very recent study

in the purely mechanical context [57]. Therefore, the role of the microstructure in such a coupled

regime is still an open problem, and some aspects related to viscous deformation mechanisms need

further investigation.

This work aims at understanding the role of viscous deformation mechanisms at the microstruc-

tural level and how these are scaled up to govern the magneto-mechanical macroscopic response

of extremely soft MREs (polymeric matrix ≈ 1 kPa). To this end, we have developed a full-field

numerical homogenization framework to naturally capture the effects of external magnetic fields

on the nonlinear viscoelastic behavior of these composites. To the authors’ knowledge, this is the

first homogenization framework for the study of the magneto-viscous-mechanical problem in such

extremely soft MREs, whose mechanical response can be activated with relatively low magnetic

fields (below 50-100 mT). To motivate and calibrate the model, we make use of recently published

experimental data [27] and provide further original experiments. After validation of the mechanical
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part of the model, we use it to explore viscous responses under external magnetic fields for different

particle arrangements within the MRE. Finally, we provide ad-hoc simulations to propose a link be-

tween microstructural arrangements and macroscopic responses observed experimentally. Overall,

this work suggests that a competition between macrostructural and local microstructural responses

governs the effective magneto-mechanical response of the MRE, and that viscous mechanisms play

a relevant role in the deformation process.

2. Magnetorheological response at the macroscale: experimental insights

This section provides experimental tests on MREs to provide a clear picture of the effective macro-

scopic response of the MREs under the application of an external magnetic field. The baseline

materials chosen for the manufacturing are an elastomeric component for the matrix phase and

soft magnetic particles. The elastomeric matrix is made of Dowsil CY52-276 (DowSil, Midland,

MI, USA) (PDMS). The magnetic particles are made of soft SQ carbonyl iron powder (CIP) (BASF,

Germany) with an average diameter of 3.9–5.0 µm. For the manufacturing of the samples, we fol-

lowed the methodology presented in a previous work [27]. Note that cylindrical samples of 1mm

height and 20 mm diameter are used to ensure homogeneous magnetic fields within the testing

region (i.e., homogeneous fields in the vacuum with all the field lines following the same direction

and magnitude, see further details in [27]). In addition, monotonous compression curves were piked

from [27] to calibrate and validate the homogenization model.

2.1. Macroscopic magnetic characterization

The experiments provided in this section aim at studying the mechanical response of MREs under

external magnetic fields. To this end, two types of experiments are considered: i) free mechanical

expansion tests under axial magnetic fields; ii) axially confined tests under axial magnetic fields.

The MRE specimen is placed between flat plates composed of austenitic stainless steel (with rela-

tive magnetic permeability close to 1). Bellow the specimen, a coil system generates the requested

magnetic field aligned in the axial direction of the specimen. Note that we use a close loop system
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where the temperature is constantly regulated as well as the magnetic field by the use of a ther-

mocouple and a hall probe, respectively. More detail about the experimental setup can be found

in [27].

The first set of experiments consists in cylindrical specimens of different particle volume fractions

φ = {0, 0.1, 0.2, 0.3} and diameters D = {4, 6, 20} mm (experiments for 6 and 20 mm are originally

performed in this work as an extension of those for 4 mm in [27]) that are subjected to axial mag-

netic fields under free boundary conditions. Under the application of an external magnetic field, the

specimen undergoes magnetic interactions between particles and with the external field leading to

internal forces in the composite. As a consequence, the MRE experiences mechanical deformation

and shape changes. To allow for the visualization of the MREs’ deformation process, we performed

these experiments without using the metallic cover that ensures a spatially homogeneous magnetic

field in the whole specimen region. To evaluate the influence of such heterogeneity in the magnetic

field, we reduced the specimen diameter up to 4 mm, where the magnetic field was measured to be

homogeneous. In addition, we conducted these tests with and without the presence of the upper

plate. These tests allow for identifying potential boundary effects due to a possible magnetization

of the plate. These results are all collected together in Figure 1.

A first important observation is that all the MREs tested macroscopically expand instead of con-

tracting. It can be observed that such an expansion along the axial direction, here aligned with

the magnetic field, is directly related to the particle volume fraction. In this regard, higher defor-

mations are obtained when increasing the particle content (Figure 1). Another important feature

is the homogeneity of the deformation state in the small samples. However, a highly heterogeneous

deformation is shown for the samples with the highest diameter. In these tests, the magnetic field

reaches maximum values in the center of the specimen and a macrostructural response governs

the deformation of its peripheral regions, i.e., these outer domains tend to macroscopically align

with the central axial magnetic lines. Finally, it is important to note that the same observations

have been obtained for tests without the presence of the upper plate (Figure 1). These results

discard a potential magnetization effect of the upper plate acting as a magnetic pole attracting

the particles. Therefore, it can be concluded that the MREs tested under an axial magnetic field
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Figure 1: Mechanical response of MREs under the application of an external magnetic field for different particles
volume fractions φ = {0, 0.1, 0.2, 0.3} and diameters D = {4, 6, 20} mm. Note that the test for 4 mm specimens was
picked from [27] and have been extended for other geometries to explore the macroscopic response of extremely soft
MREs. The right hand side table shows the exact same tests for φ = 0.3 without the presence of the upper plate.
All the specimens were prepared with an initial height of 1 mm. The magnetic field was imposed in the form of a
temporal ramp until reaching a maximum value of 0.25 T.

respond macroscopically by expanding in such a direction.

The second set of experiments considers cylindrical specimens of different particle volume fractions

φ = {0, 0.1, 0.2, 0.3} and a fixed geometry of 1 mm height and 20 mm diameter, that are subjected

to axial magnetic fields under axially confined mechanical boundary conditions. These tests aim at

providing a quantitative analysis of the forces experienced within the MREs due to the application

of the external magnetic field at different rates. To this end, the experimental setup is such that

ensures homogeneous magnetic field conditions within the whole specimen region. During the tests,
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the magnetic field is imposed in the form of a temporal ramp while keeping the upper plate fixed

at the initial height of the specimen. Thus, the force exerted by the MRE due to the magnetorhe-

ological response is tracked by the load cell of the equipment. The mean curves calculated from

the results of six specimens are shown in Figure 2. All the specimens present a parabolic response

with axial force (directly related to internal MRE magnetic stress) increasing for larger magnetic

inductions. The magnitude of the axial force exerted on the upper plate increases with the content

of magnetic particles. Finally, we noted that different magnetic field application rates do not result

in different experimental curves (these were almost superimposed). This interesting point can be

explained by the fact that when the magnetic field is applied, interaction forces between particles

and the external field are generated. Thus, the particles try to rearrange to find the new equilibrium

state. However, the elastomeric matrix opposes this rearrangement, balancing the related magnetic

stress by mechanical deformation. Hence, the axial force measured at the upper plate is related

to the mechanical stress experienced by the matrix that, despite its viscoelastic nature, is driven

by the generated magnetic stress. Therefore, although viscous relaxation processes are happening

within the elastomeric phase, these are not observed at the macroscopic response in these tests.

This point will be revisited in the following sections making use of a microstructural computational

framework.
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Figure 2: Experimental results for the axially confined tests under axial magnetic fields on cylindrical specimens
of 1 mm height and 20 mm diameter. Axial force measured by the load cell of the test machine is plotted versus
magnetic induction for three magnetic particle volume fractions φ = {0.1, 0.2, 0.3}. The magnetic field is applied
at constant rates from 0.2 to 20 mT/s. Note that the magnetic application rates imposed in these tests provided
almost superimposed results without significant differences in their mean curve. These results are equivalent to those
presented in [27], but covering a broader range of magnetic rates.

3. Microstructural constitutive framework for magneto-viscoelasticity

This section introduces the formulation used to describe the microstructural response of soft (≈

1 kPa) MREs subjected to different combinations of magneto-mechanical loading conditions. In the

following, we present the kinematics of the framework, the balance equations and thermodynamics

and, then, we specialize the constitutive definitions and describe the homogenization approach.

3.1. Kinematics and balance equations

The microstructural modeling is intended to shed light on the understanding of the magnetically

induced deformation mechanisms and the interaction with the visco-elastic behavior of the matrix in

the context of magnetic particle filled MREs. The extremely soft nature of the polymeric material

employed as matrix makes these MREs highly deformable. Therefore, it is customary to frame

the modeling in finite deformations differentiating between the material configuration Ω0 and the

spatial configuration Ω. The primary fields involved in this problem are the displacement field

u (x) and a magnetic scalar potential φ (x), whose gradients in the reference configuration yield
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the deformation gradient F (x) and the Lagrangian magnetic field H (x), such that

F (x) = I +∇0u (x) and H (x) = −∇0φ (x) . (1)

Here, I is the second-order identity tensor.

To account for time-dependent responses associated to the viscoelastic nature of the polymeric

phase and the related relaxation mechanisms and dissipation effects, an iso-strain model is used

with one viscous branch. The isochoric deformation gradient is further decomposed into elastic

(Fe) and viscous (Fv) components as

F = Fe · Fv, (2)

where the viscous component Fv is considered as state variable.

Along with the previous fields, we account also for two fundamental magnetic variables; the La-

grangian magnetic field H, and the Lagrangian magnetic induction B. These can be expressed,

alternatively, in their Eulerian forms as

h = H · F−1, b = J−1F ·B, (3)

where J = det (F). The Eulerian (current) magnetization m can be obtained from the following

constitutive relation

m =
b

µ0
− h, (4)

where µ0 is the magnetic permeability of free space. Regarding the governing equations, the

mechanical balance, in the material configuration and in the absence of body forces, can be written

as

∇0 ·P = 0, (5)

where P is the first Piola-Kirchhoff stress tensor. Note that inertial terms are neglected in this

work. The influence of these was evaluated by conducting an experiment where we exposed the soft

MRE to a set of permanent magnets approaching fast to it. The viscosity of the polymeric phase

was observed to rule the overall response of the MRE leading to negligible dynamic oscillations
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of the sample (nor local neither global). However, this is an interesting question that must be

carefully addressed in future works analyzing the implications of micro-inertial terms within the

MRE depending on the polymeric matrix used.

Moreover, the magnetic problem considers the Maxwell’s equations for magneto-statics that, in the

material configuration, are defined as

∇0 ×H = 0, ∇0 ·B = 0. (6)

3.2. Thermodynamics

Considering isothermal conditions, we define an energy density function that depends on the defor-

mation gradient F, the magnetic field H, and the internal variables, i.e., the viscous deformation

gradient Fv, as Ψ (F,H,Fv). Considering the incompressibility condition for MREs under study,

the second law of thermodynamics in the form of Clausius-Duhem inequality becomes

P : Ḟ + pJF−T : Ḟ−B · Ḣ− ∂Ψ

∂F
: Ḟ− ∂Ψ

∂H
· Ḣ− ∂Ψ

∂Fv
: Ḟv ≥ 0, (7)

where the term related to p (the Lagrange multiplier associated to the pressure) has been included

to impose incompressibility. The constitutive equations can be consistently derived, applying the

Coleman-Noll framework as

P =
∂Ψ

∂F
− pJF−T , B = − ∂Ψ

∂H
. (8)

The remaining term associated to the internal variable − ∂Ψ
∂Fv

: Ḟv ≥ 0, establishes the consistency

conditions allowing to define the evolution of such internal variable.

3.3. Local constitutive equations for constituents

This section specializes the constitutive relationships that describe the magneto-mechanical re-

sponse of the microstructural constituents, i.e., polymeric matrix and magnetic particles.
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3.3.1. Free energy functions and mechanical stress tensors

The constitutive behavior at a local point, for the matrix and the particles, is defined by the energy

density function Ψ to account for mechanical and magnetic responses. Following standard knowl-

edge of such materials, we consider both the polymer matrix and particle phases as incompressible2.

In this work, the energy density is decomposed into three contributions, namely the mechanical

energy, Maxwell energy and magnetization energy as

Ψ (F,H,Fv) = Ψmech (F,Fv) + Ψmaxw (F,H) + Ψmag (F,H) . (9)

These energy density relations are posed to fulfill the material properties under study. The mechan-

ical energy density follows a visco-hyperelastic model and can be further decomposed into elastic

and viscous contributions along with a volumetric constraint

Ψmech (F,Fv) =


Ψe
mech (F) + Ψv

mech (F,Fv) if J = 1

+∞, otherwise.

(10)

We note at this point that the incompressibility constraint will be dealt with in the Section 3.4,

where the incremental homogenization framework is described.

The elastic and viscous energetic contributions are defined following a Neo-Hookean formulation as

Ψe
mech (F) =

µ

2

(
IF1 − 3

)
,

Ψv
mech (F,Fv) =

µv
2

(
IFe1 − 3

)
,

(11)

with IF1 = Tr
(
F · FT

)
and IFe1 = Tr

(
Fe · FTe

)
. The model parameters µ and µv represent the

elastic and viscous shear moduli of the phase, respectively. From this energetic definition, the

2In reality, the particles exhibit a finite bulk modulus. Nonetheless, given their very large stiffness compared to
that of the polymer, the effect of the actual value of the bulk modulus is of little importance provided that it is much
larger than that of the matrix as is their shear modulus. This simplifies the numerical implementations.
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mechanical part of the first Piola-Kirchhoff stress can be derived as

Pmech (F,Fv, p) =
∂Ψmech

∂F
− pF−T , (12)

where the term arising from incompressibility (addressed in Section 3.4) has been incorporated

into this definition. Regarding the magnetic contributions, the background Maxwell energy in its

standard expression for the material configuration reads as

Ψmaxw (F,H) = −µ0

2
IH5 (13)

where IH5 =
(
F−T ·H

)
·
(
F−T ·H

)
and the term J has been removed due to the incompressibility

assumption. Moreover, the magnetization is accounted for by the hyperbolic tangent type magne-

tization relation described from the magnetic energy density function that reads, in the reference

configuration, as

Ψmag (F,H) = −µ0

[
m2
s

χ
log

(
cosh

(
χ

ms

√
IH5

))]
. (14)

Here, χ is the magnetic susceptibility and ms is the magnetic saturation of the magnetization curve

of the corresponding phase.

Then, the definition of the total first Piola-Kirchhoff stress can be derived from the total energy

density by adding the magnetic components to the mechanical one, i.e.,

P (F,H,Fv) =
∂Ψ

∂F
= Pmech (F,Fv)−

µ0

2

∂IH5
∂F
− µ0

ms

2
√
IH5

tanh

(
χ

ms

√
IH5

)
∂IH5
∂F

(15)

with
∂IH5
∂F = −2

(
F−T ·H

)
⊗
[(
H · F−1

)
· F−T

]
. Notice that in Eq. (15), the terms of the partial

derivatives arising form Maxwell and magnetization energy density functions appear, leading to

magnetically induced forces.

Remark. It is noted here that the choice of the energy functions leads to an uncoupled magneto-

mechanical response for each phase, i.e., the matrix and the particle (see a more detailed discussion

in [47, 49]). The resulting magneto-mechanical coupling is an outcome of the complex interactions
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between the particles and their rearrangements subject to the mechanical constraints imposed by

the surrounding matrix phase. The Maxwell energy in the otherwise non-magnetic matrix phase

serves to describe the background magnetic energy due to the presence of a non-zero magnetic

permeability, that of vacuum.

3.3.2. Magnetic constitutive equation

In a similar fashion and making use of Eq. (8), the resulting definition of the magnetic flux as a

function of the magnetic field yields into

B (F,H) = − ∂Ψ

∂H
= µ0

1 +
ms√
IH5

tanh

(
χ

ms

√
IH5

)F−1 ·
(
F−T ·H

)
, (16)

where it can be differentiated the addition of the linear term proportional to the magnetic field

vector (Maxwell) and a magnetization term described as a hyperbolic tangent profile. The resulting

Eulerian magnetization function reads as

m (h) = ms tanh

(
χ

ms
|h|
)

h

|h|
, (17)

where |h| represents the magnitude of the Eulerian magnetic field vector h.

Remark. If one sets χ = 0 in the previous expressions to recover a non-magnetic material (e.g.

the polymer incompressible matrix phase), we obtain

B (F,H) = µ0 F
−1 ·

(
F−T ·H

)
(18)

or simply b = µ0h by use of (3). In addition, this implies that the magnetization is m = 0 in that

case.

3.3.3. Viscous flow rule

To complete the constitutive formulation, we need to define a consistent viscous flow rule to describe

the evolution of the internal variable Fv. From the generalized standard materials framework, the

constitutive relation dictating the evolution of the internal variable is given by Eq. (12) and the
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following coupled equation

∂Ψ

∂Fv
+
∂D
∂Ḟv

= 0. (19)

In this work the dissipation potential used is prescribed by

D(Ḟv,Fv) =
τv√

2
Dv ·Dv, (20)

where the viscous rate deformation tensor is imposed following [58]

Dv = Fe · Ḟv · F−1
v · F−1

e =
1√
2τv

dev (σvmech) (21)

where τv is the viscosity of the corresponding phase and dev (σvmech) = dev
(
J−1Pv

mech · FT
)

stands

for the deviatoric part of the viscous Cauchy stress. The final expression for the evolution of the

viscous deformation gradient reads as

Ḟv = F−1
e ·Dv · Fe · Fv (22)

An equivalent formulation that uses the right Cauchy-Green version of Fv, Cv = FTv ·Fv and thus

leads to a smaller number of evolution equations can be found in [59]. Note that the formulation

used provides consistent results (incompressible viscous deformation gradients) due to the implicit

monolithic framework implemented (see Sections 3.4.3 and 4.1).

3.4. Periodic homogenization problem

This section introduces the homogenization framework for estimating the magneto-mechanical be-

havior of MREs composed of a soft viscoelastic matrix and magnetic fillers.

3.4.1. Homogenization fundamentals

We consider a magneto-visco-elastic deformable volume occupying a periodic domain Ω0 in the

material (reference) configuration. It contains, in general, different phases, which are distributed

randomly or periodically in Ω0 constituting a representative volume element (RVE). The represen-

tativity of the domain is usually a function of the constitutive response of the constituents (e.g.,
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linear, nonlinear, coupled or uncoupled) as well as of the average quantity that one is interested in

analyzing. For a more detailed discussion on MREs, one is referred to [47].

In all cases, the phases are set at the boundaries of the domain in such a way that Ω0 may be repro-

duced periodically in three dimensions, but may be entirely random inside Ω0. The distribution of

the phases is a particularly delicate point that has been very recently shown unambiguously [60] to

lead to very sensitive responses depending on local characteristics even in linear elasticity. In the

present case, the goal is to study the qualitative features of soft MREs and the relative effect of the

matrix viscoelasticity upon the coupled magneto-mechanical response. For that reason, we will use

in the next section relatively simplified random and periodic particle distributions, as compared to

the actual experiments that may exhibit particle clustering (see for instance recent work exhibiting

particle clusters in MREs via an AFM surface analysis [61]).

The problem under study is incremental and dissipative in nature as a result of the polymer vis-

coelasticity and thus an incremental periodic homogenization framework needs to be considered

[62, 63, 64, 65, 57]. In this regard, the average deformation gradient F and magnetic field H at a

discrete time τ ≡ t+ ∆t are expressed in terms of the volume averages of the corresponding local

quantities, such that

Fτ =
1

|Ω0|

∫
Ω0

Fτ (X) dΩ0, Hτ =
1

|Ω0|

∫
Ω0

Hτ (X) dΩ0, (23)

respectively.

The local displacements uτ (X) and magnetic scalar potential φτ (X) are additively decomposed

into linear (macroscopic) and higher order (microscopic fluctuation) contributions

uτ (X) = (Fτ − I) ·X + ũτ (X) and φτ (X) = −Hτ ·X + φ̃τ (X), ∀ X ∈ Ω0, (24)

where ũτ (X) and φ̃τ (X) are the fluctuation fields. Their average over Ω0 must vanish to obtain

(23); a requirement that is automatically fulfilled for Ω0-periodic fluctuation fields.

Each phase is described by known constitutive parameters that determine the behavior at any

point X ∈ Ωphase
0 . The objective of the numerical homogenization is then to resolve the local
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displacement and magnetic potential fields in the RVE such that they fulfill the equilibrium and

Maxwell equations locally while satisfying certain periodic boundary conditions. The starting point

of the homogenization is the definition of the incremental potential

W(Fτ ,Hτ ,X) = inf
Fτv

∫ τ

t

{
Ψ̇ (F,H,Fv,X) +D(Ḟv,Fv,X)

}
dt, Fv(t) = Ftv. (25)

Here, the dissipation potential D takes the simple form of Eq. (20), such that dev (σvmech) =

∂D/∂Dv, and Dv are consistent with (21).

Given the optimality of the local incremental potential with respect to the internal variables and

the local incompressibility constraint in (10), one may define the admissible sets K and G for u and

φ, respectively, as

K(Fτ ) =
{
uτ = (Fτ − I) ·X + ũτ , detFτ = 1, ũτ periodic in Ω0

}
(26)

and

G(Hτ ) =
{
φτ = −Hτ ·X + φ̃τ , φ̃τ periodic in Ω0

}
. (27)

We note that the incompressibility constraint detFτ = 1 may be implemented in various manners3,

considering here an admissible set for the pressure pτ restricted to be a periodic scalar field in the

domain Ω0. The easiest and at the same time rigorous way is to implement it with the use of a

Lagrange multiplier (e.g., a pressure term), such that the incremental homogenized potential, W,

takes the form [66]

W(Fτ ,Hτ ) = inf
uτ∈K(Fτ )

sup
φτ∈G(Hτ )

sup
pτ

[
1

|Ω0|

∫
Ω0

[W (Fτ ,Hτ ,X)− pτ (detFτ − 1)] dΩ0

]
. (28)

3Unlike the simpler case of pure hyperelasticity, the incompressibility constraint may be implemented in an incre-
mental problem in various ways. For instance, one may impose the constraint at time t or time τ , or even via the
time increment Ḟ.
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Applying then the Hill–Mandel lemma in the last expression, we recover readily the macroscopic

constitutive relations

Pτ =
∂W
∂Fτ

(Fτ ,Hτ )− pτF
−T
τ , Bτ = − ∂W

∂Hτ

(Fτ ,Hτ ). (29)

In the first equation, pτ is the average pressure in the RVE. For completeness, we note that the

initial conditions of the problem may be set F0 = I and H0 = 0.

3.4.2. Macroscopic boundary conditions and potential energy

The loading conditions of the problem are introduced by controlling: i) the average values of

the independent macroscopic variables, i.e., applied fields, (F
app
τ ,H

app
τ ); ii) the applied conjugate

macroscopic variables, (P
app
τ ,B

app
τ ); iii) a combination of them keeping always one mechanical and

one magnetic variable as unknowns. In addition, as we will see in the following, one may also control

the Eulerian parts of some of the above quantities, e.g., b, h or σ. In any case, it is important

that the proposed framework allows for controlling mixed boundary conditions by means of average

mechanical stress/strain or magnetic flux/intensity in the current or the reference configurations. In

the work of Danas [47] (see also [49, 65]), it has been extensively discussed that in magneto-elastic

RVE problems that one is interested in the pure particle-particle interactions, only the mechanical

average stress may be controlled, whereas the corresponding Maxwell stresses are automatically

equilibrated by imposing continuity of the magnetic fields in neighboring RVEs. Following those

studies, we write a potential energy for the RVE that reads

P(Fτ ,Hτ ) =W(Fτ ,Hτ )−P
app
τ ·

(
Fτ − I

)
−H

app
τ ·Bτ . (30)

Remark. The incremental potential energy (30) is valid when one controls P and B, i.e., the last

two terms serve as the external “force” loads. If instead, F and H are prescribed, the last two terms

are readily omitted. A combination of components from any of the previous average quantities may

be prescribed. In that case, the potential energy P needs to be amended accordingly.
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3.4.3. Implementation of the field equations

The governing equations of the global problem are obtained from the optimization of the incremental

homogenized potential, W defined in eq. (28). When accounting for periodic boundary conditions,

the boundary flux terms vanish due to the effect of opposite periodic boundaries, and, in the absence

of body forces, the resulting differential equations are significantly simplified yielding

∂W
∂ũτ

= ∇0 ·P (Fτ ,Hτ , pτ ,F
τ
v ,X) = 0

∂W
∂φ̃τ

= ∇0 ·B (Fτ ,Hτ ,X) = 0

∂W
∂pτ

= detFτ − 1 = 0.

(31)

Then, for the averaged stress or magnetic density flux control, eq. (30) is considered imposing the

macroscopic variables via

∂P
∂Fτ

=
1

|Ω0|

∫
Ω0

P (Fτ ,F
τ
v , pτ ,X) dΩ0 −P

app
τ = 0

∂P
∂Hτ

=
1

|Ω0|

∫
Ω0

B (Fτ ,Hτ ,X) dΩ0 −B
app
τ = 0.

(32)

It is noted here that the total first Piola-Kirchhoff stress is split into a purely mechanical Pmech

and a Maxwell part Pmaxw, i.e., P = Pmech +Pmaxw. The latter is defined in terms of the applied

magnetic fields and deformation gradients and is readily obtained from relation (15). For the sake

of consistency, P
app
τ refers to the total stress accounting for both mechanical and Maxwell average

stresses applied.

Additionally, the evolution of the internal variable must be obtained using the viscous flow rule

(Eq. 22). In this work, this evolution is implicitly solved inside the global system of non-linear

equations by defining a residual Rv as [58]

Rv (Fτ ,F
τ
v ,X) = Fτv − Ftv − Fτ −1

e ·Dτ
v · Fτe · Fτv = 0 (33)
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where Ḟv = Fτv − Ftv represents the rate of viscous deformation gradient defined in Eq. (22).

For solving the non-linear equilibrium, Eqs. (31), (32) and (33) are expressed in their integral weak

form, and the domain Ω0 is discretized into a FEM mesh to yield into a non-linear discrete system of

equations. The non-linear equations are solved using a fully implicit time discretization scheme and

the Newton-Raphson procedure to obtain the global equilibrium state at those particular boundary

conditions of the corresponding time increment.

4. Numerical results at the microscale and discussion

This section is intended to shed light on the understanding of the behavior of the soft MREs

discussed in Section 2. The low stiffness of the matrix used (≈ 1 kPa) hinders the convergence of the

problem significantly due to the very large phase contrast. However, this low stiffness improves the

potential applications leading to low magnetic thresholds to activate magneto-mechanical couplings

(≈ 5 to 100 mT). To this end, the microstructural modeling framework (Section 3) is used for

simulating the mechanical and magnetic behavior of soft MREs. First, a mechanical validation is

presented, for uniaxial compression tests, followed by compression relaxation tests results. Then

the magneto-mechanical interactions are studied from magnetic ramp tests. Finally, the results

of cyclic shear tests under magnetic fields are presented. It should be pointed out here that the

present experimental setup both in the purely mechanical and magneto-mechanical case, leads to

fairly uniform magnetic and mechanical fields in the largest part of the specimen, except very close

to the boundaries that barreling and fringe effects may be present (see relevant details of the close-

loop magnetic system used in Section 2). Nevertheless, the latter contribute only weakly to the

overall force measure. This is a direct consequence of the specimen shape which is rather thin as

well as the fact that the magnetic field is directly applied (and controlled in a close-loop fashion) to

the boundary of the solid and not far from it (see corresponding discussion on far field simulations

and nonuniform magneto-mechanical fields in [54]). These aspects also have a relevant impact on

the computation of the Maxwell stress contribution, that may be hypothesized as constant within

the MRE sample from a homogenized point of view, see Figure 3. Overall, the experimental setup

used herein provides very homogeneous conditions during magneto-mechanical tests, which helps
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us obtaining more direct relations between the experiments and the homogenized computational

results. This point becomes less ideal under free-expansion tests where the upper magnetic yoke

is not used. However, the use of a thin cylindrical sample with a small diameter (cases for 4 mm

diameter) allows for keeping the homogenization assumption.

Figure 3: Experimental results for the axially confined tests under axial magnetic fields on cylindrical specimens
of 1 mm height and 20 mm diameter. Axial force measured by the load cell of the test machine is plotted versus
magnetic induction for three magnetic particle volume fraction φ = {0.1, 0.2, 0.3}. The magnetic field is applied at
constant rates of 2 and 20 mT/s. Note that the magnetic application rates imposed in these tests provided almost
superimposed results without significant differences in their mean curve.

4.1. Numerical FE model

The numerical examples have been carried out using the homogenization framework of Section 3.

The material microstructure under study contains two phases, the PDMS matrix and the CIP filler.

The constitutive behavior for the matrix is defined as a visco-elastic incompressible solid with null

magnetization. In the case of the particles, ideally considered to have a spherical shape, we assume

a quasi-rigid solid respond together with a magnetization profile with saturation.

Different idealized particle arrangements have been considered to analyze the microstructural be-

havior with special alignments of the particles, including random distributions. These include

simple cubic (SC), body centered cubic (BCC), face centered cubic (FCC) and random distribu-

tions. Figure 4.1 shows the studied cases of particles arrangements for a 20% volume fraction

content of CIP. Note that the arrangements are periodic and the study of different volume fractions

implies an increase/reduction of the diameter of the particles. In the case of random distributions
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of particles, a Monte-Carlo procedure is used for the placement of particles center, avoiding particle

overlapping and considering a minimum distance of 10% the radius of the particle.

Figure 4: Simple Cubic (SC), Body Centered Cubic (BCC), Face Centered Cubic (FCC), Random (20 particles)
distributions containing a 20% v.f. of CIP.

It should be remarked that different random arrangements have been considered, yielding a scatter

of 5% in stress-strain curves and lower than 10% in magnetization profiles. The consideration of

a higher number of particles would reduce this scatter, but would result in a similar mean curve

behavior with a relevant increase in computational cost. For the simulations with random distri-

butions of particles, an RVE with the mean response within the scatter tested has been chosen.

The material parameters selected, all gathered in Table A1, for the behavior of the CIP are

µ = 81.78 GPa for the shear modulus, χ = 30 for the magnetic susceptibility and µ0ms = 2.5 T

for the magnetic saturation, which are taken from the literature [67]. As discussed earlier, the

particles are considered to be incompressible, a choice that has no effect in the results since the

overall mechanical response of the particle is practically rigid as compared to the matrix phase. In

turn, the material parameters of the visco-elastic behavior of the matrix have been obtained from

the inverse fitting procedure of uniaxial compression curves of PDMS at different rates, resulting in

the following values: elastic shear modulus µ = 1.03 kPa, viscous shear modulus µv = 1.52 kPa and

viscosity τv = 0.22 kPa s. All the numerical parameters are summarized in Table 4.1 for the shake

of clarity. The domain representing the microstructure is discretized in a FEM mesh of quadratic

tetrahedral elements. An adaptive meshing has been used here, where the characteristic length for

the elements near the matrix-particle interfaces is set to one eighth of the particle diameter. Note

that for the incompressibility condition equation (last term in Eq. 31), the discretization is reduced
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to the points corresponding to the tetrahedral elements centers. Additionally, the residual of the

viscous flow rule (Eq. 33) is solved at the element integration points.

Phase
Mechanical properties Magnetic properties

Elastic shear
modulus µ (kPa)

Viscous shear
modulus
µv (kPa)

Viscosity
τv (kPa s)

Magnetic
susceptibility

χ (-)

Magnetic
saturation
µ0ms (T)

Matrix 1.03 1.52 0.22 0 —

Particles 81.78× 106 — — 30 2.5

Table 1: Mechanical and magnetic properties used for matrix and particle behaviors.

Regarding the numerical implementation, the equilibrium equations (31), (32) and (33) are im-

plemented in the python Finite Elements module FEniCS by symbolically indicating the weak

form of those equations and solving the problem monolithically. Moreover, special constraints are

imposed in the boundary nodes to accomplish for periodic boundary conditions (Eq. 24). The non-

linear problem is then solved with a Newton-Raphson procedure by linearizing in each iteration

the non-linear system of equations and solving the resulting linear system by a direct solver. The

solution is achieved when either the relative correction in solution or in flux is below the tolerance

of 5 · 10−3. The direct solver is indispensable since the resulting system is ill-posed due to the very

large stiffness contrast between the matrix and the particles. Such a novel condition introduced in

the present work is a source of instability in the problem, limiting the convergence in simulations

under extreme conditions such as high magnetic fields or very large deformations.

To be consistent with common boundary conditions applied in experiments, the Eulerian magnetic

field b needs to be imposed. In order to prescribe the macroscopic Eulerian magnetic field b instead

of the Lagrangian B, one must be cautious. A simple way is to replace the term B
app
τ in Eq. (32)

by the analogous expression det
(
Fτ
)
F
−1
τ ·b

app
τ , leading to a fully implicit imposition of b

app
τ , which

is finally solved during the resolution of the non-linear system. We have validated this procedure

to be equivalent to the approaches followed in [47, 49].

As a final remark, the inclusion of the point-wise equation of the viscous residual (eq. 33) into

the global system of non-linear equations implies a significant increase of the computational cost.

However, in these implementations, the global matrix is saved in sparse format, reducing drastically
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the memory requirement, while a sparse solver for the matrix inversion may be readily used. In this

regard, the cross-derivative terms are automatically considered for the non-linear solver without a

significant computational effort. Moreover, this monolithic approach is able to reach a larger time

incrementation compared to other staggered solvers.

4.2. Uniaxial compression

To validate the mechanical behavior resulting from the proposed modeling framework, uniaxial

compression tests are performed under different strain rates. The loading path for this test is

achieved via mixed stress/strain control, imposing a macroscopic deformation gradient ramp and

fixing to zero the macroscopic first Piola-Kirchhoff stress, such that

F(t) =


∗ ∗ ∗

0 ∗ ∗

0 0 1 + ∆Fendt/tend

 , Pmech(t) =


0 0 0

∗ 0 0

∗ ∗ ∗

 (34)

where ∆Fend = 0.2 is the final stretch increment in the loading direction and the final time tend

depends on the strain rate imposed. The different particle arrangements with volume fractions are

analyzed. Uniaxial compression tests simulations are compared with experiments at different strain

rates in Figures 5 and 6.
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Figure 5: Visco-elastic behavior under uniaxial compression of the PDMS matrix containing different particle v.f.
at different rates for SC distributed particles. Comparison between experimental (mean curve of six specimens) and
simulation results for different particles volume fractions.
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Figure 6: Visco-elastic behavior under uniaxial compression of the PDMS matrix containing different particle v.f. at
different rates for randomly distributed 20 particles. Comparison between experimental (mean curve of six specimens)
and simulation results for different particles volume fractions.

The random microstructures show the best agreement among the different particle arrangements

for the three strain rates studied. For lower particle volume fractions, an underestimation of the

stress-strain curve is observed in most of the cases. This fact may be attributed to particle clustering

in the actual experimental specimens (see [61]), which are not taken into account in the creation

of the numerical microstructures of the present study. Moreover, it can be observed from Figure

5 that the SC arrangements show a stiffer behavior, which is attributed to the special alignment

of the particles in the loading direction and reach a compression buckling-type instability. In the

case of random distributions, two factors affect the convergence, the small distance between two

arbitrary particles that may occur during the generation of the random distributions, and micro-

instabilities that may take place within a cluster of particles such as micro locking or local buckling.

Moreover, the large stiffness contrast between the matrix and particles (≈ 108) augments further

the possible numerical instabilities. In Figures A.1 and A.2, both the BCC and FCC exhibit a more

compliant behavior mainly due to the specific location of the particles, which avoids each other

during the application of the loads. It should be noted that phenomenological models [36] may

provide more accurate responses but usually including as a trade-off more parameters to fit. In

this regard, micromechanical and micromechanical phenomenological models may be considered as

complementary, where the former provide insights into the micromechanical interactions and some

parameters that calibrated the macroscopic phenomenological model. The latter model is more

appropriate for its finally use in technological applications (see a recent work as an example [11]).
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4.3. Compression relaxation tests

Using compression relaxation tests, the influence of the particle content on the viscous character-

istic relaxation time is analyzed. To this end, macroscopic conditions follow eq. (34) where the

deformation gradient (Fend) is taken to 0.05 for a tend = 0.1s. When the ramp reaches the max-

imum, a hold time period is applied until the stress is stabilized. Stress-time curves for different

particle volume fractions are shown in Figure 7.
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Figure 7: Simulation results of mechanic relaxation behavior of the PDMS matrix containing different particle v.f.
for BCC (left) and random (right) distributed particles. The ”x” markers indicate the stress stabilization.

It is observed that the characteristic relaxation time increases with the particle content, showing

variations of up to 40%. In Figure A.3, the same effect is observed, particularly showing a higher

increase of viscous relaxation time in the stiffer particle arrangements (SC). This effect is due to

the fact that, for the stiffer particle arrangements, the local concentration of strain is significantly

higher, leading to a higher relaxation time within those regions. These tendencies are consistent

with the experimental results presented in [27]. Note that different viscous mechanisms may arise

from two main sources [68]: 1) different relaxation mechanisms with different characteristic times; 2)

as a consequence of heterogeneous distributions of the strain and strain rates within the elastomeric

matrix. The latter is nicely captured by our micromechanical modelling framework and show how

these models may help us to motivate phenomenological approaches or gain microstructural insights.

In this regard, although the same viscosity and, therefore, relaxation time, is considered for the

elastomeric phase in all the tested cases, Figure 7 shows how the microstructural arrangement and
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volume fraction of the magnetic particles contribute to modulate the macroscopic (homogenized)

viscoelastic response of the MRE. These results present higher relaxation times for higher particles’

content, demonstrating how microstructural heterogeneity of the strain and strain rate distributions

impacts the macroscopic viscoelastic response.

4.4. Magnetostriction tests

Under magnetic fields, the MRE deforms freely due to the magnetic particle interactions and

resulting rearrangements. In this case, the effect of the rate of magnetic field application is analyzed.

The magnetostriction test consists in a magnetic ramp at different rates with stress-free boundary

conditions, followed by a hold time period of magnetic field. The imposition of the magnetic field

is performed via Eulerian magnetic flux following

b(t) =


0

0

bendt/tramp

 , Pmech(t) =


0 0 0

∗ 0 0

∗ ∗ 0

 , F(t) =


∗ ∗ ∗

0 ∗ ∗

0 0 ∗

 , (35)

where bend = 15mT and tramp varies as a function of the magnetic ramp rate, and the relaxation

hold time is set to be thold = 100 ∗ tramp with a constant bend. The stretch-time curves at different

ramp rates are shown in Figure 8. Note that the very soft nature of the matrix used in this work

allows for significant magneto-mechanical coupling at small external magnetic fields. This is an

important point for further applications as it reduces complexities associated to the generation of

such magnetic fields.
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Figure 8: Simulation results of magnetic ramp and hold behavior of the PDMS matrix containing different particle
v.f. (solid 10%, dashed 20%, dotted 30%) at different rates for SC (left) and random (right) distributed particles.

The simulations presented in Figures 8 and A.4 show a continuous increase in MRE stretch with

the application of the magnetic field, being the deformation a contraction for all the cases. This

stretch adopts a maximum stable value for the slowest rate at the moment that the magnetic field

reaches its maximum magnitude. When the application rate of the magnetic field is increased,

the viscous behavior of the polymeric matrix kicks in resulting in the stiffening of this phase.

In such scenarios, the stiffening due to strain rate dependence leads to a temporal constraint in

the MRE deformation. As a consequence, the stretch experienced at the end of the magnetic

ramp is lower when increasing the application magnetic rate. Thereafter, viscoelastic relaxation

mechanisms within the matrix phase contribute to a continuous decrease in stiffness accompanied

by a stretching until the full viscous relaxation is achieved. Finally, when the response is stationary,

the final deformed configuration is the same for all the rates of magnetic ramp applied, after the

proper relaxation time.

It must be remarked that, when imposing an Eulerian magnetic flux, the RVE is subjected to

a magnetic field which can be significantly higher for lower particles volume fraction, since the

resulting macroscopic magnetic field is inversely proportional to the effective macroscopic magnetic

permeability. Thus, in some cases, deformation due to the same magnetic flux can be similar or

even larger in the RVE with lower particle content (see FCC in Figure A.4).
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4.5. Magnetic relaxation tests

An alternative test allowing to analyze the magneto-visco-elastic interactions is the application of

a magnetic ramp while constraining the mechanical deformation. The test consists in a magnetic

ramp at different rates with null deformation followed by a hold time of magnetic field, given by

b(t) =


0

0

bendt/tramp

 , F(t) =


1 0 0

0 1 0

0 0 1

 , (36)

where bend = 15mT and tramp varies as a function of the magnetic ramp rate with a relaxation

hold time of thold = 100 ∗ tramp with a constant bend. The stress-time curves at different ramp rates

are shown in Figure 9. Note that these simulations are representative, at the microscale, of the

experiments shown in Figure 2.
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Figure 9: Simulation results of magnetic ramp and hold behavior of the PDMS matrix containing different particle
v.f. (solid 10%, dashed 20%, dotted 30%) at different rates for BCC (left) and random (right) distributed particles.

As in the case of the magnetostriction test, Figures 9 and A.5 show that for the stabilized stress

(steady state), there is no effect of the rate of the magnetic ramp. However, in contrast to mag-

netostriction, differences in the stress-time curve during the ramp at different rates are almost

negligible, leading to the conclusion that internal stresses are almost time-independent and the

internal viscous relaxations are negligible. This is consistent with the experiments presented herein

for the magnetic rates tested (Figure 2). Again, it is observed that the RVEs of lower particle

content are subjected to significantly higher magnetic fields due to the lower effective magnetic
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permeability.

4.6. Cyclic shear tests under magnetic fields

The last tests used to analyze the effect of magnetic fields on the viscous behavior are cyclic shear

loops. The RVE is subjected first to a slow magnetic field ramp followed by several cycles of shear.

This test is described by imposing the following macroscopic variables

b(t) =


0

0

bend

 , F(t) =


∗ ∗ 0

0 ∗ Fmax sin(ωt)

0 0 1

 , Pmech(t) =


0 0 ∗

∗ 0 ∗

∗ ∗ ∗

 , (37)

where Fmax is the maximum shear deformation achieved during a loop, ω is the angular frequency

of the cyclic load and bend = 50mT the magnetic field imposed. The shear stress-strain loops in

the stabilized regime are shown in Figure 10.
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Figure 10: Simulation results of magnetic ramp and shear behavior of the PDMS matrix containing 30% particle v.f.
at different rates for SC (left), FCC (middle) and BCC (right) distributed particles. Period 1s: dashed lines; 0.1s:
solid lines.

The effect of the magnetic field on the shear loops is small. However, differences can be found in

the cases of SC and FCC structures. The SC arrangement presents a stiffening response when ap-

plying magnetic fields. This effect is explained by the misalignment of particles that is produced in

every shear loop and is not energetically favorable. On the contrary, the FCC provides a softening

effect when applying magnetic fields due to the fact that, when shear deformation is applied, the
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particles resettle in a more energetically favorable position. Moreover, the effects found in the BCC

arrangement are negligible (see Figure 10), leading to almost overlapped shear loops. To perform

a fair comparison against a random arrangement of particles a much lower magnetic density flux

is imposed (bend = 15mT), as shown in Figures A.6 and A.7. It is observed that for the random

arrangement the variation of the viscous cyclic behavior is almost negligible compared to the effect

observed in 50mT tests but, in this case, the random arrangement behaves similar to the BCC

arrangement, showing a small softening when subjected to a magnetic field.

Finally, the magnetization behavior is analyzed for the studied particle arrangements. In this case,

the magnetization module is larger for the higher particle content. Figure 11 shows the Eulerian

magnetization (q. 4) variation during the cyclic load normalized by the magnetization at the end

of the magnetic ramp. For the SC arrangement, the relative magnetization clearly decreases when

the shear strain is maximum. This decrease is due to the misalignment of the particles during

shearing. By contrast, the FCC presents an increase of magnetization for the maximum shear, due

to the more aligned configuration under shear deformation. From Figure A.8, similar conclusions

are obtained for the BCC and random particles arrangements.
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Figure 11: Simulation results of magnetization oscillations during shear deformation of the PDMS matrix containing
different particle v.f. at different rates for SC (left) and FCC (right) distributed particles. Period 1s: dashed lines;
0.1s: solid lines. On the upper part, captions of the local magnetic density flux along the direction of the applied
magnetic field.

5. Discussion: reconciling microstructural modeling with macrostructural experiments

By comparing Sections 2 and 4, we identify significant discrepancies between the results obtained

from the macroscopic experiments and the microstructural modeling. These discrepancies relate to

the magnetorheological effect and magnetostrictive nature of the extremely soft MREs tested. The

experimental magnetic ramp tests show a clear expansion behavior in the direction of the magnetic

field application (see Figure 1). On the contrary, the simulated response of RVEs under magnetic

fields shows a compressive magnetostriction effect as depicted in Figure 8. Similar discrepancies are

found in the shear tests under magnetic fields. The experimental works show a stiffening behavior

[69, 70, 27], while our modeling results indicate that both stiffening/softening responses can be

achieved depending on the particle arrangement (Figure 10). In the following, we summarize the

relevant works in the literature addressing this problem and, then, we provide new simulations and

analogies to reconcile experiments and microstructural modeling.

In the literature, it has been reported that, under the application of an external magnetic field,
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MREs undergo either compressive or tensile strain. Early works discuss that MREs shorten along

the magnetic field direction as the particles tend to approximate each other [71, 33, 9]. However,

a deeper insight unveils that the magnetostrictive behavior of MREs depends on a wider variety

of factors, such as the volume fraction and micro-structural arrangement of the magnetic particles,

or the magnetic boundary conditions and the nature of the magnetic field applied [54]. Regarding

the influence of the particles distribution, it is reported that contraction of the structure poten-

tially occurs when particles are anisotropically aligned, and expansion when they are isotropically

arranged [72, 33, 73]. Besides, magnetostriction has experimentally been observed to be larger for

isotropic arrangements than for anisotropic specimens [15]. Moreover, it is accepted that larger

particle concentration benefits from greater effective macroscopic elongation [72, 74, 73]. We would

like to highlight the work by Guan et al. [7], where cylindrical MRE samples were characterized,

observing elongation for any magnetic induction applied. The given explanation suggested that

ellipse-shaped magnetic particles rotate to align their magnetic dipoles with the applied field, thus

interacting with the carrier matrix and giving macroscopic effective elongation. Han et al. [26] de-

veloped a simplified phenomenological model that predicts the experimentally observed elongation

of MRE samples, depicting relative magnetic permeability as a function of the axial strain. Another

relevant work is due to Liao et al. [75], which focused on determining the axial force that appears

when a MRE sample is confined, thus prevented from elongating under the application of exter-

nal magnetic fields. The importance of the microstructural arrangement of the magnetic particles

has been approached by computational models. Several authors studied the sign of the magne-

tostrictive deformation from a computational microstructural basis [15, 76, 77, 25, 41]. Overall,

all these works show the importance of the microstructural arrangement of the magnetic particles

on the MRE behavior. However, although these models can explain contraction/expansion transi-

tions, their results often differ from macroscopic observations of the magneto-mechanical response

of MREs.

Despite the relevant microstructural features presented above, we suggest the magnetic boundary

conditions and nature of the applied field as the crucial factor determining the macroscopic response

of the soft MRE. In the literature, some experimental works have approached this matter creat-
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ing the magnetic field by means of a permanent magnet (i.e., NdFeB permanent magnet) [78, 9].

In this case, the permanent magnet acts as a magnetic pole and, despite the magnetic particles

being attracted to each other as they get magnetized, a parallel effect arises as all the particles

feel attracted by the magnetic pole, hence the MRE sample macroscopically compresses. Kalina

et al. [74] suggested a size of the free space that surrounds the MRE sample fifteen times larger

than the specimen size to guarantee that the magnetization poles and the boundary domain can

be neglected [79, 74].

To reconcile microstructure-based models with macroscopic observations, some ad-hoc simulations

and experiments have been performed. From microstructural simulations, the attraction between

particles is observed for low magnetic fields so that they align forming chain-like structures [47, 80].

Figure 12 shows that, for a BCC arrangement with the middle particle located with a small offset

to the center, attraction forces impulse the middle particle to the neighbouring ones, resulting in

chain-like spatial distributions. When these particles form such a chain-like structure, this tends to

align with the magnetic field driven by a paramagnetic torque. This phenomenon, which becomes

stronger for extremely soft matrices, has been investigated in previous works [81, 82, 83]. Making

use of the microstructural modeling framework developed herein, we simulate a three-particle chain

subjected to a vertical magnetic field. The result of this simulation is presented in Figure 12, where

a chain alignment towards the magnetic field direction is observed. As a proof of concept, we take

the macroscopic sample from previous experimental work [27], which consists of petals formed by

a succession of macroscopic spherical elements. This design aims at emulating the particle chains

originated in the microstucture, thus scaling up these geometrical features to the macroscale. When

applying the external magnetic field perpendicular to the petals, these experience important macro-

scopic magnetic torques leading to rotations that push the structure to align along the magnetic

field lines (Figure 12). This phenomenon can be translated to the microstructural response in

the form of micro-paramagnetic torques affecting different local points. Thus, the sum of these

contributions results in an apparent expansion of the samples along the magnetic field direction

(Figure 1). In addition, this phenomenon may explain the discrepancies observed by means of

magnetorheological effect. When the particles come together forming a chain and this aligns along
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the field direction, the resulting microstructural arrangement approaches to the simple cubic (SC)

distribution studied. Therefore, under shear loading, less energetically favorable states are reached

leading to an apparent stiffening of the MRE (see numerical results in Figure 10 and equivalent

experiments presented in previous works [27, 69]).

All in all, the response of extremely soft MREs must be understood as the strong combination

of both microstructural and macrostructural responses. For instance, in Lefevre et al. JMPS,

2019, the macroscopic response is affected both by microstructural characteristics (e.g., soft or

hard mechanical particles) as well as by the specimen shapes. Although this statement may look

general, as this is the case of most materials and especially multifunctional composites, this point

is of especial relevance for the studied MREs. The extremely soft nature of the polymeric matrix

facilitates the rearrangement of the particles within the MRE. Thus, the material responds locally

to external magnetic fields experiencing such microstructural rearrangements that differ within the

macroscopic geometry of the sample (as the magnetic field can certainly vary from local-to-local

regions of the sample). Therefore, the overall macroscopic response of the MRE needs to be under-

stood as a competition of these microscopic structural formations and how these interact between

different local regions of the sample. On top of this complex behavior, viscoelastic effects play a

crucial role determining the apparent stiffness of the polymeric phase potentially leading to different

equilibrium states.
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Figure 12: Illustration of the magnetorehological effects at different scales. Microscale: particle alignment under
vertical magnetic field and constrained deformation; chain alignment under magnetic fields, from 5 to 30 degrees of
inclination. Macroscale: test sample geometry effect. Note that the result for the macroscale deformation has been
extracted from [27].

6. Conclusions

The microstructure-based homogenization framework is a powerful tool for the understanding of the

behavior of soft MREs. The complex viscous and magnetic responses are shown in the experimental

summary presented in Section 2. Under magnetic fields, the MRE shows an expansive behavior

parallel to the magnetic field applied. This behavior is due to several contributions: microscopic

magnetic particles interactions, formation of mesoscopic structures such as particle chains and

the boundary effect due to experimental conditions. From a microscopic mechanical modeling

point of view, several conclusions can be drawn: i) the random particle distribution presents the

best agreement with experiments; ii) the particle content directly affects the characteristic viscous

relaxation time, obtaining higher times for higher particle volume fractions. Under magnetic fields,

the microstructural modeling response suggests negligible effects of the rate dependences in the long

term (steady) state, although it influences significantly the transient response. Recent experimental

work [27] showed that higher magnetic application rates can lead to different equilibrium states

due to microstructural blocking phenomena. In this regard, further modeling efforts are needed to

overcome convergence issues and allow for extreme microstructural rearrangements. Regarding the
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complex shear cyclic tests under magnetic fields, small effect of the magnetic fields is found. For the

case of SC, where the particles configuration is clearly aligned with the magnetic field, a stiffening

of the shear loop is observed due to the shear misalignment. For the FCC, a contrary effect is

observed, due to the more aligned particle position when sheared. After the analysis of microscopic

modeling, some outcomes can be taken for the macroscopic behavior. We suggest that, for extremely

soft polymeric matrices (≈ 1 kPa), the particles tend to form chains-like distributions and such

microstructures then rotate to align with the external magnetic field applied. These phenomena

may explain, under magnetic fields: i) the expansive behavior of the soft MREs; and ii) the increase

in shear stiffness, reconciling modeling results with experimental observations.

Code

The code developed in this work will be fully available in the final published version with a direct

link present in the manuscript.
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Appendix A. Supplemental Results
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Figure A.1: Visco-elastic behavior under uniaxial compression of the PDMS matrix containing different particle v.f.
at different rates for BCC distributed particles. Comparison between experimental (mean curve of six specimens)
and simulation results for different particles volume fractions.
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Figure A.2: Visco-elastic behavior under uniaxial compression of the PDMS matrix containing different particle v.f.
at different rates for FCC distributed particles. Comparison between experimental (mean curve of six specimens)
and simulation results for different particles volume fractions.
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Figure A.3: Simulation results of the mechanic relaxation behavior of the PDMS matrix containing different particle
v.f. for SC (left) and FCC (right) distributed particles. The ”x” markers indicate the stress stabilization.
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Figure A.4: Simulation results of magnetic ramp and hold behavior of the PDMS matrix containing different particle
v.f. (solid 10%, dashed 20%, dotted 30%) at different rates for BCC (left) and FCC (right) distributed particles.

0 1 2 3 4 5
Normalized Time [-]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

E
ng

. S
tr

es
s 

[k
Pa

]

Ramp
 end
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ḃ= 1.0mT/s

0 1 2 3 4 5
Normalized Time [-]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

E
ng

. S
tr

es
s 

[k
Pa

]

Ramp
 end
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Figure A.5: Simulation results of magnetic ramp and hold behavior of the PDMS matrix containing different particle
v.f. (solid 10%, dashed 20%, dotted 30%) at different rates for SC (left) and FCC (right) distributed particles.
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Figure A.6: Simulation results of magnetic ramp and shear behavior of the PDMS matrix containing different particle
v.f. at different rates for SC (left) and FCC (right) distributed particles. Periods 1s (top) and 0.1s (bottom).
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Figure A.7: Simulation results of magnetic ramp and shear behavior of the PDMS matrix containing different particle
v.f. at different rates for BCC (left) and random (right) distributed particles. Periods 1s (top) and 0.1s (bottom).
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Figure A.8: Simulation results of magnetization oscillations during shear deformation of the PDMS matrix containing
different particle v.f. at different rates for BCC (left) and random (right) distributed particles. Period 1s: dashed
lines; 0.1s: solid lines. On the upper part, captions of the local magnetic density flux along the direction of the
applied magnetic field.
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Velasco, and Daniel Garcia-Gonzalez. Magneto-mechanical system to reproduce and quantify

complex strain patterns in biological materials. Applied Materials Today, 27:101437, 2022.

[12] Andrea Stoll, Matthias Mayer, Gareth J. Monkman, and Mikhail Shamonin. Evaluation of

highly compliant magneto-active elastomers with colossal magnetorheological response. Jour-

nal of Applied Polymer Science, 131(2), 2014.

[13] Junru Yao, Youyi Sun, Yan Wang, Qiang Fu, Zhiyuan Xiong, and Yaqing Liu. Magnet-induced

aligning magnetorheological elastomer based on ultra-soft matrix. Composites Science and

Technology, 162:170–179, 2018.

[14] G V Stepanov, D Yu Borin, Yu L Raikher, P V Melenev, and N S Perov. Motion of ferroparti-

cles inside the polymeric matrix in magnetoactive elastomers. Journal of Physics: Condensed

Matter, 20(20):204121, may 2008.

43



[15] K. Danas, S.V. Kankanala, and N. Triantafyllidis. Experiments and modeling of iron-

particle-filled magnetorheological elastomers. Journal of the Mechanics and Physics of Solids,

60(1):120–138, 2012.

[16] Viktor M. Kalita, Andrei A. Snarskii, Mikhail Shamonin, and Denis Zorinets. Effect of single-

particle magnetostriction on the shear modulus of compliant magnetoactive elastomers. Phys.

Rev. E, 95:032503, Mar 2017.

[17] D Günther, D Yu Borin, S Günther, and S Odenbach. X-ray micro-tomographic character-

ization of field-structured magnetorheological elastomers. Smart Materials and Structures,

21(1):015005, dec 2011.

[18] Anil K. Bastola and Mokarram Hossain. A review on magneto-mechanical characterizations

of magnetorheological elastomers. Composites Part B: Engineering, 200:108348, 2020.

[19] G Y Zhou and Z Y Jiang. Deformation in magnetorheological elastomer and elas-

tomer–ferromagnet composite driven by a magnetic field. Smart Materials and Structures,

13(2):309–316, feb 2004.

[20] A. V. Chertovich, G. V. Stepanov, E. Yu. Kramarenko, and A. R. Khokhlov. New com-

posite elastomers with giant magnetic response. Macromolecular Materials and Engineering,

295(4):336–341, 2010.

[21] W. H. Li, Y. Zhou, and T. F. Tian. Viscoelastic properties of mr elastomers under harmonic

loading. Rheologica Acta, 49(7):733–740, Jul 2010.

[22] G.V. Stepanov, S.S. Abramchuk, D.A. Grishin, L.V. Nikitin, E.Yu. Kramarenko, and A.R.

Khokhlov. Effect of a homogeneous magnetic field on the viscoelastic behavior of magnetic

elastomers. Polymer, 48(2):488–495, 2007.

[23] Vladislav V. Sorokin, Gennady V. Stepanov, Mikhail Shamonin, Gareth J. Monkman, Alexei R.

Khokhlov, and Elena Yu. Kramarenko. Hysteresis of the viscoelastic properties and the nor-

mal force in magnetically and mechanically soft magnetoactive elastomers: Effects of filler

composition, strain amplitude and magnetic field. Polymer, 76:191–202, 2015.

44



[24] Siddaiah Yarra, Faramarz Gordaninejad, Majid Behrooz, and Gokhan Pekcan. Performance of

natural rubber and silicone-based magnetorheological elastomers under large-strain combined

axial and shear loading. Journal of Intelligent Material Systems and Structures, 30(2):228–242,

2019.

[25] Lukas Fischer and Andreas M. Menzel. Magnetostriction in magnetic gels and elastomers as a

function of the internal structure and particle distribution. The Journal of Chemical Physics,

151(11):114906, 2019.

[26] Yi Han, Akshi Mohla, Xiao Huang, Wei Hong, and Leann E. Faidley. Magnetostriction and

field stiffening of magneto-active elastomers. International Journal of Applied Mechanics,

07(01):1550001, 2015.

[27] M.A. Moreno, J. Gonzalez-Rico, M.L. Lopez-Donaire, A. Arias, and D. Garcia-Gonzalez. New

experimental insights into magneto-mechanical rate dependences of magnetorheological elas-

tomers. Composites Part B: Engineering, page 109148, 2021.

[28] A.K. Bastola, E. Ang, M. Paudel, and L. Li. Soft hybrid magnetorheological elastomer: Gap

bridging between mr fluid and mr elastomer. Colloids and Surfaces A: Physicochemical and

Engineering Aspects, 583:123975, 2019.

[29] Landau LD. and Lifshitz EM. Electrodynamics of continuous media. Oxford, UK: Pergamon

Press., 1960.

[30] Livens GH. The theory of electricity. 2nd edn. Cambridge, UK: Cambridge University Press.,

1962.

[31] Liliana Borcea and Oscar Bruno. On the magneto-elastic properties of elastomer–ferromagnet

composites. Journal of the Mechanics and Physics of Solids, 49(12):2877–2919, 2001.

[32] A. Dorfmann and R. W. Ogden. Nonlinear magnetoelastic deformations of elastomers. Acta

Mechanica, 167(1):13–28, Jan 2004.

45



[33] S.V. Kankanala and N. Triantafyllidis. On finitely strained magnetorheological elastomers.

Journal of the Mechanics and Physics of Solids, 52(12):2869–2908, 2004.

[34] David J. Steigmann. Equilibrium theory for magnetic elastomers and magnetoelastic mem-

branes. International Journal of Non-Linear Mechanics, 39(7):1193–1216, 2004.

[35] Roger Bustamante. Transversely isotropic nonlinear magneto-active elastomers. Acta Mechan-

ica, 210(3):183–214, Mar 2010.

[36] Prashant Saxena, Mokarram Hossain, and Paul Steinmann. A theory of finite deformation

magneto-viscoelasticity. International Journal of Solids and Structures, 50(24):3886–3897,

2013.
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[52] Evan Galipeau and Pedro Ponte Castañeda. A finite-strain constitutive model for magne-

torheological elastomers: Magnetic torques and fiber rotations. Journal of the Mechanics and

Physics of Solids, 61(4):1065–1090, 2013.

[53] Evan Galipeau and Pedro Ponte Castañeda. The effect of particle shape and distribution on

the macroscopic behavior of magnetoelastic composites. International Journal of Solids and

Structures, 49(1):1–17, 2012.
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