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To spontaneously break their intrinsic symmetry and self-propel at the micron scale, isotropic
active colloidal particles and droplets exploit the non-linear convective transport of chemical so-
lutes emitted/consumed at their surface by the surface-driven fluid flows generated by these solutes.
Significant progress was recently made to understand the onset of self-propulsion and non-linear
dynamics. Yet, most models ignore a fundamental experimental feature, namely the spatial con-
finement of the colloid, and its effect on propulsion. In this work, the self-propulsion of an isotropic
colloid inside a capillary tube is investigated numerically. A flexible computational framework
is proposed based on a finite-volume approach on adaptative octree-grids and embedded boundary
methods. This method is able to account for complex geometric confinement, the nonlinear coupling
of chemical transport and flow fields, and the precise resolution of the surface boundary conditions,
that drive the system’s dynamics. Somewhat counter-intuitively, spatial confinement promotes the
colloid’s spontaneous motion by reducing the minimum advection-to-diffusion ratio or Péclet num-
ber, Pe, required to self-propel; furthermore, self-propulsion velocities are significantly modified as
the colloid-to-capillary size ratio k is increased, reaching a maximum at fixed Pe for an optimal
confinement 0 < k < 1. These properties stem from a fundamental change in the dominant chem-
ical transport mechanism with respect to the unbounded problem : with diffusion now restricted
in most directions by the confining walls, the excess solute is predominantly convected away down-
stream from the colloid, enhancing front-back concentration contrasts. These results are confirmed
quantitatively using conservation arguments and lubrication analysis of the tightly-confined limit,
r— 1.

I. INTRODUCTION

Recent developments in the design of synthetic micro-swimmers open new opportunities for engineering and biomed-
ical applications [I]. Popular designs closely follow locomotion strategies observed in Nature, such as beating flexible
appendages [2] or rotating chiral filaments [3], breaking time-reversibility to ensure for the propulsion of such small-
scales swimmers in viscous environments [4, [5]. But in contrast to their biological counterparts, these synthetic
bio-mimetic swimmers essentially behave as marionettes [6], relying on some external tether for both energy supply
and motion control, such as magnetic, optic or acoustic fields [TH9]. Still, practical difficulties, such as miniaturisation
and manufacturing of their moving parts, have so far hindered their use for practical applications.

Active colloids stem from a fundamentally-different paradigm, featuring no moving parts [10]. Just like bacteria
or other swimming cells [I1], they are instead able to extract and convert into motion, energy tapped directly from
their immediate environment (e.g. non-uniform distribution of a physico-chemical properties) in a mechanism known
as phoresis [12]. Beyond technological applications, active colloids have been central to the recent developments in
the study of so-called active matter, in an effort to understand and characterise the collective dynamics and self-
organisation among large suspensions of microscopic self-propelled systems [13], [14].

Surface activity of the colloid is the most popular approach to the generation of the local physico-chemical (e.g.
solute) gradients required for propulsion, and can take the form of reactions catalysed by a surface coating [15], encap-
sulated in a droplet [16] or rely on micellar dissolution [I7],[18]. Combined with a mobility, namely the ability to convert
local gradients along the surface into fluid motion or fluid stresses, this opens the way for the self-diffusiophoretic
motion of chemically-active swimmers that are able to generate themselves the local gradients into which they subse-
quently propel [T9H21].

The fundamental propulsion features are critically impacted by the transport of chemical solutes involved in phoresis
within the fluid, or more specifically by the ratio of convective transport and molecular diffusion, measured by the
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Péclet number, Pe. Based on that measure, two different classes of active colloids can be distinguished. When
Pe < 1, solute transport is dominated by diffusion and is thus independent from the fluid (and colloid’s) motion: this is
specifically the case of classic autophoretic particles, such as the canonical Au-Pt Janus colloids [22], that are typically
micron scale and use small and rapidly-diffusing solutes [e.g. dissolved gases, 21]. In that case, generating gradients
requires embedding some asymmetry in the design of the swimmer through inhomogenous surface activity [15} 22] or
an anisotropic geometry [23]24]. This can also be achieved through asymmetric assembly of isotropic colloids [25] 26].

In contrast, chemically-active droplets are relatively large (typically 10-100um in diameter) and their activity is
based on their micellar dissolutions into the outer fluid phase [20] 27]. The solutes exchanged at the droplet’s surface
and responsible for its propulsion are large molecular structures (surfactant, micelles...) and thus diffuse slowly in the
fluid: advective effects are here non-negligible and Pe = O(1) — O(100) [28]. Symmetry-breaking is achieved through
an instability resulting from the non-linear convective transport of the solute species by the fluid flows generated from
phoretic and Marangoni effects at the droplet surface [I7), 29]. In contrast with autophoretic particles with Pe < 1,
this non-linear hydro-chemical coupling provides the droplet with complex and tunable individual behaviour [28] B0],
and can even lead to the emergence of chaotic dynamics [31], 32].

The mechanism at the heart of the droplet’s self-propulsion, i.e. the nonlinear feedback coupling between the flow
and chemical fields, is mathematically and physically relevant regardless of whether the mobility stems from phoretic
slip flows or Marangoni stresses, both emerging from tangential gradients in solute concentration [I7), 32, [33]. In fact,
both mechanisms most likely co-exist in active droplets, whose surface is densely covered by surfactant species due to
the saturation of the suspending fluid. Also, in experiments, active droplets remain spherical (the relevant capillary
numbers are small) except when their radius is larger than the capillary or chamber size [see e.g. [34]. As a result,
isotropic phoretic particles can be considered in a first approximation as the limit case of swimming droplets with
large internal viscosity.

Despite their systematic presence in experimental settings, due to the droplets’ non-neutral buoyancy [35], [36] or
as a requirement for accurate quantitative measurements [e.g. confocal microscopy 28], theoretical models most often
ignore the presence of confining boundaries and focus on droplets in unbounded fluid domains, leaving unexplored their
role on the emergence and persistence of self-propulsion. Recent experimental measurements have shown significant
modifications of the flow field around the droplet when placed close to or between rigid walls [37], and theoretical
modelling unveiled the non-trivial alterations of the hydro-chemical coupling induced by confinement [38]. Beyond
the influence of a single flat wall, recent experiments have also shown that self-sustained motion can also occur in
strongly-confined settings, such as small capillary tubes [34] [39].

Although few quantitative measurements or estimates can be found, active droplets are likely to evolve very close
to their confining boundaries [35], in a regime where classical work on lubricating flows or model micro-swimmers
demonstrate that hydrodynamic drag [40] and self-propulsion velocities [41] are significantly modified in comparison
with their characteristics in unbounded fluid domains. Significant changes in the self-propulsion of active droplets
would therefore not be surprising.

The central goal of the present work is to provide a much needed insight on the sustained self-propulsion of such
isotropic active particles or droplets in strongly-confined settings, i.e. inside a capillary tube. In the case of diffusion-
dominated diffusiophoretic swimmers (Pe — 0), the hydrodynamic and solute evolutions reduce to sequential linear
Laplace and Stokes problems, for which a number of different numerical techniques are available, such as Boundary
Element Methods [42] or two recent extensions of hydrodynamic solvers for the diffusive problem, based on Stokesian
dynamics [43] or the Force Coupling Method [44].

In contrast, the numerical simulation of instability-driven, isotropic autophoretic swimmers at non-zero Pe poses
new and specific challenges due to the inherent nonlinearity of the problem in addition to the presence of moving
boundaries where chemical and hydrodynamic forcings are applied. Up to date, most simulations considering the full
non-linear hydrochemical coupling of active droplets rely on some truncated spectral expansion, mapped either onto
cylindrical [31], spherical [33] or bi-spherical coordinates [38], [45]. This approach is well-suited for simple geometric
configurations (e.g. unbounded flows, two-sphere interactions), but precludes the study of the dynamics of such
swimmers placed under generic spatial confinement or even in a cylindrical pipe.

To overcome this hurdle, we present here a generic method to obtain the non-linear hydro-chemical dynamics
of a single isotropic autophoretic particle under complex confinement using a novel approach based on embedded
boundaries [46, 4T] and developed on top of the adaptive quadtree-octree flow solver Basilisk [48]. Our approach,
based on a finite volume framework, does not require any a priori assumption on the form of the hydrodynamic or
chemical fields, nor on the number or shape of the solid boundaries, thus making it suitable for the study of complex
confinement geometries and/or collective particle/droplet dynamics.

The paper is organised as follows. Section [[]] introduces the physical problem considered, namely that of a single
isotropic autophoretic particle swimming along the axis of a round capillary tube. The numerical technique used to
solve the problem is then presented in Sec. [[T] together with several numerical validations. The impact of spatial
confinement, i.e. the relative radius of the capillary and particle, is then analysed in detail in Section [[V] using this



numerical method. Using global conservation arguments and lubrication analysis, Sec. [V] then confirms theoretically
the qualitative and quantitative evolution of the propulsion characteristics in the strong-confinement limit (i.e. tightly-
fitting sphere). Finally we summarize our findings and outline some perspectives on this work in Sec.

II. PHORETIC SELF-PROPULSION IN A CAPILLARY

We consider the dynamics of a single spherical phoretic particle of radius a, immersed in a Newtonian fluid of
viscosity n and density p, inside a circular capillary of radius R and axis e,. The particle is chemically-active and
releases or absorbs a solute of concentration ¢* and molecular diffusivity D into its fluid environment with a constant
and isotropic flux A (activity), so that along the particle’s boundary T,

Dn - Vc*|Fp =—A, (1)

with n the unit outward normal. The short-ranged interaction of solute molecules with the particle surface within a
thin interaction layer of thickness A < a introduces an effective hydrodynamic slip u* along the particle surface in
response to local tangential solute gradients [12]

a* = MV,c*, (2)

with M = kpTA?/n the phoretic mobility of the particle, with kgT the thermal energy and Vg = (I — nn) - V the
tangential gradient operator projected onto the particle surface. Note that taking M as a constant characteristic
property of the particle surface is valid for neutral solutes, but can also be valid when concentration contrasts are
small enough [12].

The activity A and mobility M coefficients characterise the physico-chemical properties of the particle surface and
can be positive or negative; from these, a characteristic phoretic velocity scale can be defined as V = | AM|/D. Given
the characteristic size and velocities of confined phoretic microswimmers [28] [37, [38], the fluid and colloid inertia can
be neglected, i.e. the Reynolds number Re = pVa/n is negligible, so that the motion of the particle can be described
using the steady Stokes equations.

In the following, all quantities of interest are made dimensionless using a,V,a/V and a|A|/D as characteristic
length, velocity, time and concentration, respectively. The resulting dimensionless equations for the dimensionless
flow velocity u, pressure p and concentration c are:

Viu=Vp, V- -u=0, (3)
g +u-Ve= iVQ (4)
ot T YT pe’ @

with Pe = | AM|a/D?, the Péclet number, which is a measure of the relative contribution of advection and diffusion
to the transport of solute. The radius ratio, k = a/R € [0, 1], is a measure of the confinement level and is the second
key dimensionless parameter of the problem.

The relevant boundary conditions for the concentration field at the surface of the (active) particle I'y and (inert)
confining wall I'; are

dc/On|p = —A, 0Oc/On|,, =0, (5)
while, for the velocity field,
up =u+U+Qx(x-X), ulp, =0 (6)

where U and € are the translation and rotation velocities of the particle, 1 = MV c is the dimensionless phoretic
slip velocity at a general point x on the particle surface and X is the position of the particle center. The phoretic
mobility of the wall is neglected here in front of that of the active particle/droplet, but could easily be accounted for
within the same framework [see e.g. 49]. Here, A = A/|A| and M = M/| M| denote the dimensionless activity and
mobility. When AM = —1, no self-propulsion is observed for an isolated particle in unbounded flow [33]; as our goal
is to analyse the effect of confinement on self-propulsion, we consider in the following that A = M = 1.

Finally, in the absence of any external force, the total hydrodynamic force and torque on the particle must vanish
at all time,

F:/Fa-ndS:O, T—/FP(X—X)X(o‘~n)dS—O7 (7)

p

with & = —pI + Vu + Vu? the Newtonian stress tensor.



FIG. 1: Self-propulsion of a single isotropic phoretic particle of radius a along the axis of a cylindrical pipe of radius
R (viewed here in the reference frame of the particle). The particle-to-pipe radius ratio, kK = a/R, is a measure of
the level of confinement. The particle and pipe surfaces are noted I', and I'y, respectively. I'i, and I'ys denote cross
sections of the pipe far ahead and behind the particle, respectively. (Inset) Within a thin interaction layer of
thickness A, local surface gradients in the chemical solute (orange) released from the particle surface induce a net
hydrodynamic slip.

III. NUMERICAL SOLUTION
A. Axisymmetric problem and co-moving frame

In the following, we will focus on the axial self-propulsion of the particle, for which the problem remains completely
axisymmetric. In steady state, the concentration and velocity fields are time-independent when measured in a reference
frame moving with the particle. For convenience (e.g. to avoid any need for re-meshing of the computational domain),
we analyse the problem in that co-moving reference frame, where the particle is fixed, and the boundary conditions
for the velocity field become

ulp =10, ulp, =-Ue., (8)
where U, is the physical velocity of the particle relative to the wall in the laboratory frame, and completely determines
the steady self-propulsion dynamics of the particle along the confining tube’s axis (see Fig. [1)).

It should be noted nevertheless that the numerical methodology presented in the following can be generalised to
non-axisymmetric and unsteady configurations. Unsteady simulations of the particle’s dynamics in the laboratory
frame were also performed with non-axisymmetric initial conditions (i.e. particle position, direction and intensity of
the particle velocity) and showed that this axisymmetric self-propulsion state is a stable attractor for the problem
when Pe < 15, for all k, i.e. when the particle is released initially away from the axis, it relaxes after a transient to
either a stationary state on the axis or steady propulsion along the axis), establishing the physical relevance of the
axisymmetric setting considered here.

B. Numerical Method

Equations , and @, with boundary conditions, Egs. and , form a fully-coupled set of nonlinear PDE’s
problem. We solve these equations numerically in a cylindrical domain of length L > R with the particle located at
its center.

Boundary conditions must be prescribed for the solute and flow fields on the upstream and downstream cross-
sections of the computational domain, Iy, and 'y, located respectively at z = +L/2 from the center of the particle.
In the lab frame, the fluid is expected to be at rest with a homogeneous concentration of solute, far enough upstream
and downstream of the particle, so that, in the reference frame co-moving with the particle,

dc
l"1|1"m,1"0ut = 7Uzeza a_ = Oa (9)

az Fix\7rout



with U, the a priori unknown particle velocity, which is determined as part of the solution by enforcing the force-free
condition on the particle.

As for the inertial fluid-solid coupling in high-Reynolds configurations [50], the presence of the nonlinear advective
coupling in the solute transport equations prevents the use of other popular numerical techniques such as multipole
expansion [51], Boundary Elements Methods [42] [52] or the Force Coupling Method [44, [53], which are particularly
suitable for purely diffusive problems. In such a limit, a detailed knowledge of the flow and concentration fields in the
domain bulk (i.e. away from the computational domain boundary I' =T', UT3 U T, UT' oy ) is unnecessary to obtain
the particle dynamics. In contrast, when Pe # 0, the presence of the advective contribution to the solute transport,
u- Ve, which is key to the understanding and capture of the spontaneous self-propulsion of isotropic phoretic particles
and droplets [I7), [33], imposes a change in the resolution paradigm, by requiring to determine u and ¢ everywhere
in the computational domain, and an accurate numerical treatment of this non-linear term in the solute transport
equation.

We present here a novel approach to solve for the diffusiophoretic propulsion based on Basilisk, a popular open
source framework for computational fluid dynamics [48]. Borrowing techniques developed for high-Re flow simulations,
the non-linear diffusiophoretic problem is split into multiple sub-problems. The equations of evolution for the solute
and flow fields are solved using finite volumes on hierarchically-arranged, adaptive quadtree/octree grids [54]. To
adapt to the Basilisk framework most efficiently, the hydrodynamic problem is described by the unsteady Stokes
equations with a small Reynolds number (Re = 0.05). To reach the steady state solutions, the hydrodynamic solver is
called iteratively on a pseudo-time ¢, until the residuals between two pseudo-timesteps reaches a convenient threshold,
ie. ’u(f—i— At) — u(f)‘ <1076 ‘u(f)|, which generally takes O(10) successive calls. Note that this step represents the
most time-consuming part of the method. Stokes equations are solved using an operator-splitting method [55], with a
viscous step (Poisson solver) followed by a projection onto a divergence-free space (Helmholtz solver). For the solute
transport, Eq. , the diffusive Laplacian term is handled implicitly while the advective contribution is computed
using the Bell-Colella-Glaz (BCG) second-order upwind method [55].

The description of all solid-fluid interfaces that do not match a rectangular mesh is based on the method of embedded
boundaries [46, 47], allowing for a second-order accurate computation of the additional fluxes to be included in the
finite-volume balance in order to enforce a prescribed boundary condition within cells containing a fluid-solid interface
I, or T'y [BO]. Hydrodynamic forces are then computed a posteriori by numerical integration of the stress tensor on
the particle surface.

At this point, we dispose of an efficient numerical framework for the computation of the flow velocity and solute
concentration, (u,p,c), for boundaries of any shape, for a given particle velocity. The dynamics of the particle
(here completely characterised by U,, its axial velocity) is further determined through the instantaneous force-free
constraint, which writes here simply as F, = 0. The Stokes problem is linear regardless of the confinement level x;
therefore the axial force on the particle is an affine function of the solid body translation U, for a given slip velocity
q, i.e.

Fz(ﬁa Uz) =RU. + Q(ﬁ)a (10)

with R the axial drag coefficient on a rigid sphere translating along the axis of the cylindrical pipe, and Q a scalar
that is completely determined by the surface slip and the level of confinement. Both @ and R are independent of U,
and solely depend on geometry (and on the slip velocity in the case of Q), and are determined numerically as follows.
At each time step, the Stokes problem is solved twice for the same slip velocity @: (i) for the real problem, using a
first guess of the swimming speed U, from the previous time step, and (ii) for an auxiliary problem with a different
and arbitrary U2"*. For each, the corresponding axial force on the particle is computed and, using both solutions
together with Eq. provides (Q,R) from which the correct swimming speed satisfying the force-free condition is
obtained as U,(F, =0) = —Q/R.

A cubic domain of size L/a = 128 was used on an adaptive mesh refinement, with the finest spatial discretization
reaching 32 computational cells per particle radius a, with ~ 2000 cells describing the particle surface. The fluid
domain (Figure [1]) is then cut out from this cubic volume employing the embedded boundaries approach [55] and
the particle is set in the origin of the coordinate system, placed in the centre of the computational cuboid. Mesh
is automatically adapted so as to ensure that maximum spatial refinement is always ensured on top of solid-liquid
interfaces. Elsewhere, mesh is refined (resp. coarsened) whenever velocity or solute gradients is more (resp. less)
than a prescribed threshold using an adaptive wavelet algorithm [see e.g.[57]. Using this approach and comparing the
results for maximum spatial discretisations of 32 and 64 cells per unit length, we obtained a match in both swimming
velocity and solute concentration fields, with a typical discrepancy on the swimming velocity lower than 0.1% (Pe = 6,
% = 0.5) and reaching a maximum 2% discrepancy for the most confined case considered (Pe =6, x = 0.9).



k =a/R Zhu et al. [41] present work relative error (%)

0.2 0.984 0.983 0.102
0.3 0.948 0.943 0.530
0.4 0.884 0.872 1.376
0.5 0.791 0.776 1.933

TABLE I: Steady-state swimming speed of a squirmer along the axis of a capillary tube for varying confinement
ratio k and comparison with the results of Ref. [4I]. The swimming velocity is normalised by that in unbounded
fluid domains.

Pe Michelin et al. [33] present work relative error (%)

4.0 0.0 0.0 0.00
5.0 0.04672 0.04670 0.043
6.0 0.06652 0.06649 0.045
7.5 0.08342 0.08387 0.53
10. 0.08671 0.08782 1.26
12.5 0.08333 0.08360 0.33
15.0 0.07902 0.07953 0.64

TABLE II: Steady-state swimming velocities as a function of Pe, for an isotropic autophoretic particle in an
unbounded domain, and comparison with the results of Ref. [33] for infinite domains.

C. Validation

We now proceed with the validation of the proposed framework and algorithms testing the main physical features
against classical literature cases, namely (i) the self-propulsion of a model micro-organism using a prescribed surface
slip (i.e. a so-called squirmer) in strong spatial confinement [41] and (ii) the self-propulsion of isotropic particles due
to non-linear hydro-chemical coupling [33]. The first case, for which the hydrodynamic slip is imposed, allows for the
validation of the hydrodynamic solver and the enforcement of the force-free constraint, while the second provides a
validation of the coupled hydro-chemical solver.

1. Squirmer in a pipe

The behaviour of a single squirmer inside a cylindrical pipe for different level of confinement is considered, as studied
in Ref. [4I] using a boundary element method. A steady slip velocity @ is imposed on the particle surface, which
corresponds to a neutral squirmer, which would swim at a velocity U} e, in the absence of any confinement, namely:

_s
3

~squirmer
u q =

(I—nn)-e,. (11)

For an unconfined case, the algorithm recovers within +0.1% the swimming velocity predicted by the reciprocal
theorem [58], i.e. the average of the surface slip velocity on the particle surface. For confined cases, with 0 < k < 0.5,
the maximum relative error between the present results and that of Ref. [41] is less than 2% (Table [I). Physically, for
the axisymmetric configurations tested here, the squirmer’s swimming velocity is observed to decrease with increasing
confinement.

2. Autophoretic propulsion in an unbounded domain

The second comparison allows for the validation of the hydro-chemical solver in the absence of confinement (k < 1),
and in particular of the treatment of the nonlinear advective coupling of the Stokes and chemical problems, which
is the essential ingredient of the spontaneous autophoretic motion studied here. The results are then compared to
those of Ref. [33] for strictly unbounded domains. Steady self-propulsion is observed beyond a critical Pe after a
transient, with a constant non-zero swimming speed as depicted in figure 2l A detailed comparison with the results of
Ref. [E9)Michelin2013 shows that the present method is able to recover the correct swimming velocity with an error
lower than ~ 1% for the resolution considered (Table [II)).



0.7
0.3 - 0.6
0.5
§ 0.2 A 0.4 ¢
0.3
0.1
0.0 4=
T 0.0
0 250 500

t

FIG. 2: Unsteady axisymmetric propulsion velocity U, (t) of an isotropic phoretic particle along the capillary’s axis
for increasing level of confinement x (color) and Pe = 2.5. The results are reported for x = 1/16, 1/8, 1/4, 1/2, 2/3
and 3/4. During the initialisation phase (¢t < t; with t; = 25), the slip velocity on the particle surface is imposed
(neutral squirmer), Eq. ; for t > ts, the phoretic slip velocity and particle dynamics are computed based on the
actual surface concentration distribution of the solute, Eq. (2]), and the force-free condition on the particle.

IV. AXISYMMETRIC SELF-PROPULSION INSIDE A CAPILLARY
A. Unsteady vs. steady-state self-propulsion

In practice, the coupled equations for the solute concentration and fluid velocity are integrated numerically in time
for fixed values of the Péclet number Pe and confinement ratio k. For 0 < Pe < 15, at long time, the particle propels
at a steady velocity along the capillary axis: an axisymmetric steady-state is therefore reached in the reference frame
of the particle for the solute concentration and flow fields, and we specifically focus here on the characterisation of
such axisymmetric steady states.

The simulation is initialised by prescribing during a short initialisation phase (0 < ¢t < ¢ with t; = 25 in non-
dimensional units) a fixed axisymmetric slip velocity on the surface of the particle, corresponding to a neutral squirmer
with intrinsic swimming velocity U} = 0.1. For ¢ > t,, the true phoretic slip is computed directly from the actual
concentration distribution and imposed at the particle surface. Such a procedure allows us to perturb the system and
break the left-right symmetry. The resulting evolution of the swimming velocity is shown on Figure [2| for Pe = 2.5
and for increasing level of confinement. The self-propulsion of the particle during the initialisation (squirmer) phase
decreases with k, in agreement with the results of Ref. [41]; indeed, in Figure |2 the velocity U, in the initialisation
phase (¢ < 25) where the slip velocity is imposed, is observed to be lower for larger values of x (tighter confinement).

For t > t,, once the actual phoretic slip condition is enforced, the particle relaxes after a transient toward its
steady-state dynamics. Unless indicated otherwise, we thus refer to U, as the steady-state self-propulsion velocity
of the particle when ¢ > ts. Two fundamentally different types of steady-state dynamics are observed on Figure
for Pe = 2.5, depending on the level of lateral confinement x of the particle. For weak confinement (i.e. small k),
the particle slows down and eventually comes to a stop; this is consistent with Pe = 2.5 being lower than the critical
threshold for self-propulsion in unbounded domains (Pe. = 4 for k = 0) [33]. Note, that a steady state is reached for
the particle velocity, flow field and concentration gradients, but not the average concentration which keeps increasing
in time due to the fixed emission of solute at the particle surface and the confinement of the particle by chemically-
inert walls. In contrast, for k > 0.2, the particle maintains a net velocity that increases with x and saturates for the
strongest confinements considered (x & 0.8). Note that changing the magnitude of the initialisation velocity or the
duration of the initialisation phase only modified the transient regime past ¢ > t,, but did not alter the nature of the
observed steady state (i.e. fixed or self-propelled particle).
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FIG. 3: (a) Steady state axisymmetric swimming velocity U, of an isotropic active particle as a function of the
convection-to-diffusion ratio, Pe, and for increasing confinement  (color). (b) Same as (a) in logarithmic scale. The
results for a single isolated particle in unbounded domains [k = 0, [33] is shown for comparison (red dashed line). In

(b), the dotted black line indicates the minimum velocity to determine the emergence of a net propulsion. The

results are reported here for x = 1/16, 1/8, 1/4, 3/8, 1/2, 2/3 and 3/4.

B. Self-propulsion velocity and critical threshold

In the following, we focus on the evolution of this steady-state self-propulsion and the influence of the proximity of
the confining walls. To that end, for 0 < x < 0.8 and 0 < Pe < 15, we systematically run time-dependent simulations
until a steady state is reached, with a constant swimming speed along the axis of the capillary. The results for
U, (Pe, r) are reported on Figure [3] and demonstrate the strong influence of confinement and an increase of the self-
propulsion velocity with confinement x for all Pe. This effect is significant provided the distance to the wall is of the
order of a few particle radii (k 2 0.2), confirming experimental observations [34].

Beyond a systematic increase of the swimming velocity, Figure [Jalso demonstrates several other important features.
Most importantly, confinement effects are strongest for low-to-moderate values of Pe. We first note a significant
reduction with s of the critical self-propulsion threshold Pe.. Furthermore, the presence of confinement strongly
affects the evolution of U, (Pe): in weakly-confined configurations, the velocity varies non-monotonically with Pe, and
increases smoothly from the threshold until it saturates for Pe &~ 10 — 20 and decreases as Pe is increased further [33].
In contrast, the velocity of strongly-confined particles (k 2 0.5) scales as 1/ V/Pe for most of the parameter range
except in the immediate vicinity of the threshold Pe.(x) where it increases sharply with Pe (Fig. [3b). As a result,
the maximum swimming velocities are observed at low Péclet in strongly-confined environments (Figure ) Note
that self-sustained motion is never observed for Pe = 0, regardless of k: as for unbounded environments, convective
transport of the solute by the phoretic flows is essential to the propulsion of isotropic particles, as it provides the
required symmetry-breaking mechanism [I7}, 33].

Stronger confinement significantly promotes self-propulsion, by reducing the minimum Péclet number, Pe, required
for self-sustained autophoretic motion: while Pe, = 4 for x = 0, the existence of a minimum Pe for Self—propulsmn
persists throughout the range of confinement investigated but this threshold drops quickly as x is increased, with
Pe. = 0.1 for x 2 0.5 (Figure {4). However, with the present numerical approach, it is not possible to analyse the
lubrication limit with significant precision to conclude on the asymptotic behaviour of Pe, when 1 — k < 1, and this
asymptotic limit would require further analysis using a different approach.

Except for rare examples [28], the Péclet number is fixed in most experimental systems, and only spatial confinement
can be controlled. For this reason, we also report on figure b) the evolution of the rescaled swimming velocity for
fixed Pe and variable confinement k. In all cases, this rescaled representation (where we account for the dominant

Pe~1/2 scaling of the velocity, see also Section demonstrates a non-monotonic evolution of the swimming velocity
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FIG. 4: (a) Evolution with confinement () of the critical threshold Pe, for the onset of propulsion. For fixed &, the
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velocity is greater (resp. smaller) than a numerical threshold U} = 5-1073. (b) Evolution of the rescaled particle

velocity with confinement x.

with x, with a maximum at k ~ 2/3, before entering the lubrication regime. This behaviour and its origin will be
further discussed in Section [VAl

C. Effect of confinement on the solute distribution

The peculiar evolution of the swimming velocity with confinement and its enhancement at low Pe is analysed
by considering the detailed variations of the solute concentration around the isotropic phoretic particle in confined
steady-state regimes (Figure . For fixed Pe, the solute distribution around the particle is fundamentally modified
by confinement.

In unbounded domains and for weak confinements, the solute distribution is characterised by a monotonic decrease in
all radial directions around the particle, with a small front-back asymmetry maintained by the self-generated phoretic
flows (Figure 5| £ = 0.1): in that case, the solute production at the particle surface is predominantly balanced by its
radial diffusion away from the particle.

In contrast, for stronger levels of confinement (e.g. Figure || x = 0.8), lateral diffusion of the solute away from the
particle is prevented by the lateral inert wall I'y: in that case, the solute production by the particle’s catalytic surface
is predominantly balanced by its downstream convective transport by the phoretic flows. As a result, the capillary
upstream from the particle is essentially solute-free, and the solute concentration saturates downstream from the
particle at a much larger and uniform value. The largest solute concentrations are therefore found downstream and
away from the particle, rather than on its surface as for the unbounded configuration.

A more detailed observation for strong confinement reveals that far upstream and downstream from the particle, the
solute concentration becomes homogeneous due to the rapid lateral diffusion across the capillary (Figure |5, k£ = 0.8).
Additionally, as confinement is increased, the fluid layer separating the particle from the wall becomes very thin and
chemical diffusion across this thin gap becomes dominant over other solute transport mechanisms: as a result, the
solute concentration is homogenised across the whole fluid layer, despite the steady emission of solute from the particle
surface (Figure[5] x = 0.8, zoom).

This last observation is further confirmed quantitatively by the detailed evolution of the distribution of the con-
centration across the thin fluid layer (Figure Eh) While the solute concentration is only significant near the surface
of the particle for small x, the distribution of solute across the gap is uniform when x — 1.

The dominance of lateral diffusion, and resulting homogenisation of the concentration in most of the domain (i.e.
apart from |z| ~ 1), justifies focusing on the mean concentration along the capillary axis, defined as the average within
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FIG. 5: Steady state relative solute concentration distribution and representative streamlines (color-coded by the
fluid velocity magnitude) around an isotropic phoretic particle in axisymmetric confinement for Pe = 6 and
increasing x (in the laboratory reference frame, i.e. fixed with respect to the capillary walls).

each cross section (fixed z):

1 R 2
(chay(2) = T(R? — Rumin(2)?) /Rmin(z)/o elr, zJrdrdf (12)

with Ruyin(2) = vVa? — 22 for |z| < a and Ryin(z) = 0 otherwise. This function of z only takes a uniform value far
upstream and downstream of the particle (Figure [7)), so that the front-back concentration contrast can be defined as

Ac= (0)ay(z = ~L/2) — ()ay (= = L/2). (13)

Figure E(a) shows that the evolution with z of the average concentration, once rescaled by Ac, becomes essentially
independent of k for x 2 0.5, and that this universal profile is characterised by (i) constant values behind and ahead
of the particle (z < —1 or z 2 2) and (ii) a linear profile (constant streamwise gradient) in most of the vicinity of
the particle. The amplitude of the front-back concentration contrast increases however sharply with x, diverging as
(1 — k)~Y? as k — 1, demonstrating the confinement-induced chemical saturation (Figure [7b). This behaviour is
quantitatively consistent with the asymptotic predictions, see Eq. and Section

The fore-aft asymmetry of the concentration profile, observed on Figure[7h for Pe = 6, results from the accumulation
of solute in the wake of the propelling droplet due to the restricted lateral diffusion when the droplet is sufficiently
confined (large enough x) and is also present for larger Pe. A small overshoot of the concentration profile can be
observed immediately behind the particle for the least confined configurations (small ) for which the solute transport
balance is fundamentally different.
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FIG. 6: Relative spanwise distribution of (a) solute concentration and (b) streamwise flow velocity (in the particle’s
reference frame) within the fluid gap between the swimmer and the fixed walls (z = 0) for increasing confinement &
(color) and Pe = 6.0. The rescaled radial variable 7 = (r — a)/(R — a) is defined such that # = 0 (resp. 7 = 1)
corresponds to the particle (resp. wall) surface for all values of k. In (b), the rescaled fluid velocity with respect to
the particle is @ = (w + U,)/(wsip + U.) (note: here w < 0 throughout the gap in the particle reference frame, and
w = —U, at the wall, # = 1, while w = wg;, < 0 at the particle surface, # = 0). The results are reported for
k=n/10 with 1 <n <9.

D. Effect of confinement on the flow field

The flow pattern and intensity generated by the swimming particle inside the capillary is also significantly modified
by the presence and distance to the neighbouring walls. For strong confinement, the largest fluid velocities and
velocity gradients are observed within the thin fluid gap: a finite volume of fluid needs to be moved from one side of
the particle to the other through a narrower gap in order to allow for the particle motion through the capillary where
the flow is at rest away from the particle. As k approaches 1, the typical fluid velocity within the gap is therefore
much higher than the particle velocity itself (see also Section for a more quantitative discussion), resulting in strong
spanwise gradients of the fluid streamwise velocity within the narrow gap (Figure [5)).

A more detailed analysis of the velocity distribution within the fluid gap further reveals that, as k is increased, the
velocity profile tends to a Couette flow profile (Figure @3) the dominant fluid transport in the narrowest fluid layer is
therefore driven solely by the phoretic slip at the particle surface, resulting from the front-back concentration contrast
observed in strongly-confined configurations (Figure . In particular, the absence of curvature in the velocity profile
indicates that longitudinal pressure gradients play a negligible effect on the dominant flow.

We therefore turn our attention to the evolution of this slip forcing for increasing x, and more specifically on its
streamwise component that plays a major role in the thinnest regions. Once again, a transition can be clearly seen
between two different regimes (Figure ): for weak confinement, the relative distribution of slip is rather constant
along the sphere, except near the front and back poles. A slight maximum is observed at the back of the particle,
which is in qualitative agreement with the established result that the particle acts as a pusher swimmer in unbounded
domains [I7), B3]. As confinement is increased, the slip profile becomes more front-back symmetric with a maximum
value attained in the narrowest region: this indicates a stronger localisation of the forcing in the regions where it
has the most hydrodynamic influence on the self-propulsion. Note that such localisation in the regions of strongest
hydrodynamic influence was also recently identified for a chemically-active droplet propelling along a planar wall [60].
The evolution of the maximum phoretic slip with x confirms the enhancement of the phoretic forcing as the distance
to the confining walls is reduced,with the average fluid velocity in the gap, W = (w(z = 0)),,, diverging as (1 —x)~!
when x — 1. This increase of the phoretic slip with confinement directly results from the increased (and diverging
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FIG. 7: (a) Evolution of the spanwise-averaged solute concentration in the fluid around the particle along the pipe
for increasing confinement « (color) for Pe = 6. The particle’s position and limits are shown (resp. dash-dotted and
dotted lines). The results are reported for x = n/10 with 2 <n < 8. (b) Evolution with & of the front-back
concentration contrast measured using the spanwise-averaged concentration at |z| > R upstream and downstream
from the particle. The dashed line corresponds to the analytical prediction of Section , see Eq. .

as k — 1) concentration contrast between the front and back of the phoretic particles that was discussed in greater
details in Section [[VC] The results are in good agreement with the asymptotic prediction for the evolution of W as
x — 1 (Figure [8p and Eq. (39)).

Finally, the velocity field away from the particle (i.e. upstream and downstream) is almost uniform and eventually
decays to zero (in the laboratory reference frame). Here a brief comment should be made regarding the boundary
conditions imposed at the inlet and outlet boundaries of the computational domain (Figure . A Dirichlet boundary
condition on the flow velocity is imposed on I'j, and I'ys, representing that the flow is at rest far upstream and
downstream from the particle in the lab frame. This will be the case for example when the domain considered
(Figure [1)) is part of an infinitely long tube: away from the particle, the large hydrodynamic resistance prevents the
existence of any flow within the tube.

E. Resistance to particle motion and pressure

We noted earlier that, because fluid is at rest in front of and behind the phoretic particle, a finite volume of fluid
must pass through the thin fluid gap for the particle to move forward. Driving such a volume flux through a thin
viscous fluid layer results in the establishment of a net pressure difference between the front and back of the sphere,
as demonstrated on Figure |§| by the evolution of the spanwise-averaged pressure (p),, along the capillary (i.e. its
average on each cross-section) and of the front-back pressure difference Ap (both quantities defined in a similar way
as their counterparts for the concentration).

We first note that the pressure difference Ap vanishes when x < 1, i.e. for unbounded phoretic particles, as
expected. When k becomes larger, the pressure still reaches constant values far upstream and downstream of the
particle, but they are now different and their difference quickly grows with confinement and diverges as Kk — 1
(Figure[9b). While a clear scaling is difficult to identify from the numerical results, it can still be concluded that the
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FIG. 8: (a) Distribution of the surface slip velocity normalized by the average fluid velocity in the particle-capillary
gap. The results are reported for kK = n/10 with 2 <n < 8. (b) Average fluid velocity in the particle-capillary gap
W at varying confinement x. Results are shown here for Pe = 6.0. The dashed line corresponds to the analytical

prediction, Eq. .

divergence observed is weaker than (1 —x)~2 (see Section for further discussion). The emergence of a finite (and
increasing) pressure difference exerts a resisting force on the particle, balancing the net forcing exerted within the
thin fluid gap by the phoretic flows generated by the particle.

It should further be noted that the pressure variations are not monotonic, showing a local minimum in the vicinity
of the narrowest regions (Figure [Op).

V. SELF-PROPULSION OF A TIGHTLY-FITTING PARTICLE
A. Global conservation arguments

The analyses and results of the previous sections provide some critical insight on the physical balances and phe-
nomena determining the evolution of the confined self-propulsion, in particular in the limit of strong confinement
(k 2 0.5).

In the following, these different arguments are summarised and combined to obtain a prediction for the scaling of
the swimming velocity in this limit, in terms of the two main parameters of the problem, Pe and k. Throughout,
we focus exclusively on the steady-state regime at the center of our attention in Section [V] We will relate three
specific quantities: (i) U, the swimming velocity of the phoretic particles, (ii) Ac the difference in the uniform solute
concentration observed far downstream and upstream of the particle, respectively, and (iii) W = (w(z = 0))4, the
mean flow velocity (relative to the particle) through the narrowest fluid region (z = 0) (oriented along —e,, i.e. from
the front toward the back).

1. Solute conservation

Considering the entire computational domain as a control volume, the conservation of solute imposes

/Fj~ndS:O (14)
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FIG. 9: (a) Evolution of the spanwise-averaged fluid pressure in the fluid around the particle for increasing
confinement k (color). The particle’s position and limits are shown (resp. dash-dotted and dotted lines). The results
are reported for K = n/10 with 1 <n < 9. (b) Evolution with  of the front-back mean pressure difference measured

using the spanwise-averaged pressure at |z| > R upstream and downstream from the particle. In both panels,
results were obtained for Pe = 6. The dashed line with (1 — x)~3/2 is shown for comparison only.

with I' = T', UTy U Toyy U Ty (Figure (1)), n the unit normal to I' pointing into the fluid domain, and u the fluid
velocity in the reference frame of the particle. The non-dimensional solute flux j = Pecu — Ve (characteristic scale:
|A|) includes the contributions of convective transport by the fluid flow and diffusion, respectively.

The channel’s wall are inactive and impermeable so that j-n =0 on I'y. At the particle surface, the solute flux is
purely diffusive and matches the total production rate at the particle surface frp j-ndS = 4x. Far from the particle,

near ['y, and 'y, the concentration is uniform so that the diffusive flux is negligible on these surfaces. The velocity
is also uniform and equal to —U,e, so that

PeU,A
/ j.ndsz_Lgc. (15)
TinUlout K

Equation then leads to
PeU,Ac = 4k*. (16)

This result was found in agreement with the numerical results for strong enough confinements (k > 0.2, Figure .
Note that for lower k, such a balance is not expected to hold as the transport mechanism of the solute away from the
particle surface vicinity is fundamentally different.

2. Conservation of mass

A similar argument for the conservation of mass on the upstream half of the computational domain leads to

/Nu-ndS:O7 (17)
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FIG. 10: Global conservation of solute: the dimensionless solute emission (x?) is compared to the dimensionless
excess solute convected downstream from the sphere (Pe U,Ac).

with I't = I'j, U Fl‘f U F; U Ty with FI and Fz‘f the parts of the wall and particle surfaces with z > 0, and I'g the
fluid cross section at z = 0. The particle surface I', and the wall I'y are impermeable and do not contribute to the
integral above. On T'y,, the velocity is uniform and equal to —U,, so that fr,- u-ndS = 7U,/k%. By definition of W,

Jr, u-ndS = —m(1 - *)W/k?, so that

U, = (1-r)W. (18)

3. Fluid velocity trough the gap

One of the main features of the flow within the thin fluid gap identified in Sec. [[VB| when the gap thickness is
reduced (i.e. 1 —k < 1) was the emergence of a Couette-like dominant flow driven by the slip velocity wgyp at the
surface of the particle. For a cylindrical Couette flow [61],

Wslip . 1 2/‘62
W= —ip th f(k) = - 19
2 f(x),  with f(x) log(1/k) 1 — k2 (19)
and f(k — 1) = 1 (plane Couette flow). The non-dimensional slip velocity is 9¢(z = 0) ~ <L(c),, since the

concentration is uniform across the fluid gap for large enough . The results of Figure [7] suggest that the variations
of (¢)4y with z are almost linear so that the axial concentration gradient in the gap is proportional to the front-back
concentration contrast Ac and, accordingly, the phoretic slip and mean flow in the gap W satisfy

W~ KAc (20)

with K a constant of proportionality.
Figure[l1|provides supporting evidence of this linear relationship between the average velocity W and the front-back
concentration contrast, with K = 1/3, except for the lowest Pe-values.

4. Approximation of the particle velocity

A combination of macroscopic conservation principles, Egs. and , and qualitative argument, Eq. ,
allowed us to obtain three independent relationships between the three quantities of interest U,, W and Ac. Combining
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FIG. 11: Relative evolution of the spanwise-averaged axial velocity W of the fluid (relative to the particle) at z = 0
(narrowest fluid gap) and of the front-back solute concentration Ac. The dotted line corresponds to Ac/3.

these provide the following predictions for each of these quantities:

1—r2 P 3
U~ 26— Wa——  Aem 2y —— . (21)

3Pe T /3Pe(l — r2) Pe(l — r2)

These predictions are in quantitative agreements with the numerical results (Figure in particular for larger
(i.e. kK 2 0.5 0or 1 — k2 <0.7), except for the lowest value of Pe investigated. This better agreement for larger Pe was
to be expected as convective transport of solute plays a dominant role in that limit.

Furthermore, this relationship shows that U, is not a monotonic_function of x but instead should be maximum
around k = 1/ V2 ~ 0.7 in agreement with the results of Figure These predictions also clearly establish that
U, ~1/ V/Pe, in particular for larger Pe and larger k, which is confirmed in Figure We finally observe that the
numerical evolution of W and Ac with x are consistent with these predictions (see Figures[7] and [g)).

B. Asymptotic analysis

We focus now specifically on the lubrication limit, i.e. when R ~ a or equivalently x — 1 and thus define
e = 1—k < 1. Note that, the result above establishes that the dominant swimming velocity is set solely by the
slip forcing inside the hydrodynamic lubrication region of width /e around the region of smallest thickness (and not
anywhere else). In turn, this requires knowing the leading order evolution of the surface concentration in that region.
The scalings obtained from the balance arguments of the previous sections indicate that for e =1 —xk < 1,

Uz—o<\/P76) wd W ae=0( 1), (22)

Physically, this indicates that as the fluid layer between the particle and the wall is reduced, the velocity of the particle
tends to zero while the front-back concentration difference diverges. This is not surprising as we focus here on the
steady self-propulsion of the particle. In Section [[VC| we noted that the confined limit of the particle self-propulsion
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corresponds to a fundamental change in the way the solute produced at the particle surface is evacuated: when k — 0
(unbounded flow), the solute is mostly diffused away in the far field and in all directions, while for x — 1, it must be
convected downstream by the displacement of the particle, as steady diffusive solutions do not exist for these confined
configurations. Lower self-propulsion velocities (e.g. due to the increase of viscous stresses at the boundary) therefore
require larger concentration accumulation in the back of the self-propelled particle.

These arguments demonstrate not only a typical O(e~/2)-scale for the magnitude of the concentration in the thin
lubrication layer located between the particle and the wall (with respect to the reference concentration far ahead of
the particle, taken as zero here), but also that this concentration contrast Ac is established at the scale of the size
of the particle, so that the relevant scale of horizontal variations for ¢ is O(1) not the classical O('/2)-length of the
lubrication zone relevant for hydrodynamic lubrication problems. Within the thin fluid layer surrounding z = 0, one
must therefore expect

dc

i O(e1/?), (23)

c=0(E"1?), U~

where @ is the slip velocity forcing at the particle surface.

1. Hydrodynamic lubrication

When ¢ — 0, the fluid’s motion within the thin annular layer surrounding the particle at z = 0 corresponds to a
lubrication flow forced at the surface of the particle by the phoretic slip %(z) along its surface. It is therefore described
by the two-dimensional lubrication equations

8[) o 82UZ 8p auz 3’U,p

= = = 24
Op o 0p%2 0z 0Oz + dp 0, (24)

with p = k! —r the radial distance from the outer cylinder of radius 1/« (measured inward), and u,, the corresponding
velocity component. The boundary conditions on the axial velocity are at leading order

uy(p=0,2)=-U,, uy(p = h(z),2) = u(z), (25)

with p = h(z) the equation for the surface of the particle, i.e.

1 2 4

h(z):—\/1—22~6[1+Z+O<Z>}. (26)
K 2e €

Note that the present analysis is similar to that developed for the electrophoretic motion of a sphere inside a tightly-

fitting tube [49]. The lubrication equations can be integrated to find the axial flow u,(z),

us(p, 2) = M%M(Z) (%) U, (g 71), (27)

and integration across the fluid layer and around the particle provides the volume flux

h
q(2) :Q:Qﬂ'/o uz(p,z)dpz—ifz +7h (=U, +a(z)) , (28)

which must indeed be a constant for all z in order to conserve the total volume flux through the different cross sections.
We first note that @ = 2neW, with W the average axial velocity within the narrowest gap. Using the conservation of
mass around the particle, Eq. , as ¢ — 0, we further note that

Q =27eW =7U, (29)

when € — 0 so that the U,-contribution to the right-hand side of Eq. is O(eU,) and is negligible in front of the
left hand side of that equation, as Q = O(U,).

Classically, this equation can then be used to compute the pressure difference between the two ends of the hydro-
dynamic lubrication region [61]

l l 1~
B op . dz u(z)dz
AP*/,; 8zd27 6U., i +6/4 o (30)
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with [ > €!/2 a length scale much larger than the typical e'/2-width of the lubrication region. We note that because
1/h varies from 0 to 1/e over a O(¢'/2) length scale, the two integrals on the right-hand side of Eq. scale
respectively as O(U.e~%/2) and O(as=3/?).

The phoretic slip 4, as the forcing phenomenon of the problem, should remain part of the dominant balance in the
conservation of volume flux, Eq. , so that @ = O(ew). As a result, and using Eq. , both terms on the right
hand side of Eq. are of the same order and contribute to the dominant balance.

The left-hand side of Eq. represents a pressure difference between the upstream and downstream regions away
from the particle. This would lead to a O(AP) resistive force on the phoretic particle, that must be balanced by a
driving force of the same order for self-propulsion to occur. This driving force can only arise from the phoretic slip
forcing and associated shear stress aa’j; = O(ue™!) at the particle’s boundary within the lubrication zone, resulting

in a O(tie~"/?)-driving force on the particle once integrated over the O(g!/?)-lubrication region, so that, at most
AP = O(fw’l/z). This establishes that AP is subdominant in Eq. and both integrals on the right-hand side of
Eq. must therefore balance exactly. Consequently, the swimming velocity U,, is obtained from the slip velocity

u along the particle surface as
P a(z)dz
_; h?

[
BB

U, = : (31)

that demonstrates that U, = O(eq).

2. Chemical transport through the hydrodynamic lubrication layer

Note that, the result above establishes that the dominant swimming velocity is set solely by the slip forcing inside
the hydrodynamic lubrication region of width /¢ around the region of smallest thickness (and not anywhere else).
In turn, this requires knowing the leading order evolution of the surface concentration in that region. It was however
noted earlier that the chemical transport is externally constrained by the front-back concentration contrast imposed
by the displacement of the particle in a confined setting, so that axial concentration gradients are essentially constant
along the hydrodynamic lubrication region.

As for the hydrodynamic lubrication, the leading order problem for the concentration is two-dimensional in the
(z, p)-plane. The relevant boundary conditions satisfied by the concentration field are then

de

— t o= 2
o 0 at p=0, (32)
oc ,0c B

since n = —e, 4 h'e. at leading order.

Equations (32)-(33) indicate that the relevant length scale for the variations of ¢ in the p direction is h = O(g). We
noted earlier however that the relevant length scale in the axial z-direction is O(1). From the hydrodynamic lubrication
problem, we also obtained that u, = O(@i) = O(¢7/2) so that by mass conservation u, = O(1). Furthermore, the
steady advection-diffusion equation satisfied by ¢, i.e. Peu - Ve = V2¢, becomes at leading order g—zg = 0, establishing
that the leading order O(s’l/ 2) concentration field must necessarily satisfy g—; = 0 and that the non-homogeneous
boundary condition, Eq. , corresponds to subdominant corrections of the concentration field.

Since the problem is axisymmetric around the particle, the conservation of solute in the fluid volume contained
between two successive cross sections at z and z + dz provides the following simplified equation for the evolution of

c(2):

~— (= = 4
dz dz s dz+1 0 (34)

d ( dc) Pe @ dc
h _ -
where the successive terms in the previous equation arise from the balance of diffusion, convection by the flow within
the lubrication layer and production at the particle surface, respectively.
Previously, we noted that the variations of ¢ along the z-direction occur at the O(1) scale of the particle. The
dominant transport balancing the production at the particle surface is therefore purely convective (diffusive terms
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are subdominant in the hydrodynamic lubrication region). As a result the leading order axial concentration gradient,
and surface slip velocity, are constant and obtained simply as

_ Oc 2
Reporting this result into Eq. , we obtain
1
d
2 / h—j

PelU2 = 27— 36
z e (36)

_ h?

The integral at the numerator can be expanded as follows, keeping only the leading order contribution as € < 1 and

> /e

ke 220 2 e U+ud)? T 2322

l 1 /! 5 [UVE
/ dz dz B V2 du T (37)

Similarly, the denominator integral in Eq. is obtained as 455:‘}77;\/5 so that finally,

8¢
U, = “ﬁ' (38)

This result is consistent with the qualitative and quantitative simulations and analysis of Sections[[V]and [V A] when
k — 1. It further validates analytically the numerical prefactors obtained in Section [VA] from the simulation results
for the swimming velocity U,, mean fluid velocity in the gap W and concentration contrast Ac, Eq. so that as
k — 1, the leading-order behaviour of the swimming velocity, mean fluid velocity in the gap and global concentration

contrast are
2(1 — k) 2 6
L~ ~ g — Acro o .
v 3Pe W 3Pe(1 — k) ¢ Pe(1 — k) (39)

VI. CONCLUSIONS AND PERSPECTIVES

Following recent experimental observations and characterization of the behaviour of chemically-active droplets inside
small capillaries [34], the influence of spatial confinement on the self-propulsion of such droplets was investigated here
using a combination of direct numerical simulations and asymptotic analysis.

To overcome the triple challenge posed by the complex geometry of the problem, the nonlinear hydrochemical
coupling and the need for a precise implementation of surface boundary conditions, we specifically developed a novel
approach based on embedded boundaries and implemented on top of the popular flow solver Basilisk [48]. Our focus
was here on the axisymmetric motion of a single particle along the centerline of a straight capillary. Nevertheless, the
framework is completely general and can be easily adapted to account for more complex geometric domains and/or
larger numbers of particles.

Using this versatile numerical tool, we analysed the dual effect of spatial confinement and of convective transport of
solute. The particle-to-capillary size ratio, k, was found to alter significantly the dynamics of an isotropic autophoretic
swimmer, generally promoting and enhancing self-propulsion. Indeed, with increased confinement (larger x), the self-
propulsion threshold Pe, is starkly reduced, becoming essentially negligible as k — 1. Additionally, for fixed Pe > Pe,,
the swimmer’s velocity increases significantly with confinement, up to a maximum value reached for 0 < k < 1, before
decreasing again and vanishing as /1 — k when k — 1 (near-contact limit). For fixed &, the swimming velocity of
strongly-confined particles scales as 1/ V/Pe.

Below the self-propulsion threshold Pe., convective transport is not sufficient to destabilise a symmetric solution
and the system relaxes (in time) toward a front-back symmetric solute distribution and no particle motion. Note
that, no steady state can be reached for the concentration whose average value around the particle increases linearly
in time as diffusion, restricted to occur along the axis of the capillary, is not sufficient to transport away the solute
produced at the particle surface. Yet, a steady regime is reached for the concentration gradients and flow fields.
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These observations stem from a fundamental alteration of the chemical transport, as the presence of the confining
passive walls prevents solute diffusion away from the particle, except along the capillary axis. Then, convective
transport becomes the predominant mechanism to balance the solute production by the swimmer, resulting in an
increased front-aft concentration contrast as the particle leaves a solute-saturated wake behind. The phoretic
surface slip velocities are thus increased promoting the particle’s self-propulsion, despite the increased viscous stresses
introduced by the lateral confinement. When x — 1, the particle dynamics is in fact completely driven by the most
confined regions consisting of a thin fluid gap around the particle’s equator. The solute distribution is homogeneous
across this thin fluid layer, and the flow field is completely driven by the phoretic slip at the particle surface.

We confirmed these results in the near-contact limit (v — 1) using lubrication analysis, that demonstrated that,
for Pe = O(1), the concentration gradient inside the lubrication region is, in fact, essentially uniform and set by the
balance of mass and solute between the upstream and downstream regions, in stark contrast with what is observed
for weaker confinement such as a particle near an infinite planar wall [60]. Using these arguments, a predictive
model for the swimming velocity with no fitting parameter was obtained and validated against the direct numerical
simulations. This model confirmed the dependence with x and Pe of the swimming velocity, as well the existence of an
optimal confinement maximising self-propulsion. The detailed dynamics of the solute and particle near the propulsion
threshold (Pe & Pe.) remains however to be characterised.

Throughout this work, we adopted a simplified phoretic model with a rigid particle generating slip flows in response
to chemical gradients; yet, the similarity in the solute transport dynamics between rigid isotropic particles and active
droplets [I7, [32], suggests that much of the qualitative conclusions presented here remain valid if a more complete
hydrodynamic description of the droplet is retained, in particular the dominant dependence of the velocity with
(k,Pe). Despite our focus on a strictly confined geometry (i.e. a capillary surrounding the particle tightly a), our
results shed fundamental light on the role of the lubrication layer. This is critical for understanding the propulsion
of active droplets along flat boundaries or in Hele-Shaw geometries, although the absence of confining walls around
most of the particle surface introduces key distinctive features in the solute transport and associated dynamics [e.g.
the critical threshold Pe, is reduced to a reduced O(1) value as the particle gets closer to the wall, see [60].

Finally, our numerical framework unlocks the possibility to simulate the full non-linear hydrodynamic coupling
leading to spontaneous motion of autophoretic swimmers under any generic confinement and for many particles.
In particular, it can be used to analyse the off-axis self-propulsion of the particle and the detailed stability of the
axisymmetric solution considered here with respect to fully-3D perturbations, which was purposely left here for a later
publication for clarity. This would provide some critical insight into the non-straight motion observed experimentally
for mildly-confined active droplets [34]. It could also provide a much-needed understanding of the individual dynamics
of active droplets in complex geometries [62] or their collective organisation [39, [6G3].
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