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Exponential ergodicity of a degenerate age-size piecewise
deterministic process

Ignacio Madrid*

Abstract

We study the long-time behaviour of the first-moment semigroup of a non conservative
piecewise deterministic measure-valued stochastic process with support on ]Ri driven
by a deterministic flow between random jump times, with a transition kernel which
has a degenerate form. Using a Doob h-transform where the function h is taken as
an eigenfunction of the associated generator, we can bring ourselves back to the
study of a conservative process whose exponential ergodicity is proven via Harris’
Theorem. Particular attention is given to the proof of Doeblin minoration condition.
The main difficulty is the degeneracy of one of the two variables, and the deterministic
dependency between the two variables, which make it no trivial to uniformly bound
the expected value of the trajectories with respect to a non-degenerate measure in
a two-dimensional space, which is particularly hard in a non-compact setting. Here,
we propose a general method to construct explicit trajectories which explore the
space state with positive probability and witch permit to prove a petite-set condition
for the compact sets of the state space. An application to an age-structured growth-
fragmentation process modelling bacterial growth is also shown.

Keywords: Exponential ergodicity, Harris’ Theorem, Doeblin minoration, Non-conservative
semigroups, Age-size structured equation, Degenerate PDMP.
MSC2020 subject classifications: 60]25, 45C05, 45K05, 92D25.

1 Introduction

The need to include age as a structuring variable in the description of population
dynamics has come to be a useful strategy for modellers searching to account for
non-Markovian behaviours in a Markovian setting. In particular, in the context of
biological applications, the arising of high-throughput single-cell techniques has allowed
microbiologists to follow heterogenous populations of isolated bacteria (where the
structure is given by their length, biological markers or any other observable) through
time. Thereby, this also grants access to the age structure and has put in evidence the
non-trivial dependence of age and the other observables at the individual and population
scales. The most recent models of bacterial growing include then some sort of age
variable, which might not correspond exactly with the chronological age, but which
might rather evolve in time as a function of the individual trait. This age variable still

*CMAP, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.
E-mail: ignacio.madrid- canales@polytechnique.edu


https://ams.org/mathscinet/msc/msc2020.html
mailto:ignacio.madrid-canales@polytechnique.edu

obeys a renewal equation, which justifies nonetheless its name. This is why we need
to extend stability results which account for the level of generality imposed by those
models.

In this spirit, we study the long-time behaviour of a stochastic process modelling
non-conservative population dynamics which are formalised as a measure-valued process
(Z1)i1>0 with values in the point measures over Ri, M,,(IP&), which represents the age
and size of the individuals. For every instant ¢ > 0 we can write

Zi= Y Ox; (1.1)

i<(Zy,1)

where x; = (a;,y;) denotes the vector trait of individual ¢, consisting in its age a; and
size y;. We suppose that for every f € C;’l(]Ri), Z; decomposes as a semi-martingale of
the form

t
(Zi. f) d:“/w f(x)Zt(dx):<Z0,f>+/O (Z., Qf ) ds + 4], (1.2)

where //th is a squared-integrable martingale, and Q is given for every f € C; ’1(Ri) by

Qf(x) = g(x) "V f(x) + B(x) (/000 (0, 2)k(x, z)dz — f(x)) vx € R% (1.3)

The first term of the generator Q is a deterministic transport term, where g : Ri — Ry
represents a deterministic individual cell growth rate, so that between jumps the variable
x evolves as x'(t) = g(x(t)). The second term represents the stochastic reproduction
events where (3 : ]Ri — R, is the reproduction rate. The function k : Ri — Ry is
a positive integrable function modelling the stochastic replacement of the size (by
fragmentation or mutation) of individuals of trait x. The age variable, on the other hand,
resets at 0 at each jump. This means that the transition kernel over Ri is degenerate, of
form x — d¢(da) ® k(x, 2)dz.

Our goal is to obtain the long-time behaviour of the first-moment semigroup M, f(x) :=
Es, [(Z, f)]- In particular, we prove a Malthusian behaviour:

Mif(x) = hx)e (x. f) + O (e271) | (1.4)

which shows the convergence of e~** M, towards a unique stationary measure 7 at an
exponential rate. The parameter A > 0 is called the Malthus parameter and represents
the growth rate of the population, so that e~** allows to rescale the mean population size
as t — +oo. The function h propagates the effect of the initial structure of the population.
The constant w indicates the velocity of the exponential convergence towards .

Different methods have been developed during the recent years to prove this be-
haviour: spectral methods, as reviewed in [21] (see for example [23] for an application
to a close model); others based on the study of the associated semigroup by Harris’
theorem as proposed in some general frameworks by [3, 5, 2] with recent applications in
the models considered by [4, 25, 7]. We will follow the latter methods, using the criteria
established by Meyn and Tweedie [20], namely: a petite-set condition (Section 2.2) and
the existence of a Lyapunov function (Section 2.3). This methods present an alternative
to PDE techniques, where criteria based on the probabilistic control of moments replace
the harder to obtain Poincaré-type inequalities.

We explore two directions left open in the previous applications, which represent also
the sources of our major technical issues: first, the bi-dimensionality of the dynamics,
and second, the degeneracy of the transition kernel. Indeed, the underlying stochastic
process consists on unidimensional trajectories over a two-dimensional space. Hence, to
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uniformly bound in probability the region explored by these trajectories with respect to
a non-degenerate measure is not trivial. Similar difficulties have been found for other
two-dimensional models such as [13, 26, 8]. Here, we propose to construct explicit
trajectories and to average them in time with respect to a nice sampling measure. The
inclusion of time permits to compensate the lack of stochasticity of the degenerate
jump-transport dynamics with the stochasticty of the reproduction times. More exactly,
the utilisation of a petite-set condition instead of a small-sets one is key to obtain the
convergence in this two-dimensional setting.

Moreover, compared to the previous works mentioned above, the probabilistic frame-
work brings naturally to work with the operator Q instead of its dual, as in the more
classical PDE settings. Thus, this work lies also in the framework of measure solutions
as rigorously developed for example in [14] for the one-dimensional conservative case.
Moreover, only the existence of eigenelements for Q is needed to be able to compute the
Doob h-transform and use Harris’ theorem. Then, the existence of the direct eigenfunc-
tion associated to the classical PDE is a consequence of our main result. Our method is
then in the spirit of [5], where the authors could exploit known results of existence of
the dual eigenelements in the one-dimensional case provided by [1, 10]. In our case, we
will have to adapt the latter to the two-dimensional degenerate case studied here.

In particular, we will apply our method to determine the exponential convergence
towards a stable size distribution in a bacterial proliferation model called the adder
model [24, 19, 16, 15]. Individual cells are structured by their added size a which renews
to 0 at each division, and their size y which evolves deterministically at exponential rate.
The existence of a steady-state distribution and its form was already known since [16]
and was recently justified using entropy methods by [15]. Since the eigenelements of
the generator are known in this case, by the direct application of Harris’ theorem, our
method permits to evade technical issues linked to the lack of compactness of the model,
which make a classic treatment by PDE and hypocoercivity methods harder to prove and
less general.

2 Malthusian behaviour

We are interested in the average dynamics as given by first-moment semigroup M;
defined for every test function f € C;’l(]Ri) by:

M f(x) :=E[(Z, )| Zo = 6x] Yx€R2 (2.1)

Using Markov’s property it’s easy to see that M, verifies the semigroup property.
However it is not a Markovian semigroup since it does not necessarily preserve mass
(we say it is non conservative). Moreover, using the semi-martingale decomposition 1.2,
we verify that M; is the semigroup associated to the extended generator Q. This is, for
every test function f € C1!(X), it is the weak solution of Kolmogorov’s equations

OMyf = M Qf = QM. f. (2.2)
Moreover, for any finite measure p we define the dual semigroup as the measure v M,
given by:
(M) = (M) = [ Mif(w(ax)
x

So by definition we have (uM;)f = u(M,f) which we write as uM; f.

Our main result states the Malthusian behaviour of the semigroup by means of the
classical version of Harris theorem as stated in Theorem 6.1 of [20], which we recall
below in Theorem 2.1.
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Theorem 2.1 (Harris’ Theorem (Theorem 6.1 of [20])). Let (X;); be a right-continuous
Markov process with values in some locally compact separable metric space F equipped
with its Borelian set B(FE), and let A be the infinitesimal generator of X. We call P, the
associated transition semigroup. If the two following conditions are verified:

(H1) Doeblin minoration condition for all compacts.

All compact sets of E are petite for a skeleton chain of X. This is, for every compact
set & C E there’s a probability mass distribution p = (i, )nen over N and some
A > 0 such that there exists a non-trivial measure v (which might depend on A and
u) over B(E) that for every x € J¢ gives the following lower bound:

<.u36xpf> = ZNnPnAf(X) > <V7.f> .

nelN

(H2) Foster-Lyapunov drift condition.

There exist a coercive function V and some ¢ > 0, d < oo such that

AV (x) < —cV(x)+d Vx€E,

Then, there exist a unique non-trivial probability measure m and C,w > 0 such that for
everyx € Fandt >0

[16x P — 7ll1+v < C(1 4 V(%)) exp(—wt) (2.3)

Remark that we need a Markovian (conservative) semigroup. To overcome this
problem, similarly as in [5], we perform a so-called Doob h-transform, to obtain a
conservative semigroup P, with the dynamics of M;. To do so, we require first to have
some pair (A, h) such that Qh = Ak and h > 0. Then, using such pair we define

(2.4)
Then we can come back the ergodic behaviour of (M;);>¢ by looking at the limit of
M, f = eMhP; (f/h). In particular, the generator associated with P; is given explicitly by
Eq. (2.5).

Proposition 2.2. Suppose the existence of a pair (A, h), A > 0, h > 0 such that Qh = \h.
Then, P; defined by Eq. (2.4) is a positive Markovian semigroup whose infinitesimal
generator is given for [ € C’;’l(]Ri) by

A6 =907V + 560 [ 1709 - 5] ek 2yis) ket @)

Proof. By definition and evaluating at ¢ = 0 we have:

A = GiRT| (0
_ MBS MM
M eAh |,
Q)
- 2B s
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Then, using the value of Q applied to Af and that Qh = A\h we get

QN — L0307 o)+ 0100+ 809 [ 400.2)510,9 522tz — 1)
= ‘,’iﬁj (906)7 V() = Bx)1(0) + 9(x) V1) + A) | 10, 2)£(0,2) ’fﬁ;{;)
= fig; (Wx) - B(x) /OOO h(O,z)k(x,z)) +9(x) 'V f(x)
060 [ 0,250,955 as
= A7)+ 9007V Fx) 4 860) [ [£(0.2) = 6] 2
Finally, subtracting A f(x) we obtain the form of generator A. 0

Hence, the work is structured as follows: first, in Section 3 we prove the existence of
a pair (A, h) which solves the eigenvalue problem Qh = \h under the assumptions 3.3.
The same set of Assumptions allows us to prove the Doeblin condition (H1) in Section 4.
We do not provide a general Foster-Lyapunov condition (H2), suitable for our general
case. However, we show its existence in our application to a growth-fragmentation model
in Section 5. This last model has already been studied since the works of [16], and the
exponential convergence has been recently shown in [15] using Generalized Relative
Entropy techniques. Here, we show that the knowledge of the eigenelements (A, h) for
the generator allows to provide a simpler proof of convergence using Harris’ theorem.
Indeed, the arguments presented in Section 3 can be avoided when the existence of
eigenelements is known apriori, which might be the case in several practical applications.
Nonetheless, our general method allows us to give an answer to one of the perspectives
listed by [15], who couldn’t generalise their argument in the case of a general drift
function g. Thus, our main result reads as follows:

Theorem 2.3 (Exponential ergodicity). Under Assumptions 3.3 and if the Lyapunov-
Foster condition (H2) of Theorem 2.1 is verified for some coercive function V : ]R2+ - Ry,
there is a unique probability measure w such that there exist constants C,w, A > 0 which
verify for every initial condition yiy € M,(R2)

lle™ M oMy — (po, h) wl[14v < C(1 + poV)e " (2.6)

where ||-||v is a weighted total variation norm defined by

0 pry
]y = / / V(a,)lula,y)|dady.
0 0

Moreover, m is absolutely continuous with respect to the Lebesgue measure.

3 Preliminary definitions and assumptions

We begin by recalling some useful properties of the deterministic flow, which are
classical results for an autonomous system of first order ODE (refer for example to
Theorem D.1 of [18]):

Lemma 3.1 (Flow properties and notations.). Let x € R%. Consider g = (g1, 92) € C*(R?)
and suppose that g1 > 0. The autonomous first-order system of Ordinary Differential
Equations (ODE)

du(t)
T*Q(U(t)) ,teR (3.1)
u(0) =x

Page 5/28

dz



defines a unique flow ¢’ : X 3 x — ¢'(x) € X which is the solution u(t) of (3.1) at
time t with initial condition x € X where X = (J -, F@w where T} will be defined
below. We write ¢! = (¢!, ¢b) for the marginal flows of the age and size. We define
then T} = {¢'(x),t > 0} and Ty = {p'(x),t < 0} and callT'x = I'} UT the unique orbit
passing through x. Moreover:

1. The flow is a group in the time variable: ¢'¢® = o't = ¢!, ©° = 1d, and has
inverse (¢t)”' = ¢, which is the solution to the ODE u'(t) = —g (u(t)).

2. The flow depends smoothly on the initial conditions: Vt € R, ¢' € C'(R%). In
particular the Jacobian matrix of the flow with respect to the initial condition is
given explicitly by

D¢ (x) = | "Dy (¢ (%) is).

where D denotes the Jacobian matrix with respect to x = (a,y), and exp(-) corre-
sponds here to a matrix exponential.

3. Forall fixedx = (ag,yo) € X, ifg1 > 0, then there is a unique function Yy : Ry — Ry
such that for all (a,y) € I'x, we have Yy (a) = y. This represents the size at a given
age of an individual with initial condition x. In other words, for allt > 0,

Moreover, Y, € C*(Ry) and it is solution of the first order one-dimensional ODE

o gaYel@)
Yl = e Veta)

Analogously, one defines its inverse function Ax(y) which gives the age at size y
for an individual with initial condition x, and hence verifies

o' (%) = (A<(y(1)),y(t)), t>0.

Yx(ao) = yo

4. For all fixed x € X, we write ¢« (t) := ¢'(x) as a function of time (from R to R? ).
Then, the inverse function ¢ ' : Ty — R such that ¢ (¢ (t)) = t is well defined.
For every xo € X and x; € I'y, we read qS;Ol (x1) as the time needed along T'y, to
go from x to x;. Moreover if we write xg = (ao, yo), X1 = (a1,y1), this quantity is
given by

ai 1 Y1 1
dl(x1) = / ——————da = / — - dy
0 ay 91 (a7 Yxo (a)) yo Y2 (Axo (y)a y)
Importantly, for the set of assumptions given below, we have 0 < ¢;01(x1) < oo for
allxg € X\ {0} and x; € T'x,.

Let us also consider the following probability space which well be useful to compute
and interpret some of the estimates which will be obtained below.

Definition 3.2. Consider a probability space (Ry,B(R.y),Px) in which the random
couple (T,Z) € Ry x Ry gives the first jump time T and size Z after this first jump
of a trajectory beginning at x € X. Hence, for all x € X, the couple (T, Z) has joint
probability density

1
Ci (th(X),Z)l/J(ﬂX),

where the normalisation constant is given by

px(t, z) =

Co= [ [ ke 0. wtexidna
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which is the mean number of offspring produced by an individual of initial configuration
x after its first jump, and

(e = 5(¢ e (- | I is)

is the marginal probability density of the time of the first jump, conditionally to the initial
configuration x, and which is well defined for the set of assumptions given below. We
write [Ex the associated expectation. Fig. 1 summarises the definitions introduced in
this section.

Y

Figure 1: Flow notations introduced in Lemma 3.1 and the probabilistic definition of the
random couple (T, Z) introduced in Definition 3.2.

Now, let us consider the following set of assumptions, whose biological meaning and
implications are commented below.

Assumptions 3.3. Assume that we have

(i) Smooth and uniformly controlled flow: g = (g1,92) € C*(R%), g1 > 0 and there are
some constants cg, c1, ¢z > 0 such that for all (a,y) € R?.

gi(a,y) > coa, gi(a,y) <c(l+a), g2(a,y) <c(l+y),
10agi(a,y)| < co(l+a+y), [9ygi(a,y)] <ca(l+a+y).

and for ally > 0, a > 0, we have gs(a,y) < ¢2(0,y).

(ii) Regular reproduction rate: § € C(R%,R;), and B = /g1 € C(R?), such that
there are constants a*,3_, 54 > 0 s.t. foralla > a*y > 0, f_ < B(a,y) < B+, and
B(a,y) =0 foralla < a*.

(iii) Regular transition kernel: For all z > 0, x — k(x, z) is a continuous function on ]Ri,
and for all x € R2, z — k(x, z) is a continuous function on R, . The total offspring
of individuals of trait x is ||k(x, -)||1 := O+°° k(x,2)dz with 1 < ||k(x,-)||1 < K for all
X € Ri. In particular, we consider two distinct cases:

(a) Fragmentation kernel: For all a > 0, supp k(a,y,-) C (0,y).

(b) Compactly supported mutational kernel: It exists a compact set S C R, such
that for all a > 0, supp k(a,y,-) C S, and some interval I C Ry and ¢y > 0
such that for ally € S and z € S N B, (y), the open ball of radius ¢, around y,
we have I C {a > 0: 8(a,y)k(a,y, z) > 0}.
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(iv) Lower bounded transition kernel: For all fixed value of z > 0, there exists some
non-empty open interval D(z) with length bounded between §_ and ., both
independent of z, and a positive value £(z) such that for all x € R?, k(x,z) >

e(2)1p(x).

We comment on the meaning of these assumptions. Assumption 3.3-(i) ensures
that the size and age do not explode in finite time. The control on the derivatives will
also allow to control the influence of the initial conditions on the flow (Lemma 3.1.2).
Assumption 3.3-(ii) allows to write the division rate as (x) = g1 (x)B(x) where function
B should be interpreted as an “age hazard rate". Indeed, if we let A be the random
variable representing the age at division of an individual, then under PP, a change of
variables gives

Py (A >a) =exp <—/ B(a,Yx(a))da> . (3.2)
0
Hence for every initial condition x € Ri we have
B(a,Yx(a)) da =Py (A € [a,a + da)|A > a).

Proof of Eq. (3.2). Let us recall that under P, introduced in Definition 3.2, the random
variable T is the first jump time. Then, since ¢ !(a, Yx(a)) is the time needed to reach
age a starting from an initial configuration x we have

Py (A > a) = Py (T > ¢5 ' (a, Yu(a)))

¢x ' (a,Yx(a))
exp<—1£ ﬁ(w%x»cw>

Then, doing the change of variables s — «(s) = ¢§(x), i.e. changing from time s, to the
age a(s) at time s starting from x, and since o/ (s) = L3 (x) = g1(¢5(x)) we have

1
g1(@, Y (a))

= / B(a, Yy ())da

0

s (a,Yx(a)) a
/ 8 ds = [ BlaYele) oo
0 0

and hence "
Py (A > a) =exp <—/ B(a,Yx(a))doz> .
0
O

Biologically this has been interpreted as individuals not perceiving actual time, but
rather their own biological age, upon which the division event is decided [24]. The
parameter a* is the minimal division age. It imposes that it is not possible to divide
immediately after birth. For ages bigger than a*, the bounds on B allow to stochastically
bound the age at division between two exponential random variables of rate parameter
B— and 4. Assumption 3.3-(iii) imposes inexact, not perfectly mitotic cell divisions which
give always two new individuals. The two considered cases bring together a broad family
of transition kernels used in similar models. In particular the assumptions concerning
the mutational kernel are inspired from [23]. Importantly, the compactness is needed
to prove the existence of the eigenelements of Q but not for the Doeblin minoration,
which holds in more general cases. In this line, Assumption 3.3-(iv) is key to obtain
the Doeblin minoration condition and generalises similar requirements needed in the
one-dimensional case, such as Eq. (8) of [5] for auto-similar fragmentation kernels, and
Eq. (10) of [6], or Assumption (A4) of [23] for general non-local mutation-type kernels.
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4 Existence of the eigenelements of O

Now, in order to bring ourselves to the conservative setting, we begin by showing the
existence of some pair of eigenelements for Q.

Proposition 4.1 (Existence of eigenelements). Under Assumptions 3.3, there exist a
positive constant A > 0 and a positive function h € W, >°(X) such that

loc

Oh = Ah.

To do so, we can reformulate the eigenvalue problem as a one-dimensional fixed point
problem. This is a classical strategy and other applications in two-dimensional spaces
can be found for example in [9, 17, 15]. In particular, we follow closely the arguments of
[9] which corresponds to the case g; = 1 with a fragmentation kernel and with additional
confinement assumption in the drift term which would allow us to work in a compact
interval in one of the two dimensions. We generalise this approach here.

Lemma 4.2 (Reformulation as a renewal equation). Any pair (), h) such that A > 0 and
h e Wﬁ)’coo(X) is solution almost everywhere to Qh = Ah and verifies

t_lgnoo h( ) exp < / B(p°(x))ds — At) =0 4.1)
if and only if it verifies the renewal formula
h(x) :/ h(0, 2) K (x, z)dz, (4.2)
0
where
A(x, 2) = Cx/ e M py(t, 2)dt (4.3)
0

Remark 4.3. Using Definition 3.2 we can then write Eq. (4.2) as
h(x) = Cx Ex[h(0, Z)e™ . (4.4)

Proof of Lemma 4.2. We proceed by the method of integration along characteristics.
Since h € I/Vhl)fo, taking weak derivatives we obtain that, almost everywhere:

(o)

= (VR(#' (%)) T g(¢"(x)) = (B(¢"(x)) + MA(p"(x))) exp < / B (p*(x))ds — /\t>
= (@009~ (e () = B0 [ HO, (! G0 )dz) e~ S A NN (g 5)
0
First, suppose that (), &) is solution a.e. to Qh = Ah and that Eq. (4.1) is verified. Then,
integrating Eq. (4.5) in (0, 400) and using the decay condition Eq. (4.1) results into
+oo [e’e)
w0 = [ 86000 [ hO . e (— [ (o) ds =)
0 0

which, by Fubini, gives exactly Eq. (4.2). Now, suppose that we have Eq. (4.2). Then we
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have:

- /OOO mh (), )86 ) e~ / (9" () du s s

(/OOO/O h(0, 2)k(* (%), 2)B(° exp( / By du—)\s> dsds
[T [ h0 e 0.2 oo ([ 5700) - 1s) )
XeXP(/ﬁ du+/\t)

Therefore, using Eq. (4.2):

h(p! exp( /3 ds—)\t) (x)—/ooo /Ot h(0, 2)k(p®(x), 2)1(s|x)e ™ dsdz

(4.6)

As t — +o0, the improper integral in the RHS of Eq. (4.6) converges towards

lim /00/ h(0, 2)k(¢®(x), 2)1p(s|x)e o dsdz = /00 h(0, 2) Kx(x,2)dz = h(x),

t——+o0

from which we obtain Eq. (4.1). Moreover, supposing that h € WlOC and taking weak
derivatives in Eq. (4.6) we obtain

2 (retone (= [ 8 nas =) ) = = [ h0.0 0. ot Ve

Hence, a comparison with Eq. (4.5) gives that for all x € X and ¢t > 0 we have almost
everywhere Qh(¢!(x)) — Mi(¢'(x)) = 0, or equivalently, Qh = A\h almost everywhere in
X. O

Remark 4.4. In particular the function 7(y) := h(0,y) defined for all y > 0 is solution to
the fixed point problem

wo) = [ K02 (@.7)
0
Therefore we will consider the operator G defined for f € C'(R) by
arfly / f(2)Kx(0,y,2)dz Yy > 0. (4.8)
We also introduce the operator Jy : M(R;) — M(R4) which for any Radon measure v
supported in R gives
VNS (/ K)\(O,Z7y)1/(dz)> dy (4.9
0

and verifies the duality property below:
Proposition 4.5. For every A > 0, 7, is the adjoint operator of G,.

Proof. Let f € C(R2) and v € M(RR%). By Fubini’s Theorem,

(v, Gnf) = / ( / F()EA(0,y, 2 )dz) v(dy)
:/0 f(2) (/0 K,\(O,y7z)y(dy)> dz = (Jw, f) .
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Remark 4.6. From Eq. (4.4), we can write

Grf(y) = Cloy) Eqopf(Z)e ]

where again Cy,) = [|Ko(0,y,-)||1 is the mean number of offspring produced by an
individual of initial size y after its first jump.

Proof of Proposition 4.1. We aim to prove that there is a unique A > 0 for which the
operator G, admits a unique fixed point i(0,-). The pair (A, k) is then solution to the
eigenproblem Qh = Ah. This will be proven by means of Krein-Rutman’s theorem. In
order to be able to apply this theorem we need to work with a strictly positive compact
operator. For the compactly supported mutational kernel it is immediately the case,
however it is not the case for G with a fragmentation kernel. Thus, we shall follow a
standard approximation scheme for the proof which is structured as follows:

1. We define a truncated version of G, which by Arzéla-Ascoli’s theorem we prove to
be a positive compact operator in the Banach space of continuous functions.

2. We apply Krein-Rutman theorem to prove that for each A > 0 the truncated operator
admits a unique eigenvalue p) > 0 and suitably normalised eigenfunction hy > 0.

3. We prove that there exists a unique )¢ > 0 such that ), =1

4. We prove that the value of )\q is uniformly bounded for all the members of the
family of truncated operators.

5. We pass to the limit and show that the limit eigenelements (Ao, h,) of the family of
truncated operators are indeed solution to the fixed point problem.

Note that the proof is also valid for the compact mutational kernel which verifies
Assumption 3.3-(iii)-(b), but in that case neither the truncation nor the uniform estimates
are needed.

Step 1 : Construction of the truncated operator.
For each R > 0let GF : C1([0, R]) — C([0, R]) defined for all A > 0, for f € C*([0, R]) by

R
08 1) = [ FOEF0.p. )8 e OB (4.10)
0
with
R > t 1 h t —At
KFO.2) = [ (K024 [ R 0.00.00) wtel0.5)e e
We require to add the uniform correction z — % [ ;o k(¢'(0,y),¢)d¢ in order to endorse

the strict positivity of the operator. Indeed, for all y € [0, R], from Fubini’s theorem,
Assumption 3.3-(iii) and Jensen’s inequality we obtain

/OR K0,y,2)dz = /OOO </OOO k(got(07y),z)dz> B(](0,y))eMdt

> e—)\t
> / B(H](0, y))dt
> exp (_/\E(O,y) [T]) .

Moreover, Assumption 3.3-(ii) gives that

0 < B [05,L,) (A Yiou(A)| < By IT1 < B 6] (A1, Yioy(A1))] < +oo
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where A _ (respectively A ) follows an Exponential distribution of parameter 3_ (re-
spectively 3,). Therefore for all positive f € C*([0, R]), GEf > 0.

Moreover, if in analogy with Definition 3.2, we define for all R > 0 the random couple
(T'r, Zr) € Ry x [0, R] such that under PP, ,) they have joint probability density

(k‘(wt(O,y),Z) + ]lZER /OO k(wt(07y)7C)dC) ¥(t(0,9)),

1
pé%}y)(t? z) = TN .

(0,y)

then we can write
GRf(y) = Cloy) B0 [f(Zr)e "1 2, <) (4.11)

Step 2 : Existence of the eigenelements of gf.

We begin by proving that foralle > 0,A > 0and R > 0, gf is compact. We show that for
every sequence (f,), in the unit ball of C([0, R]) there exists a subsequence of (G{!f,)
which converges in C([0, R]) equipped with the uniform norm.

i. Uniform bound: Forall y € (0, R), f in the unit ball of C[0, R] we have from Eq.
(4.11):

Gl f(y) < Copllfillee <K

ii. Equicontinuity: Since g; € C'(R%) and is strictly positive, and k is continuous
in the first two variables, we have that for every A > 0, (y,2) € [0, R] x [0, R] —
K(0,y,z) is an uniformly continuous function on [0, R] x [0, R]. Therefore for
all A > 0 and ¢ > 0 there exists 6 > 0 such that if |y; — ya| + |21 — 22| < ¢ for
Y1,Y2,21,22 € [0, R], then ‘K,\(O,yl, 2’1) — K)\(O, Y2, 2’2)‘ < €/R Hence, for all f in the
unit ball, y1,y2 € [0, R] such that |y; — y2| < 6 we have:

R
G (31) — G ()| < / FOIEN 0,51, 2) — (0, 42, 2)|dz < e

independently on y1, ys.

Finally, by Ascoli’s criterium, there exists a convergent subsequence of (G{ /) and so
the operator G¥ is strictly positive and compact for the uniform topology of C([0, R]).
Therefore, by Krein-Rutman theorem [22] there exists a unique triplet of a positive real
value pf > 0, function 5! > 0 continuous on [0, R], and a positive Radon measure v}

supported on [0, R] such that

G = By (4.12)
Tl = Bl vE(0,R) =1 (4.13)
W) =1, (4.14)

where we denote (v, f)p = fORf(y)y(dy).

Step 3 : Existence and uniqueness of )y > 0 such that “f\%o =1

We show that the mapping A — uf’ is a continuous strictly decreasing function which
goes through the value of 1 at some point. First, note that from Equations (4.12) and
(4.14), we have

(i, G ) = i (4.15)
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We prove that X — (vff,G{n}) , is differentiable continuous and decreasing. Let us
consider the derivatives in the sense of distributions d\v{ and d,n¥. We show below
that A — (v, GInf') , is actually strongly differentiable with respect to A as it has the
same regularity as A — (]f f. First, by dominated convergence, differentiating under the
integral sign on Eq. (4.11) gives for every f € C'([0, R]),

(\GX) f(y) = —Clo) B0, [f(Zr)Tre M 1 2, <R). (4.16)

Then, by differentiating under the duality brackets, and using the duality between G and
J with (4.12) and (4.13), we obtain

s = (Oar, GAnN ) + (VAL G (0any)) + (A, (92GX7) 1Y)
= (O, G ) + (TN oAl + (V3 (aGX) nfY)
= uf (O ) + (v, o)) + (Vi (0xG3) n)
= 0N (U ) + (VA (OnGA) 1Y)

Eq. (4.14) gives ) (vi,nit) = 0, and therefore d\uf = (vi, (0\GF) nT), i.e.,

R
Oy = — / Cio.) Eo,y) [0 (Zr)Tre "1 2, < k] vi (dy) (4.17)
0

Since all the integrands are non-negative we have 9,1 < 0. So A — ¥ is a continuous
strictly-decreasing function. Moreover, doing A = 0, integrating Eq. (4.13), using
Fubini’s theorem to integrate first in the z variable, and using Assumption 3.3-(iii), we
obtain

R
Wl = [ adia)
0

R R 00 e’} t
=/ / / (k(npt(o,y),z) + Jn k(e (Jg,@,g)dg) G (t](0,y))dt vii(dy) dz
0 0 0

:ARAW(Awuﬁmw»ww)wuawmwﬁwm>l

On the other hand, doing A — oo, passing to the limit under the expecation of Eq. (4.11)
we get for every f € C([0,R]), G&f — 0 uniformly as A\ — oo. In particular, by the
equicontinuity of gf‘, for every 4 € (0,2), there must be A\, large enough such that for
every f € C([0,R]), GI'f < § for all A > A, and hereby, pff < ¢ for all A > \,. Therefore
uf\% — 0 as A — oo. In consequence, there must be a unique \g > 0 such that ,ufo =1. We
then define Ap as the only Ay > 0 such that ufo =1 and denote np = 77/1\%3 the respective
eigenfunction. Next, we construct a sequence of h from nr which are to converge to
the solution of the intial eigenproblem and we show that we can establish an uniform
bound over A\g.

Step4 : Construction of hp.
We extend the definition of K to all (a,y) € X, 2z € [0, R]. Define

> > k(¢(0,7),¢)d Y
Kf(e2)= [ waw@+h W;”O<ymmwkk%
and let R
hr(a,y) ::/ nr(2)K{ (a,y, 2)dz. (4.18)
0
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Hence, taking a = 0, since ng solves Eq. (4.12) for ,uf’ =1, we have that:

R
hr(0,y) = /0 nr(2) K3 (0,y,2)dz = G e (y) = 1r(Y),

and therefore hpy verifies

{hR(x) = foR hR(O,z)Kf‘R(x,z)dz = Oy E4 [nR(ZR)e—/\RTR]lZRSR] Vxe X 4.19)

hR(O7y) = UR(y) Vy € (Ov R)

where Cx = |[Ko(X,)||L,(r,)- Then, we can repeat the steps of the proof of Lemma 4.2
to show that the truncated renewal equation (4.19) (which is the truncated version of
Eq. (4.2)) is equivalent to have the boundary condition

lim hp(p(x)) exp (— /O tﬁ(ws(x))ds - ARt) =0 (4.20)

t—+oo
and to have that hp is solution to the truncated eigenvalue problem
Qrhr(a,y) = Ar hr(a,y)
where

Qrh(a,y) = g(a,y)" Vh(a,y)
R Jr k(a,y,0)d¢
+ B(a,y) (/0 h(0, z) (k(a, y,2) + RR) dz — h(a,y)) .

Hence, developing Qrhr(0,y) one obtains

Qrhr(0,y) =91(0,4)0.hr(0,y) + g2(0,4)0yhr(0,y)
R S a
+B(0.y) ( [ ato.2) <k<y 9+ W) - hR<a,y>> |

Therefore ng = hr(0,-) is solution to

Arnr(Y) = 92(0,y)nr(y) — B0, y)nr(y)

R o0 a
+80.9) [ al) (km, o)+ OB o0 0,7 0.0 z>> =

(4.21)

In our case, Assumption 3.3-(ii) which imposes 3(0, y) = 0 for every initial size y simplifies
this last equation into
92(0,9)1%(y) — Ar nr(y) =0

Therefore for all R > 1, if we impose the normalisation condition 7z (1) = 1, we have

v 1
nr(y) =exp | A / dz), ye|0,R (4.22)
ot =0 (e [ g ) ven
Finally, coming back to (4.11) and (4.12), we have for all y € (0, R),
1r(Y) = Cloy) By mr(Zr)e M 1 2,<r]

nr(ZR) —ATr ]
e ‘1
nr(Y) Zrsft

ZRr
exp ()\R (/y 792((1)7 ) dz — TR>>
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In particular the last equation characterises Ar as the unique A > 0 such that for all
y € (0, R), the following Euler-Lotka-type equation is verified

Zr
exp <)\ </y g2(O,z)dZ_TR>>

Step 5 : Uniform bound for \p (Fragmentation case)
Suppose that for all a > 0, supp k(a,y,-) C (0,y). This is, the newborns sizes are almost
surely smaller than the parent size. Hence, for all initial size y we have

ZR 1
P T >/ _d =1. (4.24)
OO\ ) (Ao, (2),2)

"z

1= Co,)E0,y) (4.23)

Indeed, from Lemma 3.1-(4.) we have that QS(I;(Ao,y(z), z) = jy mdz is the time
needed to go from size y to z following the deterministic flow only, and it has to be smaller
than the division time at which the trajectory jumps to z. Then, thanks to Assumption

3.3-(i) which gives g2(0,y) > g2(a,y), we have also that

P Tr > dz | = 1.
0y | IR /y 72(0,2) z

Therefore for all A > 0

ZR 1
exp [ A / ————dz—Tg | | <1€ L' (R3,podtdz), P, -as., (4.25)
y 92(07 Z)

and by dominated convergence if Ar converges to +oco as R — oo, then

Zrn
exp ()\R (/y 7200.2) dz — TR>>

which contradicts Eq. (4.23). So there must exist A > 0 such that forall R > 1, A < A.
Moreover, analogous to Step 3, if we differentiate Eq. (4.15) in the sense of distributions
with respect to R, we obtain

—0

Eo,y)

Orplt = (W, (0rGF) nE).

Again, the definition gﬁ gives us that this derivative can be computed in the strong
sense. Indeed, for any positive continuous function f : [0, R] — R we have

ORGY f ()

R 0o o0 t
5 | 10 [ (k«o%o,y),zwff% He (]2’”’4”“) U0, ))e M ded

=f(R) </OOO (k(wt(o,y),R) e Ko gay)yC)dC> 1/J(t|(0,y))e)‘tdt>

R oo o t
- /O 1) /0 1 (k(wt(O,y),R)Jr Jn Mo (°’y>’<>d<> B0, ) e N dtd

R R
R 00 oo t
& | vm-re) ( / (W(o,y),}m Jn e gy“)dc) w(ﬂ(o,y))e—”dt) -

Page 15/28



which is positive whenever f is an increasing function. Since Eq. (4.22) gives that for
every fixed ), ni(y) is increasing in y, then (0zGY) ni > 0 and therefore dzull > 0. In
particular, the sequence of Ag, which is defined as the values of A\ such that uf\?' =1,is
then also increasing in R.

Step 6 : Identification of the limit

Step 5 gives that (Agr) is an increasing bounded sequence as R — oo, so with a limit
written A > 0. Moreover, for each Ar exists a unique hr associated, defined by Eq.
(4.18). The family of hy is equibounded and equicontinuous thanks to Eq. (4.20), Eq.
(4.22) and the bound on Ar. Note indeed that Eq. (4.22) depends on R only through
Ar. We can therefore extract a subsequence converging to some (A, k) as R — co. We
must now check that (), k) is a good pair of eigenelements, which we do by dominated
convergence. In Step 4 we have constructed hpr such that it is solution to Equations
(4.19) and (4.20) which we repeat below to justify each limit.

h (X [ ARTR]IZRSR} Vx e X
h (O,y) ( ) VZ/ € (0 R)
(QDIL(X)) ~ exp (f() ))ds + )\Rt>

The normalisation constant Cy is already the one required in the limit case. For the
expectation term, recalling from Eq. (4.22) that

TR CINPO=L)

and using Eq. (4.25) in Step 5, we deduce that for all y € (0, R),

nr(Zr)e T < ngr(y) Py -as.
Therefore for all R > 1,
E(ay) [1r(ZRr)e™ "1 7, <r] < nr(y) < +o0

and we can pass to the limit under the expectations and conclude that the limit ~ and A
verify the renewal formula

h(x) = Cx Ex [1(0,Z)e ] Vxe X

which is Eq. (4.4) and is equivalent to Eq. (4.2). Thus, by Lemma 4.2 the couple (), h) is
almost everywhere solution to Qh = A\h.

O

Remark 4.7. The assumption (0, -) = 0 is crucial for the characterisation of % in Step
4 of the proof of Proposition 4.1. The case §5(0,z) > 0 could possibly be treated, but
it would require additional assumptions in order to have a — Kf(a,z,2) € W2  (Ry)
and to then control the age derivatives of the kernel K f. Then, Eq. (4.21) would be a
scalar transport equation for h¥, which thereby admits an elliptic maximum principle.
Nonetheless, the assumption 5(0, -) = 0, while being perfectly biologically meaningful,

allows us to avoid this technicalities.
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5 Doeblin minoration for compacts

We want to prove the following Doeblin petite-set condition for all the compact sets
of X.

Proposition 5.1. Let P, be the Markov process characterised by the infinitesimal
generator A defined by Eq. (2.5). If Assumptions 3.3 are verified, then every compact
H C IR%r is a petite-set for some skeleton chain of P,. This is, there is a non-trivial
discrete sampling measure 1 over Ry and a non-trivial measure v over Ri such that

(11,6 P.f) = / T Peu(dt) > (v f) Vxex

Before the proof we will introduce some useful lemmas. First, we recall Duhamel
formula (5.1), which describes the trajectories driven by the semigroup P; and allows us
to extend the definition of the semigroup as the mild solution of an iterative evolution
equation.

Lemma 5.2 (Duhamel formula). Forallx € X, f € C}''(X), P, is the mild solution to

P60 =1 (o) exo (- [ 86" () is)

t ~ W0, 2)k (¢°(x). 2)
+/0 w(s\x)/o Pt,sf(o,z)fooo 70,20k (0 (). 2 o deds, (5.1)

Proof. A classical probabilistic proof consists in writing P;f(x) conditionally to the
occurrence of the first jump. It is also possible to prove it by means of a variation of
parameters method, as in Corollary 1.7 from [12], for example. Here we provide the
probabilistic proof. Let X a Markov process whose law is given by generator A defined
in Eq. (2.5). Recall from definition 3.2 the random variables 7" and Z which represent
the time of the first jump and the new size after the first jump. Note however that the
transition kernel of the Markovian generator .4 has been rescaled, so that the joint law
of (T, Z) under P is from now on given by the density function

B B 5k (x),2) h(0, 2)k (9°(x), 2)
px(t7 Z) - 1/1(t|X) . ‘/;)oc ﬁ(x) h;fé;(z)/)k(@t(x), Z/)dzl - 1/’(t|X) : fooo h(O, Z/)k (QDS(X), Z/) dz’

where the probability density of the transition x — (0,2) is computed as the ratio
between the transition rate of x — (0, z) and the total transition rate, as described by
the generator A. Hence, by conditioning on 7" under P, and using the strong Markov
property of X, we have:

P f(x) = B, [f(Xy)] =E; [f(Xe)Lrse] + Ep [f(Xe)Lr<i]
=E, [f(Xt)|T > t] ]PI(T > t) +E, [Ez [f (Xt)| T} ]lTSt]
=B, [f(X)|T > t]Po(T > t) + Ey [Ez [f(Xi—7)] Tr<i]

7 (o) exn (- [ 86" () is)

' OO h(0,2)k (¢°(x), 2)
+/0 ¢(slx)/0 Pt—sf(o,z)fooo h(O,z’)k(w(x),z/)dz/dZdS'

We can give now the proof of Proposition 5.1:
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Proof of Proposition 5.1. Let x € % compact such that %" C [a,a] x [y,y]. We iterate
once Duhamel’s formula (5.1), using the positivity of P;:

P60 = (¢ 09) exo (- | 86" () i)

et [ Ok 0),2) o
o o) [ i oy e e (- [ e o

s

- B0,k (9(0, 2). & N
+/O (] >/O Py uf(o,of 5O (0 e }d d
i slx o t—s Z ex - s h(O,z)k(gOS(X),Z)
> [Coteko [T (e 0.0 e (0, ) o

To obtain the desired result we aim to solve two crucial steps:

i. First, to prove the existence of some C'-diffeomorphism which could allow us to
change variables inside the latter integral as to obtain a measure over X.

ii. Second, to bound from below the resulting integral uniformly for every x € 7,

using its compactness.

Fix some final time ¢t > 0, and define v, : X — X as

Ye(s,2) == "5 (0,2).

We show first that it’s a differentiable function. Fix s, z and suppose

(G,, y) = ’Yt(sv Z)

Then the function u defined as u(s) = (s, z) is the unique solution to the Initial Value
Problem

{u/(s) = —g(u(s)), s <t
u(0) = (a,y)

Thus, 0:7:(s, z) = —g(u(s)). Moreover, by Lemma 3.1, the smoothness of the vector field
g and the fact that the ODE system is autonomous gives the smoothness of the flow with
respect to the initial condition. Thus, the Jacobian matrix of 7, equals for all s < ¢ and
z > 0:

Dyi(s,z) = [—g (¢"°(0,2)) 9.¢'7%(0,2)] (5.3)

where, from Lemma 3.1-2, the derivative of the flow with respect to the initial size is

given by ,
9:¢"(0,2) = exp (/O Dg (¢° (0,2))d8) <(1)) :

where we recall that Dg stands for the Jacobian matrix of g and exp(+) is an exponential
matrix. Moreover, let r — Y{, ,)(r) be the unique orbit of the vector field g passing
trough the point (a,y). Its is straightforward that z = Y{, ,(0), so that the inverse of -,
is given for all (a,y) € R3 by

’V;l(avy) = (t - ¢(I;/(a7y)((]) (aay) ) Yv(a,y) (0)) :

Fig. 2 summarises graphically the change of variables and the definition of v, !, Given
a,y,x and t, the inversion of v consists in determinating the value of ordinate z when
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y (size)

a (age)

Figure 2: Graphical description of the change of variables defined by ~;

the integral curve flowing towards (a, y) hits the y-axis and the time ¢ — s required to go
from this point to (a,y). Since Y(a,y) (green line) is known, the inversion is direct. We
conclude that +, is a C'-diffeomorphism and then performing the change of variables
(a,y) = (s, 2) in the RHS of Eq. (5.2) gives

Pif(x) > /]R2 f(a,y){ (% (t - ¢a7%/(a,y)(0) (a, y)|X)

1(0, Yia.y) (0))k <<pt“’f1Y<a,y><m(“’y>(x), Yia) (0)>

/ h(0, 2)k (J‘%Y(a,ywm(“’y’(x), z) dz
0
1

}det D (fyt_l(a7 y)) | 11¢0,§’(a,y)(0)(a’y)<t} da dy. (5.4)
Now, using Assumptions 3.3, we can bound the functions and the Jacobian found in the
obtained integral. First, since g > 0, note that ||¢(x)|| > ||¢*(x)|| for all ¢ > s. Second,
B-g1(x) < B(x) < B+g1(x). And third, by the definition of the flow, fg g1 (9% (%)) = ¥} (%)
which equals the age at time ¢ of an individual with trait x at time 0. Then, recalling that
H C la,a] X [y, 7], for all ¢ > 0 we obtain the following bounds:

i. For all (ag,y0) € o, using the superior bounds on g; from Assumptions 3.3-i. we
have

t

t
¢! (a0, yo) = ao +/ 91(9*(ag,y0))ds < ag +/ c1(1+ ¢i(ao,y0))ds
0 0

Hence, by Gronwall inequality

<Pt1(ao7yo) < (ag + c1t) et < (@+ cit) ect
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ii.

iii.

iv.

V.

Analogously, using the lower bounds on g; from Assumptions 3.3-i., we obtain

¢! (ao, yo) > ape®’ > ae®’

From the previous result, for all x € JZ
t t t = cyt
exp <_/ B (¢ (x)) ds) > exp <_ﬁ+/ gl(gos(x))d8> = e Bre1(x) > =B (atert)et ,
0 0

Analogously
Bp'(x)) = g1 (9" (x)) = B-copl (x) > B-coae™".

Therefore there are some constants Ay, By > 0 such that

Y (t — s|x) > Agexp (—Bo(l +i-— s)ecl(t*s)) (5.5)

Moreover, recall that the eigenfunction h is solution to Eq. (4.2). Then, by Fubini’s
Theorem, for all x € 7,

h(x) = /000 (/000 h(0, 2)k (¢'(x), 2) dz) Y(t|x)e Mdt.

Thus, in particular, the integrability gives us that

(/(JOO h(0, 2)k (¢'(x), 2) dz) w(ﬂh’gf)/\t —0 ast— +oo.

Therefore, there exist some constants Cy,C5 > 0 such that for all x € J# there is
some time 7'(x) > 0 such that for all ¢ > 0 we have

e’} x — At
(/0 h(0, 2)k (¢'(x), 2) d2> % < Cilizpe) + Colicr(x

where

sup sup (/OOO h(0, 2)k (gpt(x),z) dz) M < (O,

XEHX t<T(x) h(x)
since the suprema are taken in a compact set and for a continuous locally bounded
function. Then, taking Cy = max {C1, C2} we have
1 L e ™
IS h(0,2)k (¢t (x),2)dz —  Coh(x)

where ¢(t|x) can again be bounded by below using Eq. (5.5). Moreover, the
continuity of h implies that 4 is locally bounded and hence, for all x € ¢, h(x) <
Hy < oo. Hence we obtain finally

1 0
>
fooo h(0, 2)k (¢t(x),2)dz — CoHy

exp (—Bo(l +t)ert — )\t) (5.6)

Note that these three estimates give bounds which are dependent only on t.

From (5.3), for all s <t and z > 0, the Jacobian determinant equals

det Dy:(s, z) = ||g ((pt_s(O,z))||||Vzapt_s(0,z)H sinf(s, t, ) (5.7)
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where 6(s, t,2) is the angle between g (¢'~%(0,2)) and V.¢'~%(0, z). Hence, from
Lemma 3.1.2, we get

det Dy, (s.2)] < [1g (=0, )] |||exp ( 0 Dy (0" (0,2)) du) ]

where |||-]|| is the matrix norm induced by ||-||, and therefore
1 d)f;i’(a,y)(o)(a’y) “
|det Dy (v (@, 9))| < Ilg (@, y)] |||exp /0 Dy (" (0, Y(a,)(0))) du
=: lg (@, 9)[[Eo(a,y), (5.8)

Note that this bound depends only on (a,y) and neither on x or .

Hence, coming back to Eq. (5.4) and applying the bounds (5.5), (5.6) and (5.6) to the
integrands, we obtain

2

P f(x) > /]R2 f(a,’y){ AOO exp (_230(1 +t)ec1t _ /\t)

CoH

$0.¥ 0.4y @ (@)
exp (—/ e B (67 (0, Y (0))) dS)
0

h(07 Y'(a“y) (O))k (@t(z)ay(a’y) @ (@) (X)v Yr(a,y) (O)>

1
1,.- da dy. 5.9
o (@ 0)l Eofa,y) ¢<>} o o
Now, we make use of the petite-set condition which allows us to average the value
of P,f(x) against a discrete sampling measure p(dt) over a A-skeleton. This is, con-
sider some A > 0, which will be fixed later on, and a measure p over {jA :j € N},
characterised by a sequence (y;) jen with > p; =1 and p; > 0 for all j € IN. We have

- I )
(1, 05 P. f) > Zuj /X fla,y) k <<,0J g,y @ DY (X)vlf(a,y) (0))

=0

A

((a,y)e PR IRNTCRNESIN da dy,
where the the function ((a,y) is constructed by regrouping all the terms which depend
only on (a,y) (and neither on x or t), and the constant 5 > 0 is obtained after selecting
only the dominant term inside the exponential. Now, it remains to loose the dependency
on x using that x € # to find a uniform lower bound for the whole compact. By
Assumption 3.3-(iv), we have that for all z, exists D(z) C R, such that k(¢*(x),2) >
€(2)1p)(¢®(x)). Then, let

T(x,2):={s>0:¢°(x) € D(2)},

then

k(@° (%), 2) > e(2)U7(x,2) (5)-
Now, let A = inf,5¢diam(D(z)) > §_ > 0. Then, for all x € ¥ and z > 0 there exists
n = n(x, z) € IN such that nA € T(x,z). Then for all x € # and z > 0,

o0
Z]leeT(x,z) > 1.
=0
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Moreover, since for all z > 0, diam(D(z)) < d4, there exists some j big enough such that
the trajectory leaves D(z). In particular, the compactness of % implies that it exists j*
such that for all x € %

LineT(x,2) =0 Vj > "
Therefore for any sampling measure (u;); we have

Z/M JAET (x,z) > Il’llnpg,

and finally for all fixed 7 > 0,

- —Bj ejA IA—T = _ 34 ejA
Do nge AT (P TT(x),2) Legja 2 Y pye” A (@) A reTx

=0
> €(z) min min e —Bjne’®
z ez >]<J Hi J<s*
from what we can conclude that
(1,65 P.f) > / f(a, y)v(a, y)dady
X
with s
v(a,y) = ¢(a,y)e (Yay(0)) e —Bie min g;

J<j*
O

Finally, the proof of the main theorem 2.3 is a direct application of Harris Theorem
2.1.

6 Application: Steady-state size distribution of the adder model
of bacterial proliferation
We model the dynamics of an age-size-structured population of E. coli bacteria as a
measure-valued process with values in M, (X), the point measures over the state space
X ={(a,y) € R% : 0 < a < y,y > 0}, where a represents the added size and y the current

size of each cell. This is, the age of a cell is given by the difference between its current
size and its initial size, i.e., using our notations

A(ao,yo)(w =ao+ (¥ — yo)-

The importance to consider the added size as a structural variable to accurately model
the growing dynamics of E. coli has been strongly suggested in the recent years by ex-
perimental works and statistical analysis [24]. The dynamics are driven by the generator

Of(a,y) =Ay (0a + 9y) f(a,y)
+ \yB(a (/fOpy p)dp — f(a, y))—dof(a,y)- (6.1)

In our previous notation this translates as g(a,y) = (\y, \y), B(a,y) = AyB(a), and
k(a,y,z) = %F (5) 1.<,, where F has support in [0, 1]. The growth dynamics correspond
to an exponential elongation at constant rate A > 0. The second term in Q represents
the divisions, which occur at rate 3(a,y) = A\yB(a) where B is a hazard function such
that for every individual,

P (Added size at division > a) = exp </ B(s)ds> .
0
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Hence, the jump term reads as follows: a cell of size y and added size a divides at
rate A\yB(a), and it’s replaced by two cells of added size 0 and sizes py and (1 — p)y
respectively, where p is randomly distributed following the density F'. The third term
represents deaths at a constant rate dy > 0. We assume that:

Assumptions 6.1. Suppose
(A1) There exist 0 < b < b < oo such that foralla > 0, b < B(a) < b.

(A2) F is a continuous positive function in [0, 1], with connected support. We call for all
k>0,

1
mk:/ P*F(p)dp
0

and suppose that mg = 1, my = 1/2 and ms < +oo. Note that, since p € (0,1)
almost surely, then for all k > 0 we have my < m; = 1/2.

(A3) X\ > dg.

Theorem 6.2. Under Assumptions (A1)-(A3), there is a unique probability measure 7*
such that there exist constants C,w > 0 which verify Eq. (2.6) with A = A\—dy, h(a,y) =y
and V(a,y) = y~! +y. Moreover * admits a density given explicitly by

exp (— foa B(a)da)
Y2

™(a,y) = n*(y — a),

where n* is the unique solution to the fixed point problem

n(y) = 2/01 {/jw (‘Z — z) n* (z)dz} F(p)dp,

where 1(a) = B(a) exp (— [, B(a)da) .

Proof. 1. Minoration condition. It is a direct application of Proposition 5.1, since the
same hypothesis in Assumptions 3.3 are verified by Assumptions 6.1. Assumption
6.1-(v) requires some attention. Indeed, since F' is bounded and with connected
support, k(a,y,z) = %F (i) 1.<, can be lower bounded in the form k(a,y, z) >
€(2)1yep(z), with £(z) of order 1/z, as represents the example of Fig. 3.

k(y,z)

F(z/(2240)) 1. ... e
2=+0 \

0 z 2z 2z 448 Yy

Figure 3: Example of minoration for k(a,y, z) = %F (5) 1.<, and F' given by the prob-
ability density function of a Beta distribution. Then we have k(a,y,2) > £(2)1,cp(z) as

required by Assumption 3.3-(v), with |D(z)| = J for all z.
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In general, we have for all § > 0:

. F(z/2)
k(av Y, Z) > 2’6[12121,1512+5] 7 ]lye[Qz,Qz+6]

and we verify then Assumption 3.3-(v) with £(z) = min 2. 25 44] F(ZZ{Z/) and D(z) =
[2z,2z + ¢] for a chosen § > 0.

Fig. 4 shows the characteristics curves y — ¢ = constant, and the shadowed
region corresponds the space that is a priori reachable from the initial point along
trajectories with exactly one jump before time ¢. It is the version of Fig. 2 in this
specific case. Moreover, given an initial point (A in Fig. 2) and total trajectory time,
this reachable region is compact, which also simplifies some minorations.

Finally, depending on the choice of the compact set # C [a,a] x [y,y] and of 0
(which gives also the discretisation timestep of the j-skeleton), the value of the
minorant measure v can be computed explicitly by numerical approximations, as

given in Fig. 5 for different forms of F'

@ a* ao + yo(e — 1)

Figure 4: Ideal trajectory from initial point A = (ag, yo) to point D = (a*,y*) in time ¢.
The individual spends a time ¢t — s growing from A to B. Then, it divides and renews at
point C. Finally, it grows the remaining time s until point D.

2. Lyapunov-Foster condition. Let V(a,y) = y~! + y with. It is clear that V (a,y) —
oc as |(a,y)| — oo. Let v(a,y) = y*, then

1
Av(a,y) = \y" + 2\yB(a) /O (P"y" — ") pF(p)dp
= (k/\ +2 (mkH — ;) AyB(a)) v(a,y)

So, for V(a,y) = y~* + y, we obtain

AV(a, y) == )‘V(a7 y) + A<a’ y)a

Ala,y) := 2\y + 2)\B(a) ((; + (mg - ;) y2)> )
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We already have —\ < 0 in the first term of the RHS. It remains to prove that
A(a,y) defined in the RHS above, is bounded. Indeed, notice that

Ala,y) < 2A (I_) (mg—;> y2+y+l2)>

which is quadratic in y with a negative quadratic coefficient since my — 1/2 < 0.
Thus

A(a,y)gz\<b—|—— L

So finally we obtain that for every (a,y) € R

AV(CL, y) S 7)‘V(aa y) + d

. Application of Harris’ Theorem Using Theorem 2.1 we conclude the existence
of some C,w > 0 such that for every x € ]Ri andt >0

10 P — 7|l1iev < C(1+ V(z)) exp(—wt) (6.3)
Now, using that by construction, M, f = e’hP; (f/h), we obtain that for all = € R?,
e~ M6, My — h(z)7*||1ov < C(1+ V(z))e ! (6.4)
where for every 4 € B(R2 \ {0}),

A) = / m(dx)

A h(x)
Moreover, we know that h(a,y) = y. On the other hand, 7 is the unique solution
to 7P, = m, or equivalently, to the dual eigenvalue problem associated to the

conservative problem 7.4 = 0. From (2.5) we obtain from the latter that = is then
the measure solution to the following PDE in the sense of distributions

(0 + 9y)(My7(a,y)) — AyB(a)m(a,y) =

=0
/OOO /Oy m(a,y)dady =1
(6.5)

We solve it by the method of characteristics. From the first equation of (6.5), 7
solves the ODE

Lr(a,y(@) = = (B(a) + 57 ) mla,y(a)

Yy
7(0,y(0)) =2 fy [ Bla) ™27 (a, 12=2) dadp

where the associated characteristics are of the form y(a) = a + (y(0) — a(0)). Then,
the solution 7 of (6.5) is given by

exp (— [ B(a)da)
Y

ﬂ—(av y) = 77* (y B a)’

where the definition of n* is inherited from the initial condition of the ODE:

7(0,(0)) = ";y__a“) = 2/01 /OOo B(a)FE)p)W <a, y(())p—a) dadp.
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Note that the RHS still depends implicitly on 7. Hence, n* is solution to the fixed
point problem

=2 [ 1 | B@rees (- [ saa) i (2 - a) dadp
=7 1 / * B (p - ) " (@) dadp,

v(a) = B@exp (- [ Bla)da)

is the probability density function of the added size at division. The existence of
a formal solution to this problem is then a by-product of the existence of 7, here
provided by Harris’ Theorem.

where

Thus finally, the stationary profile of M, is given by

exp (— foa B(a)da)
y?

m™(a,y) = n*(y —a)

i. Uniform distribution ii. Beta(5,5) distribution iii. Beta(20,20) distribution

J1.0F

B

08

06

04

02

Figure 5: Minorant measure v for F' given by i. the uniform distribution, ii. a Beta(5,5)
distribution and iii. a Beta(20,20) distribution. The values were obtained from numerical
approximation using y = 1,y = 2. Only F' changes between the three cases.

Remark 6.3. The stability of this model has already been studied in the early works
of [16] for an application to plant physiology, and more recently by [15] from which
the exponential ergodicity is known. In our case however, the direct application of
Harris’ Theorem, since the eigenelements of Q are known, gives a simpler more general
argument to obtain the long-time behaviour. More generally, when the drift term g(a, y)
is not necessarily given by the exponential elongation, the previous section allows to
prove the existence of the suitable eigenelements. This was left as an open question by
the works of [15].

Remark 6.4. The proof presented above does not work for singular divisions as given,
in lieu of a density F, by p distributed according to d;/2(dp) as in a perfectly symmetric
mitosis. Indeed, the change of variables is no longer be possible since z would be
constant. Moreover, if we try to pursue the method and average in time, one can check
that the obtained v would be the trivial measure for some large enough compacts. Such
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a limitation is not really surprising, since the authors of [11] have already shown that
if the elongation rate )\ is constant for the whole population (as in our case), and the
divisions are perfectly symmetrical, then we do not have convergence, and a periodic
behaviour is observed.

Remark 6.5. Figure 5 shows the shape of v for different forms of the density F. As F'
concentrates we can observe the increasing degeneracy of v.

Remark 6.6. Here, the existence of n* is a by-product of the existence and uniqueness
of m provided by Harris’ Theorem. In contrast, in the works of [15], the existence of
the stationary measure depended on the existence of a unique solution to the fixed
point problem. Thus, the authors had to show compactness properties of the operator
associated to the fixed point problem, which our approach evades. Moreover, our
approach allows more general forms for F', which [15] requires to be of compact support
strictly included in |0, 1].
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