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A B S T R A C T

When subjected to electro-mechanical loading, ferroelectrics see their polarization evolve
through the nucleation and evolution of domains. Existing mesoscale phase-field models for
ferroelectrics are typically based on a gradient-descent law for the evolution of the order param-
eter. While this implicitly assumes that domain walls evolve with linear kinetics, experiments
instead indicate that domain wall kinetics is nonlinear. This, in turn, is an important feature for
the modeling of rate-dependent effects in polarization switching. We propose a new multiple-
phase-field model for ferroelectrics, which permits domain wall motion with nonlinear kinetics,
with applications in other solid–solid phase transformation problems. By means of analytical
traveling wave solutions, we characterize the interfacial properties (energy and width) and the
interface kinetics of straight domain walls, as furnished by the general kinetics model, and
compare them to those of the classical Allen–Cahn model. We show that the proposed model
propagates domain walls with arbitrarily chosen nonlinear kinetic relations, which can be tuned
to differ for the different types of domain walls in accordance with experimental evidence.

. Introduction

Ferroelectrics are a prime example of multifunctional materials with electro-mechanical coupling. They are largely used as
ensors and actuators for their piezoelectric properties Uchino (2018) as well as in ferroelectric random-access memory (Ishiwara
t al., 2004), which uses the reversibility of spontaneous polarization states. Below a critical temperature, referred to as the Curie
emperature, ferroelectric ceramics possess a polar structure with a spontaneous electric polarization, which can be reversed under the
pplication of electro-mechanical loading. Polarization switching is accommodated by transformations between lattice variants of
ifferent orientations—e.g., the six orientations of the tetragonal variants for barium titanate (BaTiO3) at room temperature—and
etween phases of distinct crystal symmetry types—e.g., the tetragonal and rhombohedral phases in some compositions of lead
irconate titanate (PZT).

At the mesoscale (tens of nanometers to hundreds of microns), polarization reversal occurs through the emergence and evolution
f a microstructure formed by the different variants (and phases, where applicable) referred to as ferroelectric domains separated by
omain walls. In defect-free ferroelectric single-crystals, the microstructure that develops during switching vanishes at the end of that
rocess, which leads to a single polarization domain in the sample (Little, 1955). By contrast, in polycrystalline ferroelectric ceramics,
rains with different orientations exert mechanical constraints, so that microstructural arrangements with multiple ferroelectric
omains remain after polarization switching (Arlt and Sasko, 1980).
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At the macroscale, a few representative curves are commonly used to characterize polarization switching. First, bipolar
measurements are obtained by cycling the applied electric field between ±𝑒max. These yield the 𝑝 − 𝑒 hysteresis curve and the strain
utterfly curve, giving, respectively, the evolution of the average polarization and longitudinal strain (under stress-free conditions) as
unctions of the applied electric field. When bipolar measurements are performed at a sufficiently low rate (typically with frequency
≲ 10−3 Hz), no rate dependence is observed, suggesting that the kinetics of domain evolution only plays a minor role. By contrast, at

igher rates bipolar curves show a strong rate dependence, a consequence of the finite kinetics of domain evolution (see, e.g., Wieder
957, Chen et al. 2011, Wieder 1957, Schmidt 1981, Yin and Cao 2002, Chen et al. 2011, and Kannan et al. 2022 for rate-dependent
ysteresis curves in single and polycrystals, respectively). Another type of experiment, referred to as pulse experiment, determines the
ime evolution of the average polarization and strain in response to an applied pulse of the electric field (see, e.g., Merz 1954, Merz
956, and Hubmann et al. 2016 for single crystals and Genenko et al. 2012, Schultheiß et al. 2018, and Schultheiß et al. 2019
or polycrystals). While no significant polarization reversal occurs during the short rise time of pulse loading (∼ 0.1 μs), polarization
witching does occur during the subsequent constant applied electric field. Overall, the profile of the time evolution of polarization
nd strain is a fingerprint at the macroscale of the sequence of switching mechanisms at the mesoscale, namely, the nucleation of
omains and their subsequent evolution with finite kinetics. Hence, a proper modeling of the kinetics of domain evolution is crucial
or understanding the macroscopic response of ferroelectrics as given by rate-dependent bipolar measurements or pulse experiments.

At the mesoscale, continuum models that resolve the time evolution of the domain microstructure together with the local
istribution of electric and mechanical fields are of two sorts: (i) sharp-interface models, which describe domain walls as sur-
aces of discontinuity with zero thickness, and (ii) diffuse-interface models (also referred to as phase-field models), in which the
lectro-mechanical fields vary steeply but continuously across domain walls.

In sharp-interface models, the classical balance laws of electro-quasistatics and mechanics provide field equations within
erroelectric domains and jump conditions at the domain walls. These are completed by constitutive relations that account for the
lastic, dielectric, and piezoelectric properties of the ferroelectric variants. Domain walls are twin interfaces or phase boundaries,
or which it is known from the continuum theory of phase transitions that their velocity is, in the subsonic regime, not uniquely
etermined by the above system of equations (Abeyaratne and Knowles, 2006). Hence, the jump conditions are complemented by
n additional relation termed the kinetic relation1 between the normal velocity of the interface and the local driving traction. This
ramework, first developed in the mechanics literature within the thermo-mechanical setting (Truskinovsky, 1987; Abeyaratne and
nowles, 1990), was later extended to include the interaction with electromagnetic fields (Jiang, 1994b) and applied to ferroelectrics

n Jiang (1994a), Rosakis and Jiang (1995), Loge and Suo (1996), and Kessler and Balke (2006). Nevertheless, due to the presence
f moving surfaces of discontinuity, the sharp-interface model does not lend itself to numerical simulations, which is why in practice
ts use is limited to analytical works.

In parallel, diffuse-interface approaches based on the time-dependent Ginzburg–Landau (TDGL) model were developed to simulate
he evolution of the patterns formed by ferroelectric domains. Based on the early modeling of the structure of domains in
erromagnets by Landau and Lifshitz (1935), Ginzburg–Landau potentials—with multiwelled functions of the polarization vector
upplemented with polarization gradient terms—were used to model the dependence on temperature of properties of ferroelectric
omain walls, such as their thickness and energy, when close to the paraelectric–ferroelectric transition temperature (Zhirnov,
959; Bulaevskii and Ginzburg, 1964; Cao and Cross, 1991). Later, and initially in the physics and material science literature, these
orks were extended by the TDGL formulation with the purpose of investigating the paraelectric–ferroelectric transition with a

ocus on the velocity of the paraelectric–ferroelectric interface (Gordon, 1986) and the formation and evolution of patterns formed
y the different tetragonal variants. The latter arise in ferroelectrics quenched below the Curie temperature, as a consequence of
he paraelectric–ferroelectric transition (Nambu and Sagala, 1994; Ahluwalia and Cao, 2001; Yang and Chen, 1995; Hu and Chen,
997, 1998; Li et al., 2001). Afterwards, works in the mechanics literature dealt with the coupling of the TDGL equations—which
ere re-derived from variational principles (Zhang and Bhattacharya, 2005a) or microforce balance (Su and Landis, 2007)—with
lectrostatic Gauss’ law and the mechanical balance equations to simulate the evolution of ferroelectric domain patterns in response
o an applied electric field, i.e., polarization switching (Zhang and Bhattacharya, 2005a,b; Su and Landis, 2007; Vidyasagar et al.,
017; Indergand et al., 2020).

While these later works successfully accounted for features of the quasistatic 𝑝− 𝑒 hysteresis and strain butterfly curves, the
DGL model reaches its limitations when it comes to modeling rate effects as well as the material response to pulse switching
xperiments. For instance, TDGL simulations of polarization switching in response to applied electric field pulses of magnitude 𝑒sw
ield a switching time 𝜏𝑠 that scales as 𝜏𝑠 ∝ 1∕𝑒sw (Indergand, 2019) in contradiction to the experimental scaling 𝜏𝑠 ∝ e1∕𝑒sw (Merz,
956; Schultheiß et al., 2019), known as Merz law.

The above scaling that results from the TDGL model is expected, since the TDGL formulation postulates a linear relation between
he time evolution of the order parameter (polarization 𝒑) and the (negative of the) variational derivative of the free-energy density
, i.e.,

𝜇𝒑̇ = − 𝛿𝛹
𝛿𝒑

(1.1)

with the inverse mobility coefficient 𝜇 > 0. As will be discussed in Section 3, when the TDGL model is viewed as the regularization
of a sharp-interface model, the evolution law (1.1), also known as the Allen–Cahn equation (Allen and Cahn, 1979), amounts to

1 In the remainder of this article the term kinetic relation refers to the relation, defined for sharp-interface models, between the normal velocity of the interface
and the conjugate driving traction—the latter being defined as the quantity whose product with the normal velocity represents the dissipation rate (Abeyaratne
2

and Knowles, 2006).
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assuming a linear kinetic relation. As reviewed in the Appendix, this point is precisely in contrast with experimental evidence,
which shows that domain wall motion is governed by nonlinear kinetic relations. Hence, modeling time-dependent switching with
a diffuse-interface approach requires a new phase-field formulation, one that permits nonlinear domain wall kinetics. This is the
objective of the present work, which focuses on the theoretical foundation. Part II of this study will present numerical applications.

Domain evolution in ferroelectrics is a specific case of the general class of problems of structural phase transformations. These
nclude, e.g., stress-induced phase transformations (such as the martensite–austenite transformation) and deformation twinning. In
his more general setting, the question of how to formulate a regularized model that accounts for the nonlinear kinetics of interfaces
n solids was considered before. Hou et al. (1999) used a level-set method based on the Hamilton–Jacobi equation (Osher and
ethian, 1988) to model interface propagation with nonlinear and anisotropic kinetics. Alber and Zhu (2013) proposed a phase-field
odel for two-phase solid–solid transformations—termed the hybrid model because it shares properties of a Hamilton–Jacobi and a

parabolic equation—which permits nonlinear kinetics (see also Alber and Zhu, 2005, 2007). The model proposed in Section 4 of this
article may be interpreted as a reformulation of that of Alber and Zhu (2013), which is specialized for ferroelectrics and extended
to transformations between multiple phases (as opposed to only two in the works of Alber and Zhu 2005, 2007, and Alber and Zhu
2013). On a different front, Agrawal and Dayal (2015a,b) recently proposed a phase-field model that admits nonlinear kinetics. Their
evolution equation closely resembles the one of Hou et al. (1999), reformulated as a phase-field model instead of a level-set method.
However, the model of Agrawal and Dayal (2015a) does not lend itself easily to extensions to multiple phases (see Agrawal 2016).
Finally, Tůma et al. (2018) included a mixed-type dissipation potential—combining viscous and rate-independent contributions—in
the variational formulation of a phase-field model for displacive phase transformations such as martensitic transformations. This
furnishes a nonlinear kinetic law in the corresponding sharp-interface model, one that prescribes a threshold on the driving force for
interface motion. This model was later extended by including this feature in a multi-phase-field model for solid–solid transformations,
which rests upon a micromorphic formulation (Rezaee-Hajidehi and Stupkiewicz, 2021). While these two formulations introduce
in a neat fashion a specific nonlinearity in the kinetic relation (specifically, a threshold on the driving force), our goal here is to
include a kinetic relation with general nonlinearity so as to accurately account for experimentally measured kinetics. Within this
setting of diffuse-interface models with nonlinear kinetics for solid–solid transformations, the one we introduce in Section 4 is the
first to encompass multiple-phase transformations and embed arbitrary nonlinearity. It finds a particularly relevant application in
ferroelectric domain evolution, since experimental evidence confirms that the kinetic relation for domain walls is nonlinear. Further,
the proposed model allows to select different kinetics for the different types of domain walls (e.g., 90◦ and 180◦ domain walls in
etragonal ferroelectrics), as it is indicated by experimental results.

The remainder of this article is organized as follows. In Section 2 we introduce a sharp-interface model for ferroelectrics, which
onstitutes the basis for discussing the characteristics of the diffuse-interface models of subsequent sections. Section 3 reviews the
haracteristics of classical models based on the Allen–Cahn equation with regards to the properties (interfacial energy and thickness)
nd kinetics of 90◦ and 180◦ domain walls. In Section 4, we introduce a new phase-field model for ferroelectrics with general kinetics,
nd we discuss its properties with focus on the kinetics of the two types of domain walls. The main features of the new phase-field
odel are discussed in the conclusion in Section 5. Empirical data on the nonlinear kinetics of domain walls in barium titanate

oming from the physics literature are briefly reviewed in the Appendix. Numerical applications will be reported in Part II of this
tudy.

. The sharp-interface model for ferroelectrics

We begin by formulating a mesoscale continuum model for ferroelectrics. Domain walls are represented by sharp interfaces,
cross which some or all of the electro-mechanical fields exhibit discontinuities. The motion of a domain wall is governed by a
unction, termed the kinetic relation, which relates its normal velocity to the thermodynamic driving traction exerted on the interface.
he sharp-interface model introduced in this section serves as a reference to discuss the behavior of the diffuse-interface models of
ections 3 and 4.

In Section 2.1, we present the mechanical balance laws, Maxwell’s equations and evolution equation for a singular surface,
ormulated for a general continuum subject to electro-mechanical coupling. In Section 2.2, we introduce an expression for the
lectric enthalpy of ferroelectrics, from which the constitutive relations derive, and we discuss the functional form of the kinetic
elation appropriate for domain wall motion in ferroelectrics. The resulting model is specialized to rigid ferroelectrics in Section 2.3.

Note that we use the following notation of tensor calculus. For any vector fields 𝒗(𝒙, 𝑡) and 𝒘(𝒙, 𝑡), second-order tensor fields
(𝒙, 𝑡) and 𝑺(𝒙, 𝑡), and third- and fourth-order tensors T and U, respectively, we have in a Cartesian basis

{

(∇𝒗)𝑖𝑗 = 𝑣𝑖,𝑗 , (div𝑹)𝑖 = 𝑅𝑖𝑗,𝑗 , (𝑹𝒗)𝑖 = 𝑅𝑖𝑗𝑣𝑗 , (𝑹 ⋅ 𝑺)𝑖𝑗 = 𝑅𝑖𝑘𝑆𝑘𝑗 ,
𝑹 ∶ 𝑺 = 𝑅𝑖𝑗𝑆𝑖𝑗 , (TT ⋅ 𝒗)𝑖𝑗 = 𝑇𝑘𝑖𝑗𝑣𝑘, (T ∶ 𝑹)𝑘 = 𝑇𝑖𝑗𝑘𝑅𝑗𝑘, (U ∶ 𝑹)𝑖𝑗 = 𝑈𝑖𝑗𝑘𝑙𝑅𝑘𝑙 ,

(2.1)

here indices following a comma indicate spatial derivatives, and we use Einstein’s summation convention.

.1. General principles

We consider a deformable body  occupying the region 𝛺 ⊂ R3 in the presence of electrostatic fields filling R3. The deformation
f  is described by the displacement field 𝒖(𝑥, 𝑡) ∶ 𝛺 × R → R3. Given the small strains encountered in ferroelectric ceramics, we
3
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assume linearized kinematics and introduce the infinitesimal strain tensor 𝜺(𝒙, 𝑡) = (∇𝒖)sym = 1
2

[

∇𝒖 + (∇𝒖)T
]

. In addition, we restrict
ourselves to quasistatics both in the mechanical sense (i.e., inertia is neglected) and in the sense of electro-quasistatics (i.e., magnetic
induction is neglected) and assume that no free charges exist within 𝛺. The former is justified by the slow rates of interest, while
the latter is a common assumption for undoped ferroelectrics. Let (𝑡) be a regular surface of discontinuity for some or all of the
lectro-mechanical fields, which separates 𝛺 into 𝛺−(𝑡) and 𝛺+(𝑡). For 𝒙 ∈ (𝑡) we denote by 𝒏(𝒙, 𝑡) the unit normal to (𝑡) pointing
nto 𝛺+.

Classically, one derives the field equations in 𝛺 ⧵  and jump conditions on  by localizing the integral form of mechanical
alances and electrostatic equations on these two sets (Abeyaratne and Knowles, 1990; Jiang, 1994b; Gurtin et al., 2009; Kessler
nd Balke, 2006; Mueller et al., 2006). In the following, we directly use the local forms. Mechanical equilibrium reads

{

div𝝈 = 0 in 𝛺 ⧵ (𝑡),
[[𝝈]]𝒏 = 0 on (𝑡), (2.2)

here 𝝈(𝒙, 𝑡) denotes the Cauchy stress tensor. For a generic field 𝑤(𝒙, 𝑡) defined in 𝛺 ⧵  we define the jump [[𝑤(𝒙, 𝑡)]] =
+(𝒙, 𝑡) −𝑤−(𝒙, 𝑡), where 𝑤+(𝒙, 𝑡) and 𝑤−(𝒙, 𝑡) are the limiting values of 𝑤 at point 𝒙 on (𝑡), given by

𝑤+(𝒙, 𝑡) = lim
𝜉→0
𝜉>0

𝑤
(

𝒙 + 𝜉𝒏(𝒙, 𝑡)
)

and 𝑤−(𝒙, 𝑡) = lim
𝜉→0
𝜉<0

𝑤
(

𝒙 + 𝜉𝒏(𝒙, 𝑡)
)

. (2.3)

When it comes to the electrostatic fields, we denote by 𝒆(𝒙, 𝑡) the electric field, by 𝒅(𝒙, 𝑡) the electric displacement, and by
𝑚𝑎𝑡(𝒙, 𝑡) the polarization2 field. All three are defined over R3 × R and related by definition through

𝒅 = 𝜖0𝒆 + 𝒑mat, (2.4)

here 𝜖0 is the permittivity of vacuum. In the absence of free charges, Gauss’ law becomes
{

div𝒅 = 0 in 𝛺 ⧵ (𝑡),
[[𝒅]] ⋅ 𝒏 = 0 on (𝑡), (2.5)

hile the Maxwell–Faraday equation in the quasistatic regime yields
{

curl 𝒆 = 0 in 𝛺 ⧵ (𝑡),
[[𝒆]] × 𝒏 = 0 on (𝑡). (2.6)

In the context of ferroelectrics, surface  typically represents domain walls (separating domains with different polarizations) or
nterphases (separating different phases, e.g., tetragonal and rhombohedral phases). We use the index 𝛼 ∈  = {1,… , 𝑁} to identify

the 𝑁 different domains or phases. By taking 𝒆 and 𝜺 as the independent state variables, the constitutive relations for 𝝈 and 𝒅 derive
from the electric enthalpy density 𝑊𝛼(𝒆, 𝜺) associated with domain 𝛼 through, respectively,

𝝈 =
𝜕𝑊𝛼
𝜕𝜺

and 𝒅 = −
𝜕𝑊𝛼
𝜕𝑒

. (2.7)

e associate with the interface  a constant excess electric enthalpy density 𝛾, more simply referred to as interfacial energy. The
ombination of energy balance and entropy imbalance permits deriving the rate of entropy production 𝛿(𝒙, 𝑡) per unit area of  at
∈ (𝑡) as

𝛿 = 𝑓𝑉𝑛, (2.8)

here 𝑉𝑛(𝒙, 𝑡) is the normal velocity of  (taken positive in the direction of 𝒏), and 𝑓 (𝒙, 𝑡) is the thermodynamic driving traction
(Jiang, 1994b; Mueller et al., 2006)3 given by

𝑓 = 𝒏 ⋅ [[𝑪]]𝒏 + 𝛾𝜅. (2.9)

In (2.9), 𝜅(𝒙, 𝑡) denotes twice the mean curvature of  and 𝑪(𝒙, 𝑡) is the Eshelby tensor provided by

𝑪 = 𝑊𝛼𝑰 − ∇𝒖𝑇 ⋅ 𝝈 + 𝒆⊗ 𝒅 (2.10)

in the domain 𝛼, with 𝑰 the identity tensor.
Notice from (2.9) that 𝑓 and 𝑉𝑛 are work-conjugate. The motion of (𝑡) is hence specified by a relation between 𝑉𝑛 and 𝑓 ,

alled the kinetic relation. The latter may be interpreted as an additional constitutive relation, which embeds information about the
icroscopic processes underlying the motion of  and takes the form

𝑉𝑛 = 𝑉𝑛(𝑓 ), (2.11)

2 Note that we here use the notation 𝒑mat for the polarization (sometimes referred to as material polarization, see e.g., Schrade et al. (2013). Indeed, we reserve
the notation 𝒑 for what we call the spontaneous polarization), i.e., the polarization in a ferroelectric variant at zero stress and electric field (see Section 2.2).

3 Note that in Jiang (1994a) the driving traction at the interface is expressed with a different free-energy density, which reads, using our notations,
∼
𝑊 𝛼 (𝒑mat , 𝜺)

with associated constitutive relations 𝝈 = 𝜕
∼
𝑊 𝛼∕𝜕𝜺 and 𝒆 = 𝜕

∼
𝑊 𝛼∕𝜕𝒑mat. It is related to the electric enthalpy 𝑊𝛼 (𝒆, 𝜺) through 𝑊𝛼 (𝒆, 𝜺) =

∼
𝑊 𝛼 (𝒑mat , 𝜺) +

𝜖0
2
𝒆 ⋅ 𝒆− 𝒆 ⋅𝒅.

ewriting the driving force (4.8) in Jiang (1994a) in terms of 𝑊𝛼 , one obtains with the help of (2.2)–(2.6) the first term of (2.9). Alternatively, this expression
as been derived variationally by Mueller et al. (2006). The term 𝛾𝜅 in (2.9), is associated with curvature-driven motion and originates from the fact that 
s endowed with excess electric enthalpy. Derivations of this classical term can be found, e.g., in Gurtin (2000) for surfaces in three dimensions or in Gurtin
4

1993) for curves in two dimensions.
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where 𝑉𝑛 ∶ R → R is a function subject to the restriction

𝑉𝑛(𝑓 )𝑓 ≥ 0 for all 𝑓 ∈ R, (2.12)

hich ensures the positivity of the entropy production rate 𝛿 (required by the second law of thermodynamics). In general, several
urfaces of discontinuity between the different domains or phases evolve simultaneously. Interface energy 𝛾 and kinetic relation
̂𝑛(𝑓 ) are characteristic of each interface , i.e., they generally depend on the two phases separated by .

.2. Constitutive laws

We apply the model presented in Section 2.1 to the case of a ferroelectric ceramic, which exhibits, below the Curie temperature,
tetragonal crystalline structure with 𝑁 = 6 variants in three dimensions (3D), as is the case, e.g., for barium titanate (BaTiO3) and

ome compositions of lead zirconate titanate (PZT).

ulk constitutive behavior. Each variant possesses a spontaneous polarization 𝒑𝛼 which, in the orthonormal system (𝒆̃1, 𝒆̃2, 𝒆̃3) aligned
ith the principal crystallographic directions, is defined by

𝒑1 = −𝒑2 = 𝑝0𝒆̃1, 𝒑3 = −𝒑4 = 𝑝0𝒆̃2 and 𝒑5 = −𝒑6 = 𝑝0𝒆̃3, (2.13)

here 𝑝0 is the magnitude of the spontaneous polarization of the material. Due to the distortion between the cubic and tetragonal
hases, each variant exhibits a spontaneous strain 𝜺𝑠𝛼 , which we write as (Kamlah, 2001)

𝜺𝑠𝛼 = (𝜀𝑐 − 𝜀𝑎)
𝒑𝛼 ⊗ 𝒑𝛼
𝑝02

+ 𝜀𝑎𝑰 , (2.14)

here 𝜀𝑎 < 0 and 𝜀𝑐 > 0 are, respectively, the spontaneous longitudinal strain along the 𝑎-axes (orthogonal to the direction
f spontaneous polarization) and along the 𝑐-axis (along the direction of spontaneous polarization)4. With these features, each
erroelectric variant is modeled as a linear elastic, dielectric, and piezoelectric material with the following electric enthalpy:

𝑊𝛼(𝒆, 𝜺) = −1
2
𝒆 ⋅ 𝝐𝛼𝒆 − 𝒑𝛼 ⋅ 𝒆

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑊 dielec
𝛼 (𝒆)

+ 1
2
(𝜺 − 𝜺𝑠𝛼) ∶ C𝛼 ∶ (𝜺 − 𝜺𝑠𝛼)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑊 mech
𝛼 (𝜺)

−(𝜺 − 𝜺𝑠𝛼) ∶ E𝑇𝛼 ⋅ 𝒆
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑊 piezo
𝛼 (𝒆,𝜺)

, (2.15)

here 𝝐𝛼 , C𝛼 , and E𝛼 are the second-order dielectric tensor, fourth-order elasticity tensor, and third-order piezoelectric tensor (Brain-
rd, 1949), respectively, which satisfy the material symmetries of the tetragonal phase. The constitutive relations resulting from (2.7)
re

{

𝝈 = C𝛼 ∶ (𝜺 − 𝜺𝑠𝛼) − E𝑇𝛼 ⋅ 𝒆,
𝒅 = 𝝐𝛼𝒆 + 𝒑𝛼 + E𝛼 ∶ (𝜺 − 𝜺𝑠𝛼).

(2.16)

inetic relation. For tetragonal ferroelectrics, we distinguish between two types of domain walls: 180◦ domain walls separating
omains with antiparallel polarizations (i.e., interfaces between {𝛼, 𝛽} ∈ 180 = {{1, 2}, {3, 4}, {5, 6}}) and 90◦ domains walls, across

which polarization fields are orthogonal (these correspond to interfaces between {𝛼, 𝛽} ∈ 90 = {{𝛼, 𝛽} ∶ 𝛼, 𝛽 ∈ , 𝛼 ≠ 𝛽} ⧵ 180).
The dynamics of domain walls has been investigated both experimentally and theoretically in bulk single-crystals since the 50’s

and in epitaxial ferroelectric thin films since 2000. These works, reviewed in the Appendix, show that ferroelectrics exhibit two
regimes of domain wall dynamics. At low electric fields, the domain wall velocity is described by an inverse exponential law,

𝑉𝑛 = 𝑉∞ exp(−𝑒𝑎∕𝑒), (2.17)

here 𝑉∞ is a characteristic velocity and 𝑒𝑎 an activation field which varies as the inverse of temperature. This kinetics has
een interpreted as resulting from thermally-activated nucleation and growth of new domains along the domain wall (Miller and
einreich, 1960; Shin et al., 2007; Liu et al., 2016) or as a creep process of an interface moving in a pinning potential (Tybell

t al., 2002; Jo et al., 2009). As the electric field increases above a threshold field 𝑒𝑡, the wall kinetics experiences a transition to a
ifferent regime described by a power law,

𝑉𝑛 ∝ 𝑒𝜃 , (2.18)

here 𝜃 is an exponent that depends on the dimensionality of the system: 𝜃 = 1.4 has been reported for bulk BaTiO3 (Stadler and
achmanidis, 1963), while 𝜃 = 0.7 was found for PZT epitaxial thin films (Jo et al., 2009). Different theoretical explanations for that
econd regime have been proposed. On the one hand, in line with the work of Miller and Weinreich (1960), this second regime is
nterpreted in terms of the nucleation of domains at the domain boundary with thicknesses of multiple crystalline unit cells (Stadler
nd Zachmanidis, 1963). On the other hand, in the picture of an interface moving in a pinning potential, the change in kinetics is
een as a pinning–depinning transition to a non-activated regime, i.e., the wall moves without assistance of thermal fluctuation (Jo
t al., 2009).

4 𝜀𝑎 and 𝜀𝑐 can be uniquely defined from the lattice parameters of the tetragonal phase by using, e.g., Aizu’s definition of spontaneous strain (see Tagantsev
5

et al., 2010, Section 2.1.3), which in particular requires volume-preserving spontaneous strain, i.e., 2𝜀𝑎 + 𝜀𝑐 = 0.
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Fig. 1. Kinetic relation (2.19) with parameters corresponding to 180◦ domain walls in BaTiO3 (see the Appendix): 𝑉𝑙 = 100 cm∕s, 𝑓𝑎 = 3×105 J∕m3, 𝑓𝑡 = 1×105 J∕m3,
𝜃 = 1.4.

Relations (2.17) and (2.18) were obtained on plate-like samples with out-of-plane polarization and electric field. In this
configuration, the driving traction reduces to 𝑓 = 2𝑝0𝑒, i.e., it is proportional to the applied electric field 𝑒. Therefore, the
experimental evidence discussed above indicates that the motion of domain walls is governed by the following kinetic relation:

𝑉𝑛(𝑓 ) =

{

𝑉𝑙 sgn(𝑓 ) exp(−𝑓𝑎∕|𝑓 |) for |𝑓 | ≤ 𝑓𝑡,
𝑉ℎ sgn(𝑓 )

(

|𝑓 |∕𝑓𝑡
)𝜃 for |𝑓 | > 𝑓𝑡,

(2.19)

here 𝑉𝑙, 𝑉ℎ, 𝑓𝑎, 𝑓𝑡 and 𝜃 are referred to as the domain wall kinetics parameters and satisfy 𝑉𝑙 exp(−𝑓𝑎∕𝑓𝑡) = 𝑉ℎ to ensure the
ontinuity of 𝑉𝑛 at 𝑓𝑡. Such a kinetic relation is plotted in Fig. 1 with the parameters corresponding to 180◦ walls in BaTiO3. As
riefly reviewed in the Appendix, experiments indicate that the kinetic relation for 90◦ domain walls differs from that of 180◦ walls
ither in the coefficients of (2.19) or in the functional form of 𝑉𝑛(𝑓 ), depending on the ferroelectric material.

.3. Specialization to rigid ferroelectrics

Our goal is a phase-field model that displays the nonlinear kinetics presented in Section 2.2, in contrast to the linear kinetics
hat the classical Allen–Cahn equation furnishes. To this end, we make two simplifying assumptions: first, the ferroelectric ceramic
s assumed mechanically rigid, so that mechanical couplings are neglected, and, second, the permittivity is assumed isotropic. These
ssumptions allow us to work in a clean setting, where the new features of the general kinetics model are clearly revealed. As they
re not necessarily valid in practice, they will be lifted in future work, when the objective is to provide quantitative predictions. In
his simplified setting, the electric enthalpy density (2.15) of each phase 𝛼 reduces to that of a dielectric,

𝑊𝛼(𝒆) = − 𝜖
2
𝒆 ⋅ 𝒆 − 𝒑𝛼 ⋅ 𝒆, (2.20)

here the scalar permittivity 𝜖 is independent of the phase. Consequently, the constitutive relation (2.16)2 reads

𝒅 = 𝜖𝒆 + 𝒑𝛼 . (2.21)

n view of (2.5)2, (2.6)2 and (2.15), the driving traction (2.9) is rewritten in the simplified form

𝑓 = −⟨𝒆⟩ ⋅ [[𝒑𝛼]] + 𝛾𝜅, (2.22)

here ⟨𝒆⟩ = (𝒆+ + 𝒆−)∕2.

. A phase-field model based on the Allen–Cahn equation

Given the numerical difficulties related to the implementation of sharp-interface models, the phase-field method has been a
ethod of choice for modeling the evolution of domains in ferroelectric ceramics. Classically, the order parameter is chosen as

he material polarization 𝒑mat(𝒙, 𝑡) (see e.g., Zhang and Bhattacharya, 2005a; Su and Landis, 2007; Vidyasagar et al., 2017) or the
pontaneous polarization 𝒑(𝒙, 𝑡) (Schrade et al., 2013, 2014), and evolves according to the Allen–Cahn equation.

Anticipating that the phase-field model with general kinetics—introduced in Section 4—uses 𝒑 as the order parameter, we
ntroduce a phase-field model based on the Allen–Cahn equation written in terms of 𝒑, with features of the sharp-interface model
6

f Section 2.3. It serves as a regularized benchmark model to later clarify the new features of the general kinetics model. In
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particular, we show that the Allen–Cahn equation yields a linear kinetic relation in the limit of low applied electric fields and
that the regularization length has an upper bound for properly approximating the sharp-interface model.

For notational clarity, we use a hat (̂) to highlight all quantities (regularized energy, domain wall properties, and kinetics)
ssociated with the Allen–Cahn-based phase-field model as opposed to their counterparts for the general kinetic model later discussed
n Section 4.

We formulate the model in Section 3.1 and characterize the properties (interface width, energy, and kinetics) of 180◦ and 90◦

omain walls in Section 3.2 before a brief summary in Section 3.3.

.1. Model formulation

regularized electric enthalpy. The phase-field model is based on a regularized version 𝛹̂ (𝒆,𝒑,∇𝒑) of the electric enthalpy (2.20),
hich induces continuous variations of 𝒑 across domain walls. We here adopt the electric enthalpy density of Schrade et al. (2013)

pecialized to rigid ferroelectrics, which is given by

𝛹̂ (𝒆,𝒑,∇𝒑) = − 𝜖
2
𝒆 ⋅ 𝒆 − 𝒑 ⋅ 𝒆

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
𝑊 (𝒆,𝒑)

+ 𝐶̂𝑠𝜓̂𝑠(𝒑) +
𝐶̂𝑔
2
|∇𝒑|2, (3.1)

here 𝐶̂𝑠 and 𝐶̂𝑔 are constants, and 𝜓̂𝑠(𝒑) is a multi-well separation potential with minima at the six spontaneous polarization states
𝒑𝛼 . Letting 𝒑 = 𝒑∕𝑝0 be the dimensionless spontaneous polarization, 𝜓̂𝑠 is defined as

𝜓̂𝑠(𝒑) = 𝜓𝑠

(

𝒑
𝑝0

)

with 𝜓𝑠(𝒑) = 𝑎0 + 𝑎1
3
∑

𝑖=1
𝑝2𝑖 + 𝑎2

3
∑

𝑖=1
𝑝4𝑖 + 𝑎3

(

𝑝21𝑝
2
2 + 𝑝

2
1𝑝

2
3 + 𝑝

2
2𝑝

2
3
)

+ 𝑎4
3
∑

𝑖=1
𝑝6𝑖 (3.2)

eing a dimensionless sextic polynomial. As shown in Schrade et al. (2013), the parameters {𝑎𝑖}𝑖=0…4 are uniquely determined by
equiring (i) that the minima of 𝜓𝑠 are located at {𝒑𝛼}𝛼=1…6, (ii) that the 180◦ barrier is normalized, i.e.,

𝜓𝑠(𝒆̃1) = 0,
𝜕𝜓𝑠
𝜕𝑝1

(𝒆̃1) = 0, and 𝜓𝑠(𝟎) = 1, (3.3)

and (iii) by specifying the relative height 0 < ℎ̂90 < 1 and location 𝜒̂ of the 90◦ barrier through5

𝜓𝑠
(

𝜒̂(𝒆̃1 + 𝒆̃2)
)

= ℎ̂90 and
𝜕𝜓𝑠
𝜕𝑝1

(

𝜒̂(𝒆̃1 + 𝒆̃2)
)

= 0. (3.4)

onsidering the cubic symmetry of 𝜓𝑠, (3.3) and (3.4) are sufficient to ensure that conditions (i) and (iii) are satisfied for all six
wells and all twelve 90◦ barriers. The choice of ℎ̂90 and 𝜒̂ in relation to the properties of 90◦ domain walls will be discussed in
Section 3.2.

Governing equations. In the regularized phase-field model all fields are continuous over , so the differential forms of Gauss’ law
(2.5)1 and Faraday’s Eq. (2.6)1 apply over all 𝛺. Akin to (2.7), the electric displacement derives from 𝛹̂ as

𝒅 = − 𝜕𝛹̂
𝜕𝒆

= − 𝜕𝑊
𝜕𝒆

= 𝜖𝒆 + 𝒑. (3.5)

These equations are supplemented by an evolution law for 𝒑, which is usually taken as the Allen–Cahn gradient-descent equation:

𝜇𝒑̇ = − 𝛿𝛹̂
𝛿𝒑

= − 𝜕𝛹̂
𝜕𝒑

+ div
(

𝜕𝛹̂
𝜕∇𝒑

)

. (3.6)

n view of (3.1), (3.6) becomes

𝜇𝒑̇ = 𝒆 − 𝐶̂𝑠
𝜕𝜓̂𝑠
𝜕𝒑

+ 𝐶̂𝑔∇2𝒑. (3.7)

numerical characteristic electric field. In the sharp-interface model, the spontaneous polarization takes the discrete values 𝒑𝛼
corresponding to the different domains or phases. In the regularized model, based on the electric enthalpy (3.1), the spontaneous
polarization 𝒑 is a continuously varying variable that plays the role of a vector phase field. Away from the interface, the Laplacian
erm in (3.7) approximately vanishes and equilibrium values of 𝒑 are defined by

𝜕𝜓𝑠
𝜕𝒑

(𝒑) = 𝒆
𝐶̂𝑠∕𝑝0

. (3.8)

hereas large departures of 𝒑 from the values 𝒑𝛼 are normal in the transition regions of domain walls, the spontaneous polarization
shall remain close to one of the 𝒑𝛼 inside the domains. In view of (3.8), this is the case under the condition that

|𝒆|≪ 𝑒𝑐 , (3.9)

5 Note that to ensure 𝑎 < 0 and 𝑎 > 0 we have the following constraints: 1 − 2𝜒̂2 < ℎ̂ < 1 − 2𝜒̂6 (Schrade et al., 2013).
7
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Fig. 2. Polarization profiles of two 180◦ domain walls: (a) charge-neutral wall, (b) charged wall. The profile in (a) corresponds to the solution (3.12) of (3.11)
or 𝑒 = 0, and the profile in (b) is the solution of (3.23) under the equilibrium condition 𝑑 = 0.

where 𝑒𝑐 = 𝐶̂𝑠∕𝑝0 is a numerical characteristic electric field. In practice, (3.9) is ensured by choosing a sufficiently large 𝐶̂𝑠. As we
will see in Section 3.2, that is equivalent to selecting a sufficiently small regularization length.

Note that the fulfillment of (3.9) prevents the nucleation of new domains of polarization from (3.7). Therefore, domain
nucleation, which is frequently observed in experiments, must be included through an explicit additional condition.

3.2. Analytical solutions for 180◦ and 90◦ domain walls

In this section, we compute analytical solutions for straight 180◦ and 90◦ domain walls, both in equilibrium and in steady-state
motion. When adopting the form of traveling waves, these solutions provide relations between the numerical parameters 𝐶̂𝑠, 𝐶̂𝑔 ,
nd 𝜇 of the phase-field model and the properties of domain walls (width, interfacial energy, and kinetic relation).

.2.1. Equilibrium profile of a neutral 180◦ domain wall
We consider the one-dimensional (1D) case of a 180◦ domain wall with spontaneous polarization 𝒑(𝒙, 𝑡) = 𝑝2(𝑥1, 𝑡)𝒆̃2 varying from

he equilibrium close to 𝑝0𝒆̃2 at 𝑥1 → −∞ to the one near −𝑝0𝒆̃2 at 𝑥1 → +∞, as schematically shown in Fig. 2(a). This configuration
s referred to as neutral 180◦ domain wall due to the continuity of the normal component of 𝒑 across the wall, which implies the
bsence of bound charges in the wall. In view of (3.5) and noting that the polarization profile is divergence-free, we can assume a
niform electric field 𝒆 = 𝑒𝒆̃2 while satisfying Gauss’ law (2.5)1.

We look for a traveling wave solution of the form

𝑝1(𝑥1, 𝑡) = 0, 𝑝2(𝑥1, 𝑡) = 𝑝0𝑝̌2(𝑥1 − 𝑣180𝑡), (3.10)

here 𝜉 = 𝑥1 − 𝑣180𝑡 is the co-moving coordinate and 𝑣180 the velocity of the wall. We denote by 𝜓̂180(𝑝2) = 𝜓𝑠(𝑝2𝒆̃2) the section of
the separation potential relevant for this situation. Inserting (3.10) into (3.7) yields an ordinary differential equation for 𝑝̌2(𝜉):

⎧

⎪

⎨

⎪

⎩

𝐶̂𝑔𝑝0𝑝̌2,𝜉𝜉 + 𝜇𝑣180𝑝0𝑝̌2,𝜉 −
𝐶̂𝑠
𝑝0
𝜓̂ ′
180(𝑝̌2) = −𝑒,

𝜓̂ ′
180

(

𝑝̌2(±∞)
)

= 𝑒𝑝0∕𝐶̂𝑠,
(3.11)

where (3.11)2 are the far-field boundary conditions at ±∞, and the prime denotes the derivative of a single-variable function with
respect to its variable.

The equilibrium profile: 𝑒 = 0. In the absence of an electric field, (3.11) admits a static analytical solution with 𝑣180 = 0 (Cao and
Cross, 1991):

𝑝̌eq
2 (𝜉) =

sinh(𝜉∕𝜆̂180)
√

𝐴̂ + sinh2(𝜉∕𝜆̂180)
, with 𝐴̂ =

3𝑎4 + 𝑎2
2𝑎4 + 𝑎2

and 𝜆̂180 = 𝑝0

√

√

√

√

𝐶̂𝑔
𝐶̂𝑠(6𝑎4 + 2𝑎2)

. (3.12)

ased on this equilibrium profile, we relate 𝐶̂𝑠 and 𝐶̂𝑔 to the interface width and energy. We define the width 𝑙 of the 180◦ domain
wall (see Fig. 2) as

𝑙 = 2∕𝑝̌eq
2,𝜉 (0) (3.13)

and its interfacial energy as

𝛤 =
+∞

𝛹̂ (𝒆, 𝒑̌eq,∇𝒑̌eq)d𝜉 −
+∞

𝑊 (𝒆,𝒑sharp)d𝜉, (3.14)
8

∫−∞ ∫−∞
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where

𝒑sharp(𝜉) =

{

+𝑝0𝒆̃2 for 𝜉 < 0,
−𝑝0𝒆̃2 for 𝜉 ≥ 0

(3.15)

s the sharp-interface solution of the 180◦ domain wall. Noting that 𝒆 is uniform and equal in both the phase-field and sharp-interface
ormulations and that the profile 𝒑̌eq(𝜉) is symmetric, (3.14) reduces to

𝛤 = ∫

+∞

−∞

(

𝐶̂𝑠𝜓̂𝑠(𝒑̌
eq) +

𝐶̂𝑔
2
|∇𝒑̌eq

|

2
)

d𝜉 = ∫

+∞

−∞

(

𝐶̂𝑠𝜓̂180
(

𝑝̌eq
2 (𝜉)

)

+
𝐶̂𝑔𝑝20𝑝̌

eq
2,𝜉 (𝜉)

2

2

)

d𝜉. (3.16)

he first integral of (3.11) in the equilibrium case (𝑒 = 0, 𝑣180 = 0), obtained by multiplying (3.11) by 𝑝̌eq
2,𝜉 and integrating from

𝜉 = −∞ to some arbitrary 𝜉, yields

2𝐶̂𝑠𝜓̂180
(

𝑝̌𝑒𝑞2 (𝜉)
)

= 𝐶̂𝑔𝑝
2
0
(

𝑝̌𝑒𝑞2,𝜉 (𝜉)
)2. (3.17)

rom (3.17) we extract 𝑝̌𝑒𝑞2,𝜉 (𝜉) =
√

2𝐶̂𝑠𝜓̂180
(

𝑝̌𝑒𝑞2 (𝜉)
)

∕(𝐶̂𝑔𝑝20), which we exploit for the change of variable 𝜉 → 𝑝2 in (3.16). This yields

𝛤 = ∫

+∞

−∞
2𝐶̂𝑠𝜓̂180

(

𝑝̌𝑒𝑞2 (𝜉)
)

d𝜉 =
√

2𝐶̂𝑠𝐶̂𝑔𝑝0𝜂̂, (3.18)

here 𝜂̂ = ∫ 1
−1 𝜓̂180(𝑝) d𝑝 = ∫ 1

−1

√

𝑎0 + 𝑎1𝑝
2 + 𝑎2𝑝

4 + 𝑎4𝑝
6 d𝑝 is a numerical coefficient. Further, combining (3.13) and (3.17) lets us

xpress the width 𝑙 as

𝑙 = 𝑝0
√

2𝐶̂𝑔∕𝐶̂𝑠. (3.19)

onversely, (3.18) and (3.19) allows us to determine 𝐶̂𝑔 and 𝐶̂𝑠 from 𝛤 and 𝑙 via

𝐶̂𝑔 =
𝛤 𝑙
2𝜂̂𝑝20

and 𝐶̂𝑠 =
𝛤
𝜂̂𝑙
. (3.20)

e note here that the interfacial energy 𝛤 shall be taken as the physical interfacial energy 𝛾 introduced in the sharp interface model,
hile 𝑙 is viewed as a numerical parameter. Indeed, we take the perspective that the objective of the phase-field model is to properly
ccount for the evolution of the pattern formed by domains or phases. In particular, the accuracy of the polarization profile within
he diffuse interface (as compared to the physical profile) is of minor importance; instead, we aim to accurately capture the time
volution of the trace of domain walls. An accurate value of 𝛤 to represent the interfacial energy is important to the extent that
t is expected from the sharp interface model (see (2.9) and (2.19)) to affect the evolution of a curved interface. This latter point
an be confirmed numerically. By contrast, 𝑙 does not directly affect the evolution of the domain wall, but its choice results from a
ompromise between the following points:

• Because a diffuse interface needs sufficient numerical resolution (e.g., it should be discretized with typically no less than three
points across its width in FFT-based schemes Vidyasagar et al. 2017), 𝑙 cannot be taken too small.

• On the other hand, 𝑙 cannot be taken too large either, because the characteristic electric field 𝑒𝑐 = 𝐶̂𝑠∕𝑝0 = 𝛤∕(𝜂̂𝑙𝑝0) introduced
in must be sufficiently large for (3.9) to be satisfied with the physical electric field (notably to ensure that 𝒑 remains close to
one of the 𝒑𝛼 inside domains).

3.2.2. Equilibrium profile of a charged 180◦ domain wall
The other characteristic 180◦ domain wall is the so-called charged wall, in which the polarization is orthogonal to the domain

wall (head-to-head or tail-to-tail). This configuration is usually not considered in the literature (see e.g. Cao and Cross, 1991; Schrade
et al., 2013; Flaschel and De Lorenzis, 2020), because in the absence of free charges it is associated with high electric fields (of
the order of 𝑝0∕𝜖). As such, it implies high energies (see (3.1)) and is hence considered unstable in general. While it is true that
ferroelectric domains evolve in such a way as to minimize the existence of charged 180◦ domain walls, these cannot be completely
disregarded. Indeed, charged portions of domain walls exist if one considers, e.g., two domains of antiparallel polarization separated
by a closed boundary (see Fig. 3).

This is the natural scenario of a newly nucleated domain in its parent domain.
Let us consider the 1D configuration of a charged 180◦ domain wall with spontaneous polarization 𝒑(𝒙, 𝑡) = 𝑝1(𝑥1, 𝑡)𝒆̃1 varying

from the equilibrium close to 𝑝0𝒆̃1 at 𝑥1 → −∞ to the one near −𝑝0𝒆̃1 at 𝑥1 → +∞ (see Fig. 2(b)). We assume that the applied electric
ield is zero in the 𝒆̃2-direction, which implies, 𝒆(𝑥1, 𝑡) = 𝑒1(𝑥1, 𝑡)𝒆̃1. As a result, the electric displacement is along the 𝒆̃1-direction
nd, because of (2.5)1, it is uniform. Assuming further that it is time-independent, we write 𝒅(𝑥1, 𝑡) = 𝑑𝒆̃1 where 𝑑 is constant. This
llows us to write the non-zero electric field component as

𝑒1(𝑥1, 𝑡) =
𝑑 − 𝑝1(𝑥1, 𝑡)

𝜖
. (3.21)

We look for a traveling wave solution of the form

𝑝 (𝑥 , 𝑡) = 𝑝 𝑝̌ (𝑥 − 𝑣𝑐 𝑡), (3.22)
9
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Fig. 3. Sketch of an elliptical 180◦ inclusion featuring both charge-neutral and charged domain walls.

here 𝜉 = 𝑥1−𝑣𝑐180𝑡 is the co-moving coordinate, 𝑣𝑐180 the velocity of the charged wall, and 𝑝̌1(𝜉) is a smooth, differentiable function.
nserting (3.22) into (3.7) and resorting to (3.21) yields the ordinary differential equation for 𝑝̌1(𝜉),

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐶̂𝑔𝑝0𝑝̌1,𝜉𝜉 + 𝜇𝑣𝑐180𝑝0𝑝̌1,𝜉 −
𝐶̂𝑠
𝑝0
𝜓̂𝑐180

′(𝑝̌1) = −𝑑
𝜖
,

𝜓̂𝑐180
′(𝑝̌1(±∞)

)

=
𝑝0𝑑

𝜖𝐶̂𝑠
,

(3.23)

here we have introduced the effective double well potential 𝜓̂𝑐180 for charged walls as

𝜓̂𝑐180(𝑝) = 𝜓̂180(𝑝) +
𝑝20

2𝜖𝐶̂𝑠
𝑝2 = 𝜓̂180(𝑝) +

𝜂̂𝑙𝑝20
2𝜖𝛤

𝑝2 (3.24)

with 𝜓̂180(𝑝) the cut of 𝜓𝑠(𝒑) defined in Section 3.2.1.

he equilibrium profile: 𝑑 = 0. In the absence of an electric displacement, (3.23) admits a static solution with 𝑣𝑐180 = 0. In this case,
(3.23) differs from (3.11) only through the effective double-well potential 𝜓̂𝑐180, which replaces 𝜓̂180. The fact that, physically, the
alues of 𝑝̌1 at infinity given by (3.23)2 shall remain close to 1 requires that 𝜓̂𝑐180 differs little from 𝜓̂180, i.e.,

𝜁 =
𝜂̂𝑙𝑝20
𝜖𝛤

≪ 1. (3.25)

q. (3.25) can be seen as an upper bound on 𝑙, and it is nothing but condition (3.9) with |𝒆| ∼ 𝑝0∕𝜖, which corresponds to the typical
electric field that develops in charged domain walls.

One can show that under the assumption (3.25) the width and interfacial energy of a charged 180◦ domain wall are approximately
equal to those of the corresponding neutral walls given by (3.18) and (3.19), respectively. In other words, width and interfacial
energy of a 180◦ domain wall are essentially independent of the relative orientation of the wall and the polarization directions.

3.2.3. Velocity of 180◦ domain walls
We proceed to consider the steady-state velocity of 180◦ domain walls, beginning with neutral ones and later concluding the

solution for charged ones. Taking the first integral of (3.11)1, we express the velocity 𝑣180 of the domain wall as

𝑣180 =
𝐶̂𝑠

[

𝜓̂180
(

𝑝̌2(+∞)
)

− 𝜓̂180
(

𝑝̌2(−∞)
)]

− 𝑒
[

𝑝̌2(+∞) − 𝑝̌2(−∞)
]

𝜇𝑝0 ∫
+∞
−∞ (𝑝̌2,𝜉 )2 d𝜉

, (3.26)

hich involves the unknown function 𝑝̌2(𝜉). Under the assumption that (3.9) is satisfied, the traveling wave problem (3.11) with
𝑒 ≠ 0 is a perturbation of the case 𝑒 = 0. Hence, to first order in 𝑒∕𝑒𝑐 the velocity (3.26) can be approximated using the equilibrium
profile 𝑝̌𝑒𝑞2 , which yields

𝑣180 ≈
2𝑒

𝜇𝑝0 ∫
+∞
−∞ (𝑝̌𝑒𝑞2,𝜉 )

2 d𝜉
= 𝑐180𝑓180, (3.27)

here 𝑐180 = 𝑙∕(2𝜂̂𝜇𝑝20) is a kinetic coefficient, and 𝑓180 = 2𝑒𝑝0 denotes the value of the driving traction (2.22) for a straight, neutral
180◦ domain wall.6 (In deriving (3.27), we used (3.17) and performed the same change of variable in the integral as in (3.18).) For
charged domain walls, the driving traction (2.22) reads 𝑓 𝑐180 = 2𝑝0𝑑∕𝜖. One can show that, under the assumption (3.25), the linear
kinetic relation (3.27) holds for charged domain walls as well, where it reads 𝑣𝑐180 ≈ 𝑐180𝑓 𝑐180. We point out that the above analysis,
f course, presumes that stable motion of a domain wall at constant speed is feasible. While this is realistic for neutral 180◦ domain
alls, the high energy associated with their charged counterparts precludes their stable motion over significant times in general.

6 For an analogous derivation with mechanical coupling accounted for, see Indergand et al. (2020).
10
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Fig. 4. Polarization profiles of two 90◦ domain walls: (a) charge-neutral wall, (b) charged wall. The profile in (a) corresponds to the solution of (3.28) for 𝑒 = 0,
while that in (b) is for the equilibrium condition 𝑑 = 0.

3.2.4. Equilibrium profile of a neutral 90◦ domain wall
For studying 90◦ domain walls, the basis of spontaneous polarizations {𝒑𝛼}𝛼∈(1,6) defined in (2.13) and the multi-well potential

(3.2) are rotated by +𝜋∕4 around the direction 𝒆̃3. We consider a 1D head-to-tail 90◦ domain wall with spontaneous polarization
𝒑(𝒙, 𝑡) = 𝑝2(𝑥1, 𝑡)𝒆̃2 + 𝑝1(𝑥1, 𝑡)𝒆̃1, varying from the equilibrium close to 𝑝0(𝒆̃1 + 𝒆̃2)∕

√

2 at 𝑥1 → −∞ to the one near 𝑝0(𝒆̃1 − 𝒆̃2)∕
√

2
at 𝑥1 → +∞ (see Fig. 4(a)). When looking for an equilibrium or a traveling wave solution of (3.7), the 𝑝1-component appears to
vary across the domain wall. As a result, for Gauss’ law (2.5)1 to be satisfied, the electric field is non-uniform and the polarization
profile does not admit an analytical solution.

Therefore, we compute an approximation of the 90◦ domain wall profile, by assuming that 𝑝1 = 𝑝0∕
√

2 remains constant across
the interface. This assumption is all the more valid as the 90◦ barrier in 𝜓𝑠 is located along the straight line connecting two
orthogonal polarization states, i.e., 𝜒̂ = 0.5 in (3.4). As mentioned in Section 3.2.1, in the phase-field formulation we do not aim for
an accurate representation of the polarization profile across domain walls, which justifies considering 𝜒̂ as a numerical parameter
that may be freely chosen. Under this assumption, we suppose that we apply a uniform electric field 𝒆 = 𝑒𝒆̃2 while satisfying Gauss’
law (2.5)1. Akin to the 180◦ domain wall (cf. (3.10)), we seek a traveling wave solution 𝑝2(𝑥1, 𝑡). Inserting (3.10)2 in (3.7), where
𝜓̂𝑠 has been properly rotated, yields the following ordinary differential equation for 𝑝̌2(𝜉):

⎧

⎪

⎨

⎪

⎩

𝐶̂𝑔𝑝0𝑝̌2,𝜉𝜉 + 𝜇𝑣90𝑝0𝑝̌2,𝜉 −
𝐶̂𝑠
𝑝0
𝜓̂ ′
90(𝑝̌2) = −𝑒,

𝜓̂ ′
90
(

𝑝̌2(±∞)
)

= 𝑒𝑝0∕𝐶̂𝑠,
(3.28)

where 𝑣90 denotes the corresponding velocity. The only difference to (3.11) lies in the section 𝜓̂90(𝑝2) of 𝜓𝑠(𝒑), given by

𝜓̂90(𝑝2) = 𝜓𝑠

(

1∕
√

2 − 𝑝2
√

2
,
1∕

√

2 + 𝑝2
√

2
, 0

)

= 𝑎∗0 + 𝑎
∗
1𝑝

2
2 + 𝑎

∗
2𝑝

4
2 + 𝑎

∗
4𝑝

6
2, (3.29)

where

⎧

⎪

⎨

⎪

⎩

𝑎∗0 = 𝑎0 + 𝑎1∕2 + 𝑎2∕8 + 𝑎3∕16 + 𝑎4∕32, 𝑎∗1 = 𝑎1 + 3𝑎2∕2 − 𝑎3∕4 + 30𝑎4∕32,

𝑎∗2 = 𝑎2∕2 + 𝑎3∕4 + 60𝑎4∕32, and 𝑎∗4 = 𝑎4∕4.
(3.30)

Here and in the following, superscript ∗ indicates quantities associated with 90◦ domain walls.

The equilibrium profile: 𝑒 = 0. For 𝑒 = 0, (3.28) admits an analytical solution 𝑝̌eq∗
2 (𝜉) similar to (3.12). Noting that 𝑝̌eq∗

2 (𝜉) varies from
−1∕

√

2 at 𝜉 → −∞ to 1∕
√

2 at 𝜉 → ∞, we define the width of the 90◦ domain wall as

𝑙90 =

√

2
𝑝̌eq∗
2 (0)

. (3.31)

The interfacial energy 𝛤90 has the same definition as (3.14), where now 𝒑̌eq and 𝒑sharp are replaced by the phase-field and sharp-
interface profiles of the 90◦ domain wall, respectively. The derivation (3.16)–(3.18) holds with 𝜓̂90(𝑝2) in place of 𝜓̂180(𝑝2), and we
obtain

𝛤90 =
𝜂̂∗
𝛤 , (3.32)
11
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with 𝜂̂∗ = ∫ 1∕
√

2

−1∕
√

2
𝜓̂90(𝑝2) d𝑝 = ∫ 1∕

√

2

−1∕
√

2

√

𝑎∗0 + 𝑎
∗
1𝑝

2 + 𝑎∗2𝑝
4 + 𝑎∗4𝑝

6 d𝑝. In addition, re-writing (3.17) for the 90◦ domain wall lets us

compute 𝑝̌eq∗
2,𝜉 (𝜉) and derive

𝑙90 =
𝑙

√

2ℎ̂90
. (3.33)

.2.5. Equilibrium profile of a charged 90◦ domain wall
The charged 90◦ domain wall corresponds to the head-to-head (or tail-to-tail) configuration (see Fig. 4(b)). The transition from

eutral to charged 90◦ domain walls is in all points equivalent to the transition from neutral to charged 180◦ domain walls. To
ummarize the main point, for charged 90◦ domain walls an effective potential

𝜓̂𝑐90(𝑝1) = 𝜓̂90(𝑝1) +
𝜂̂𝑙𝑝20
2𝜖𝛤

𝑝21 (3.34)

ppears in the traveling wave solution (as in (3.23)). Likewise, the width and interfacial energy of the charged 90◦ -domain wall
re approximately equal to those of the neutral wall under condition (3.25).

.2.6. Velocity of 90◦ domain walls
Following the same procedure as for 180◦ domain walls, the first integral of (3.28) allows us to write 𝑣90 as an expression

nalogous to (3.26), where one substitutes 𝜓̂90 for 𝜓̂180. In the regime 𝑒 ≪ 𝑒𝑐 , 𝑝̌2 can be approximated by the equilibrium profile of
(3.28), which yields

𝑣90 ≈

√

2𝑒
𝜇𝑝0 ∫

+∞
−∞ (𝑝̌eq∗

2,𝜉 )
2 d𝜉

= 𝑐90𝑓90, (3.35)

here 𝑐90 = 𝑙∕(2𝜂̂∗𝜇𝑝20) and 𝑓90 =
√

2𝑒𝑝0 denote, respectively, the kinetic coefficient and driving traction associated with the 90◦

omain wall. Under the condition (3.25), the charged 90◦ domain wall shows the same linear kinetics, with coefficient 𝑐90, as its
eutral counterpart.

.3. Summary of the properties of 180◦ and 90◦ domain walls

nterface energy and width. We have computed exactly the interfacial energy 𝛤 and width 𝑙 of a neutral 180◦ domain wall and found
hat these can be arbitrarily prescribed by choosing 𝐶̂𝑔 and 𝐶̂𝑠 according to (3.20). While we expect to use the physical domain
all energy for 𝛤 , 𝑙 is viewed as a numerical parameter to be chosen in light of considerations discussed above (the more stringent

ondition on 𝑙 being (3.25)). The charged 180◦ domain wall has approximately the same equilibrium properties as the neutral one,
s long as (3.25) is satisfied.

For the classical head-to-tail 90◦ domain wall, we have derived an approximation of its interfacial energy 𝛤90 and width 𝑙90,
whose accuracy is best for 𝜒̂ = 0.5. The ratio 𝛤90∕𝛤 can be set according to its physical value by independently setting ℎ̂90. Indeed,
(3.32) indicates that this ratio is equal to that of the integrals over the 90◦ and 180◦ barriers in the multi-well potential 𝜓𝑠(𝒑).
Finally, the width 𝑙90 is automatically determined by (3.33) and cannot be set independently. Note that, because we view 𝑙90 as a
numerical regularization length, there is no need to prescribe it independently. However, where it is viewed as the physical width of
a 90◦ domain wall, the phase-field framework can be modified such that 𝑙90 is chosen in agreement with its physical value (Flaschel
and De Lorenzis, 2020).

Kinetics. We have found that, in the regime |𝒆| ≪ 𝑒𝑐 , the Allen–Cahn evolution Eq. (3.6) implies approximately a linear kinetic
relation between the velocity of domain walls and the driving traction. In addition, the 180◦ and 90◦ domain walls have different
kinetic coefficients related by the ratio 𝜂̂∗∕𝜂̂. Whereas the choice of inverse mobility 𝜇 allows us to independently set one kinetic
coefficient, the second one is automatically determined by the ratio of interfacial energies (see (3.32) and (3.35)).

This linear kinetics is not representative of the complex nonlinear kinetics of domain walls, which experiments and atomic-scale
modeling discussed in Section 2.2 show. Yet, a proper account of the kinetics of domain walls is important in two respects. First,
different kinetics yield different microstructure evolution,7 hence a proper account of the kinetics is needed for obtaining an accurate
description of switching at the mesoscale. Second and more importantly, rate-dependent effects in the macroscopic footprints of
polarization switching—such as those discussed in Section 1—are a direct consequence of the kinetics of domain walls. Having a
phase-field model that permits domain wall motion with nonlinear kinetics requires us to revise the evolution Eq. (3.6). This is the
subject of the general kinetics model introduced in Section 4.

4. General kinetics model

In this section, we introduce a new phase-field model for ferroelectrics, which regularizes the sharp-interface model of Section 2
while conserving nonlinear and independent kinetics for 180◦ and 90◦ domain walls. We first formulate the model in Section 4.1,

7 Consider, e.g., how an initially ellipsoidal nucleus evolves, keeping in mind that the driving traction is nonuniform over the surface of the nucleus.
12
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before computing analytical traveling wave solutions for 180◦ and 90◦ domain walls in Section 4.2. The main properties of straight
domain walls are summarized and compared to those of the Allen–Cahn model in Section 4.3. A numerical implementation of the
present model will be performed in Part II, which must also account for the special behavior of curved domain walls and triple and
quadruple points at which multiple phases meet.

4.1. Model formulation

A regularized electric enthalpy. In the general kinetics model, we use a multi-phase field 𝝋(𝒙, 𝑡) ∈ (0, 1)𝑁 , where 𝑁 is the number of
domains, and for tetragonal ferroelectrics we use 𝑁 = 6. Let 𝜑𝛼 denote the volume fraction of domain 𝛼, so that the spontaneous
polarization is defined as

𝒑(𝒙, 𝑡) = 𝒑̃
(

𝝋(𝒙, 𝑡)
)

=
6
∑

𝛼=1
𝜑𝛼(𝒙, 𝑡)𝒑𝛼 . (4.1)

We introduce the electric enthalpy 𝛹 , which regularizes 𝑊 (𝒆,𝒑), as

𝛹 (𝒆,𝝋,∇𝝋) = − 𝜖
2
𝒆 ⋅ 𝒆 −

( 6
∑

𝛼=1
𝜑𝛼𝒑𝛼

)

⋅ 𝒆

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑊 (𝒆,𝒑̃(𝝋))

+𝐶𝑠𝜓𝑠(𝝋) + 𝑝20𝐶𝑔
6
∑

𝛼=1
|∇𝜑𝛼|

2, (4.2)

here 𝐶𝑠 and 𝐶𝑔 are two positive constants, and 𝜓𝑠 is a multi-well potential with minima at (or in the neighborhood of) the six
alues of 𝝋 associated with the spontaneous polarization states: 𝝋 = (1, 0,… , 0) and its permutations. There exists several possibilities

for the choice of 𝜓𝑠, and the optimal one depends on the values of the physical parameters. Here, we discuss two simple forms for
𝜓𝑠 that admit analytical insight, even though the framework is sufficiently general to allow for other choices as well. For analytical
derivations, we introduce

𝜓 (𝑛)
𝑠 (𝝋) = 𝜔(𝑛)(𝝋) + 𝜏(𝝋), (4.3)

ith
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜔(𝑛)(𝝋) = 4𝑛
(

∑

{𝛼,𝛽}∈180

|

|

𝜑𝛼||
𝑛 |
|

|

𝜑𝛽
|

|

|

𝑛
+ ℎ90

∑

{𝛼,𝛽}∈90

|

|

𝜑𝛼||
𝑛 |
|

|

𝜑𝛽
|

|

|

𝑛
)

,

𝜏(𝝋) = 𝐶𝑡
∑

{𝛼,𝛽,𝛾}∈

|

|

𝜑𝛼||
|

|

|

𝜑𝛽
|

|

|

|

|

|

𝜑𝛾
|

|

|

,
(4.4)

here ℎ90 denotes the height of the 90◦ barrier relative to the 180◦ barrier, 𝐶𝑡 > 0 is a numerical parameter and  = {(𝛼, 𝛽, 𝛾) ∶
, 𝛽, 𝛾 ∈ , 𝛼 ≠ 𝛽 ≠ 𝛾}, and we consider 𝑛 = 1 and 𝑛 = 2.

As we shall see below, 𝜓 (1)
𝑠 has the advantage that the effective potential for charged walls has minima that remain at the

spontaneous polarization states but the drawback of presenting discontinuities in its derivatives. On the other hand, with 𝜓 (2)
𝑠

iscontinuities in the derivatives are absent, but the zeros and minima of the effective potential for charged walls are shifted from
he spontaneous polarization states.

The contribution 𝜏(𝝋) to 𝜓 (𝑛)
𝑠 (𝝋) serves to avoid the spurious appearance of a third phase in a domain wall by penalizing the

imultaneous occurrence of more than two phases.8 Despite the apparently complicated expression of 𝜓 (𝑛)
𝑠 , its section 𝜓180(𝜑) =

(𝑛)
𝑠

(

(𝜑, 1 − 𝜑, 0, 0, 0, 0)
)

associated with a 180◦ domain wall reduces to

𝜓180(𝜑) = 4𝑛 |𝜑|𝑛 |1 − 𝜑|𝑛 , (4.5)

hich is a double-obstacle (𝑛 = 1) or double-well (𝑛 = 2) potential of unitary barrier. Similarly, the section 𝜓90(𝜑) = 𝜓 (𝑛)
𝑠

(

(𝜑, 0, 1 −
, 0, 0, 0)

)

associated with a 90◦ domain wall reads

𝜓90(𝜑) = 4𝑛ℎ90 |𝜑|
𝑛
|1 − 𝜑|𝑛 . (4.6)

overning equations. Whereas Gauss’ law (2.5)1 and Faraday’s Eq. (2.6)1 apply without change, the main difference between our
eneral kinetics model and the classical phase-field model resides in the evolution equation for the multi-phase field,9 which we
efine as

𝜑̇𝛼 =
6
∑

𝛽=1

√

|

|

|

∇𝜑𝛼 ⋅ ∇𝜑𝛽
|

|

|

𝐺𝛽𝛼(ℎ𝛽→𝛼) for 𝛼 = 1…6, (4.7)

8 Note that if one chooses to write the triple term as a product of the squares of the 𝜑𝛼 instead of their absolute values, then this term does not fulfill its
function, which is to strictly keep, within domain walls, any third phase at zero.

9 We note that, by construction of (4.7), 𝜑𝛼 only evolves in the diffuse-interface region, where its gradient is non-zero but remains constant in the bulk phases.
As we will report in a forthcoming publication, the numerical implementation of (4.7) furnishes a seamless transition between these two domains (i.e., ∇𝜑𝛼 = 𝟎
13

and ∇𝜑𝛼 ≠ 𝟎).
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I

where 𝐺𝛼𝛽 = 𝐺𝛽𝛼 ∶ R → R is the kinetic function associated with the transformation between phases 𝛼 and 𝛽, and ℎ𝛽→𝛼 denotes the
elative variational derivative of 𝛹 ,

ℎ𝛽→𝛼
(

𝒆,𝝋,∇2𝝋
)

= − 𝛿𝛹
𝛿𝜑𝛼

+ 𝛿𝛹
𝛿𝜑𝛽

= − 𝜕𝛹
𝜕𝜑𝛼

+ 𝜕𝛹
𝜕𝜑𝛽

+ div
(

𝜕𝛹
𝜕∇𝜑𝛼

− 𝜕𝛹
𝜕∇𝜑𝛽

)

. (4.8)

nserting (4.2) in (4.8) yields

ℎ𝛽→𝛼
(

𝒆,𝝋,∇2𝝋
)

= 𝒆 ⋅ (𝒑𝛼 − 𝒑𝛽 ) − 𝐶𝑠
(

𝜕𝜓𝑠
𝜕𝜑𝛼

−
𝜕𝜓𝑠
𝜕𝜑𝛽

)

+ 2𝑝20𝐶𝑔
(

∇2𝜑𝛼 − ∇2𝜑𝛽
)

. (4.9)

For tetragonal ferroelectrics, we distinguish between two types of transformations: the motion of 180◦ and 90◦ domain walls. Hence,
we take the function 𝐺𝛼𝛽 as 𝐺180 for {𝛼, 𝛽} ∈ 180 and 𝐺90 for {𝛼, 𝛽} ∈ 90. By the second law of thermodynamics, 𝐺180 and 𝐺90
must be odd functions that satisfy the constraints

𝐺180(ℎ)ℎ ≥ 0 and 𝐺90(ℎ)ℎ ≥ 0 for all ℎ ∈ R. (4.10)

Indeed, as we will show in Section 4.2, these two functions specify the kinetic relations of 180◦ and 90◦ domain walls in the sense of
(2.11) in the sharp-interface model. Condition (4.10), like (2.12), ensures the positivity of the dissipation in the phase-field model.

Eq. (4.7) is used with an initial condition 𝝋(𝒙, 0) that satisfies10

6
∑

𝛼=1
𝜑𝛼(𝒙, 0) = 1 for all 𝒙 ∈ 𝛺. (4.11)

Using that 𝐺180 and 𝐺90 are odd functions, one can show that (4.7) guarantees ∑6
𝛼=1 𝜑̇𝛼 = 0, whereby (4.11) holds for all times if it

holds for the initial condition.

Comparison with other phase-field models with nonlinear kinetics. The evolution Eq. (4.7) is an extension to multiple phases of the
hybrid model introduced by Alber and Zhu (2013) in the setting of stress-driven phase transformations between two phases. In
particular, in a domain wall between two phases, say 𝛼 = 1 and 𝛽 = 2, for which 𝜑2(𝒙, 0) = 1−𝜑1(𝒙, 0) and 𝜑𝛾 (𝒙, 0) = 0 for 𝛾 = 3…6,
(4.7) reduces to

⎧

⎪

⎨

⎪

⎩

𝜑̇1 = |

|

∇𝜑1
|

|

𝐺180
(

ℎ2→1
)

, 𝜑2 = 1 − 𝜑1,

𝜑𝛾 = 0 for 𝛾 = 3…6.
(4.12)

(4.12)1 is akin to Equation (1.3) of Alber and Zhu (2013) (there formulated in the context of stress-driven transformations). Note
that the double-well potential proposed by Alber and Zhu (2013) is a variation of (4.5).

Similarly, (4.12)1 is reminiscent of the evolution Eq. (2.7) of Agrawal and Dayal (2015a), which derives from a conservation
law for the number of interfaces. However, in their work, the free-energy density was regularized differently from ours and that
of Alber and Zhu (2013), without resort to a double-well potential but through a regularized Heaviside function. Further, Agrawal
and Dayal (2015a) included a source term in the evolution equation for 𝜑 to account for the nucleation of new domains. In our case,
in the absence of such a source term, (4.7) only propagates domain walls, while for nucleation new domains shall be introduced
explicitly according to an appropriate criterion, which we do not discuss here.

4.2. Analytical solutions for 180◦ and 90◦ domain walls

In this section, we compute analytical traveling wave solutions for the propagation of straight 180◦ and 90◦ domain walls as
obtained from the general kinetics model. In doing so, we follow in one dimension a procedure outlined, e.g., in Fried and Gurtin
(1994) for Allen–Cahn-type models. In particular, we demonstrate the nonlinear kinetics of domain walls that the general kinetics
model permits, and we compare our findings to the Allen–Cahn model.

4.2.1. Neutral 180◦ domain wall profile and kinetics
We consider a straight 180◦ domain wall with polarization 𝒑(𝑥1, 𝑡) = 𝑝2(𝑥1, 𝑡)𝒆̃2, separating the spontaneous polarizations

𝒑3 = 𝑝0𝒆̃2 at 𝑥1 → −∞ and 𝒑4 = −𝑝0𝒆̃2 at 𝑥1 → +∞ (see Fig. 5(b)). The phase fields not related to the two phases under consideration,
i.e., 𝜑𝛾 for 𝛾 ∈ {1, 2, 5, 6} are initially assumed identically zero and, in view of (4.7), remain zero for all time.11 Hence, only the
phase fields 𝜑3 and 𝜑4, satisfying 𝜑3 + 𝜑4 = 1, are non-trivial. To simplify notation, we define 𝜑 = 𝜑4 to write the polarization
profile as

𝒑180(𝜑) = 𝑝0(1 − 2𝜑)𝒆̃2. (4.13)

10 One typically uses an initial condition describing a given arrangements of domains, within each of which, one 𝜑𝛼 is set to one and the other {𝜑𝛽}𝛽≠𝛼 are
set to zero with sharp transitions between domains.

11 Note that, unlike with the classical Allen–Cahn evolution equation, (4.7) never leads to the nucleation of a new phase (say, phase 𝛼) irrespective of the
value of the electric field (and associated driving term ℎ𝛽→𝛼). This is due to the term ∇𝜑𝛼 , which vanishes identically when the initial condition for 𝜑𝛼 is set
14

to zero in the entire simulation domain. Accordingly, with this model a separate explicit nucleation criterion is required to account for nucleation events.
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Fig. 5. (a) Basis of spontaneous polarization states. Phase-field profiles of two 180◦ domain walls: (b) charge-neutral wall, (c) charged wall. The profile in (b)
corresponds to (4.26) with 𝜑 = 𝜑4 and that in (c) to the solution of (4.34) with 𝜑 = 𝜑2.

As in Section 3.2.1, we can assume a uniform electric field 𝒆 = 𝑒𝒆̃2 while satisfying Gauss’ law (2.5)1. The evolution Eqs. (4.7) for
𝜑3 and 𝜑4 are identical and are written as an equation for 𝜑:

𝜑̇ = |

|

|

𝜑,𝑥1
|

|

|

𝐺180
(

ℎ3→4(𝜑,𝜑,𝑥1𝑥1 )
)

, (4.14)

here the driving force (4.9) reads

ℎ3→4(𝜑,𝜑,𝑥1𝑥1 ) = −2𝑝0𝑒 − 𝐶𝑠𝜓 ′
180(𝜑) + 4𝐶𝑔𝑝20𝜑,𝑥1𝑥1 . (4.15)

s in Section 3.2, we seek a traveling wave solution of (4.14) of the form

𝜑(𝑥1, 𝑡) = 𝜑̌(𝑥1 − 𝑣180𝑡) (4.16)

nd introduce 𝜉 = 𝑥1 − 𝑣180𝑡. Inserting (4.16) into (4.14) yields

− 𝑣180𝜑̌,𝜉 =
|

|

|

𝜑̌,𝜉
|

|

|

𝐺180
(

ℎ3→4(𝜑̌, 𝜑̌,𝜉𝜉 )
)

. (4.17)

ithout loss of generality, assuming that the solution satisfies 𝜑̌,𝜉 ≥ 0 for all 𝜉, (4.17) simplifies to

⎧

⎪

⎨

⎪

⎩

𝑣180 = 𝐺180

(

2𝑝0𝑒 + 𝐶𝑠𝜓 ′
180(𝜑̌) − 4𝐶𝑔𝑝20𝜑̌,𝜉𝜉

)

,

𝜑̌(−∞) = 0, 𝜑̌(+∞) = 1, 𝜑̌,𝜉 (±∞) = 0,
(4.18)

here we have appended in (4.18)2,3,4 the far-field boundary conditions on 𝜑̌ consistent with the polarization states assumed at
nfinity. Note that (4.18)2,3,4 are in fact two boundary conditions, since the vanishing spatial derivative of 𝜑̌ at infinity is inherited
rom the former two conditions (4.18)2,3. For a given applied electric field 𝑒, (4.18) can be solved for

(

𝑣180, 𝜑̌(𝜉)
)

. We assume here
hat 𝐺180 is monotonous on R and hence invertible, and we write its inverse as 𝐺−1

180. Hence, (4.18)1 is rewritten as

2𝑝0𝑒 + 𝐶𝑠𝜓 ′
180(𝜑̌) − 4𝐶𝑔𝑝20𝜑̌,𝜉𝜉 = 𝐺−1

180(𝑣180). (4.19)

e compute the first integral of (4.19) by multiplying by 𝜑̌,𝜉 and integrating with the condition at −∞, which yields:
[

2𝑝0𝑒 − 𝐺−1
180(𝑣180)

]

𝜑̌ + 𝐶𝑠𝜓180(𝜑̌) − 2𝐶𝑔𝑝20(𝜑̌,𝜉 )
2 = 0, (4.20)

here we have used the fact that 𝜓180(0) = 0. Further prescribing condition (4.18)3,4 at +∞ and noting that 𝜓180(1) = 0, requires
that

2𝑝0𝑒 = 𝐺−1
180(𝑣180) ⇒ 𝑣180 = 𝐺180(2𝑝0𝑒), (4.21)

and (4.20) reduces to an equation for 𝜑̌(𝜉) only:

𝐶𝑠𝜓180(𝜑̌) − 2𝐶𝑔𝑝20(𝜑̌,𝜉 )
2 = 0. (4.22)

Eq. (4.22) is similar to (3.17) in the Allen–Cahn model. However, note that (4.22) holds for all 𝑒. Therefore, the profile is the same
at equilibrium (𝑒 = 0) and with an applied external electric field (𝑒 ≠ 0). In particular, the polarization inside domains remains
xactly equal to the spontaneous polarizations even under non-zero electric fields. This is in contrast to the Allen–Cahn model,
hose equilibrium polarization profile is given by (3.17). That equation, however, only provides an approximation of the profile in
15

he presence of an electric field, which is valid only under condition (3.9).
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Adopting definitions for the interfacial energy,

𝛤 = ∫

+∞

−∞
𝛹 (𝒆, 𝝋̌,∇𝝋̌)d𝜉 − ∫

+∞

−∞
𝑊 (𝒆,𝒑sharp)d𝜉, (4.23)

nd the interfacial width,

𝑙 = 1∕𝜑̌,𝜉 (0), (4.24)

quivalent to those of Section 3.2, one can show using (4.22) that these quantities are given by expressions analogous to (3.18) and
3.19), namely,

𝛤 = 𝜂𝑝0
√

2𝐶𝑠𝐶𝑔 and 𝑙 = 𝑝0
√

2𝐶𝑔∕𝐶𝑠, (4.25)

ith 𝜂 = 2 ∫ 1
0
√

𝜓180(𝜑)d𝜑. In particular, with 𝜓180 given by (4.5) we obtain 𝜂 = 𝜋∕2 for 𝑛 = 1 and 𝜂 = 4∕3 for 𝑛 = 2.
By setting the origin to 𝜑̌(0) = 1∕2, (4.22) forms an initial value problem for 𝜑̌(𝜉), starting at 𝜉 = 0 and to be solved for both

increasing and decreasing 𝜉. Its integration yields

𝜑̌(𝜉) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 for 𝜉 < −𝜋𝑙∕4,

cos2
(

𝜋
4
−
𝜉
𝑙

)

for − 𝜋𝑙∕4 ≤ 𝜉 ≤ 𝜋𝑙∕4,

1 for 𝜉 > 𝜋𝑙∕4,

(4.26)

hen using 𝜓 (1)
𝑠 and

𝜑̌(𝜉) = e4𝜉∕𝑙

1 + e4𝜉∕𝑙
, (4.27)

or 𝜓 (2)
𝑠 . Note that with 𝜓 (1)

𝑠 the diffuse interface representing the domain wall is localized in the interval (−𝜋𝑙∕4, 𝜋𝑙∕4).
With regards to kinetics, in (4.21)2 2𝑝0𝑒 = 𝑓 corresponds to the driving traction (2.22) of the straight, neutral 180◦ domain

all in the sharp-interface model. Hence, 𝐺180 directly provides the kinetic relation for 180◦ domain walls (i.e., (2.11) in the sharp-
nterface model). Therefore, the general kinetic model allows us to choose the kinetic relation arbitrarily (in the set of monotonously
ncreasing odd functions that satisfy (4.10)). In particular, for modeling ferroelectrics, a physics-based choice for 𝐺180 is to adopt
he functional form (2.19) derived from experiments. In addition, note that for the neutral 180◦ domain wall, the kinetic relation
s exactly given by (4.21)2 for all 𝑒, whereas with the Allen–Cahn model the linear kinetic relation (3.27) is only an approximation
alid under the condition (3.9).

.2.2. Charged 180◦ domain wall profile and kinetics
We consider the same charged domain wall as in Section 3.2.2, i.e., 𝒑(𝑥1, 𝑡) = 𝑝1(𝑥1, 𝑡)𝒆̃1, varying between 𝒑1 = 𝑝0𝒆̃1 at 𝑥1 → −∞

nd 𝒑2 = −𝑝0𝒆̃1 at 𝑥1 → +∞ (see Fig. 5(c)). For the same reasons as those invoked in Section 4.2.1, only 𝜑1 and 𝜑2 are non-identically
ero, and they satisfy 𝜑1 + 𝜑2 = 1. Using the single phase field 𝜑 = 𝜑2, we rewrite the polarization as

𝒑𝑐180(𝜑) = 𝑝0(1 − 2𝜑)𝒆̃1. (4.28)

urther, with the same assumptions on the electric field and electric displacement as in Section 3.2.2, the electric field is given by
3.21). We write the evolution equations for 𝜑1 and 𝜑2 as an equation for 𝜑,

𝜑̇ = |

|

|

𝜑,𝑥1
|

|

|

𝐺180
(

ℎ1→2(𝜑,𝜑,𝑥1𝑥1 )
)

. (4.29)

y combining (4.9), (3.21) and (4.28), ℎ1→2 becomes

ℎ1→2(𝜑,𝜑,𝑥1𝑥1 ) = −
2𝑝0𝑑
𝜖

− 𝐶𝑠

(

𝜓 ′
180(𝜑) −

2𝑝20
𝜖𝐶𝑠

(

1 − 2𝜑
)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜓𝑐 ′180(𝜑)

+4𝐶𝑔𝑝20𝜑,𝑥1𝑥1 , (4.30)

with 𝜓𝑐180(𝜑) the effective double-well potential for charged 180◦ domain walls defined by

𝜓𝑐180(𝜑) = 𝜓180(𝜑) − 2𝜁𝜑(1 − 𝜑), (4.31)

with

𝜁 =
𝑝20
𝜖𝐶𝑠

=
𝜂𝑙𝑝20
𝜖𝛤

. (4.32)

arameter 𝜁 is equivalent to 𝜁 involved in (3.25) in the Allen–Cahn model and represents the ratio of the electric field 𝑝0∕𝜖 induced
y Gauss’ law in a charged 180◦ domain wall to the numerical characteristic electric field 𝑒𝑐 = 𝛤∕(𝜂𝑙𝑝0). As is apparent from Fig. 6,
he effective potential for 𝑛 = 1 is indeed a double-obstacle potential as long as 𝜁 < 2 with minima and zeros coinciding at 𝜑 = 0

and 𝜑 = 1. In contrast, for 𝑛 = 2, minima of the potential are shifted inwards and we denote by 𝜑𝑚(𝜁 ) the smallest minimizer of
𝑐

16

𝜓180.
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Fig. 6. Potential 𝜓 𝑐
180(𝜑) defined in (4.31) for different values of 𝜁 with (a) 𝑛 = 1 and (b) 𝑛 = 2 in the original double-well (4.5).

We look for a traveling wave solution of (4.29) of the form

𝜑(𝑥1, 𝑡) = 𝜑̌(𝑥1 − 𝑣𝑐180𝑡) (4.33)

hile assuming, without loss of generality, 𝜑̌,𝜉 ≥ 0. Inserting (4.33) into (4.29), we obtain the equation for
(

𝑣𝑐180, 𝜑̌(𝜉)
)

:

𝑣𝑐180 = 𝐺180

(

2𝑝0𝑑
𝜖

+ 𝐶𝑠𝜓𝑐 ′180(𝜑̌) − 4𝐶𝑔𝑝20𝜑̌,𝜉𝜉

)

. (4.34)

Case 𝑛 = 1. In the case 𝑛 = 1, one can construct a solution that satisfies the far-field boundary conditions

𝜑̌(−∞) = 0, 𝜑̌(+∞) = 1, 𝜑̌,𝜉 (±∞) = 0. (4.35)

Following a derivation strictly analogous to that for neutral 180◦ domain walls, one can show that the solution of (4.34)
supplemented by (4.35) is a topological soliton moving at velocity 𝑣𝑐180 = 𝐺180(2𝑝0𝑑∕𝜖) (with 2𝑝0𝑑∕𝜖 the sharp-interface driving
traction (2.22) of a 180◦ charged wall). The polarization profile is given by (4.26), if the width

𝑙𝑐 = 𝑙
(

1 −
𝜁
2

)−1∕2
(4.36)

is substituted for 𝑙 and the interfacial energy is replaced by

𝛤 𝑐 = 𝛤
(

1 −
𝜁
2

)1∕2
. (4.37)

While we see from (4.37) that the regularization introduces a modification of the interfacial energy between neutral and charged
omain walls, this turns out not to be an issue in practice. From the point of view of the sharp-interface model, an accurate interfacial
nergy is important, as it contributes to the driving force 𝑓 through the effect of curvature in (2.22). In practice we have 𝜁 < 2, as
equired to have a double-obstacle potential. If 𝜁 is low (typically 𝜁 < 0.2) the change in interfacial energy remains less than 10%.
herefore we expect an accurate account of the curvature contribution in (2.22). By contrast, when 𝜁 is large (typically 𝜁 = 1−1.5),
he artificial change in interfacial energy becomes larger (up to 50% relative change for 𝜁 = 1.5). However, when 𝜁 is large, 𝛤 is small
see (4.32)), and the contribution 𝛾𝜅 to the driving force (2.22) becomes negligible—compared to that of the bulk energies—almost
verywhere except in local zones of high curvature. Hence, in this case the regularization introduces significant variations in 𝛤 ,
ut these are of little importance. In practice, the contribution of curvature of domain walls to the evolution of domains is mostly
egligible in ferroelectric switching as well as in other solid–solid phase transformations. Therefore, the fact that the general kinetic
odel with 𝑛 = 1 allows us to take large values of 𝜁 up to 1.5 is a significant advantage over the Allen–Cahn model and over general

inetic model with 𝑛 = 2 (discussed below), which both require 𝜁 ≪ 1 (typically 𝜁 < 0.2).

ase 𝑛 = 2. For 𝑛 = 2 the far-field boundary conditions (4.35) do not permit to build a traveling wave solution. Instead, one needs
o impose

𝜑̌(−∞) = 𝜑𝑙 , 𝜑̌(+∞) = 1 − 𝜑𝑙 , 𝜑̌,𝜉 (±∞) = 0 (4.38)

ith 𝜑𝑙 a value that satisfies 𝜓𝑐′180(𝜑𝑙) > 0, i.e., 𝜑𝑚 < 𝜑𝑙 < 1∕2. Numerical simulations confirm that away from the interface, if 𝜑
akes initial values at 0 and 1, it evolves toward the solution of (take ℎ1→2 = 0 with 𝜑,𝑥1𝑥1 = 0 in (4.30))

𝜓 ′
180(𝜑) = −2𝑝0𝑒∕𝐶𝑠, (4.39)

here 𝑒 = (𝑝0∕𝜖) is the locally uniform (away from the interface) electric field. This implies that 𝜁 shall satisfy 𝜁 ≪ 1 to ensure
olarization remains close to the spontaneous polarization states. The traveling wave solution that can be constructed with 𝜑 varying
rom 𝜑𝑙 to 1 − 𝜑𝑙, although not connecting 𝜑 = 0 to 𝜑 = 1, has exactly the velocity expected from the target sharp interface model,
𝑐
180 = 𝐺180(2𝑝0𝑑∕𝜖). In numerical simulations, diffuse interfaces evolve with the velocity predicted here and connect to the values
f 𝜑 within phases through transient profiles.
17
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Fig. 7. (a) Basis of spontaneous polarization states. Phase-field profiles of two 90◦ domain walls: (b) charge-neutral wall; (c) charged wall, with properties
iscussed in Section 4.2.3.

.2.3. 90◦ domain walls: profile and kinetics
eutral domain wall. As in Section 3.2.4, the basis of spontaneous polarizations {𝒑𝛼}𝛼∈(1,6) defined in (2.13) is rotated by +𝜋∕4
round the 𝒆̃3-axis. Consider, e.g., the same 1D head-to-tail domain wall as in Section 3.2.4, i.e., between 𝒑1 = 𝑝0∕

√

2(𝒆̃1 + 𝒆̃2) at
1 → −∞ and 𝒑4 = 𝑝0∕

√

2(𝒆̃1 − 𝒆̃2) at 𝑥1 → +∞ (see Fig. 7(b)). This wall involves 𝜑1 and 𝜑4 satisfying 𝜑1 + 𝜑4 = 0, while the other
phase fields are identically zero. For simplicity we define 𝜑 = 𝜑4. A specialty of the polarization profile obtained from the general
kinetics model is that the rotation of the polarization vector across the wall is predetermined by the decomposition (4.1), i.e.,

∗
𝒑90(𝜑) =

𝑝0
√

2

[

𝒆̃1 + (1 − 2𝜑)𝒆̃2
]

, (4.40)

hereby 𝒑 rotates with a constant component along 𝒆̃1. This is in contrast to the rotation of the polarization vector resulting from
he Allen–Cahn model, which depends on the multi-well potential 𝜓𝑠 given by (3.2), in particular on the parameter 𝜒̂ introduced
n (3.4), which determines the location of the 90◦ barrier.

As a consequence, whereas in Section 3.2.4 the computed properties (wall width and interfacial energy) of the neutral 90◦

omain wall are only approximations relying on the assumption that the 𝑝1-component remains constant (a reasonable assumption
or 𝜒̂ = 0.5), for the general kinetics model these same properties characterize the neutral 90◦ domain wall exactly.

Under the application of a uniform electric field 𝒆 = 𝑒𝒆̃2 and with a derivation in all points analogous to that developed in
ection 4.2.1, we conclude that the 90◦ domain wall can be described by a traveling wave solution,

𝜑(𝑥1, 𝑡) = 𝜑̌(𝑥1 − 𝑣90𝑡), (4.41)

here 𝜉 = 𝑥1 − 𝑣90𝑡 and 𝑣90 is the velocity of the 90◦ domain wall. Under the assumption that function 𝐺90 is monotonous on R,
one can show that, akin to (4.21),

𝑣90 = 𝐺90
(

√

2𝑝0𝑒
)

, (4.42)

here
√

2𝑝0𝑒 corresponds to the driving traction (2.22) associated with the 90◦ configuration under consideration. Again, the
polarization profile is given by (4.26) and (4.27) with a width 𝑙90 = 𝑙∕

√

ℎ90 replacing 𝑙 and an interfacial energy 𝛤90 =
√

ℎ90𝛤 ,
which can be set to its physical value through a proper choice of ℎ90.

Charged domain wall. The transition from the neutral to the charged 90◦ domain wall (see Fig. 7(c)) shows the same features as the
analogous transition for the 180◦ domain wall. We discuss specifically the case 𝑛 = 1, for which the kinetic relation is exactly given
by the function 𝐺90, provided that 𝜁 < 2

√

2ℎ90 is satisfied (like 𝜁 < 2 for 180◦ walls). The modified values of interfacial width and
energy due to the regularization with 𝑛 = 1 are

𝑙𝑐90 = 𝑙90

(

1 −
𝜁

2
√

2ℎ90

)−1∕2

and 𝛤 𝑐90 = 𝛤90

(

1 −
𝜁

2
√

2ℎ90

)1∕2

. (4.43)

.3. Summary of the properties of 180◦ and 90◦ domain walls

nterface energy and width. We have computed exactly the interfacial energy and width of the different types of domain walls
btained with the general kinetics model. The expressions are analogous to those of the Allen–Cahn model. In particular, the choice
f 𝐶𝑠 and 𝐶𝑔 allows us to set independently the interfacial energy and width (i.e., the regularization length) of 180◦ domain
alls, while ℎ90 determines the ratio of interfacial energy of 90◦ and 180◦ domain walls. Furthermore, the expressions for the

nterfacial properties of walls remain exact under an applied electric field, in contrast to the Allen–Cahn model for which one only
18

as approximate expressions of interfacial properties when domain walls are not in equilibrium. This is notably related to the fact
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that, with the general kinetics model, values of the spontaneous polarization within domains are unchanged in the presence of an
electric field.

Lastly, a special feature of the general kinetics model is that for 90◦ domain walls the rotation of the polarization occurs with
one of its components kept constant, as predetermined by the decomposition (4.1). This is in contrast to what happens with the
Allen–Cahn model, where the rotation of 𝒑 depends on the location of the 90◦ barrier, given by 𝜒̂ in the multi-well potential.

Kinetics. We have found that for straight domain walls the general kinetics model allows us to prescribe independently the kinetics
of 180◦ and 90◦ domain walls and that these kinetic relations can be nonlinear. The kinetic relations (2.11) between the velocity of
the interface (velocity of the traveling wave solutions) and the driving traction (computed from the values of the fields away from
the diffuse interface) are defined through the functions 𝐺180 and 𝐺90 for 180◦ and 90◦ domain walls, respectively.

Interestingly, in the general kinetics model, the kinetic relation of straight walls is exactly given by 𝐺180 and 𝐺90 irrespective of
the regularization length 𝑙, provided that 𝜁 < 2 and 𝜁 < 2

√

2ℎ90 are satisfied (i.e, 𝑙 is smaller than a critical length determined by
the material parameters). This is in contrast to the Allen–Cahn model, for which the accuracy of the linear kinetic relations (3.27)
and (3.35) for straight 180◦ and 90◦ domain walls decreases as the regularization length 𝑙 increases (because, as 𝑙 increases with
constant material parameters, 𝑒𝑐 in (3.9) decreases, which reduces the accuracy of (3.27) and (3.35)).

As will be discussed in Part II of this study, when it comes to curved domain walls, the general kinetics model allows us to
introduce the kinetic relations via 𝐺180 and 𝐺90 in an exact sense only in the limit of 𝑙 → 0 (see also the asymptotic analysis of Alber
and Zhu (2013) for the phase-field model that inspired the present general kinetics model).

5. Conclusion

We have formulated a phase-field model for ferroelectrics that permits domain wall evolution with nonlinear kinetics, which
we term the general kinetics model. Nonlinear domain wall kinetics is a crucial feature for properly accounting for rate effects in
ferroelectric switching and is nonetheless absent from existing diffuse-interface ferroelectrics models. Seen in the general class of
phase-field models for structural transformations (which includes switching between ferroelectric variants, twinning, solid–solid
phase transformations), the general kinetics model is, to the best of our knowledge, the first diffuse-interface model with arbitrary
nonlinear interface kinetics formulated for systems with multiple (i.e., more than two) phases. It has been devised as an extension
to multiple phases of the hybrid model of Alber and Zhu (2013) (adapted here to the setting of ferroelectric switching).

To shed light on the new features of the general kinetics model, as compared to the classical Allen–Cahn-based phase-field
model, we have worked in the simplified setting of rigid ferroelectrics, an assumption which only accounts for the electrostatic
contribution to domain evolution and neglects the mechanical one.12 In this setting, we have compared two regularized models: the
classical Allen–Cahn-based phase-field model and the newly introduced general kinetics model. By computing analytical traveling
wave solutions for the propagation of straight 180◦ and 90◦ domain walls, both neutral and charged, we have established the
following properties of the two phase-field models:

1. Interfacial width and energy : For both diffuse-interface models, the numerical parameters associated with the regularization
of the electric enthalpy permit to set independently the interfacial energy of 180◦ and 90◦ domain walls and the width
of 180◦ domain walls. While the former are material parameters characterizing the walls, we see the latter as a numerical
regularization length, whose choice is limited by practical constraints. With the Allen–Cahn model, interfacial width and
energy weakly depend on the applied electric field and remain approximately constant in the regime (3.9) of |𝒆| ≪ 𝑒𝑐 , with
𝑒𝑐 = 𝛤∕(𝜂̂𝑙𝑝0) a numerical characteristic electric field dependent on the regularization length 𝑙. By contrast, with the general
kinetics model, the interfacial width and energy of neutral domain walls are constant and independent of the applied electric
field. As for charged domain walls (which encounter nonuniform electric fields induced by Gauss’ law), both models require,
for wall properties to remain approximately independent of the regularization length, that the magnitude of the electric field
associated with Gauss’ law remains small compared to a characteristic electric field. This translates into an upper bound on 𝑙
and 𝑙, which reads as 𝜂̂𝑙𝑝20∕(𝜖𝛤 )≪ 1 (see (3.25)) for the Allen–Cahn model and 𝜂𝑙𝑝20∕(𝜖𝛤 )≪ 1 for the general kinetics model
(with quantitative estimates given in Sections 4.2.2 and 4.2.3).

2. Kinetics of domain walls: For the motion of straight 180◦ and 90◦ domain walls, we have shown that the Allen–Cahn
formulation furnishes a regularization of a sharp-interface model with a linear kinetic relation between wall velocity and
associated driving traction. In addition, while the kinetic coefficient associated with one type of domain walls (e.g., 180◦

domain wall) can be freely set with a proper choice of the inverse mobility 𝜇 in (3.6), that of the other type of wall (e.g., 90◦

domain wall) is automatically prescribed by the ratio of interfacial energies of the two types of domain walls. Furthermore,
the Allen–Cahn model only furnishes an approximately linear kinetics behavior valid in the regime where both (3.9) and
(3.25) are satisfied.13

12 Note that, building upon existing phase-field models by Schrade et al. (2013), and Schrade et al. (2014), which account for electro-mechanical coupling,
he extension of our model to deformable ferroelectrics is straightforward. Indeed, the passage from an Allen–Cahn-type phase-field model that includes electro-
echanical coupling (such as Schrade et al. 2013, and Schrade et al. 2014) to a general kinetic model is conceptually the same as what we have presented in

ection 4 in the setting of rigid ferroelectrics.
13 In practice, the magnitude 𝑝0∕𝜖 of the electric field that results from Gauss’ law in charged walls in significantly larger than that of externally applied
19

lectric fields, so that (3.25) is the more stringent condition.
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The general kinetics model, by contrast, provides a regularization of the sharp-interface model with arbitrary kinetic relations
given by the functions 𝐺180 and 𝐺90 for 180◦ and 90◦ domain walls, respectively. More specifically, for straight walls of all
types, we have shown with traveling wave solutions that the relations between wall velocities and associated driving tractions
are exactly given by 𝐺180 and 𝐺90, provided that the (little restrictive) conditions 𝜁 < 2 and 𝜁 < 2

√

2ℎ90 are satisfied. Overall,
they again furnish upper bounds on the regularization length 𝑙.

In the present article, we have focused on analytically tractable features of the Allen–Cahn and general kinetics models. For
hat reason, we have restricted our attention to the properties and motion of straight domain walls. With this focus, we made the
mportant clarification that with the Allen–Cahn model, the target kinetics is attained only in the limit of 𝑙 → 0, while the general
inetics model furnishes exactly the chosen kinetics, irrespective of the regularization length, provided the latter satisfies specific
pper bounds. We point out that, although our discussion was specific to ferroelectric domain wall motion, the same general kinetics
odel bears potential for other applications involving structural transformations.

In a follow-up publication, we will report a numerical implementation of the general kinetics model and address the propagation
f curved walls as well as the behavior of triple and quadruple points where multiple phases meet.
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ppendix. Experimental evidence on domain wall dynamics

80◦ Domain walls. Experimental and theoretical works have probed the kinetics of domain walls both in bulk single-crystals and
n thin films (for an extensive review of these works, see Tagantsev et al. 2010). Here, we summarize results pertaining only to bulk
aTiO3. The velocity of non-ferroelastic 180◦ domains walls was measured as a function of the electric field in single-crystal BaTiO3
y Miller and Savage (1958, 1959, 1960), and Savage and Miller (1960) for electric fields in the range 0.1 to 2 kV∕cm and by Stadler
nd Zachmanidis (1963) at large fields between 2 and 450 kV∕cm. These experiments were performed on plate-like samples with
olarization and electric field oriented along the out-of-plane 𝒆̃𝑧-direction. As a result, the electric field 𝒆 = 𝑒𝒆̃𝑧 is uniform throughout
he sample and the driving traction given by (2.9) reduces to 𝑓 = 2𝑝0𝑒 for an interface with negligible curvature. For electric fields
n the range 0.1 to 2 kV∕cm, an inverse exponential dependence of the domain wall velocity on the electric field was inferred:

𝑉180(𝑒) = 𝑉𝑙 exp(−𝑒𝑎∕𝑒), (A.1)

here 𝑉𝑙 is a characteristic velocity of the order of 100 cm∕s, and the activation field 𝑒𝑎 is typically about 4 kV∕cm at room
emperature (Miller and Savage, 1960). The exact value of these parameters depends on temperature, sample thickness, the presence
f defects, and the nature of the electrodes. These observations suggest that for 180◦ domain walls in the range 𝑓 ≤ 1 × 105 J∕m3

cf. 𝑝0 = 0.26C∕m2), the driving traction follows a kinetic relation of inverse-exponential type, given by

𝑉180(𝑓 ) = sgn(𝑓 )𝑉𝑙 exp(−𝑓𝑎∕|𝑓 |), (A.2)

here 𝑓𝑎 = 2𝑝0𝑒𝑎 is an activation driving traction. Above 2 kV∕cm the velocity was found to follow a power law 𝑉180 ∝ 𝑒𝜃 with
= 1.4 (Stadler and Zachmanidis, 1963), which indicates for 𝑓 > 1 × 105 J∕m3 a kinetic relation of the form

𝑉180(𝑓 ) = sgn(𝑓 )𝑉ℎ

(

|𝑓 |
𝑓𝑎

)𝜃
, (A.3)

with 𝑉 a characteristic velocity for large driving tractions.
20
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90◦ Domain walls. While experimental data for the motion of 90◦ domain walls in BaTiO3 are lacking, observations of the kinetics
f ferroelastic domain walls in other materials (Rochelle salt, gadolinium molybdate, potassium dihydrogen phosphate as reviewed
n Tagantsev et al. 2010, Section 8.3.3) point to a different kinetic relation specific to ferroelastic domain walls. Indeed, irrespective
f the material, it appears that ferroelastic walls remain static for applied electric fields smaller than a threshold field, above which
heir velocity evolves linearly with the field. This suggests a threshold-type linear relation:

𝑉90(𝑓 ) =

{

0 for |𝑓 | < 𝑓0,
sgn(𝑓 )𝑘(|𝑓 | − 𝑓0) for |𝑓 | ≥ 𝑓0,

(A.4)

where 𝑓0 is a threshold driving traction and 𝑘 a kinetic coefficient. At the same time, ab initio calculations by Liu et al. (2016) have
shown that 90◦ domain walls in PbTiO3 exhibit the same two-regime kinetics as that observed for 180◦ domain walls in BaTiO3 and
described by (A.2) and (A.3) in the regimes of small and large electric fields, respectively. While we unfortunately do not have a
full set of data for the kinetics of the different kinds of domain walls in one particular material, current observations clearly indicate
that the kinetics of domain walls is nonlinear and dependent on the type of domain wall (i.e., non-ferroelastic vs. ferroelastic).
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