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A B S T R A C T

Epitaxial growth on a surface vicinal to a high-symmetry crystallographic plane occurs through
the propagation of atomic steps, a process called step-flow growth. In some instances, the steps
tend to form close groups (or bunches), a phenomenon termed step bunching, which corre-
sponds to an instability of the equal-spacing step propagation. Over the last fifty years, various
mechanisms have been proposed to explain step bunching, the most prominent of which are the
inverse Ehrlich–Schwoebel effect (i.e., the asymmetry which favors the attachment of adatoms
from the upper terrace), elastically mediated interactions between steps (in heteroepitaxy), step
permeability (in electromigration-controlled growth), and the chemical effect (which couples
the diffusion fields on all terraces). Beyond the discussion of the influence of each of these
mechanisms taken independently on the propensity to bunching, we propose a unified treatment
of the effect of these mechanisms on the onset of the bunching instability, which also accounts
for their interplay. This is done in the setting of the so-called quasistatic approximation, which
by permitting mostly analytical treatment, offers a clear view of the influence on stability of
the combined mechanisms. In particular, we find that the Ehrlich–Schwoebel effect, elastic
step-interactions and the chemical effect combine in a quasi-additive fashion, whereas step
permeability is neither stabilizing nor destabilizing per se but changes the relative influence
of the three aforementioned mechanisms. In a companion paper, we demonstrate and discuss
the importance of another mechanism, which we call the dynamics effect, that emerges when
relaxing the simplifying but questionable quasistatic approximation.

. Introduction

Thin-film growth gives rise to stresses and surface instabilities, leading to much theoretical work at the interface between
echanics and physics, see, e.g., Gao (1994), Chason et al. (2002), Guduru et al. (2003), Freund and Suresh (2004) and the

eferences therein. Epitaxy is a particular growth technique whereby a crystalline layer is deposited on top of a crystalline substrate.
omoepitaxy refers to the case where both layer and substrate are chemically identical, and heteroepitaxy to the case where the
aterial that makes up the deposited layer is different from that of the substrate. Epitaxy is often accompanied by such changes

n the surface morphology as the nucleation and evolution of islands (Floro et al., 1999; Krug et al., 2000), mound formation,
nd, when growth occurs on a vicinal surface, as discussed below, the bunching and meandering of atomic steps (Michely and
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Fig. 1. (a) Schematic of a crystal cut forming a vicinal surface. (b) Schematic of the mechanisms involved in step-flow epitaxial crystal growth.

Krug, 2012). Understanding the microscopic mechanisms underlying the spontaneous formation of these surface structures is of
fundamental interest to crystal growth and of practical interest to the patterning at the nanoscale of semiconductor and metallic
surfaces (Tsivion et al., 2011; Arora et al., 2012).

Crystal growth on a vicinal surface (i.e., a surface with a slight misorientation relative to a high-symmetry crystallographic
plane, see Fig. 1(a)) and at low deposition rate occurs through the motion of atomic steps. This step flow involves the diffusion
of adatoms (i.e., adsorbed atoms) on the terraces that make up the vicinal surface and their attachment to and detachment from
steps. Descriptions of the evolution of the surface morphology are at three scales. At the microscopic level, the hopping processes
of individual adatoms (or dimers) and the resulting evolution of atomic steps and islands are generally modeled with kinetic Monte
Carlo methods, see, e.g. Chason and Tsao (1990), Mysliveček et al. (2002). At the macroscale, the atomic-scale roughness of the
surface—caused by the presence of steps—is neglected and the surface profile is described with a continuous function that evolves
both through elastic deformation and by mass rearrangement induced by surface diffusion (Wu, 1996; Norris, 1998; Freund, 1998;
Fried and Gurtin, 2003). The present work lies at the intermediate mesoscopic level, where the diffusing adatoms are accounted
for with an adatom density function defined on the successive terraces, which are separated by moving boundaries representing
the atomic steps. The corresponding free-boundary problems are referred to as step-flow models, the first of which was proposed
by Burton et al. (1951) before any direct observation of atomic steps could be made. The advent a few decades later of atomic scale
microscopy imaging has fostered many theoretical works on the step-flow model (Krug, 2005; Misbah et al., 2010). In the mechanics
literature, adatoms and atomic steps have generated interest primarily because of the elastic fields that they generate in the crystal
bulk and the resulting interactions between multiple steps, adatoms, and between adatoms and steps (Shilkrot and Srolovitz, 1997;
Peralta et al., 1998; Kukta and Bhattacharya, 2002; Kukta et al., 2003a,b).

A step changes configuration as a result of the attachment or detachment of adatoms that reach it by diffusion on the adjacent
terraces and are supplied via precursors in a vapor, as in chemical vapor deposition, or from heated solid sources in an ultra-high
vacuum environment, as in molecular beam epitaxy. At sufficiently low temperatures, the desorption of adatoms is negligible; this
deposition regime is the first of two limit cases we consider in this study. In some experiments, the sources are turned off and the
substrate on top of which the thin film was deposited is heated radiatively, resulting in the desorption of adatoms from the vicinal
surface; this sublimation,1 regime is the second case. A schematic of the elementary processes underlying step-flow growth is shown
in Fig. 1(b).

In both regimes, instabilities that affect the shape and/or distribution of steps are observed on semiconductor surfaces, such as
Si(111)-7 × 7 and GaAs(001), as well as on metallic surfaces, such as Cu(1,1,17). These instabilities are of two types: meandering,
whereby an initially straight step becomes wavy, and bunching, whereby a train of initially equidistant steps evolves into regions of
high step density (step bunches) separated by wide terraces. In this two-part article, we are interested in the latter instability, for
which the one-dimensional modeling is appropriate.

As mentioned above, we work within the framework of the Burton, Cabrera and Franck (BCF) model. Originally proposed
by Burton et al. (1951) for steps that act as perfect sinks for neighboring adatoms (so that the adatom density is continuous at
steps and equal to its equilibrium value), it was successively extended by various workers to account for: small deviations from
local equilibrium at steps during epitaxial growth (Chernov, 1961); possible asymmetries in the attachment of adatoms to, and their
detachment from, steps by Schwoebel (1969), as captured by the direct Ehrlich–Schwoebel barrier or its inverse; interactions between
steps, mediated by the elastic fields that they generate in the crystal bulk, which are repulsive in the case of homoepitaxy and
attractive in that of heteroepitaxy (Muller, 2004); step permeability to the hopping of adatoms between adjacent terraces (Ozdemir
and Zangwill, 1992); and adatom electromigration when the substrate is heated by a direct current (Stoyanov, 1991). Although a
detailed literature review is beyond the scope of the present work, the interested reader is referred to the books of Saito (1996),

1 The term sublimation i.e., passage from solid to vapor state is hereby used interchangeably with the term evaporation, traditionally used for the passage
from liquid to vapor phase.
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Pimpinelli and Villain (1998), Michely and Krug (2012) and the review articles of Jeong and Williams (1999), Krug (2005), Misbah
et al. (2010).

The question of the consistency of the BCF models with the laws of thermodynamics has largely been ignored. It turns out to have
mplications on the stability predictions of the BCF theory, as this paper and its sequel aim to establish. In particular, the derivation of
thermocompatible BCF-type model by Cermelli and Jabbour (2005) reveals that the configurational force driving the migration of

teps, defined as the work-conjugate of the step velocity, has a contribution from the adjacent terraces in the form of the jump of the
datom grand canonical potential. Since the vanishing of this jump is a condition of chemical equilibrium, it should be no surprise
hat it would contribute to the driving force in an out-of-equilibrium chemical process such as step motion by adatom attachment
nd detachment. Nonetheless, this contribution, which we refer to as the chemical effect, has remained largely unaccounted for in

the literature on step flow, and its possible role in the onset of the bunching instability remains mostly unexplored. It is one of the
objectives of this two-part article to investigate this role, not just for the step-pairing instability as was previously done in Cermelli
and Jabbour (2007), but for linear perturbations of all wavelengths (see also Cermelli and Jabbour, 2010).

There are two facets to the study of the stability of straight steps: the conditions for the onset of the bunching instability and
the long-term evolution of step bunches. The present work focuses on the former whereas the latter is addressed elsewhere (Guin
et al., 2020; Benoit-Maréchal et al., 2021). Linear-stability investigations of step flow are carried out in the setting of the quasistatic
approximation in Part I, in which certain terms in the moving-boundary problem, namely, the transient term in the reaction–diffusion
equation that governs the adatom density on terraces and its advective counterparts in the associated boundary conditions at steps,
are neglected. In the few instances where a justification is provided, it is claimed that the quasistatic approximation holds for slow
deposition or evaporation (Krug, 2005; Michely and Krug, 2012). In Part II, (Guin et al., 2021) we show that this claim is not well
founded: the neglected terms have an impact on the stability of steps with respect to bunching, even in the limit of vanishingly small
deposition and evaporation rates. They give rise collectively to an additional stabilizing/destabilizing mechanism which we refer to
as the dynamics effect. Furthermore, while the neglect of the dynamics terms is justified when computing the fundamental solution
corresponding to a train of equidistant steps in the regime of low deposition or evaporation, there is no basis for ignoring them in
the system that governs small perturbations about the aforementioned fundamental solution. Hence, the stability results under the
quasistatic approximation ought to be considered with caution. While there may be conditions under which the influence of the
dynamics effect on stability is negligible in comparison with that of other mechanisms (e.g., elastic interactions), rendering valid
the predictions of the quasistatic linear-stability analysis, we have no criteria by which to determine a priori that such conditions
are indeed satisfied.

Nevertheless, the quasistatic approximation is an important mathematical simplification which, because it allows a mostly
analytical treatment of the linear-stability problem, affords physical insight into the stabilizing or destabilizing influence of each of
the basic mechanisms underlying step flow, including the chemical effect, and how their interplay controls the onset of bunching.
For these reasons, in Part I of this work, we adhere provisionally to the quasistatic approximation, aware that in doing so, we miss
one stabilizing/destabilizing mechanism: the dynamics effect. The latter will be addressed in Part II (Guin et al., 2021), where we
relax the quasistatic approximation through the use of a more involved stability analysis.

The rest or the article is organized as follows: in Section 2, we introduce the equations governing the step-flow problem. The
linear stability analysis corresponding to bunching is developed in Section 3. We present the results in Section 4 and discuss them
in Section 5.

2. Problem formulation

We provide in Section 2.1 a quick overview of the equations that govern, in the form of a moving-boundary problem, step-flow
growth and sublimation. In Section 2.2, we briefly discuss the origin of the step boundary conditions with an emphasis on the
contribution to the driving force at each step of the adatoms on its adjacent terraces, one unaccounted for in the various extensions
of the BCF model and to which we refer as the chemical effect. This is followed in Section 2.3 by a short review of another contribution
to the driving force acting on a given step, namely, that of the elastic fields generated in the bulk of the crystal by the remaining steps
on its free surface; departing from a common assumption in the literature on step-flow epitaxy, we do not restrict this contribution
to nearest-neighbor interactions. In Section 2.4, we nondimensionalize the moving-boundary problem of Section 2.1, which yields
several dimensionless numbers that quantify the relative strengths of the competing kinetic and energetic mechanisms underlying
step dynamics. Finally, the quasistatic approximation is presented in Section 2.5.

2.1. Moving-boundary problem

We consider an infinite sequence of straight steps, so that ours is a one-dimensional setting in which 𝑥𝑛(𝑡) denotes the position of
the 𝑛th step (𝑛 ∈ Z) at time 𝑡. Each step migrates as a result of the attachment or detachment of adatoms that diffuse on its adjacent
upper and lower terraces. These terrace adatoms are supplied from a vapor phase, either through chemical vapor deposition or in
an ultra-high vacuum environment through molecular beam epitaxy. The schematics of this problem and the associated mechanisms
are shown in Fig. 2.

Our objective is to analyze the influence on the stability of steps against bunching of various physical processes that have been
added over the last decades to the original step-flow model of Burton, Cabrera, and Frank (Burton et al., 1951). These consist of:
(i) the Ehrlich–Schwoebel barrier (Schwoebel and Shipsey, 1966; Schwoebel, 1969) or its inverse, which embodies a possible
3

asymmetry in the kinetics associated with the attachment of terrace adatoms to, or their detachment from, steps; (ii) elastically
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Fig. 2. Schematic of two successive steps located, at time 𝑡, at 𝑥𝑛(𝑡) and 𝑥𝑛+1(𝑡). The atomic mechanisms involved in step flow are: adatom diffusion on terraces,
ith diffusion coefficient 𝐷; adsorption from, and desorption to, a vapor or an ultra-high vacuum environment, with deposition rate 𝐹 and evaporation coefficient
; attachment of adatoms to, and their detachment from, steps, with kinetic coefficients 𝜅+ and 𝜅− as each step is approached from its lower and upper adjacent
erraces, respectively; adatom hopping across steps, with step permeability 𝜅𝑝.

ediated step-step interactions, present during both homo- and hetero-epitaxy (Tersoff et al., 1995), which derive from the
ontribution to the driving force acting on each step of the elastic fields generated by the remaining steps that make up the vicinal
urface (Marchenko and Parshin, 1980; Stewart et al., 1994); (iii) the permeability of steps or lack thereof, which allows or prevents
he direct hopping of adatoms between adjacent terraces (Ozdemir and Zangwill, 1992; Pierre-Louis, 2003); and, finally, (iv) the
oupling at each step between the diffusion fields on its adjacent terraces, which derives from the energetic contribution to the
onfigurational force at the step of nearby adatoms (Cermelli and Jabbour, 2005, 2007), and to which we refer as the chemical
ffect. Note that, in the above list of physical ingredients whose role in the bunching of steps we wish to investigate, we have not
ncluded adatom electromigration on terraces (Latyshev et al., 1989; Stoyanov, 1991; Yang et al., 1996; Fu et al., 1997; Degawa
t al., 2000; Stoyanov et al., 2000; Degawa et al., 2001; Zhao et al., 2004). In doing so, we have deliberately restricted the scope of
he present study to experiments in which the substrate on top of which epitaxial growth or sublimation occurs is heated radiatively,
s opposed to heating by an electric current. Indeed, surface electromigration adds another layer of complexity to the study of step
nstabilities, namely the multiple stability reversals that are observed as the temperature at which growth or sublimation occurs is
aried, and is addressed elsewhere (Benoit-Maréchal et al.).

We begin with a statement of the moving-boundary problem that governs step flow, whose unknowns are the terrace adatom
ensities {𝜌𝑛(𝑥, 𝑡)}𝑛∈Z and step positions {𝑥𝑛(𝑡)}𝑛∈Z. The reaction–diffusion equation and associated step conditions that make up this
roblem are derived elsewhere (Cermelli and Jabbour, 2005) in the absence of step permeability and neglecting elastic interactions
etween steps, two mechanisms that are accounted for in the present study and briefly discussed in Sections 2.2 and 2.3 . This
oving-boundary problem is an approximation of a more general one (see Cermelli and Jabbour, 2005; Guin, 2018; Benoit-Maréchal

t al.) valid in the limit of small departures of the adatom density from its step equilibrium value 𝜌∗𝑒𝑞 , i.e., whenever

|𝜌𝑛(𝑥, 𝑡) − 𝜌∗𝑒𝑞|≪ 𝜌∗𝑒𝑞 . (2.1)

or all 𝑥 ∈ (𝑥𝑛(𝑡), 𝑥𝑛+1(𝑡)) and all 𝑛 ∈ Z. The assumption (2.1), underlying the step-flow problem presented below, is omnipresent in
he literature on step instabilities, although seldom made explicit. Its conditions of validity can be specified in terms of the physical
arameters of the crystal growth by computing the adatom density of the steady-state solution to step flow, as we do in Section 3.1.

Let 𝐷, 𝐹 , and 𝜈 be the adatom diffusivity, deposition flux, and desorption coefficient, respectively. Assuming that adatoms behave
ike an ideal lattice gas, mass balance on the terrace (𝑥𝑛(𝑡), 𝑥𝑛+1(𝑡)) gives

𝜕𝑡𝜌𝑛 = 𝐷𝜕𝑥𝑥𝜌𝑛 + 𝐹 − 𝜈𝜌𝑛. (2.2)

Next, denote by 𝜅+ and 𝜅− the kinetic coefficients for the attachment of adatoms to, and their detachment from, a step as they
pproach it from the lower and upper adjacent terraces, respectively, and let 𝜅𝑝 be the permeability coefficient associated with the
opping of adatoms between adjacent terraces. Writing 𝐽+

𝑛 for the adatom current into the 𝑛th step from its lower adjacent terrace
nd 𝐽−

𝑛 for its counterpart from the upper terrace, the reaction–diffusion equation (2.2) is supplemented by boundary conditions
hat derive from the localization of mass balance as the (𝑛 + 1)th step is approached from the left and the 𝑛th step from the right
Fig. 2), respectively,

−𝜌−𝑛 �̇�𝑛+1 −𝐷(𝜕𝑥𝜌𝑛)− = 𝜅−

[

𝜌−𝑛 − 𝜌∗𝑒𝑞 − 𝑎
2𝜌∗𝑒𝑞

(

𝜒[[𝜌]]𝑥𝑛+1 −
f𝑛+1
𝑘𝐵𝑇

−
�̇�𝑛+1
𝑘𝐵𝑇 𝑏

)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐽−𝑛+1

−𝜅𝑝[[𝜌]]𝑥𝑛+1 ,

𝜌+𝑛 �̇�𝑛 +𝐷(𝜕𝑥𝜌𝑛)+ = 𝜅+

[

𝜌+𝑛 − 𝜌∗𝑒𝑞 − 𝑎
2𝜌∗𝑒𝑞

(

𝜒[[𝜌]]𝑥𝑛 −
f𝑛
𝑘𝐵𝑇

−
�̇�𝑛

𝑘𝐵𝑇 𝑏

)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐽+𝑛

−𝜅𝑝[[𝜌]]𝑥𝑛 ,
(2.3)

where �̇�𝑛(𝑡) is the velocity of the 𝑛th step, 𝑎2 the surface area occupied by a crystal atom, 𝑘𝐵 the Boltzmann constant, 𝑇 the absolute
4

temperature, 𝑏 the step kinetic modulus, f𝑛(𝑡), whose expression is discussed in Section 2.3, is the elastic contribution of the remaining
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steps to the configurational force acting on the 𝑛th step. In (2.3), the superscripts − and + denote the limiting values at each step
of discontinuous terrace fields as the step is approached from above and below, respectively, and [[𝜌]]𝑥𝑛 ∶= 𝜌𝑛+1(𝑥𝑛(𝑡), 𝑡) − 𝜌𝑛(𝑥𝑛(𝑡), 𝑡)
is the jump of the adatom density across the 𝑛th step. Finally, 𝜒 is a parameter, which we introduce for convenience, with value 0
or 1. In fact, as we shall see in Section 2.2, the thermodynamics of nonequilibrium processes dictates that 𝜒 = 1, so that the jumps
−𝑎2𝜌∗𝑒𝑞[[𝜌]]𝑥𝑛+1 and −𝑎2𝜌∗𝑒𝑞[[𝜌]]𝑥𝑛 , which are unaccounted for in the standard BCF model, turn out to be intrinsic to the step conditions
(2.3). Nonetheless, setting 𝜒 = 0 affords us insight into the separate influence of the basic mechanisms underlying step flow on the
onset of step bunching, since by doing so we can formally eliminate the chemical effect from the linear stability analysis.

Finally, localization of mass balance at the 𝑛th step yields the interfacial condition

�̇�𝑛 = 𝑎2(𝐽−
𝑛 + 𝐽+

𝑛 ), (2.4)

which, as intuitively expected, states that the rate at which the step advances or recedes is proportional to the net flux 𝐽−
𝑛 + 𝐽+

𝑛 of
adatoms from the adjacent terraces. Solving the moving-boundary problem (2.2)–(2.4) for all 𝑛 ∈ Z delivers the adatom distribution
on all terraces and the step positions at all times.

2.2. Step boundary conditions with chemical coupling between terraces

In this section, we give some insight on the origin and physical interpretation of the different terms entering the boundary
conditions (2.3). Consider (2.3)2, which holds at the 𝑛th step, it differs from the standard condition found in the literature on step
dynamics (Pierre-Louis, 2003, see, e.g.,) by two terms: −𝑎2𝜌∗𝑒𝑞[[𝜌]]𝑥𝑛 and 𝑎2𝜌∗𝑒𝑞 �̇�𝑛(𝑡)∕𝑘𝐵𝑇 𝑏. The origin of each is to be found in the
dissipation inequality, as localized at a generic step. To see this, we briefly review the argument of Cermelli and Jabbour (2005,
2007), specializing it on one hand to the present one-dimensional setting and extending it on the other to account for elastically
mediated step-step interactions and adatom hopping between adjacent terraces.

For notational simplicity, we omit in what follows all indices that label steps and terraces. Let 𝑉 be the step velocity, and denote
by 𝐽+ and 𝐽− the adatom fluxes into, or out of, the step from its adjacent lower and upper terraces. Finally, write 𝐽𝑝 for the net flux
across the step of adatoms hopping from the upper terrace onto the lower one. As the step is approached from above and below,
localization of mass balance yields the conditions

−𝜌−𝑉 + 𝚥− = 𝐽− + 𝐽𝑝,

𝜌+𝑉 − 𝚥+ = 𝐽+ − 𝐽𝑝,
(2.5)

ith 𝚥 the adatom diffusive flux on terraces. In (2.5)1, the left-hand side is the flux of adatoms from, or to, the upper terrace, with its
dvective and diffusive components; the right-hand side is the sum of the flux of adatoms that attach to, or detach from, the step and
he flux of adatoms that hop onto the lower terrace; mass balance dictating the equality of the two sides. A similar interpretation
olds for (2.5)2.

As growth or sublimation occurs at fixed temperature, we restrict our attention to isothermal settings in which the first and
econd laws of thermodynamics combine to deliver a free-energy imbalance that serves, as we shall see below, to identify the
onfigurational force that drives step motion and to impose restrictions on the constitutive relations for the fields that appear in
2.5). Let 𝜓(𝑥, 𝑡) = �̂�(𝜌(𝑥, 𝑡)) be the adatom free-energy density (per unit area of the terrace) and 𝜇(𝑥, 𝑡) = 𝜕𝜌�̂�(𝜌(𝑥, 𝑡)) the adatom
hemical potential, and denote by 𝜇𝑠(𝑡) the step chemical potential.2 Localization of the free-energy imbalance at the step delivers
he interfacial dissipation inequality

(

𝜇𝑠
𝑎2

+ [[𝜓 − 𝜇𝜌]] − 𝜓𝑐 + f

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
ϝ

𝑉 + (𝜇− − 𝜇𝑠)𝐽− + (𝜇+ − 𝜇𝑠)𝐽+ + (𝜇− − 𝜇+)𝐽𝑝 ≥ 0, (2.6)

where [[𝜓 − 𝜇𝜌]] is the jump across the step of the adatom grand canonical potential, 𝜓𝑐 is the areal free-energy density of the
undeformed crystal (which, in the absence of bulk diffusion, is constant), and f is the contribution to the configurational force ϝ
driving the step motion of the elastic fields generated by the remaining steps on the vicinal surface, see Section 2.3 below. The
linear constitutive relations between the (generalized) velocities 𝑉 , 𝐽−, 𝐽+, and 𝐽𝑝 on one hand and their conjugate driving forces
, 𝜇− − 𝜇𝑠, 𝜇+ − 𝜇𝑠, and 𝜇− − 𝜇+ on the other,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑉 = 𝑏
(

𝜇𝑠
𝑎2

+ [[𝜓 − 𝜇𝜌]] − 𝜓𝑐 + f

)

,

𝐽− = 𝛾−(𝜇− − 𝜇𝑠) and 𝐽+ = 𝛾+(𝜇+ − 𝜇𝑠),

𝐽𝑝 = 𝛾𝑝(𝜇− − 𝜇+),

(2.7)

2 We neglect surface elasticity, otherwise the adatom free-energy density and chemical potential would depend also on the terrace stretch.
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are sufficient for (2.6) to hold for any step-flow process, provided that the kinetic modulus 𝑏, attachment–detachment coefficients
𝛾+ and 𝛾−, and permeability 𝛾𝑝 are nonnegative. By (2.6) and (2.7), the dissipation  per unit length of the step is given by

 = 𝑏ϝ2 + (𝜇− − 𝜇𝑠)𝐽− + (𝜇+ − 𝜇𝑠)𝐽+
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

dissipation due to adatom
attachment–detachment

−[[𝜇]]𝐽𝑝
⏟⏟⏟

dissipation due to
adatom hopping

≥ 0. (2.8)

The kinetic relation (2.7)1 can be understood by recalling that equilibrium in a two-phase body involves more than one condition
at the interface separating them. For instance, phase equilibrium between the solid and liquid phases of a pure substance implies
the Gibbs–Thomson relation, while energy balance prescribes the continuity of the heat flux at the solidification front (Davis,
2001). Likewise, in the mechanical setting of solid-to-solid phase transformations, phase equilibrium yields the Maxwell relation—
which imposes the continuity of the normal component of Eshelby’s energy–momentum tensor—while force balance imposes the
continuity of traction at the interphase (Abeyaratne and Knowles, 2006). Finally, in transformations driven by the transfer of
matter from one phase to the other (e.g., in phase separation problems), mass balance imposes the continuity of species fluxes
and phase equilibrium dictates that the grand canonical potential be continuous at the phase boundary (when the interfacial energy
is negligible), which is the chemical analogue of the thermal Gibbs–Thomson relation or the mechanical Maxwell relation (Gurtin
and Voorhees, 1996). Since crystal growth by step flow is driven by the out-of-equilibrium chemical process of attachment of adatoms
to, and their detachment from, atomic steps which are endowed with a thermodynamic structure, it is natural that the mass balance

𝑉 = 𝑎2(𝐽− + 𝐽+), (2.9)

with the adatom fluxes into, or out of, the step given by (2.7)2, should replace the continuity of the adatom flux, and that the kinetic
relation (2.7)1 should generalize the continuity of the grand canonical potential by linking the step velocity 𝑉 to the configurational
force ϝ driving it. Note that (2.7)1 can be rewritten as

𝜇𝑠 = 𝜇𝑐 − 𝑎2
(

f + [[𝜓 − 𝜇𝜌]] − 𝑉
𝑏

)

, (2.10)

ith 𝜇𝑐 ∶= 𝑎2𝜓𝑐 the areal free-energy density of the underformed crystal. Thus, (2.10) makes clear that the step chemical potential
𝑠 differs from 𝜇𝑐 and that the difference involves, in addition to the elastic step-step interaction f found in the literature (cf.,
.g., Tersoff et al., 1995), two contributions: one is energetic, in the form of the jump [[𝜓 − 𝜇𝜌]] of the adatom grand canonical
otential, while the other, −𝑉 ∕𝑏, akin to the kinetic undercooling found in solidification problems, is dissipative.

Finally, recalling our assumption that the terrace adatoms behave like an ideal lattice gas,

�̂�(𝜌) = 𝜌

{

𝑘𝐵𝑇
[

ln
(

𝜌
𝜌∗𝑒𝑞

)

− 1
]

+ 𝜇𝑐

}

, (2.11)

rom which it follows that [[𝜓 −𝜇𝜌]] = −𝑘𝐵𝑇 [[𝜌]]. The linearization of the expression of the adatom chemical potential deriving from
2.11) on differentiation with respect to 𝜌 and substitution into (2.7)2,3 delivers (2.3) as an approximation of (2.5), valid when the
eviation of the adatom density from its step equilibrium value remains small, provided that the relations

𝜅± ∶=
𝑘𝐵𝑇
𝜌∗𝑒𝑞

𝛾± and 𝜅𝑝 ∶=
𝑘𝐵𝑇
𝜌∗𝑒𝑞

𝛾𝑝 (2.12)

efining the attachment–detachment and permeability coefficients for the linearized model in terms of their counterparts for the
onlinear model are adopted.

.3. Elastic interactions between steps

Atomic steps are defects on the free surface of a crystal, each generating a strain field in the bulk.3 For sufficiently thick films, the
crystalline bulk can be assimilated to a semi-infinite medium, and the elastic field generated by each step is computed by replacing
it, in the setting of homoepitaxy, with a force dipole with tangential and normal dipole moments 𝑑𝑥 and 𝑑𝑧, and, in the case of
eteroepitaxy, by adding to the force dipole a force monopole of moment 𝑚 (Marchenko and Parshin, 1980; Stewart et al., 1994;
ersoff et al., 1995). Consequently, the 𝑛th step is subjected to the configurational force f𝑛 resulting from the interaction of its elastic
ield with those of the remaining steps on the vicinal surface. Letting 𝑅 ∈ N be the arbitrary range of step-step elastic interactions,

i.e., the range beyond which they become negligible. It can be shown that this elastic contribution to the configurational force acting
on the 𝑛th step is given by

f𝑛 =
∑

𝑟∈{−𝑅,…,𝑅}
𝑟≠0

{

𝛽
𝑥𝑛+𝑟 − 𝑥𝑛

− 𝛼
(𝑥𝑛+𝑟 − 𝑥𝑛)3

}

, (2.13)

3 We work in the setting of isotropic linear elasticity, so that each of the net elastic (displacement, strain, and stress) fields in the bulk is the sum of the
6
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where the coefficients 𝛼 > 0 and 𝛽 ≥ 0 account for the dipole–dipole and monopole–monopole interactions between steps,
respectively, and are derived from the dipole and monopole moments through the relations

𝛼 =
4(1 − 𝜈2)(𝑑2𝑥 + 𝑑

2
𝑧 )

𝜋𝐸
and 𝛽 =

2(1 − 𝜈2)𝑚2

𝜋𝐸
, (2.14)

ith 𝐸 the Young modulus and 𝜈 the Poisson ratio of the bulk material (Marchenko and Parshin, 1980; Muller, 2004; Guin, 2018).
Importantly, (2.13) shows that the monopole–monopole interactions are attractive whereas their dipole–dipole counterparts are

epulsive. Finally, one can interpret the effect of f𝑛 in (2.3) as changing the equilibrium adatom density from its value 𝜌∗𝑒𝑞 for an
isolated step to 𝜌𝑒𝑞 ∶= 𝜌∗𝑒𝑞

(

1 − 𝑎2f𝑛∕𝑘𝐵𝑇
)

for a step that interacts elastically with the other steps.

2.4. Nondimensionalization

Hereafter, we nondimensionalize 𝑥 by the initial terrace width 𝐿0, 𝑡 by the characteristic time 𝐿2
0∕𝐷 for adatom diffusion, and 𝜌 by

its equilibrium value 𝜌∗𝑒𝑞 at a straight step in the undeformed crystal. In doing so, we introduce the parameters of the dimensionless
moving-boundary problem.

We begin with the equilibrium adatom coverage

𝛩 ∶= 𝑎2𝜌∗𝑒𝑞 ∈ (0, 1) (2.15)

which measures the fraction of occupied lattice sites when the adatom density takes on its equilibrium value.
Next, we define the dimensionless deposition rate

𝐹 ∶=
𝐹𝐿2

0
𝜌∗𝑒𝑞𝐷

=
𝐿2
0

(

𝐿𝑑𝑒𝑝𝑑
)2

(2.16)

s the (square of the) ratio of the initial terrace width to the diffusion length under deposition 𝐿𝑑𝑒𝑝𝑑 ∶=
√

𝜌∗𝑒𝑞𝐷∕𝐹 . Similarly, the
dimensionless desorption coefficient

𝜈 ∶=
𝜈𝐿2

0
𝐷

=
𝐿2
0

(

𝐿𝑒𝑣𝑎𝑑
)2

(2.17)

measures the initial terrace width relative to the diffusion length under deposition 𝐿𝑒𝑣𝑎𝑑 ∶=
√

𝐷∕𝜈.4
Moreover, given that the attachment and detachment at each step of adatoms from its upper and lower terraces are governed

y similar atomistic processes, the associated kinetic rates are expected to have comparable orders of magnitude, as measured by

𝜅 ∶=
𝜅−𝐿0
𝐷

(2.18)

which quantifies the ratio of the initial terrace width to the kinetic length 𝐷∕𝜅− (Krug, 2005). We can interpret 𝜅 as the ratio of
the velocity 𝜅− which characterizes the attachment and detachment of adatoms at steps to the velocity 𝐷∕𝐿0 which characterizes
their diffusion on terraces. We can therefore distinguish between two limits: 𝜅 ≪ 1 corresponds to the attachment/detachment-limited
egime in which adatom attachment/detachment at steps is the rate-limiting kinetic process, whereas 𝜅 ≫ 1 is associated with the

diffusion-limited regime in which it is the kinetics of adatom diffusion on terraces that is rate-limiting.
In the same vein, the weight of adatom hopping between terraces (relative to adatom diffusion) is quantified by the dimensionless

permeability coefficient

𝜅𝑝 ∶=
𝜅𝑝𝐿0

𝐷
(2.19)

which measures the hopping velocity 𝜅𝑝 relative to its diffusive counterpart 𝐷∕𝐿0.
To quantify the asymmetry in attachment/detachment as adatoms approach steps from the upper or lower terrace, we introduce

𝑆 ∶=
𝜅+
𝜅−
, (2.20)

o that 𝑆 ∈ (0, 1) corresponds to an inverse Ehrlich–Schwoebel (iES) barrier, 𝑆 > 1 to a direct Ehrlich–Schwoebel (ES) barrier, and
= 1 to the absence of any such barrier.
Finally, the strength of elastic interactions between steps is measured by the dimensionless coefficients

𝛼 ∶= 𝑎2𝛼
𝑘𝐵𝑇𝐿3

0

and 𝛽 ∶=
𝑎2𝛽

𝑘𝐵𝑇𝐿0
, (2.21)

nd the dimensionless kinetic modulus is given by

𝑏 ∶=
𝐿0𝑘𝐵𝑇 𝑏
𝑎2𝐷

. (2.22)

4 The requirement 𝜌 ≤ 𝑎−2 that the adatom density remain below the density of the underlying crystal and the stricter assumption that it deviates little from
∗ 𝐹 and 𝜈 can take, as is discussed in Appendix C of Part II of this work.
7
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Let 𝑥 and 𝑡 be the nondimensional space and time variables. The dimensionless moving-boundary problem is now given by

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝜕𝑡𝜌𝑛 = 𝜕𝑥𝑥𝜌𝑛 − 𝜈𝜌𝑛 + 𝐹 ,

−𝜌−𝑛 �̇�𝑛+1 − (𝜕𝑥𝜌𝑛)− = 𝜅
(

𝜌−𝑛 − 1 − 𝜒𝛩[[𝜌]]𝑥𝑛+1 + f𝑛+1 +
�̇�𝑛+1
𝑏

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐽−𝑛+1

−𝜅𝑝[[𝜌]]𝑥𝑛+1 ,

𝜌+𝑛 �̇�𝑛 + (𝜕𝑥𝜌𝑛)+ = 𝜅𝑆
(

𝜌+𝑛 − 1 − 𝜒𝛩[[𝜌]]𝑥𝑛 + f𝑛 +
�̇�𝑛
𝑏

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐽+𝑛

+𝜅𝑝[[𝜌]]𝑥𝑛 ,

�̇�𝑛 = 𝛩(𝐽+
𝑛 + 𝐽−

𝑛 ),

(2.23)

here 𝜌𝑛, 𝑥𝑛, and 𝑥𝑛+1 now denote the nondimensional adatom density and step positions, and f𝑛 is rewritten in dimensionless form
s

f𝑛 ∶=
∑

𝑟∈{−𝑅,…,𝑅}
𝑟≠0

{

𝛽
𝑥𝑛+𝑟 − 𝑥𝑛

− 𝛼
(𝑥𝑛+𝑟 − 𝑥𝑛)3

}

. (2.24)

Recall that the term containing 𝑏 in (2.10) is associated to the dissipation that results from the nonequilibrium processes
underlying step migration. In light of the available experimental data, we are unable to estimate 𝑏, and thus 𝑏. However, since
we have restricted our attention to small departures from equilibrium, we shall only consider the limit 𝑏 → ∞ (which, if the step
velocity as given by the kinetic relation is to remain finite, means that the driving force ϝ is vanishingly small), thus making the
contribution of 𝑏 to (2.23)2,3,4 negligible.

2.5. Quasistatic approximation

Under the quasistatic approximation, the transient term 𝜕𝑡𝜌𝑛 is neglected in (2.23)1, as are the advective terms 𝜌−𝑛 �̇�𝑛+1 in (2.23)2
and 𝜌+𝑛 �̇�𝑛 in (2.23)3, thus reducing (2.23) to

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0 = 𝜕𝑥𝑥𝜌𝑛 − 𝜈𝜌𝑛 + 𝐹 ,

−(𝜕𝑥𝜌𝑛)− = 𝜅
(

𝜌−𝑛 − 1 − 𝜒𝛩(𝜌+𝑛+1 − 𝜌
−
𝑛 ) + f𝑛

)

− 𝜅𝑝(𝜌+𝑛+1 − 𝜌
−
𝑛 ),

(𝜕𝑥𝜌𝑛)+ = 𝜅𝑆
(

𝜌+𝑛 − 1 − 𝜒𝛩(𝜌+𝑛 − 𝜌−𝑛−1) + f𝑛

)

+ 𝜅𝑝(𝜌+𝑛 − 𝜌−𝑛−1),

�̇�𝑛 = 𝛩(𝐽+
𝑛 + 𝐽−

𝑛 ).

(2.25)

In the literature on step flow (Krug, 2005; Michely and Krug, 2012), this approximation is presented as appropriate in the regimes
of slow deposition or evaporation

𝐹𝛩 ≪ 1 or 𝜈𝛩 ≪ 1. (2.26)

s explained in Michely and Krug (2012), (2.26) is always satisfied in the step-flow regime since, were it violated, crystal growth
ould occur in a different regime, one that involves island nucleation. However, that (2.26) indeed permits to carry out the stability
nalysis on the quasistatic system (2.25) without missing important effects on the stability of steps is not substantiated. Hence, we
ather consider the quasistatic approximation as an a priori simplification, one that requires a posteriori checking, as we shall do in
he sequel paper via a linear-stability analysis of the moving-boundary problem (2.23).

. Stability analysis

We start in Section 3.1 by computing the steady-state solution of (2.25) corresponding to a train of equidistant steps that migrate
t constant velocity and identical adatom distributions on all terraces. The method underlying the linear-stability analysis of this
undamental solution is presented next in Section 3.2, in which the moving-boundary problem is reduced to a dynamical system for
he vector-valued perturbation and then solved by means of the Fourier transform to yield the dispersion relation. Finally Section 3.3
s devoted to a conjecture that infers the stability of all perturbations from that of step-pairing and long-wavelength perturbations.
8
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3.1. Steady-state solution

Consider an infinite sequence of steps assumed all equidistant at 𝑡 = 0, and let the initial position of the 𝑛th step be 𝑥𝑛(0) = 𝑛
𝑛 ∈ Z). The principal solution of (2.25) consists of an adatom density

0
𝜌(𝑥, 𝑡), defined everywhere except at steps where it is

iscontinuous, and steps that propagate at the same speed
0
𝑉 , so that the position of the 𝑛th step at time 𝑡 is given by

0
𝑥𝑛(𝑡) = 𝑛+

0
𝑉 𝑡.

ince the adatom density is the same on all terraces,
0
𝜌(𝑥, 𝑡) is given by

0
𝜌(𝑥, 𝑡) =

0
�̃�
(

𝑥 −
0
𝑥𝑛(𝑡)

)

∀𝑥 ∈
(0
𝑥𝑛(𝑡),

0
𝑥𝑛(𝑡) + 1

)

, (3.1)

ith
0
�̃� defined on (0, 1).

Denoting by
0
𝜌+ and

0
𝜌− the limiting values of

0
�̃� at 0+ and 1−, integration of (2.25)1 yields the adatom profile on each terrace up

to two arbitrary constants
0
𝜌+ and

0
𝜌−. These are computed through the boundary conditions (2.25)2,3, hence completely determining

the adatom distribution on all terraces. Finally the velocity
0
𝑉 of the steps is computed via (2.25)4.5

The analytical expressions for
0
�̃�(𝑥) and

0
𝑉 are quite lengthy in the general case involving both deposition and sublimation; for the

sake of clarity of the presentation, we do not report them. Instead, we display the expression of
0
�̃�(𝑥) when evaporation is negligible

(𝜈 = 0):
0
�̃�(𝑥) = −1

2
𝐹𝑥(𝑥 − 1) + (

0
𝜌− −

0
𝜌+)𝑥 +

0
𝜌+, (3.2)

where, letting 𝐴 ∶= 𝑆 − 1 and 𝐵 ∶= 𝜅𝑆 + 𝜅𝑝𝑆 + 𝜅𝑝 + 𝑆 + 1 > 0,

0
𝜌+ = 1 +

𝐹
(

𝜅(1 − 𝛩𝐴) + 2𝜅𝑝 + 2
)

2𝜅𝐵
and

0
𝜌− = 1 +

𝐹
(

𝜅(𝑆 − 𝛩𝐴) + 2𝜅𝑝 + 2
)

2𝜅𝐵
. (3.3)

The resulting step velocity is given by
0
𝑉 = 𝐹𝛩. (3.4)

Note that, in the absence of the Ehrlich–Schwoebel effect (𝑆 = 1),
0
𝜌+ =

0
𝜌−, rendering

0
�̃� symmetric with respect to 𝑥 = 1∕2. Eq. (3.2)

llows us to estimate the maximum departure of adatom density to its equilibrium value under deposition and thereby specify the
onditions of validity of (2.1). Assuming6 that 0.1 < 𝑆 < 10, max𝑥∈(0,1)

|

|

|

0
�̃�(𝑥) − 1||

|

∼ max(𝐹∕8, 𝐹∕𝜅). Hence, the assumption (2.1)
s satisfied as long as 𝐹 ≪ 10 and 𝐹 ≪ 𝜅. The first condition is mostly fulfilled by virtue of (2.26) (since typically 𝛩 ∼ 0.01

to 0.1) while the second, more restrictive when 𝜅 < 1, needs to be checked. Similarly, one can show that under evaporation
max𝑥∈(0,1)

|

|

|

0
�̃�(𝑥) − 1||

|

∼ max(𝜈∕8, 𝜈∕𝜅), furnishing, for (2.1) to be satisfied, the analogous conditions 𝜈 ≪ 10 and 𝜈 ≪ 𝜅.

3.2. Linear stability analysis

To investigate the stability of the fundamental solution against bunching, we introduce the displacement 𝜁𝑛(𝑡) ∶= 𝑥𝑛(𝑡) −
0
𝑥𝑛(𝑡) of

he 𝑛th step away from its position in the train of equidistant steps. We write the adatom density on 𝑛th terrace in the form

𝜌𝑛(𝑥, 𝑡) = �̃�𝑛(𝑥 −
0
𝑥𝑛(𝑡)) ∀ 𝑥 ∈

(

𝑥𝑛(𝑡), 𝑥𝑛+1(𝑡)
)

, (3.5)

ith �̃�𝑛 defined on the interval (𝜁𝑛(𝑡), 1+𝜁𝑛+1(𝑡)). Integration of (2.25)1 yields an expression of �̃�𝑛 in terms of the displacements of the
teps that bound the 𝑛th terrace, 𝜁𝑛(𝑡) and 𝜁𝑛+1(𝑡), and the associated limiting values, 𝜌+𝑛 (𝑡) ∶= �̃�𝑛

(

𝜁𝑛(𝑡), 𝑡
)

and 𝜌−𝑛 (𝑡) ∶= �̃�𝑛
(

1+𝜁𝑛+1(𝑡), 𝑡
)

,
hich we formally write as

𝜌𝑛(𝑥, 𝑡) = �̌�[𝜌−𝑛 (𝑡), 𝜌
+
𝑛 (𝑡), 𝜁𝑛(𝑡), 𝜁𝑛+1(𝑡)](𝑥), (3.6)

here �̌� is a known function whose analytical expression we do not write explicitly in the general case. Instead, when growth takes
lace without evaporation (𝜈 = 0), �̌� reads

�̌�[𝜌−𝑛 (𝑡), 𝜌
+
𝑛 (𝑡), 𝜁𝑛(𝑡), 𝜁𝑛+1(𝑡)](𝑥) = −𝐹

2
(

𝑥 − 𝜁𝑛(𝑡)
)(

𝑥 − 𝜁𝑛+1(𝑡) − 1
)

+
𝜌−𝑛 (𝑡)

(

𝑥 − 𝜁𝑛(𝑡)
)

− 𝜌+𝑛 (𝑡)
(

𝑥 − 𝜁𝑛+1(𝑡) − 1
)

𝜁𝑛+1(𝑡) + 1 − 𝜁𝑛(𝑡)
. (3.7)

The remaining conditions (2.25)2,3,4 yield a first order dynamical system of three equations for the three scalar unknowns
ssociated to the 𝑛th step: 𝜌−𝑛 (𝑡), 𝜌+𝑛 (𝑡) and 𝜁𝑛(𝑡). Letting 𝐩𝑛(𝑡) ∶= {𝜌−𝑛 (𝑡), 𝜌

+
𝑛 (𝑡), 𝜁𝑛(𝑡)}, this system can be formally written as

𝐌�̇�𝑛 = 
(

𝐩𝑛−𝑅,… ,𝐩𝑛+𝑅+1
)

, (3.8)

5 As a result of the preservation of equidistance between steps in this fundamental solution, f𝑛 = 0.
6 This is a reasonable assumption as can be seen from the quantitative estimates of 𝑆 provided in Appendix C of Part II.
9
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where the superposed dot denotes differentiation with respect to time,

𝐌 ∶=
⎛

⎜

⎜

⎝

0 0 0
0 0 0
0 0 1

⎞

⎟

⎟

⎠

, (3.9)

nd  is the vector function with components

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1(𝐩𝑛−𝑅, ...,𝐩𝑛+𝑅+1) ∶=
d�̌�
d𝑥

|

|

|

|𝑥=𝜁𝑛
+ 𝐽−

𝑛+1 − 𝜅𝑝(𝜌
+
𝑛+1 − 𝜌

−
𝑛 ),

2(𝐩𝑛−𝑅, ...,𝐩𝑛+𝑅+1) ∶=
d�̌�
d𝑥

|

|

|

|𝑥=1+𝜁𝑛+1
− 𝐽+

𝑛 − 𝜅𝑝(𝜌+𝑛 − 𝜌−𝑛−1),

3(𝐩𝑛−𝑅, ...,𝐩𝑛+𝑅+1) ∶=𝛩(𝐽+
𝑛 + 𝐽−

𝑛 ) −
0
𝑉 .

(3.10)

In (3.10),
𝐽−
𝑛 ∶= 𝜅

(

𝜌−𝑛−1 − 1 − 𝜒𝛩(𝜌+𝑛 − 𝜌−𝑛−1) + f𝑛
)

,

𝐽+
𝑛 ∶= 𝜅𝑆

(

𝜌+𝑛 − 1 − 𝜒𝛩(𝜌+𝑛 − 𝜌−𝑛−1) + f𝑛
)

,
(3.11)

with f𝑛 rewritten in terms of the step displacements:

f𝑛 =
∑

𝑟∈{−𝑅,…,𝑅}
𝑟≠0

{

𝛽
𝜁𝑛+𝑟 − 𝜁𝑛 + 𝑟

− 𝛼
(𝜁𝑛+𝑟 − 𝜁𝑛 + 𝑟)3

}

. (3.12)

Next, we linearize the system (3.8)–(3.12) about the principal solution
0
𝐩𝑛 ∶= {

0
𝜌−,

0
𝜌+, 0}. Denoting by 𝛿𝐩𝑛(𝑡) ∶= {𝛿𝜌−𝑛 (𝑡), 𝛿𝜌

+
𝑛 (𝑡),

𝜁𝑛(𝑡)} the perturbation, we thus obtain the linear system

𝐌𝛿�̇�𝑛 =
𝑅+1
∑

𝑟=−𝑅

𝜕
𝜕𝐩𝑛+𝑟

|

|

|

|

0
𝐩
𝛿𝐩𝑛+𝑟. (3.13)

This system can be diagonalized using the spatial Fourier transform of {𝛿𝐩𝑛}𝑛∈Z

𝛿𝐩𝑘(𝑡) ∶=
+∞
∑

𝑛=−∞
𝛿𝐩𝑛(𝑡)e𝑖𝑘𝑛, (3.14)

here 𝑘 is the wavenumber indexing the Fourier modes and 2𝜋∕𝑘 the associated wavelength7. The Fourier transform of (3.13) reads

𝐌 ̇̂𝛿𝐩𝑘 =
( 𝑅+1

∑

𝑟=−𝑅

𝜕
𝜕𝐩𝑛+𝑟

|

|

|

|

0
𝐩
e𝑖𝑘𝑟

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐂𝑘

𝛿𝐩𝑘, (3.15)

here 𝐂𝑘 denotes the 3 × 3 matrix associated to the 𝑘th Fourier mode.8
Under the condition that the determinant of the upper-left 2 × 2 submatrix of 𝐂𝑘 is not zero, a condition that can be shown to

old as long as the adatom equilibrium coverage satisfies 𝛩 < 0.5, the linear system consisting of the first two rows of (3.15) can
e solved to express 𝛿𝜌

−
𝑘 and 𝛿𝜌

+
𝑘 in terms of 𝛿𝜁𝑘, so that the third row of (3.15) can be rewritten as

̇̂𝛿𝜁𝑘 = 𝜆(𝑘)𝛿𝜁𝑘, (3.16)

ith 𝜆(𝑘) the sought-after dispersion relation.
Thus, the time evolution of an initial perturbation containing the sole mode of wavenumber 𝑘, with shape 𝛿𝜁𝑛(0) = 𝛿𝜁𝑘(0)e−𝑖𝑘𝑛,

s given by

𝛿𝜁𝑛(𝑡) = 𝛿𝜁𝑘(0) exp
[

𝑖
(

Im(𝜆(𝑘)) 𝑡 − 𝑘𝑛
)

+ Re(𝜆(𝑘))𝑡
]

. (3.17)

learly, the train of equidistant steps is linearly stable with respect to bunching as long as Re(𝜆(𝑘)) < 0 for all 𝑘 ∈ [−𝜋, 𝜋]. Since
(−𝑘) = 𝜆(𝑘), Re(𝜆(𝑘)) needs only to be studied on (0, 𝜋].

In summary, the procedure detailed above yields an analytical expression for the dispersion relation 𝜆(𝑘), with the stability of
the steady-state solution, or lack thereof, determined by the sign of its real part. We do not report the lengthy expression of Re(𝜆(𝑘))
in the general case.

7 All possible wavelengths are accounted for by taking 𝑘 in the first Brillouin zone [−𝜋, 𝜋], and an arbitrary perturbation 𝛿𝐩𝑛(𝑡) can be expressed as
𝐩𝑛(𝑡) = (2𝜋)−1 ∫ 𝜋

−𝜋 𝛿𝐩𝑘(𝑡)e
−𝑖𝑘𝑛 d𝑘.

8 For a slightly different perspective, consider the linear-perturbation problem for a finite number of steps, 𝑁 , with periodic boundary conditions. The
ight-hand side of (3.13), written for 𝑛 = 0,… , 𝑁 − 1, has the form of a linear system for the 3𝑁 variables {𝛿𝜌−0 (𝑡), 𝛿𝜌

+
0 (𝑡), 𝛿𝜁0(𝑡),… , 𝛿𝜌−𝑁−1(𝑡), 𝛿𝜌

+
𝑁−1(𝑡), 𝛿𝜁𝑁−1(𝑡)}.

he associated 3𝑁 ×3𝑁 matrix has a block-circulant architecture and 𝐂 , as given in (3.15), is the matrix-eigenvalue that derives from its block diagonalization.
10
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Fig. 3. An example of the dispersion curve in the quasistatic deposition regime (𝜈 = 0), with 𝐹 = 10−1, 𝑆 = 0.4, 𝜅 = 20, 𝛩 = 0.01, 𝛼 = 10−4, and 𝛽 = 0. Steps are
unstable against long-wavelength perturbations (𝑘→ 0) and stable with respect to step pairing (𝑘 = 𝜋).

3.3. Reduction to long-wavelength and step-pairing perturbations

A typical dispersion curve is on display in Fig. 3. While the signs of lim
𝑘→0

Re(𝜆(𝑘)) and Re(𝜆(𝜋)) control the stability against long-
wavelength perturbations and step pairing, respectively, Re(𝜆(𝑘)) for an arbitrary value of 𝑘 in (0, 𝜋] determines the stability, or lack
hereof, against perturbations of intermediate wavelength 2𝜋∕𝑘. However, an extensive numerical study of the dispersion curves
or physically relevant values of the model’s dimensionless parameters, as estimated in Appendix C of the sequel paper from the
xperimental literature on the homoepitaxy of GaAs(001) and Si(111)-7×7 as well as the heteroepitaxy of SiGe on Si(001), leads us

to the following

Conjecture 1. If 𝑅𝑒(𝜆(𝑘)) < 0 for 𝑘 ≪ 1 and 𝑅𝑒(𝜆(𝜋)) < 0, then 𝑅𝑒(𝜆(𝑘)) < 0 for all 𝑘 ∈ (0, 𝜋].

In other words, it is enough to check the stability of steps against both long-wavelength and step-pairing perturbations to ensure
their stability for all wavelengths. Conversely, it is clear that the instability of either one of these two limit perturbations is sufficient
for step flow to be unstable.9

Proof of Conjecture 1 for the case 𝜒 = 0. We formally take 𝜒 = 0 and restrict our attention to nearest-neighbor interactions (𝑅 = 1).
The validity of the latter assumption is discussed in Section 4.5 below; the former simplification has no physical basis, as discussed
in Section 2.2 above.10 Both are introduced in order to obtain an analytically tractable dispersion relation. Recalling that 𝐴 ∶= 𝑆 −1
and 𝐵 ∶= 𝜅𝑆 + 𝜅𝑝𝑆 + 𝑆 + 𝜅𝑝 + 1, this relation now reads

Re(𝜆(𝑘)) = sin2(𝑘∕2)

{

2𝜅𝛩
(

−𝐴𝐹 (1 + 𝑆) + 8𝐶(𝛽 − 3𝛼) sin2(𝑘∕2)
)

𝐵
(

4𝜅𝑝 sin
2(𝑘∕2) + 𝜅𝐵

)

}

, (3.18)

here 𝐶 ∶= 𝜅𝑝(𝑆 + 1)(2𝜅𝑆 + 𝑆 + 1) + 𝜅𝑆(𝜅𝑆 + 𝑆 + 1) + 𝜅2𝑝(𝑆 + 1)2. Since the denominator of (3.18) is strictly positive, the sign
of Re

(

𝜆(𝑘)
)

coincides with that of its numerator. The latter has the form 𝑎 sin2(𝑘∕2) + 𝑏 sin4(𝑘∕2), with 𝑎 ∶= −2𝜅𝛩𝐴𝐹 (1 + 𝑆) and
𝑏 ∶= 16𝜅𝛩𝐶(𝛽 − 3𝛼). The assumption that both long-wavelength and step-pairing instabilities are stable implies that 𝑎 < 0 and
𝑎 + 𝑏 < 0. These conditions are sufficient for Re

(

𝜆(𝑘)
)

to be negative for all 𝑘 ∈ (0, 𝜋].

4. Results

Hereafter, we deploy a mostly analytical approach to understand how the physics of step flow determines the onset of
the bunching instability. In Section 4.1, we introduce a classification in terms of mechanisms, operating regimes, and material
parameters. This is followed by a study of the stabilizing or destabilizing character of each of the mechanisms under consideration
in the deposition (Section 4.2) and sublimation (Section 4.3) regimes. Since stability is determined by the competition between

9 We note that Conjecture 1 is not valid in the very particular case where both attractive and repulsive elastic interactions are present, of comparable
agnitudes, and with range 𝑅 larger than 1 (i.e., when interactions beyond nearest neighbors are considered). In such a situation, instabilities of finite wavelength
ay develop even though long-wavelength and step-pairing perturbations are both stable.
10
11

However, by taking 𝜒 = 0 in (2.23) one recovers the equations that govern step flow as written in Pierre-Louis (2003).
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Fig. 4. Diagram of the physical factors that govern the stability of steps against bunching. We distinguish the mechanisms that are intrinsically stabilizing or
destabilizing from the parameters, material or operating, that determine the relative importance of the aforementioned mechanisms.

mechanisms that are either stabilizing or destabilizing, Section 4.4 investigates how the various operating and material parameters
govern the interplay between mechanisms. Finally, we examine in Section 4.5 the validity of the approximation of nearest-neighbor
interactions by looking at how the dispersion curve changes with elastic interactions of longer ranges.

4.1. Mechanisms, regimes, and parameters

As sketched in Fig. 4, we distinguish between operating regimes, mechanisms which are stabilizing or destabilizing, and material
arameters whose variations alter the relative influence of these mechanisms on the stability of steps against bunching:

– Mechanisms. These are the physical processes that tend to stabilize or destabilize steps, namely, the (dipole–dipole and
monopole–monopole) elastic interactions between steps, the Ehrlich–Schwoebel barrier, and the chemical effect which couples
the diffusion fields on adjacent terraces and accounts for the contribution to driving force at steps of neighboring adatoms.11

– Operating regimes. By which we mean deposition and evaporation, considered independently. Two classes of mechanisms can be
distinguished. On one hand, elasticity whose influence on stability is independent of the deposition or evaporation rate; this is
an energetic mechanism. On the other hand, the remaining mechanisms, whose influence on stability grows linearly with the
deposition or evaporation rate; we refer to these mechanisms as kinetic.

– Material parameters. These parameters, which determine the relative influence on stability of the different mechanisms involved,
are the adatom equilibrium coverage 𝛩, the dimensionless adatom attachment/detachment coefficient 𝜅, and the step permeability
𝜅𝑝. Since stabilizing/destabilizing mechanisms are simultaneously present, the dominant mechanism depends on these material
parameters.

4.2. Deposition

When adatom desorption is negligible (𝜈 = 0) and elastic interactions between steps are restricted to nearest neighbors (𝑅 = 1),
the growth rate Re(𝜆𝑑𝑒𝑝𝑆𝑃 ) of the step-pairing instability (𝑘 = 𝜋) is given by

Re(𝜆𝑑𝑒𝑝𝑆𝑃 ) =
𝛩𝜅

(

2𝐹 (𝑆 + 1)(2𝐵𝜒𝛩 − 𝐴) + 16𝐶(𝛽 − 3𝛼)
)

𝐵
(

𝜅(𝐵 − 2𝜒𝛩𝐴) + 4𝜅𝑝
) , (4.1)

For long-wavelength perturbations in the same regime, a series expansion of Re(𝜆(𝑘)) about 𝑘 = 0 yields

Re(𝜆(𝑘)) = −
𝐹𝛩(𝑆 + 1)𝐴

2𝐵2
𝑘2 + 𝑜(𝑘2) (4.2)

n the presence of the Ehrlich–Schwoebel barrier or its inverse (𝑆 ≠ 1), and

Re(𝜆(𝑘)) =
𝛩(𝜅 + 2𝜅𝑝)

(

(𝜅 + 2)𝐹𝜒𝛩 − 2𝜅(𝜅 + 2𝜅𝑝 + 2)(3𝛼 − 𝛽)
)

2𝜅(𝜅 + 2𝜅𝑝 + 2)2
𝑘4 + 𝑜(𝑘4) (4.3)

11 In Part II of this paper, in which the linear-stability analysis is extended beyond the quasistatic approximation, the dynamics effect is added to the list of
12

mechanisms.
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when adatom attachment/detachment at steps is symmetric (𝑆 = 1). In (4.1)–(4.3), 𝐴 ∶= 𝑆 − 1, 𝐵 ∶= 𝜅𝑆 + 𝜅𝑝𝑆 + 𝑆 + 𝜅𝑝 + 1, and
∶= 𝜅𝑝(𝑆 + 1)(2𝜅𝑆 + 𝑆 + 1) + 𝜅𝑆(𝜅𝑆 + 𝑆 + 1) + 𝜅2𝑝(𝑆 + 1)2.
Consider first step-pairing. When 𝛩 < 0.5, a condition which is always satisfied in practice, the denominator of (4.1) remains

positive. By examining the sign of each term in the numerator, we see that the Ehrlich–Schwoebel barrier, which manifests itself
through 𝐴 ∶= 𝑆 −1, is stabilizing when it is direct and destabilizing when it is inverse; the elastic monopole–monopole interactions,
manifest through 𝛽, are destabilizing, whereas their dipole–dipole counterparts, manifest through 𝛼, are stabilizing; the adatom jump
effect, manifest through 𝜒 , is destabilizing.

Next, consider long-wavelength perturbations. As can be seen from (4.2), it is the Ehrlich–Schwoebel barrier which, when present,
determines the stability of steps against these perturbations; as with step-pairing, the direct ES barrier stabilizes against bunching
whereas its inverse is destabilizing. When adatom attachment/detachment is symmetric, (4.3) shows that the stability is governed
by the interplay between the elastic step-step interactions and the chemical effect, with the stabilizing or destabilizing influence of
each of these two mechanism the same as for step-pairing.

Importantly, we see from (4.1)–(4.3) that step permeability is not a stabilizing or destabilizing mechanism per se, in the sense
hat if other mechanisms are disabled (by setting 𝑆 = 1, 𝜒 = 0, and 𝛼 = 𝛽 = 0) the permeability of steps has no effect on their
tability against either pairing or long-wavelength perturbations. Instead, what permeability does is to change the relative weights
f the stabilizing or destabilizing mechanisms under consideration. For example, in the limit of transparent steps (𝜅𝑝 → ∞), it can be

seen from the numerators of (4.1) and (4.3) that elastic interactions become predominant over the Ehrlich–Schwoebel barrier and
the chemical effect.12 This is expected on physical grounds, since having very permeable steps amounts to shutting the asymmetry
in the adatom attachment/detachment and equalizing their densities on both sides of each step, thus minimizing the influences of
either the direct ES barrier or its inverse and of the chemical effect.

Finally, an interesting conclusion that can be drawn from (4.1)–(4.3) is that the different mechanisms do not exhibit a complex
interplay, in the sense that for any set of parameters the influence on stability of each mechanism remains the same. Indeed, the
effects of the various mechanisms are essentially additive, and changing the parameters modifies their relative weights but not the
signs of their prefactors.

4.3. Evaporation

Consider now the evaporation regime (𝐹 = 0). The growth rate of the step-pairing instability is given by

Re(𝜆𝑑𝑒𝑝𝑆𝑃 ) =
8
√

𝜈 exp
(

2
√

𝜈
)

𝜅𝛩
(

𝑁1 + (𝛽 − 3𝛼)𝑁2
)

D
, (4.4)

here, letting 𝐸 ∶= 𝜅𝑝 + (𝜅 + 𝜅𝑝)𝑆, the denominator has the form

D ∶= 4 exp
(

2
√

𝜈
)

{

√

𝜈
[

−2𝜅𝑝 + 𝜅(𝑆 − 1)𝜒𝛩 +
(

2𝜅𝑝 + 𝜅(𝑆(1 − 𝜒𝛩) + 1 + 𝜒𝛩)
)

cosh
(

√

𝜈
)

]

+ (𝜈 + 𝜅𝐷) sinh
(

√

𝜈
)

}{

√

𝜈
[

2𝜅𝑝 + 𝜅(1 − 𝑆)𝜒𝛩 +
(

2𝜅𝑝 + 𝜅(𝑆(1 − 𝜒𝛩) + 1 + 𝜒𝛩)
)

cosh
(

√

𝜈
)

]

+ (𝜈 + 𝜅𝐸) sinh
(

√

𝜈
)

}

.

(4.5)

n (4.4), the kinetic term contribution 𝑁1 and its elastic counterpart 𝑁2 of the numerator read

⎧

⎪

⎨

⎪

⎩

𝑁1 ∶=(1 + 𝑆)𝜅
{

𝜈3∕2𝐴 − 𝜒𝛩𝜈
[

√

𝜈(1 + 𝑆)
(

1 + cosh
(

√

𝜈
))

+ 2𝐸 sinh
(

√

𝜈
)]}

,

𝑁2 ∶=8
√

𝜈 exp
(

2
√

𝜈
)

𝜅𝛩
[

𝑁21 +𝑁22 cosh
(

√

𝜈
)

+𝑁23 cosh
(

2
√

𝜈
)

+𝑁24 sinh
(

√

𝜈
)

+𝑁25 sinh
(

2
√

𝜈
)]

,
(4.6)

where
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑁21 ∶= −
√

𝜈𝐸[4𝜅𝑝 − 𝜅(2𝜒𝛩𝐴 + 𝑆 + 1)] − 𝜈
√

𝜈(𝑆 + 1),

𝑁22 ∶= 4𝜅
√

𝜈(1 + 𝑆)𝐸,

𝑁23 ∶=
√

𝜈
{

𝐸
[

4𝜅𝑝 + 𝜅
(

3 + 3𝑆 + 2(1 − 𝑆)𝜒𝛩
)]

+ (1 + 𝑆)𝜈
}

,

𝑁24 ∶= 2𝜅[2𝐸2 + 2𝑆𝜈 + (𝑆2 − 1)𝜒𝛩𝜈],

𝑁25 ∶= 4𝜈𝜅𝑝(1 + 𝑆) + 2𝜅𝐸2 + 𝜅[1 + 𝜒𝛩 + 𝑆(4 + 𝑆 − 𝑆𝜒𝛩)]𝜈.

(4.7)

ssuming that 𝛩 < 0.5 (an experimentally sound assumption), one can show that 𝑁2 > 0 and since cosh
(
√

𝜈
)

> 1, one can also
how that D > 0.

12 Indeed, in both in (4.1) and (4.3), the elastic terms are multiplied by prefactors with larger powers of 𝜅 than those of the remaining terms.
13
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Table 1
Effects of each of the basic mechanisms on the onset of the bunching instability.
ES refers to the Ehrlich–Schwoebel barrier, iES to its inverse, CE to the
chemical effect, DDE to dipole–dipole elastic interactions, and MME to their
monopole–monopole counterparts.  stands for stabilizing and  for destabilizing.

ES iES CE DDE MME
𝑆 > 1 𝑆 < 1 𝜒 𝛼 𝛽

Deposition     
Evaporation     

Table 2
The scalings of the contributions of the basic mechanisms
to the growth rates of step-pairing and long-wavelength
perturbations with the operating parameters 𝐹 and 𝜈 and
the material parameter 𝛩. The growth rate is additively
decomposed into Re(𝜆) =

∑

𝑚 Re(𝜆𝑚), with 𝑚 spanning
the three mechanisms: the Ehrlich–Schwoebel barrier
or its inverse (ES/iES), the chemical effect (CE), and
the elastic step-step interactions (E). The contribution
of each mechanism scales as Re(𝜆𝑚) ∝ 𝐹

𝑎
𝛩𝑏 under

deposition and Re(𝜆𝑚𝑒𝑐ℎ) ∝ 𝜈𝑎𝛩𝑏 under sublimation, with
the exponents 𝑎 and 𝑏 given in the table.

ES/iES CE E
𝑆 𝜒 𝛼, 𝛽

𝑎 (for 𝐹 , 𝜈) 1 1 0
𝑏 (for 𝛩) 1 2 1

Since 𝑁2 > 0, the elastic interactions have the same effect on stability as under deposition, i.e., monopole–monopole interactions
re destabilizing whereas dipole–dipole interactions are stabilizing. This is not the case for the remaining mechanisms. Recalling
hat 𝐴 ∶= 𝑆 − 1, it follows from (4.6) that the direct Ehrlich–Schwoebel barrier is now destabilizing, whereas the inverse ES barrier
as become stabilizing. Similarly, by noticing that the term that multiplies 𝜒 in (4.6) is positive, we conclude that the chemical

effect is now stabilizing against bunching, in contrast to its effect under deposition.
Moreover, as with deposition, we note the absence of complex interplay between the various mechanisms under consideration.

Indeed, changing the material parameters alters the relative importance of these mechanisms but not the signs of their prefactors,
so that the stabilizing or destabilizing character of each is unchanged. Likewise, step permeability is neither a stabilizing nor a
destabilizing mechanism in itself.

Because of the complexity of the dispersion relation for long-wavelength perturbations, an analytical study is not feasible. Instead,
numerics confirm that each mechanism has qualitatively the same effect on stability as for step-pairing. The effects of each of the
three mechanisms are summarized in Table 1.

4.4. Scalings with the operating and material parameters

The onset of step bunching in the presence of several intrinsically stabilizing or destabilizing mechanisms is governed by their
interplay. Based on the expressions (4.1)–(4.4) for the growth rate of step-pairing and long-wavelength perturbations, we now
discuss the influence of the parameters of the model on the relative weights of the different mechanisms. For clarity, we distinguish
the parameters that quantify each the strength of a mechanism (𝑆 for the ES barrier or its inverse, 𝛼 for the elastic dipole–
ipole interactions, and 𝛽 for their monopole–monopole counterparts) from the parameters that govern the interplay between the
echanisms. The latter are either operating (𝐹 and 𝜈) or material (𝛩, 𝜅, and 𝜅𝑝).

We begin by noting that the dependence of the growth rate on the deposition and evaporation rates, 𝐹 and 𝜈, leads to a distinction
between kinetic and energetic mechanisms. As seen in the expressions (4.1)–(4.3), the contributions to the growth rate associated with
he ES barrier and the chemical effect in the deposition regime are both linear in 𝐹 , whereas the contribution associated with the
lastic step-step interactions is independent of 𝐹 . Under evaporation, a Taylor expansion of (4.4) provides an identical dependence

on 𝜈 of the contributions to the growth rate associated with the three elementary mechanisms at play. We therefore refer to the
chwoebel barrier and chemical effect as kinetic mechanisms and to the elastic step-step interactions as an energetic mechanism.

As the deposition or evaporation rate increases, the influence of the kinetic mechanisms on the stability of steps against bunching
becomes more prominent, at the expense of their energetic counterpart which remains unchanged.

Further, the equilibrium adatom coverage provides a distinction between the chemical effect, whose contribution to Re(𝜆) is
quadratic in 𝛩, and the remaining two mechanisms whose contributions to the growth rate of the perturbation scale linearly with
𝛩. This implies that the chemical effect is more pronounced for material surfaces with high equilibrium adatom coverage, such as
GaAs(001) and Si(111)-1 × 1 for which values of 𝛩 as high as 0.2 have been measured (cf. Appendix C of Part II).

The scalings of the contributions of the three elementary mechanisms to the growth rate of step-pairing and long-wavelength
erturbations with the operating parameters, 𝐹 and 𝜈, and the material parameter 𝛩 are summarized in Table 2.
14
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Table 3
Dependence of the dispersion curve on the range 𝑅 of elastic interactions considered for steps
stabilized solely by elastic dipole–dipole interactions and destabilized solely by their monopole–monopole
counterparts, with 𝑆 = 1, 𝜒 = 0, 𝜅𝑝 = 0, and 𝜈 = 0. DDE refers to dipole–dipole interactions, MME denotes
monopole–monopole interactions, and the common factor to the DDE and MME dispersion relations is
given 𝑎(𝑘) ∶=

(

16𝜅𝛩 sin4(𝑘∕2)
)

∕
(

2 + 𝜅
)

.

𝑅 = 1 𝑅 = 2 𝑅 = 3

DDE Re(𝜆(𝑘))
𝑎(𝑘)

−3𝛼 −
(9 + cos(𝑘))3𝛼

8
−
(753 + 113 cos(𝑘) + 16 cos(2𝑘))3𝛼

648

MME Re(𝜆(𝑘))
𝑎(𝑘)

𝛽
(3 + cos(𝑘))𝛽

2
(33 + 17 cos(𝑘) + 4 cos(2𝑘))𝛽

18

Fig. 5. Dependence of the dispersion curves on the range 𝑅 of the elastic interactions between steps: (a) dipole–dipole and (b) monopole–monopole interactions.
datom attachment/detachment is assumed symmetric (𝑆 = 1), steps are taken to be impermeable (𝜅𝑝 = 0), the chemical effect is formally disabled (𝜒 = 0), and
ublimation is neglected (𝜈 = 0).

Turning to 𝜅 and 𝜅𝑝, we note that since they both account for kinetic processes at the steps, they play comparable roles.13

Recalling that 𝜅 and 𝜅𝑝 are dimensionless velocities associated with the kinetics of adatom attachment/detachment at, and hopping
across, steps, 𝜅𝑝 has a sensible effect on stability only when 𝜅𝑝 ≳ 𝜅. This is clear from the expressions (4.1)–(4.4), where 𝜅𝑝
appears in weighted sums with 𝜅. Although the scaling of the growth rate with 𝜅 and 𝜅𝑝 is not trivial in general, it can be seen in
particular cases (such as when the magnitudes of 𝜅, 𝜅𝑝, and 1 are clearly separated) that the largest power of 𝜅 and 𝜅𝑝 is in the
ontribution of elasticity to Re(𝜆), with a smaller exponent in the contribution of the chemical effect, and the smallest power in
he contribution of the ES barrier. This is consistent with the fact that the influence of the Schwoebel effect is greater when the
inetics of adatom attachment/detachment is slower (i.e., with decreasing 𝜅) and steps are impermeable (𝜅𝑝 = 0). By contrast, faster

attachment/detachment kinetics (increasing 𝜅) or greater permeability (increasing 𝜅𝑝) enhances the influence of the energetic effect
(elasticity) at the expense of its kinetic counterparts (Schwoebel barrier and chemical effect).

4.5. Long-range elasticity

Recall that the elastic contribution f𝑛 to the configurational force acting on the 𝑛th step results from the interaction of its elastic
ield with those generated by the remaining steps on the vicinal surface. However, in the literature on step bunching in the presence
f elastic interactions (Tersoff et al., 1995; Pierre-Louis, 2003), as in Section 4, stability with respect to bunching is examined under
he assumption of nearest-neighbor interactions, whereby the only elastic interactions that are accounted for are those between each
tep and its immediately adjacent steps. Our objective in this section is to quantify the consequences of this approximation on the
tability predictions, both for the dipole–dipole and monopole–monopole interactions.

For this purpose, we use the linear-stability framework developed in Section 3.2 for elastic interactions of arbitrary range 𝑅 to
investigate the dependence of the dispersion curve on 𝑅 when elasticity is the only mechanism at play. Specifically, the Schwoebel
barrier and chemical effects are disabled by setting 𝑆 = 1 and 𝜒 = 0. Moreover, for the sake of obtaining relatively simple analytical
xpressions for the growth rate of the perturbation, steps are assumed impermeable (𝜅𝑝 = 0) and evaporation is neglected (𝜈 = 0).

For both dipole–dipole and monopole–monopole elastic interactions taken independently, the 𝑅-dependence of the dispersion curve
is shown analytically in Table 3 and graphically on Fig. 5.

Importantly, the assumptions introduced above do not restrict the generality of our conclusions as the 𝑅-dependence of the
lastic contribution to the stability is not altered when step-step interactions are combined with other mechanisms. Indeed, when
he remaining two basic mechanisms are included or sublimation is allowed, the ratio of the contributions to the growth rate of the

13 As noted by Pierre-Louis (2003) and Sato et al. (2000), permeability can be viewed as a mechanism in parallel with the attachment/detachment of adatoms
15
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perturbation of wavelength 2𝜋∕𝑘 of elastic interactions of ranges 𝑅 > 1 and 𝑅 = 1 remains the same as its counterpart in Table 3
nd Fig. 5. For instance, in the presence of evaporation, the growth rate for dipole–dipole interactions with 𝑅 = 1 reads

Re
(

𝜆𝑅=1(𝑘)
)

=
24𝜅𝛩𝛼

√

𝜈 sin4(𝑘∕2)
(

𝜅 cos(𝑘) − 𝜅 cosh
(

√

𝜈
)

−
√

𝜈 sinh
(

√

𝜈
)

)

2𝜅 cosh
(

√

𝜈
)

+ (𝜅2 + 𝜈) sinh
(

√

𝜈
)

(4.8)

and is modified for second-nearest-neighbor interactions in the proportion

Re
(

𝜆𝑅=2(𝑘)
)

Re
(

𝜆𝑅=1(𝑘)
) =

9 + cos(𝑘)
8

. (4.9)

This ratio is the same as the one on display in Table 3. The same range dependency in the elastic part of the growth rate is observed
when step permeability, the Ehrlich–Schwoebel barrier, and the chemical effect are incorporated in the stability analysis.

As can be seen in Fig. 5(a), elastic dipole–dipole interactions with range 𝑅 ≥ 2 deviate little from their nearest-neighbor
ounterparts; indeed, convergence of the dispersion curves is reached within less than 1% at 𝑅 = 3. By contrast, the deviation
s of the order of 20% in the case of monopole–monopole interactions, as seen in Fig. 5(b).

In conclusion, while for the analysis developed here, with the various parameters known only in order of magnitude, the
ssumption of nearest-neighbor interactions is largely acceptable, the modifications induced by long-range elasticity need to be
ccounted for if one is to predict accurately the onset of bunching during heteroepitaxy, where monopole–monopole interactions
etween steps are present.

. Discussion

In Part I of this investigation we have considered the onset of the bunching instability in the setting of the quasistatic
pproximation. With few exceptions, this approximation underlies the literature on the stability of vicinal surfaces in the step-flow
egime. It serves as the basis of theoretical developments, often without physical justification; in the few works that discuss its
alidity, it is thought to hold when deposition or evaporation is slow. In the sequel of this two-part article, we will show that it is
ot the case. Even when the adsorption and desorption rates are small, the terms that are omitted in the quasistatic approximation
ffect the stability of steps with respect to bunching in significant ways. In Part I, we therefore take a different viewpoint. By allowing
or an almost analytical treatment of the linear-stability problem, the quasistatic approximation is a provisional mathematical
implification that affords us insight into the physics behind step bunching, regardless of its validity. This insight turns out to
e useful in interpreting the results of the linear-stability analysis of step flow beyond the quasistatic approximation, as presented
n Part II.

We present here an extension of the BCF model, one that is consistent with the laws of thermodynamics. What this consistency
eveals is that the configurational force that drives step motion has an extra contribution, above that which results from the
nteractions between the elastic fields generated by steps on the vicinal surface. This contribution, which is unaccounted for in
ost theoretical studies of step instabilities, takes the form of the jump at each step of the grand canonical potential associated with

he adatoms on its adjacent terraces. The vanishing of this jump is one of the two conditions of chemical equilibrium, the other
eing the continuity of the adatom chemical potential. Since steps migrate as a result of the out-of-equilibrium chemical process of
datom attachment and detachment, it is only natural that the jump of the adatom grand canonical potential should appear in the
xpression of the driving force at steps, and by way of consequence in the expression of the step chemical potential. When adatoms
orm an ideal lattice gas, this jump is proportional to that of the adatom density. Its presence in the boundary conditions at steps
as interesting consequences on their stability against bunching, since it alters the kinetics of adatom attachment and detachment
y coupling the diffusion fields on adjacent terraces. We refer to it as the chemical effect.

In our analysis of the stability of steps against bunching, we have distinguished between mechanisms, regimes, and parameters.
The mechanisms are three: the Ehrlich–Schwoebel barrier, the elastic step-step interactions, and the chemical effect. In the deposition
regime, we show that a direct ES barrier is stabilizing and its inverse destabilizing, the chemical effect is destabilizing, and the
elastic dipole–dipole interactions between steps are stabilizing in contrast to their monopole–monopole counterparts which are
destabilizing. In the evaporation regime, the influence of the ES barrier on the onset of the bunching instability is opposite, and so
is that of the chemical effect, whereas the impact of the elastic step-step interactions on stability remains the same.

The dimensionless parameters that enter the moving-boundary problem fall in two categories. We call the deposition and
evaporation rates operating parameters, and refer to the equilibrium adatom coverage, the attachment/detachment coefficient, and the
step permeability as material parameters. Our stability analysis reveals that the contributions of the ES barrier and chemical effect
to the growth rate of linear perturbations vary (linearly) with the operating parameters, whereas the contribution of the elastic
interactions between steps does not depend on them. We therefore refer to the first two mechanisms as kinetic and label the third
mechanism energetic.

The material parameters are neither stabilizing nor destabilizing per se. Instead, they alter the balance between the aforemen-
tioned stabilizing and destabilizing mechanisms, when these are simultaneously present (as expected in real experiments). For
example, when steps are near transparent to the hopping of adatoms between terraces, elasticity becomes predominant at the
expense of the ES barrier and the chemical effect. Moreover, we show that the contribution of the chemical effect to the dispersion
relation scales quadratically with the equilibrium adatom coverage, whereas the contributions associated with the remaining two
mechanisms are linear in the adatom coverage 𝛩. The chemical effect is therefore expected to be important on material surfaces
16

with high coverage, such as GaAs(001) and Si(111)-1 × 1.
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The above results are contingent on our conjecture that the stability of the step-pairing and long-wavelength perturbations implies
hat of perturbations of all wave numbers.

Finally, we have investigated the validity of the nearest-neighbor approximation for elastic interactions and have concluded that
t holds for dipole–dipole interactions but not for their monopole–monopole counterparts. This makes it a reasonable assumption
n predictive models for homoepitaxy, where only dipole–dipole interactions are present, but not in a quantitative theory of
eteroepitaxy, where monopole–monopole interactions need to be accounted for.
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