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ABSTRACT Deep neural network (DNN) inference on streaming data requires computing resources to
satisfy inference throughput requirements. However, latency and privacy sensitive deep learning applications
cannot afford to offload computation to remote clouds because of the implied transmission cost and
lack of trust in third-party cloud providers. Among solutions to increase performance while keeping
computation on a constrained environment, hardware acceleration can be onerous, and model optimization
requires extensive design efforts while hindering accuracy. DNN partitioning is a third complementary
approach, and consists of distributing the inference workload over several available edge devices, taking
into account the edge network properties and the DNN structure, with the objective of maximizing the
inference throughput (number of inferences per second). This paper introduces a method to predict inference
and transmission latencies for multi-threaded distributed DNN deployments, and defines an optimization
process to maximize the inference throughput. A branch and bound solver is then presented and analyzed
to quantify the achieved performance and complexity. This analysis has led to the definition of the
acceleration region, which describes deterministic conditions on the DNN and network properties under
which DNN partitioning is beneficial. Finally, experimental results confirm the simulations and show
inference throughput improvements in sample edge deployments.

INDEX TERMS Distributed Artificial Intelligence, Edge Computing, Scheduling and task partitioning

I. INTRODUCTION

C
ONNECTED devices generated an estimated 2.5 quin-
tillion bytes of data every day in 20201. One of the

technologies which benefits from this volume of data is Arti-
ficial Intelligence (AI), having shown capabilities in a range
of fields such as object detection in computer vision, facial
recognition, speech recognition, natural language processing,
or autonomous driving. AI, and specifically Deep Learning
(DL), requires, in addition to large amounts of data, signif-
icant capabilities in processing power and memory, which
makes cloud computing the de facto hosting solution for AI
workloads. Consequently, in 2019, 96% of AI tasks were run
in the cloud2.

AI applications can have strong latency constraints, e.g.,

1According to the Data Never Sleeps annual study from Domo
https://www.domo.com/learn/infographic/data-never-sleeps-8

2According to a survey from Nucleus Research Inc., 96%
of Deep Learning based applications ran in the cloud in 2019.
https://d1.awsstatic.com/whitepapers/Deep%20learning%20on%20AWS.pdf

in autonomous driving, manufacturing monitoring, or any
real-time inference involving a real world interaction. For
example, average response times in autonomous driving are
required to be under 100 milliseconds [1], making round trip
times to the cloud too long for such applications. Similarly,
some applications may introduce a significant link usage the
network, e.g., in the case of high quality video processing
in computer vision, making it challenging to rely on the
cloud. Data privacy policies or data protection regulations
may also prohibit data from leaving specific environments.
This encourages AI deployments in edge computing, which
consists of relocating computation tasks from data centers
closer to edge devices, i.e., in proximity to the data sources.

In comparison with public clouds, the edge is a resource-
constrained environment with important limitations [2], and
developing AI for the edge is therefore intrinsically different
from developing AI for the cloud. Analyzing data close to its
source can be challenging because of lower device capacities,
inelasticity of the available resources, and heterogeneity of
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FIGURE 1. Timeline of multi-threaded inference partitioning over 2 devices
compared with unpartitioned inference. The figure shows the computation
(T c

i ) and transmission (T t
i ) latencies. The inference throughput is improved by

partitioning, and bound by the slowest element in the network (T).

edge networks. Lowering the computing capacity implies
lowering the achievable inference throughput, further com-
plicating relocation of heavy workloads from the cloud to
the edge. In some applications, the inference throughput,
i.e., the achievable inferences per second of a DNN, can be
linked to the DNN accuracy, e.g., with object tracking in
video streams, where dropping the inference rate from 15 to 5
inferences per seconds has shown to lower the F1 score3 of an
object detector by 10% [3]. In other words, deployments with
low inference throughput can cause critical information loss,
e.g., loss of detections in video surveillance applications.

There are two main available methods to meet perfor-
mance requirements on constrained edge networks: model
compression or hardware acceleration. Model compression
consists of reducing and optimizing neural networks to a
light-weight, often under-performing, version of the model.
Standard model compression methods include pruning [4],
i.e., removing unnecessary parameters in the model, quanti-
zation [5], i.e., reducing the allocated memory to store the
model, and knowledge distillation [6], i.e., training a smaller
neural network with knowledge extracted from a larger one.
Model optimization requires extensive design efforts and can
be an impediment to model accuracy. Hardware acceleration
on edge devices implies finding hardware which can be both
power efficient and light-weight, while still being able to
run inference with sufficient performance. There are several
types of candidate hardware for acceleration at the edge,
varying in efficiency and specificity, but standard processing
units fail to meet expectations and dedicated hardware such
as ASICs have been found to be unpractical and expen-
sive [7].

DNN partitioning is a complementary method for accel-
erating inference by leveraging the multiplicity of exist-
ing devices on edge networks to distribute the inference
computation – which can be used alone, or in conjunction

3The F1 score is a measure of a model’s accuracy on classification tasks.

with the two other methods. DNN partitioning consists of
considering a neural network as a pipeline to segment into
partitions, and distributing these partitions on edge devices.
The placement of these partitions is based on both the DNN
and the underlying network characteristics. DNN partitioning
relies on the identification of split points, which are points in
the model graph where the model is separated into partitions.
During run-time, partitions are run sequentially, each sending
intermediary inference results to the next partition. This
allows each partition to start computing the next input data
while the other devices continue processing the offloaded
one, hereby improving the inference throughput, as shown
in figure 1. In the remainder of this paper, DNN partitioning
is illustrated through the example of real-time inference on
video streams.

A. RELATED WORK
Methods for DNN partitioning, derived from mobile edge
cloud (MEC) offloading, seek to optimize varying perfor-
mance indicators, such as computing latency, energy con-
sumption, resource utilization, cost, or throughput. DNN
partitioning relies on the association of one or several of these
metrics to define an optimization goal, and a method which
exploits this metric to find partitioning schemes. For exam-
ple, Neurosurgeon [8] seeks a single split point, keeping the
first partition at the edge and offloading the second partition
to the cloud, to minimize latency and energy consumption.
Applications in IoT have also considered the joint parti-
tioning and offloading of several DNNs to optimize energy,
delay, and/or cost, using different solvers such as SPSO-
GA [9] combining Particle Swarm Optimization (PSO) and
Genetics Algorithm (GA), or DDPQN [10] which uses Deep
Reinforcement Learning to find partitioning schemes. Other
examples include DINA [11], which defines an Integer Non
Linear Programming (INLP) problem, and uses a matching
theory based solver, to optimize delay and resource utiliza-
tion in fog networks. Methods optimizing inference through-
put include DNN surgery [12], which uses the lower size of
intermediary DNN layer outputs to partition the inference
computation between the edge and the cloud. Both algo-
rithms create two partitions, one at the edge and the other in
the cloud. Other studies in the field of MEC [13] also include
multi-threaded computation in the cloud to further accelerate
the overall inference throughput. Relying on the cloud for
the second partition inference computation assumes good
network connectivity, which can be uncertain with the poor
connectivity of some isolated edge deployments. Edgent [14]
adapts the previous methodology to mobile devices and avail-
able edge servers, relaxing the constraint of offloading to the
cloud. This method is linked to a specific training and model
architecture, and still limits the partitioning to two partitions.
Other methods have considered multiple split points, e.g.,
IONN [15], which describes the problem of partitioning to
minimize latency and energy consumption, also taking into
account the time to upload the models to edge servers.

These methods are either interacting with remote clouds,
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or are limited in the nature of the partitioning, e.g., required
to split in exactly two parts, with or without multi-threading.
None of the listed DNN partitioning studies considers both
multiple split points and multi-threading.

B. CONTRIBUTIONS
This paper presents a distributed inference framework to
maximize the inference throughput of real-time DNN com-
putation on streaming data, with multiple split points and
multi-threaded partitioning. The contributions of this paper
are the following:

• A model for computing and transmission latencies of a
distributed DNN, through which the expected inference
throughput of a given partitioning scheme can be esti-
mated.

• Formulation of the optimization problem for DNN par-
titioning, implementation of a branch and bound solver
for this problem, and evaluation of its complexity.

• Simulations to explore the possible performance im-
provements with varying network and DNN properties.

• The identification of deterministic regions in the net-
work and DNN properties leading to the existence of
optimal partitionings and the cost to compute such solu-
tions, i.e., the conditions under which DNN partitioning
is beneficial.

• Experimental results illustrating the regions defined in
the simulations, as well as the prediction accuracy and
final inference throughput acceleration for homoge-
neous and heterogeneous environments.

For the remainder of this paper, to avoid confusion, the
partitioned deep neural network will be referenced as DNN,
and the term network will denote the underlying physical
communications network.

C. PAPER OUTLINE
The remainder of this paper is organized as follows. Sec-
tion II presents background of Deep Learning and how DNNs
are represented in this study. Section III details the infer-
ence and transmission latency prediction methods required
for section IV which defines the optimization problem, as
well as the branch and bound algorithm to take partitioning
decisions. Section V presents simulation results to quantify
the performance and complexity of the branch and bound
algorithm, as well as conditions leading to the existence of
a partitioning which improves the inference throughput in
a homogeneous network. Section VI presents experimental
results confirming the simulations of section V, and shows
inference throughput improvements on a heterogeneous ex-
perimental set-up. Finally, section VII discusses the results
and expands on the broader applicability of this method.

II. BACKGROUND: DEEP LEARNING
Within the field of Machine Learning, Deep Learning (DL)
refers to methods relying on the use of DNNs, i.e., artifi-
cial neural networks (or related machine learning methods)

FIGURE 2. Example computation graph of a feed-forward neural network.
Each layer Li runs ci operations, sends si,j amount of data to the following
layer, and is placed on a node Np (see section III-A).

containing more than one hidden layer. One of the earliest
references to deep learning architectures was published in
1967 [16], but it was not until the 2010s that DL gained
traction, first in speech recognition, then in object detection
in images, for the ability to capture complex relationships
in high dimensional in data. Deep Learning is estimated to
represent the majority of AI applications in 2022, with more
than 75% of organizations using DNNs for applications that
could use classical methods4. DL methods have been defined
as “techniques for machine learning in which hypotheses
take the form of complex algebraic circuits with tunable con-
nection strengths” [17]. These algebraic circuits are usually
organized into layers, which form steps in the computation.
The term deep refers to algorithms consisting of more than
one layer.

There are two main DNN structures: feed-forward neu-
ral networks and recurrent neural networks. Both types of
DNNs can be represented as computation graphs, with the
main difference being that feed-forward networks can be
represented as direct acyclic graphs (DAGs), while recur-
rent neural networks may contain cycles. Recurrent neural
networks are built for sequences of data, where each data
point has a potential dependency with previous data points
in the sequence, while feed-forward neural networks do not
consider interactions between points in a data sequence.

The remainder of this paper will consider the case of feed-
forward DNNs5.

In the DAG representing the computation of a DNN, each
node represents a layer, i.e., the elementary operation on
the input. There are several types of layers depending on
the applied operation, e.g., fully-connected, convolutional,
pooling, batch normalization, etc. Each layer, i.e., each node
in the graph, applies a function to its inputs followed by a non

4https://gartner.com/smarterwithgartner/gartner-predicts-the-future-of-ai-
technologies

5Feed-forward DNNs are well suited for inference on video streaming
data.
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Symbol Description

G The communications network graph
GA The feed-forward network graph
L The set of layers in the DNN graph
E The set of connections between layers in the DNN graph
N The set of compute nodes
V The set of links between compute nodes
L The number of layers in the DNN
N The number of compute nodes in the network
Li The i-th DNN layer
Na The a-th compute node
ci The compute consumption of layer Li in FLOPs
si,j The size of the data transiting between layers Li and Lj
⌘a The processing rate of node Na

✓a,b The link bandwidth between nodes Na and Nb
P The partitioning matrix
H The inverse processing rate matrix
c The layer consumption vector
S The transmission size matrix
⇥ The inverse link bandwidth matrix

T c(Na) The inference latency on node Na

T
c The inference latency matrix

T t(Na, Nb) The transmission latency on link (Na, Nb)
T

t The transmission latency matrix
C The inference throughput
ps The partial placement list of size s
p̃s The padded version of placement list ps
S The maximum allowed number of split points
↵ The processing rate to link throughput ratio

TABLE 1. Summary of mathematical notations

linear operation, called an activation function. An example
computation graph structure is shown in figure 2. Developing
and training a DNN consists in defining a DAG, and adjusting
the weights of these operations to fit the input data to a
desired output inference.

III. DISTRIBUTED INFERENCE MODELING
This section presents a model to represent DNN and network
properties in order to predict computation latencies, transmis-
sion latencies, and the final inference throughput of a given
partitioning solution.

A. DNN AND NETWORK REPRESENTATION
A feed-forward DNN of N layers is modeled as a direct
acyclic graph (DAG) GA = (L, E) with L = (L1, ..., LL) the
layers of the DNN. Edges (Li, Lj) 2 E are the connections
between layers Li and Lj . Each layer Li has an associated
compute consumption ci, measured in the number of floating-
point operations required to compute a forward pass through
the layer. Edges (Li, Lj) are assigned a weight si,j corre-
sponding to the size of the data transiting between layers Li

and Lj in bytes.
The physical network is modeled as a fully connected

graph G = (N ,V) where N = (N1, ..., NN ) is the set of
compute nodes and V is the set of links between nodes. It
is assumed that compute nodes N1, ..., NN have processing
rates ⌘1, ..., ⌘N , respectively, measured in floating-point op-
erations per second. Finally, the link throughput between two
adjacent nodes Na and Nb is denoted as ✓a,b, measured in
bytes per second. Every node Ni is connected to itself with

infinite throughput to represent the loopback link, and links
are assumed to be symmetrical, i.e., ✓a,b = ✓b,a.

Partitionings are defined as maps P : L ! N , i.e., a
partitioning assigns a node number to each layer in the DNN.
A partitioning can be described as a matrix P of dimension
(N ⇥ L), N being the number of nodes on the network and
L the number of DNN layers and , with Pa,i = 1 if layer Li

is placed on node Na, 0 otherwise. With the example given
in figure 2, L = 7 layers and N = 2 compute nodes, the
displayed partitioning with layers {L1, L2, L3, L6, L7} on
node N1, and layers {L4, L5} on node N2, is represented as:

P =
⇣
1 1 1 0 0 1 1
0 0 0 1 1 0 0

⌘
(1)

Given a partitioning, a thread is defined as a group of
consecutive layers between two split points, run sequentially
on the same node. In the example above, node N1 will run
two threads, the first containing layers {L1, L2, L3} and the
second one containing {L6, L7}.

With these notations defined, the remainder of this sec-
tion derives a closed expression of the inference through-
put achieved by a given partitioning, as a function of the
inference (section III-B) and transmission (section III-C)
latencies.

B. INFERENCE LATENCY PREDICTION
Given a partitioning, this section looks at inference latency
prediction on an isolated node. The latency induced by the
computation of a layer Li with consumption ci, to be com-
puted on node Na, with processing rate ⌘a is expressed as
T c
i (Na) = ci/⌘a. Given a set of layers L

0
⇢ L across

all threads running on node Na with processing rate ⌘a, the
inference latency can be expressed as:

T c(Na) = ⌘�1
a

X

Li2L0

ci (2)

This expression is a first order approximation of an infer-
ence latency estimation based on the number of floating-point
operations (FLOPs) required to process the DNN, i.e., the
number of multiply-add operations in the model.

Estimation of inference latency on edge devices is com-
plicated by run-time optimizations. Existing solutions such
as nn-Meter [18] predict inference latency based on FLOPs.
Other solutions rely on a look-up table with pre-computed
inference times for latency inference. For example, BRP-
NAS [19] uses a pre-trained graph convolutional network
to predict inference latencies, while taking run-time model
optimizations into account.

Inference latency prediction is further complicated by its
difference in behavior depending on the underlying hard-
ware. As an example, figure 3 depicts the dependency be-
tween FLOPs and inference latency of a YOLOv26 [20]
model on CPU and GPU7. With a linear model as inference

6The YOLOv2 model was taken from the ONNX model zoo at
https://github.com/onnx/models/

7The device used for this experiment is an NVIDIA Jetson Nano
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(a) Inference time prediction on CPU
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(b) Inference time prediction on GPU
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(c) Transmission time prediction

FIGURE 3. Accuracy of linear modeling for inference and transmission latency. The figures show (i) the dependency between number of FLOPs and inference time
on an NVIDIA Jetson Nano, running either on CPU (figure 3a), or GPU (figure 3b), and (ii) the dependency between transmission times and the size of the
intermediary vectors sent between layers in a YOLOv2 model in figure 3c. Each figure displays the correlation coefficient R2 for a linear predictor with zero value
intercept.

latency predictor, it is possible to evaluate the accuracy of
such a model by computing the correlation coefficient R2

of the model on CPU and GPU. The coefficients, displayed
in figure 3, depict the difference in model accuracy between
CPU and GPU.

In equation 2, it is further assumed that processors use
their full capacity, which implies that multi-core processors
are modeled as single-core processors with a processing rate
equal to the sum of their core processing rates. It is also
assumed that the computing resource is shared evenly across
threads, i.e., a processor allocates the same proportion of its
time to each thread.

Across all nodes, the thread with highest latency sets
the inference throughput for the distributed DNN. Omitting
transmission latencies, this implies that once this limiting
thread is done computing a data frame, it directly starts
processing the next one. Other threads will have idle time
before processing the next data frame because their inference
latency is lower than this maximum latency, as shown on
figure 1.

Given a partitioning matrix P, the inference latencies can
be expressed as a single vector Tc of size N where the a-
th component is the highest thread inference latency on node
Na, i.e., Tc

a = T c(Na):

T
c = H ·P · c (3)

where H is the diagonal matrix of inverse node processing
rates diag(⌘�1

1 , ..., ⌘�1
N ) and c is the column vector of indi-

vidual layer consumptions (c1, ..., cL).

C. TRANSMISSION LATENCY PREDICTION
The transmission latency can be predicted as follows: the
time it takes to send the amount of data si,j between layers
Li and Lj on edge (Na, Nb) over a link with measured
throughput ✓a,b is T t

i,j(Na, Nb) = si,j/✓a,b. The time to
achieve data transfers si,j 2 E

0
⇢ E over link (Na, Nb) is:

T t(Na, Nb) = ✓�1
a,b

X

si,j2E0

si,j (4)

Similarly to the inference latency prediction, this implies
that the links are shared evenly between data transfers from
Na to Nb. The transmission latency prediction relies on the
estimation of the link throughput between nodes, more pre-
cisely the goodput, i.e., the amount of useful data transmitted
per second.

Similarly to inference latency estimation, this is a first
order approximation, which efficiently offers good prediction
results, as shown in figure 3c, with a correlation coefficient of
R2 = 0.9998. The drawback of this method is its requirement
to saturate the links to get a throughput estimation.

Given a partitioning matrix P, the transmission latency
matrix T

t can be defined as a square matrix of size L, with
T

t
a,b = T t(Na, Nb):

T
t =

�
P · S ·P

>�
�⇥ (5)

where � is the term by term product, or Hadamard product,
⇥ is the inverse throughput matrix, i.e., a square matrix of
size N with ⇥a,b = ✓�1

a,b and S is the transmission size
matrix, i.e., a square matrix of size L with Si,j = si,j if Li

sends data to Lj , 0 otherwise.

IV. DNN PARTITIONING
The objective of DNN partitioning in this study is to maxi-
mize the inference throughput, denoted by C, which corre-
sponds to the inverse of the maximum latency between all
the different computation and transmission latencies. Given
a partitioning P, the inference throughput is defined as:

C(P,GA,G) =

✓
max
i,a,b

�
T

c
i ,T

t
a,b

�◆�1

Maximizing the inference throughput amounts to finding
the joint min-max between all the terms of Tc and T

t. This
can be defined as a discrete optimization problem:

min
P

max
i,a,b

⇣
(H ·P · c)i ,

��
P · S ·P

>�
�⇥

�
a,b

⌘

s.t. J1,N ·P = J1,L (6)
Pa,i 2 {0, 1} 8(a, i) 2 [[1, N ]]⇥ [[1, L]] (7)
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FIGURE 4. Tree representation of the space of all potential DNN partitionings
on a physical network of N nodes.

with Ji,j being the all-ones matrix of size i⇥j, conditions (6)
and (7) require that each layer be placed on one and only one
node.

This optimization problem is a Mixed Integer Non-linear
Programming (MINLP) problem. The partitioning matrix can
be seen as the one-hot encoded version of a vector of size
(1⇥L) with values in [[1, N ]]. MINLP problems are NP-hard,
implying that the complexity of finding an optimal DNN par-
titioning is O(NL) since each of the L layers can be placed
on N nodes. There are several heuristics to obtain optimal
or sub-optimal solutions to this problem in less time than a
brute force algorithm, e.g., Genetic Algorithms (GA) [21],
Particle Swarm Optimization (PSO) [22], or Branch and
Bound (B&B) [23]. The chosen methodology is an adapted
B&B implementation, which is presented in section IV-A.

A. BRANCH AND BOUND ALGORITHM
This section presents the branch and bound (B&B) adaptation
to the DNN partitioning optimization problem defined in
section IV.

In B&B algorithms, the solution space is represented by a
tree. The process consists of eliminating entire branches in
the tree based on the evaluation of the score of the root node.
This implies the existence of a tree topology which creates a
relationship between the score of a node in the tree and the
bounds on the scores of all of its leaves.

For this purpose, a partitioning P is represented as a
list p = (pi)1iL with 8i 2 [[1, L]], pi 2 [[1, N ]] cor-
responding to the node assigned to layer i. For example,
the partitioning matrix in Equation 1 is equivalent to list
p = (1, 1, 1, 2, 2, 1, 1), i.e., P is the one-hot encoded version
of p. With this representation, the space of all possible parti-
tionings can be modeled as a tree, as shown in figure 4, with
each node being a partial version of the full partitioning list.
The root node is an empty list, and at every stage s  N of
the tree, the nodes are all possible lists of size s. The children
of a parent node of size s are all lists of size s+ 1 beginning
with the parent node. Partial lists of size s can represent all
partitioning lists which start with a given set of s values.

This tree representation of the solution space favors the use
of the B&B algorithm in this study. Assuming ps is a partial
list of size s, the children of the node ps in the tree topology
are all lists which start with ps, i.e., all partitionings where
the first s layers are placed according to ps. The leaf node

below ps corresponding to ps padded with the last value of
ps is labeled p̃s. For example, if L = 5 and p2 = (2, 1), then
p̃2 = (2, 1, 1, 1, 1). Given T t

max = maxTt(p̃s) the maxi-
mum value of the transmission latency matrix for partitioning
p̃s, all leaf nodes p below ps will have a higher maximum
transmission latency than p̃s, i.e., 8p,maxTt(p) � T t

max.
This is explained by the fact that given a partial partitioning,
any displacement in the other layers will only add data
transfers between nodes.

During the process of looking for an optimal par-
titioning p, which maximizes the inference throughput
C(p,GA,GN ), and given a current best achievable throughput
best_throughput, the B&B optimization consists of elimi-
nating entire branches of the tree representing the solution
space by evaluating transmission times in partial partition-
ings. This process allows the B&B optimization to quickly
eliminate numerous cases compared to a brute force algo-
rithm. For example, if the throughput between nodes is low
compared to the compute capacity, e.g., with nodes connected
through a low throughput wireless connection, the optimal
solution is often to keep all computation on a single node.
The advantage of the B&B algorithm is that it terminates after
N operations in such simple cases by eliminating all partial
partitionings in the first stage of the tree. Conversely, in cases
where links have higher throughputs, the complexity of the
B&B can be higher since it will be unable to eliminate large
branches.

B. BRANCH & BOUND COMPLEXITY
The overhead caused by the total number of partitions in
a real world implementation is neglected in this approach.
This added latency is correlated with the total number of
partitions. With each partition, the data transfer from NIC
to memory causes an additional latency, related to the PCIe
throughput, memory throughput and size of the transferred
data. Assuming that the data transfer throughput is limited
by the memory throughput, a simplistic evaluation of this
latency would change the computation latency in equation 2
to:

T c(Np) = ⌫�1
X

(i,j)2C

si,j + ⌘�1
p

X

Li2L0

ci

In this expression, ⌫ is the memory throughput, i.e., the
read/write speed to and from the memory, and (i, j) 2 C are
all the layers Li and Lj such that edge (Li, Lj) is a split point
with associated data transfer si,j .

Early stopping
With an increasing number of partitions, both the perfor-
mance and inference latency prediction accuracy will de-
crease. For this reason, and for the increase of complexity
in in cases with high available network throughput, an early
stopping mechanism is added to limit the number of split
points in the final partitioning, i.e., B&B will only explore
partial partitioning with a maximum of S split points, further
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limiting the size of the explored tree. The complete B&B
algorithm with limited split points is shown in algorithm 1.

Algorithm 1 Branch and Bound Algorithm
Input: GA,GN , S
Output: best_partitioning, best_throughput

queue {[ ]}
best_throughput C([1, ..., 1],GA,G)
best_partitioning [1, ..., 1]
while queue is not empty do

get p from queue
generate all children p k {i} , 8i 2 [[1, N ]]
compute ti the maximum transmission time Tt(p k {i})
for i = 1 to N do

if ti > best_throughput�1
then

discard p k {i}
else if ti  best_throughput�1

then

if S(p k {i}) < S then

add p k {i} to queue
end if

if C(p k {i} ,GA,GN ) > best_throughput then

best_throughput C(p k {i} ,GA,G)
best_partitioning p k {i}

end if

end if

end for

end while

Limiting the number of split points lowers the complexity
of this MINLP problem. For N the number of nodes, and L
the number of DNN layers, the number of possible partition-
ings considered by the algorithm is now lowered to:

SX

k=0

✓
L� 1

k

◆
N (N � 1)k (8)

instead of O(NL) for a brute force algorithm.

V. SIMULATIONS
This section presents simulations to evaluate the impact of
the algorithm parameters on the B&B algorithm performance
and complexity. The worst case complexity for B&B is
described in equation 8, when all of the transmission times
computed in the partial partitionings exceed the best achieved
time, but the effective B&B complexity varies according to
the DNN and network properties. The following variables are
explored:

• The relationship between number of nodes N and the
maximum allowed number of split points S, which
determines the required number of B&B iterations to
reach the optimal solution.

• The relationship between link throughput ✓ and node
processing rate ⌘, which determines the existence of a
partitioning which improves the inference throughput.

These interactions are evaluated via the following metrics,
which can be used to compare the proposed method to the
literature:

• The achieved inference throughput, measured in infer-
ences per second.

• The number of B&B iterations to reach the solutions,
i.e., the number of explored partitionings in the solutions
tree. This metric is used instead of computation time
in order to abstract the used device performance. For
reference, when running B&B on a desktop computer
with an Intel Core i7 processor, it took 17 milliseconds
to run through 102 iterations, 1.269 seconds to run
through 104 iterations, and 5 minutes to run through 106

iterations.
To isolate each variable contribution, the simulations are

run in a homogeneous network scenario, i.e., all nodes have
an identical processing rate, and all links have an identical
throughput.

A. NUMBER OF NODES AND SPLIT POINTS
The set-up consists of a homogeneous network with process-
ing rates set at 5GHz (effective processing rate of a standard
edge device, e.g., a Raspberry Pi 48), and link throughputs
at 10MBps (effective throughputs for connections through
802.11). The number of compute nodes N on the network
varies between 1 and 6, and the maximum number of split
points S varies from 0 (keeping all computation on a single
node) to 5 (for a total of 6 partitions, spread across the
network).

Results are shown in figure 5. It can be observed in
figure 5a that, for N > 2 nodes in the network, B&B finds
partitionings which can multiply the inference throughput by
1.9⇥ to 2.3⇥ the throughput of the unpartitioned solution
S = 0. By increasing the maximum number of allowed
splits, S, the algorithm is able to find better partitionings
and improve the inference throughput, at the expense of
additional complexity, as indicated in figure 5b.

Figure 5a also illustrates that the best achievable through-
put does not improve for maximum number of split points
above S > 3. With the given values in processing rate and
link throughput, increasing the maximum number of split
points does not affect the achieved inference throughput.
The main advantage of this observation is that it adds an
argument for limiting the B&B maximum split point value S.
Since the score stays identical while the complexity increases
significantly, choosing S = 3 under these conditions both
maintains a reasonable complexity while still reaching the
optimal solution.

This limitation can be explained as follows: with the given
DNN and network properties, the optimal placement found
on N = 3 nodes, and a maximum number of splits S = 3,
adding a new node to the network, or a possibility for
another split point, will not lead to a better partitioning. In
a homogeneous network, this implies that any displacement

8https://www.raspberrypi.com/products/raspberry-pi-4-model-b
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FIGURE 5. Impact of the number of nodes N and the maximum number of
split points S on B&B achieved inference throughput (figure 5a), and
complexity (figure 5b), for a YOLOv2 model on a homogeneous network.

of layers to another node will imply transmission latencies
higher than the maximum computing latency of the current
partitioning. This leads to a bound on the value of S, after
which point the optimal partitioning is the best possible
achievable partitioning. This bound can be expressed as:

S =
T c

mono

T t
disp

<
✓
P

Li2L ci
smin⌘

(9)

with T c
mono the computing latency when keeping all compu-

tation on a single node, T t
disp the transmission latency caused

by a layer displacement, ⌘ and ✓ the node processing rate
and link throughput values in the homogeneous network,P

Li2L ci the sum of all layer consumptions in the DNN,
and smin the minimal inter-layer data transfer size. This
expression can be used to define an upper bound on the value
of S, and limit the B&B computation time.

For the remainder of this paper, experiments and simula-
tions will be run with a maximum number of splits S = 3
to limit the complexity of the algorithm, with near optimal
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FIGURE 6. Impact of node processing rate and link throughput on B&B
achieved inference throughput (figure 6a) and complexity (figure 6b), for a
YOLOv2 model on a homogeneous network.

partitioning in the described set-up, which corresponds to a
typical edge scenario.

B. PROCESSING RATE AND LINK THROUGHPUT
The set-up consists of a standard implementation of
YOLOv2 [20], deployed on a network with N = 4 compute
nodes. B&B is run with a maximum number of split points
set to S = 3, for node processing rates between 0.1GHz and
100GHz, and link throughputs between 1MBps and 10GBps.
The ranges in value for processing rate and link throughput
were chosen to cover a wide spectrum of edge scenarios:

• Processing rates between 0.1GHz and 100GHz cover
CPUs of systems on a chip, e.g., the Qualcomm Snap-
dragon suite9 with processing rates between several
500MHz and 1GHz, and specialized AI embedded sys-

9https://www.qualcomm.com/snapdragon
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tems, e.g., the NVIDIA Jetson TX2 module10 measured
at an equivalent processing rate of 30.7 GHz in the
experiments of section VI.

• Link throughputs between 1MBps and 10GBps corre-
spond to link throughputs covering 802.11g connections
at several MBps, and Gigabit Ethernet links.

Simulation results are presented in figure 6, composed of
two heatmaps, displaying the impact of link throughput and
node processing rate, on both the B&B achieved inference
throughput (in inferences per second) and complexity (in
number of partitionings evaluated by B&B). Level lines are
displayed to facilitate interpretation of the figures. Darker
colors on the figures correspond to lower inference through-
puts (respectively B&B iterations) and lighter colors corre-
spond to higher values, for a set-up of two devices with the
corresponding processing rate and link bandwidth value.

Results show that achieved inference throughput and
B&B iterations increase with both processing rate and link
throughput. This is expected, since faster processors yield
faster inferences, and better link throughput creates possibil-
ities for improved partitionings.

Additionally, these simulations highlight the existence of
distinguishable regions in the two heatmaps of figure 6.
These regions are separated by three boundaries, correspond-
ing to fixed link throughput to processing rate ratios: the
partitioning improvement boundary, the optimal partitioning
boundary and the maximum complexity boundary, displayed
by the three dotted lines of figure 6. These boundaries are
detailed in sections V-B1, V-B2, and V-B3, respectively.

1) Partitioning improvement boundary
The green dotted line separates the top-left region of fig-
ures 6a and 6b, where the optimal solution consists of keep-
ing all the computation on the same node, and the bottom-
right region, where a non-trivial partitioning that improves
inference throughput exists. This boundary corresponds to
conditions on the ratio between link throughput and node
processing rate under which B&B starts to explore improved
solutions in algorithm 1: maxTt

 best_throughput�1.
This is validated under the condition that the smallest data
transfer latency between nodes exceeds the unpartitioned
computing latency, i.e., the existence of partitionings which
improve the unpartitioned inference throughput is subject to:

smin

✓
<

P
Li2L ci
⌘

i .e.,
✓

⌘
>

sminP
Li2L ci

(10)

with ⌘ and ✓ the node processing rate and link throughput
values in the homogeneous network,

P
Li2L ci the sum of

all layer consumptions in the DNN, and smin the minimal
inter-layer data transfer size. This expression is a particular
case of equation 9, with a number of split-points S = 1.

This result is essential, in order to understand DNN parti-
tioning. It defines a criterion on the region where distributing

10https://developer.nvidia.com/embedded/jetson-tx2

inference can improve the overall performance. In a homo-
geneous scenario, for every DNN, the link throughput to
node processing rate ratio ✓

⌘ (which is a property of the
network) needs to exceed a deterministic value described in
equation 10 (which only depends on properties of the DNN).
This boundary is represented by the green dotted line in
figure 6 and corresponds to ✓

⌘ ⇡ 1.64⇥10�3 for the YOLOv2
implementation used in this paper.

2) Optimal partitioning boundary
The red dotted line in figure 6 corresponds to ✓

⌘ ⇡ 9.52 ⇥
10�3 and delimits the point of diminishing returns, which
is also the maximum achievable inference throughput for
YOLOv2. For higher values of the link throughput to pro-
cessing rate ratio ✓

⌘ (bottom right), the achieved inference
throughput remains identical while the number of evaluated
partitionings by B&B continues to increase. The additional
evaluated partitionings have lower inference throughputs
than the optimal solution. This explains why the level lines
in figure 6a are horizontal in that region, since the inference
throughput only depends on the processing rate. Increasing
the ratio above this boundary (for example by changing the
links) does not yield better solutions, and increases complex-
ity.

3) Maximum complexity boundary
The blue dotted line represents the boundary of the region
in which the number of evaluated partitionings by B&B is
maximal, and corresponds to ✓

⌘ ⇡ 0.168. On the bottom
right part of this boundary, increasing the throughput to
node processing rate ratio will not impact the complexity of
B&B which has reached the maximum number of evaluations
it runs through to reach the optimal solution. Notably, the
maximum number of partitionings evaluated by B&B in the
worst case scenario is around 1.7⇥105, which remains below
the complexity of B&B with limited number of split points
S = 3 (around 1.9 ⇥ 106 iterations in this context), and
orders of magnitude below the brute force scenario, which
would need to evaluate NL

⇡ 1029 partitionings (for the
given YOLOv2 implementation with L = 49 layers).

C. DISCUSSION
Results of performed simulations allow to identify three
boundaries which delimit the scope of validity for DNN
partitioning in a homogeneous network. These boundaries
depend on the DNN and network properties and delimit the
conditions under which a partitioning can improve the unpar-
titioned inference throughput. The partitioning improvement
criterion defines these conditions on the link throughput to
processing rate ratio, and can be anticipated prior to the
deployment.

While the optimal partitioning boundary and maximum
complexity boundary depend on the number of nodes N and
the maximum number of split points S, the location of the
partitioning improvement boundary is independent of these
variables, or the number of layers. The scope of validity of
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Set-up Processor Processing rate (⌘) Link Link throughput (✓) Ratio (↵) B&B time
1 NVIDIA Pascal GPU (256 CUDA cores) 30.7 GHz Wi-Fi 10 MBps 3.26⇥ 10�4 4 ms
2 Quad-core ARM A57 CPU 1.57 GHz Wi-Fi 10 MBps 6.37⇥ 10�3 165 ms
3 NVIDIA Maxwell GPU (128 CUDA cores) 14.7 GHz Ethernet 1.4 GBps 9.52⇥ 10�2 2.231 s
4 Quad-core ARM A57 CPU 1.57 GHz Ethernet 1.4 GBps 0.98 2.494 s

TABLE 2. Experimental set-ups with measured properties, corresponding link throughput to node processing rate ratios, and associated B&B computation times.
Each experimental set-up corresponds to properties in one of the four separate zones identified in figure 6.
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FIGURE 7. Achieved inference throughput and complexity for a YOLOv2 model in homogeneous experimental set-ups (table 2). Figure 7a compares the achieved
inference throughput with the unpartitioned throughput, and the B&B predicted throughput. Figure 7b compares the effective number of iterations required to
compute the partitioning with the maximum number of iterations for S = 3 split points.

DNN partitioning is independent of network or DNN size,
and only depends on the relationship between (i) ✓

⌘ , which
is a property of the network, and (ii) sminP

Li2L ci
, which is a

property of the DNN.
Regarding complexity, it has to be noted that the opti-

mization process is a one-time operation that decides on a
partitioning which will remain relevant for long periods, i.e.,
longer than the order of magnitude of B&B computation
times depicted in figure 5. The necessity to recompute a parti-
tioning would only arise if the system experiences persistent
changes in the node processing rates or link throughputs.
In ”healthy” network scenarios scenarios, where faults, or
events causing persistent changes, are rare, this paper argues
that partitioning computation times of B&B can fit use-cases
with one-time deployments.

In more constrained use-cases, the maximum number of
split points S can further act as a tuning parameter for
the optimization complexity, e.g., if the computation of an
optimal partitioning is more frequent, at the expense of the
achieved inference throughput.

Compared to works cited in section I-A, B&B can reach
optimal solutions with unlimited split points (S � L � 1),
i.e., the best achievable solution in the problem space. The
time to reach these solutions increase with ↵. Nevertheless,
it is possible to observe from Figure 5a that this solution can
lead to higher inference throughputs than most methods cited
in section I-A which are limited to a single point (S = 1).

VI. EXPERIMENTS
This section presents experimental results evaluating the
accuracy of the model and the achieved inference throughput
improvement. Section VI-A describes experiments in homo-
geneous scenarios with two identical nodes, performed to
test the validity the identified boundaries in the simulations
presented in section V. Section VI-B describes experiments
and presents results in networks with heterogeneous nodes.

A. HOMOGENEOUS NETWORK
Four set-ups are presented in table 2, with details on links,
processing rates, and corresponding ratios.

• Set-up 1 corresponds to conditions above the partition-
ing improvement boundary in figure 6 (section V-B1)
where partitioning the DNN does not improve the in-
ference throughput (i.e., the set-up does not fulfill the
partitioning improvement criterion of equation 10).

• Set-up 2 corresponds to conditions between the parti-
tioning improvement boundary and the optimal parti-
tioning boundary (section V-B2). DNN partitioning is
expected to find partitionings which improve the infer-
ence throughput.

• Set-up 3 corresponds to conditions between the optimal
partitioning boundary and the maximum complexity
boundary (section V-B3). This implies that B&B is
expected to find the best achievable partitioning for a
given model.

• Set-up 4 corresponds to conditions below the maximum
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FIGURE 8. Inference throughput improvement when adding devices with
varying processing rates ⌘ to a device with a processing rate of ⌘0=14.7GHz.
The figure shows measured throughput values with their standard deviation
and compares them with the predicted inference throughputs.

complexity boundary, i.e., the achieved partitioning is
optimal and the number of B&B iterations is maximal.

The values in table 2 are experimental and were measured
by benchmarking devices and links. Partitions are deployed
and run for a YOLOv2 model and a maximum number of
splits S = 3, for each of the experimental set-ups. The
inference is run on a 1280x720 webcam video stream, with
30 frames available per second.

Figure 7 depicts the measured inference throughputs dur-
ing this process, and compares them to the predicted infer-
ence throughputs and to the baseline, i.e., to the throughput
achieved by keeping all of the computation on a single node.

The results correspond to the simulations and confirm the
existence of the four identified regions of figure 6.

B. HETEROGENEOUS NETWORK
In order to better understand DNN partitioning performance
in heterogeneous networks, this section presents an exper-
iment which considers the case of adding a single device
with varying capacities to a fixed set-up with a single device.
This experiment aims to both show results on simple hetero-
geneous set-ups, and to illustrate the case of an additional
device being added to a network to improve the overall
performance, e.g., adding a processor in proximity to a smart
camera to increase its inference throughput.

The fixed node11 has a processing rate ⌘0=14.7GHz, and
figure 8 shows the measured inference throughputs when
adding devices with varying processing rates to the network,

11The fixed processor is an NVIDIA Maxwell GPU (128 CUDA cores).

with two different link throughput values, compared with
their predicted values. The figure also depicts bounds on
achievable solutions: the lower bound is the unpartitioned
inference throughput, i.e., the throughput when placing all
computation on the fastest node, and the upper bound cor-
responds to the throughput of a device with a processing
rate equivalent to the sum of both processing rates, i.e.,
corresponding to a perfectly even distribution of the inference
workload.

This experiment shows that under good link conditions,
i.e., above the partitioning improvement boundary (sec-
tion 10), the achieved inference throughput can be close to
the maximum achievable throughput. Notably, the expression
of the partitioning improvement boundary differs from its
expression in the homogeneous case (equation 10):

smin

✓
<

P
Li2L ci
⌘max

i .e., ✓ >
smin⌘maxP

Li2L ci
(11)

for a heterogeneous case with N = 2 nodes, with ⌘max

being the maximum processing rate between the two nodes.
This expression implies that for link throughputs below the

fixed value smin⌘maxP
Li2L ci

, optimal partitioning keeps all computa-
tion on the fastest node, i.e., following the minimum through-
put line, as is the case when the nodes are connected via
a Wi-Fi connection with ✓=10MBps in figure 8. For higher
link throughputs, there exist partitionings which improve the
inference throughput, and inference throughput values are
higher than the lower bound in figure 8, as is the case when
the nodes are connected via Ethernet links with ✓=1.4GBps.

VII. RESULTS, SCOPE AND LIMITATIONS
This section describes key results from simulations and ex-
periments on the DNN partitioning approach, as well as a
discussion of their scope, limitations and ways to generalize
them.

A. CONDITIONS FOR HOMOGENEOUS NETWORKS
Through simulations (section V) and experiments (sec-
tion VI), on homogeneous networks, the paper has identified
and described conditions, bounds, and closed expressions, for
performance and complexity of DNN partitionings. Under
the assumption of homogeneity (i.e., nodes and links in
the underlying network having equivalent capability), these
expressions allow to dimension appropriately the underlying
network, and predict the partitioning outcome.

• The partitioning improvement boundary (section V-B1)
describes the conditions under which there are partition-
ings that improve the monolithic inference throughput.
This is extended to the heterogeneous case in equa-
tion 11, and allows to estimate the values of link band-
width and node processing rate, necessary to achieve an
inference throughput improvement.

• The upper bound on the number of split-points neces-
sary to achieve an optimal solution (equation 9) is the
maximal number of split-points worth considering, to
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minimize the B&B computing time, while accessing
maximal inference throughput.

• The maximal B&B complexity, with a chosen maximum
number of split-points (equation 8).

These results allow to derive, under conditions of perfect
distribution of workload over homogeneous nodes and links,
an upper bound on the achievable inference throughput of the
partitioning strategy:

C(P,GA,G) < min

 
⌘min (N,S)P

Li2L ci
,

✓

smin

!
(12)

The validity of these expressions is subject to the network
homogeneity assumption. For non-homogeneous networks,
the derivation of similar performance and complexity bounds
is, of course, specific to the characteristics of the considered
network.

B. SCOPE AND LIMITATIONS
This section discusses the limitations of this work, and the
presented assumptions, to illustrate their scope of applicabil-
ity.

1) Input data
The study has used the DNN partitioning framework on video
stream data applications. Although the study has not proven
its applicability to other data types, there are no assumptions
in the modeling restraining this partitioning method from
applying to other applications, e.g., audio, text, or telemetry
data. The only limiting assumption in this study is that the
model used a feed-forward DNN, with data of constant size
across requests.

2) Optimization problem definition
This study focuses on use-cases which require a maximal
inference throughput, omitting optimization objectives such
as the ones included in the related work of section I-A, e.g.,
latency, energy consumption, cost, or a combination of these
previous metrics. However, the presented assumptions and
modeling can be exploited to describe other use-cases. For
example, DNN partitioning can cover contexts which:

• jointly optimize several metrics, e.g., throughput, la-
tency, energy consumption, monetary cost, drop rate,
node up-time, link usage, etc.

• dynamically adapt what metric to optimize depending
on the received data. For example, DNN partitioning
application on video streams can choose to optimize
throughput to avoid missing detections, and switch to
latency when an event occurs in the system, to enable
low response times.

• add other constraints to the MINLP problem, e.g., a
minimal number of split points, a partial node to layer
mapping, e.g., in order to keep sensitive computation on
dedicated nodes.

All these assumptions can be expressed as optimization
objectives, or constraints in the discrete optimization problem
of section IV.

3) Limits of experimental results
As described in section VI, the space of possible DNNs and
edge networks is too large to explore fully. The experiments
have been designed to confirm the boundaries identified
in the simulations of section V, and to illustrate a simple
heterogeneous use-case. This study also has assumed that the
network properties remain fixed over time.

Completely exploring the influence of other parameters
on the DNN partitioning performance and complexity, e.g.,
the number of compute nodes and number of split points
in large networks, the complexity of DNN structures, the
heterogeneity of layer consumptions and data transfer sizes,
or the heterogeneity of link bandwidths and processing rates
in large networks — and providing a more thorough un-
derstanding of how the system behaves in cases where (i)
other processes are dynamically allocated to compute nodes,
(ii) links are dynamically used by other processes, or (iii)
faults occur on the system (e.g., node failure, routing change,
packet drops) — requires additional experiments, following
the pattern and methodology of those presented in this paper.

VIII. CONCLUSION
Deploying DL applications in the cloud is convenient be-
cause it allows on-demand easy access to computing re-
sources. However, latency or privacy sensitive applications
may not be able to exchange data and models with the
cloud, while still requiring the same inference throughput
to run with good performance. In such cases, DNN parti-
tioning can offer a complementary alternative to hardware
acceleration and model optimization to increase inference
throughput. This paper has described such an approach to
DNN partitioning, which extends previous works by allowing
for multiple split points and multiple threads, and shown to
achieve higher inference throughputs than single split point
DNN partitioning.

In this context, this paper has quantified the limitations
of inference and transmission latency prediction in edge
environments. With these assumptions, the DNN partitioning
problem is defined as an optimization process, with the
objective of maximizing the overall inference throughput.
This paper has then introduced a branch and bound algorithm
to find optimal DNN partitionings, with a theoretical analysis
of its complexity and achieved inference throughput results.

This analysis has led to the identification of the partitioning
improvement boundary, a deterministic bound on the network
and DNN properties under which a performance improve-
ment can be achieved by partitioning, as well as the cost to
compute such solutions, and their expected performance, in
a homogeneous network context. This result is essential in
understanding DNN partitioning because it defines the scope
of validity of this approach, and only depends on (i) the DNN
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data transfer size to layer consumption ratio, and (ii) the link
throughput to processing rate ratio of the underlying network.

Inference throughput accelerations and defined theoreti-
cal boundaries are evaluated through experimental set-ups
under varying network conditions. The experimental results
also illustrate the behavior of DNN partitioning under het-
erogeneous network conditions, highlighting the use-case
of incrementally adding processing capacity to accelerate
inference throughput. These results enable sizing of both
DNN and underlying network properties to achieve inference
throughput improvements, even prior to the deployment, with
deterministic conditions on the necessary link throughputs to
enable a maximal inference throughput acceleration through
partitioning.
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