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QUANTUM OPTIMAL TRANSPORT:

QUANTUM COUPLINGS AND MANY-BODY PROBLEMS

FRANÇOIS GOLSE

Abstract. This text is a set of lecture notes for a 4.5-hour course given at the

Erdős Center (Rényi Institute, Budapest) during the Summer School “Optimal
Transport on Quantum Structures” (September 19th-23rd, 2023). Lecture I

introduces the quantum analogue of the Wasserstein distance of exponent 2

defined in [F. Golse, C. Mouhot, T. Paul: Comm. Math. Phys. 343 (2016),
165–205], and in [F. Golse, T. Paul: Arch. Ration. Mech. Anal. 223 (2017)

57–94]. Lecture II discusses various applications of this quantum analogue of

the Wasserstein distance of exponent 2, while Lecture III discusses several of its
most important properties, such as the triangle inequality, and the Kantorovich

duality in the quantum setting, together with some of their implications.

Introduction

Optimal transport has become a thriving field of mathematical research in the
last decade of the 20th century. Nowadays, it is used in a variety of subjects which
the founder of this theory (G. Monge, 1781) could obviously not have foreseen:
statistics, machine learning, probability theory, fluid mechanics, besides more clas-
sical applications such as the calculus of variations, partial differential equations,
geometry. In his book [63], C. Villani speaks of a “revival” of optimal transport
following Y. Brenier’s remarkable paper [15].

Among the many applications of optimal transport is a quite fascinating ob-
servation by Dobrushin [30], who realized that one special kind of approximation
used in classical nonequilibrium statistical mechanics, namely the time-dependent
mean-field limit, can be proved rigorously by using a notion of distance on the set
of probability measures which is defined in terms of optimal transport.

The same mean-field limit is routinely used in quantum dynamics, but, until
relatively recently, the methods of proof used in the rigorous justification of this
limit were radically different in the quantum and in the classical settings. This state
of affairs was slightly disturbing, since one would expect that it should be possible
to take the classical limit of quantum mechanics and the mean-field limit of both
classical and quantum dynamics in any order — in other words, one expects that
both limits should be represented by a commutative diagram.

There have been some attempts in that direction at the beginning of the 2000s
[43, 51], and, slightly later, this suggested the natural idea of “lifting” Dobrushin’s
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2 F. GOLSE

approach [30] to the quantum setting. Since Dobrushin used an optimal transport
metric to compare N -particle densities and their mean-field limits, it became a
very natural motivation for defining an analogous optimal transport “metric” for
the purpose of comparing quantum states. Ideally, this “metric” should converge
to the metric used by Dobrushin in the classical limit.

I started working on this problem with C. Mouhot and T. Paul, after a visit to
C. Mouhot in Cambridge in September 2014. At this point, we realized that mean-
field quantum dynamics satisfies an analogous continuous dependence on the initial
data defined in terms of a quantum optimal transport problem as in Dobrushin’s
analysis. Our initial contribution [37] was followed by a series of works involving
other collaborations [38, 19, 20, 36, 39, 40, 41], and exploring both our quantum
analogue of optimal transport and its applications to various problems in quantum
dynamics. It is precisely this approach to quantum optimal transport which is
presented in these lectures.

But there are other, possibly (most likely?) unrelated approaches to quantum
optimal transport.

One such approach, due to E. Carlen and J. Maas is based on the Benamou-
Brenier formula (Theorem 8.1 in [63]): see [22]. Another approach, based on the
notion of quantum channel and closer in spirit to the one presented in this course,
yet different, is due to G. De Palma and D. Trevisan [26] — see also Dario Tre-
visan’s course [62] in this volume. Some of these different approaches to a theory
of quantum optimal transport (see in particular Eric Carlen’s lectures [21]) will be
presented in this school. Still another approach to the problem of quantum opti-
mal transport is the very early reference [65] (see also the beautiful book [11] by I.

Bengtsson and K. Życzkowski, and especially section 7.7 there).
Since this text is a set of lecture notes, several quizzes/exercises are proposed

to the reader. Some of these exercises review classical material which the reader is
expected to master before going further; some others discuss natural extensions of
the material presented in this course. In any case, solving these exercises is strongly
recommended in order to gain familiarity with the notions presented in these notes.

I am indebted to several colleagues for the mathematics discussed in these lec-
tures, in the first place to C. Mouhot, T. Paul, E. Caglioti, and S. Jin, with whom
I had the pleasure to work on various problems related to quantum optimal trans-
port. The observation inequality for the Schrödinger equation discussed in Lecture
II comes from questions posed by C. Bardos. I owe my first acquaintance with
Dobrushin’s remarkable paper [30] to M. Pulvirenti, who gave a most lucid account

of it in a lecture at École normale supérieure in 1997. I also benefited from numer-
ous discussions on optimal transport with Y. Brenier. Most of these lectures are
based on the numerous analogies between classical and quantum optimal transport.
However, some very fundamental properties of classical optimal transport may fail
to have quantum analogues. I am very grateful to D. Serre, who kindly showed
me an example where the quantum and the classical theory significantly differ (see
Quiz 31 in Lecture III).

Finally, I wish to express my gratitude to the organizers of this 2022 Summer
School on Optimal Transport on Quantum Structures at the Erdős Center, J. Maas,
S. Rademacher, T. Titkos and D. Virosztek for their kind invitation, and more
generally to the Rényi Institute for its most enjoyable hospitality.
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Table of Contents

Lecture I: Extending the Wasserstein distance of exponent 2 to density operators.
Lecture II: Applying the quantum Wasserstein pseudometric to particle dynamics.
Lecture III: Triangle inequalities and optimal transport in the quantum setting.

1. Lecture I: Extending the Wasserstein Distance of Exponent 2
to Density Operators

Our general purpose is to extend optimal transport (Wasserstein) distances,
defined on Borel probability measures on phase space, i.e. Rd×Rd, to their quantum
analogue, i.e. to density operators on the Hilbert space L2(Rd).

In this first lecture, we

●recall some fundamental results on classical optimal transport (section 1.1),
●recall some material on trace-class and Hilbert-Schmidt operators (section 1.2),
●introduce one first noncommutative extension of optimal transport (section 1.3),
●present our quantum extension of the Wasserstein metric W2 (section 1.4), and
●discuss some basic estimates and examples of computations (section 1.5).

1.1. A Crash-Course on Classical Optimal Transport. Before embarking on
a description of a quantum analogue of the Wasserstein distance of exponent 2
for density operators, we need to recall some fundamental notions and results per-
taining to the the classical theory of optimal transport. There are many excellent
reference textbooks on optimal transport, such as [63, 4, 64, 58, 33], where the
interested reader will find the proofs of all the statements in this section — to-
gether with many fascinating applications of optimal transport in various areas
of mathematics. Of course, Alessio Figalli’s course [32] in this school is strongly
recommended as a general introduction to optimal transport.

1.1.1. The Monge and the Kantorovich Problems. Optimal transport grew from
Monge’s celebrated “Mémoire1 sur la théorie des déblais et des remblais”.

In modern mathematical terminology, Monge’s problem can be stated as follows.

Monge’s problem. For all µ, ν ∈ P1(Rn), find T ∶ Rn → Rn measurable such
that T#µ = ν and

∫
Rn

∣T (x) − x∣µ(dx)

= inf {∫
Rn

∣F (x) − x∣µ(dx) with F ∶ Rn →Rn measurable s.t. F#µ = ν} ,

where P(Rn) designates the set of all Borel probability measures on Rn, while

Pk(Rn) ∶= {µ ∈ P(Rn) s.t. ∫
Rn

∣x∣kµ(dx) <∞} ,

and T#µ is the push-forward of the measure µ by the transformation T , defined
by the formula

T#µ(B) ∶= µ(T −1B) , for all Borel B ⊂ Rn .

1“Déblai” and “remblai” are technical terms for earthwork in French. “Déblai” means excava-

tion, whereas “remblai” is the French word for embankment or backfill. A first version of Monge’s
memoir was read on February 7th 1776 at the Académie des sciences, followed by a second version,

read on March 27th 1781, and finally published in 1784.
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With such a general formulation, Monge’s problem does not always have at least
one solution. (For example, set n = 1, choose µ ∶= δ0 and ν ∶= 1

2
(δ+1 + δ−1). Then

there does not exist any map T ∶ R→R such that T#µ = ν.)
However, if µ is absolutely continuous with respect to the Lebesgue measure of

Rn, Monge’s problem always has at least one solution. This was proved more than
200 years after Monge’s first version of his memoir, in 1979, by Sudakov [61] (see
also section 6 of [3], where a gap in Sudakov’s original argument is fixed).

Before Sudakov’s proof, Kantorovich proposed in [47] a relaxed version of Monge’s
problem, for which the existence of a solution is elementary.

The Kantorovich relaxation of Monge’s problem. For all µ, ν ∈ P1(Rn), find

W1(µ, ν) ∶= min
ρ∈C(µ,ν)

∬
Rn×Rn

∣x − y∣ρ(dxdy) ,

where C(µ, ν) is the set of “couplings”, or “transport plans” between µ and ν,
defined as follows:

C(µ, ν) ∶= {ρ∈P(R2n) ∣
ρ(A×Rn)=µ(A),
ρ(Rn×A)=ν(A), for all Borel A ⊂ Rn} .

Observe that µ⊗ ν ∈ C(µ, ν), so that C(µ, ν) /= ∅.
That Kantorovich’s problem is indeed a relaxation of Monge’s problem is ex-

plained by the following elementary observation.
Remark. If T ∶ Rn →Rn is a measurable map such that T#µ = ν, the probability
measure ρ(dxdy) = µ(dx)δT (x)(dy) belongs to C(µ, ν) (this is trivial). Moreover,
for all µ, ν ∈ P1(Rn), one has

W1(µ, ν) = inf {∫
Rn

∣F (x) − x∣µ(dx) with F ∶ Rn →Rn measurable s.t. F#µ = ν}

provided that µ has no atom (this is not obvious: see Theorem 2.1 in [3]).

Quiz 1. Prove the existence of a solution to the Kantorovich problem. (Hint:
if µ, ν ∈ P1(Rn), then C(µ, ν) ⊂ P1(Rn × Rn), and C(µ, ν) is weakly relatively
compact in P(Rn ×Rn) by Prokhorov’s Theorem.)

The main result in [47] is the following equivalent variational formula forW1(µ, ν),
which can be deduced from the definition above by convex duality, applying the
Fenchel-Moreau-Rockafellar duality theorem (see Theorem 1.12 in [17]).
Kantorovich(-Rubinstein) duality. For all µ, ν ∈ P1(Rn),

W1(µ, ν) = sup
χ∈Lip(Rn,R)

Lip(χ)≤1

∣∫
Rn

χ(z)µ(dz) − ∫
Rn

χ(z)ν(dz)∣ .

For a proof of Kantorovich duality, see chapter 1 of [63].

The Kantorovich duality formula for W1 has several important applications to
the topology of P1(Rn), listed below.

Consequences of the Kantorovich(-Rubinstein) duality.
(1) The functional W1 is a metric on P1(Rn).
(2) Let µ ∈ P1(Rn) and µj be a sequence of elements of P1(Rn). Then the three
conditions below are equivalent

(a) W1(µj , µ)→ 0 as j →∞,
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(b) µj → µ weakly in the sense of probability measures as j →∞ and

lim
R→∞

sup
j≥1
∫
∣x∣>R

∣x∣µj(dx) = 0 ,

(c) µj → µ weakly in the sense of probability measures as j →∞ and

lim
j→∞
∫
Rn

∣x∣µj(dx) = ∫
Rn

∣x∣µ(dx) .

Statement (2) is Theorem 7.12 in [63]. As for (1), the Kantorovich(-Rubinstein)
duality formula obviously implies that W1 is nonnegative, symmetric in both its
arguments, and satisfies the triangle inequality. Finally, if W1(µ, ν) = 0, then

∫
Rn

ψ(z)µ(dz) = ∫
Rn

ψ(z)ν(dz)

for each ψ ∈ C∞
c (Rn), since φ ∶= ψ/(1+∥gradψ∥L∞(Rn)) satisfies Lip(φ) ≤ 1. Hence

µ = ν (viewing µ and ν as distributions of order 0 on Rn).
The functional W1 is usually referred to as the Wasserstein distance of expo-

nent 1, and sometimes as the Monge-Kantorovich or the Kantorovich-Rubinstein
distance.

1.1.2. The Wasserstein Distance of Exponent 2. In Monge’s own words “Le prix
du transport d’une molécule [est], toute choses égales d’ailleurs, proportionnel à
son poids & à l’espace qu’on lui fait parcourir” (all else being equal, the cost of
transport for one molecule is proportional to its weight and to the distance over
which it is transported).

But one could assume instead that the cost of transport is proportional to some
power of the distance. In this section, we consider the special case where the cost
of transport is proportional to the square distance. In that case, the Monge and
the Kantorovich problems are as follows.

Monge’s problem. For all µ, ν ∈ P2(Rn), find T ∶ Rn → Rn measurable such
that T#µ = ν and

∫
Rn

∣T (x) − x∣2µ(dx)

= inf {∫
Rn

∣F (x) − x∣2µ(dx) with F ∶ Rn →Rn measurable s.t. F#µ = ν} .

The Kantorovich problem. For all µ, ν ∈ P2(Rn), find

W2(µ, ν) ∶= ( min
ρ∈C(µ,ν)

∬
Rn×Rn

∣x − y∣2ρ(dxdy))
1/2

.

The existence of a solution to the Kantorovich problem is proved by exactly the
same weak compactness argument as in Quiz 1 above.

Remark. For each p ∈ (1,+∞), there exists an analogue of the functional W2,
denoted Wp, in the case where the cost of transport is proportional to the pth
power of the distance. We have chosen to restrict our attention to the cases p = 1
and p = 2, for which “quantum” analogues have been defined.

The Kantorovich duality in that case is, at first sight, different from the case of
exponent 1.
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Kantorovich duality for W2. For all µ, ν ∈ P2(Rn),

W2(µ, ν)2 = sup
a(x)+b(y)≤∣x−y∣2
a,b∈Cb(Rn)

∫
Rn

a(z)µ(dz) + ∫
Rn

b(z)ν(dz) .

Moreover, there exist two l.s.c. proper convex functions α,β such that α ∈ L1(Rn, µ)
and β ∈ L1(Rn, ν), satisfying2 α∗ = β and β∗ = α, and such that

W2(µ, ν)2 = ∫
Rn

(∣x∣2 − 2α(x))µ(dx) + ∫
Rn

(∣y∣2 − 2β(y))ν(dy) .

The first equality is Theorem 1.3 in [63], while the existence of an optimal pair
α,β is Theorem 2.9 in [63].

Perhaps the most important consequence of the Kantorovich duality for W2 is
the structure of optimal couplings for the Kantorovich problem.

Optimal couplings.
(a) (Knott-Smith Theorem.) Let µ, ν ∈ P2(Rn). A probability measure ρ ∈ C(µ, ν)
is an optimal coupling for W2 if and only if there exists Φ ∶ Rn →R ∪ {+∞}, l.s.c.
proper and convex, such that

supp(ρ) ⊂ graph(∂Φ) ,
where ∂Φ is the subdifferential3 of Φ.
(b) (Brenier’s Theorem.) Let µ, ν ∈ P2(Rn). If µ(S) = 0 for each Borel set S ⊂ Rn

of Hausdorff dimension H − dim(S) ≤ n − 1, there exists a unique optimal coupling
for W2, of the form

ρ(dxdy) = µ(dx)δgrad Φ(x)(dy)
with Φ ∶ Rn →R ∪ {+∞} convex and such that Φ ∈ L1(Rn, µ).

See Theorem 2.12 in [63], and more generally chapter 2 of [63] for a proof of the
Knott-Smith and the Brenier theorems.

Since Φ ∈ L1(Rn, µ), one has µ(Φ−1({+∞})) = 0, on the other hand Φ is locally
Lipschitz continuous on the interior of its domain Dom(Φ) ∶= Rn ∖ Φ−1({+∞}).
Then (1) Dom(Φ) is a convex subset of Rn, and hence ∂Dom(Φ) has Hausdorff
dimension ≤ n − 1, and (2) the set of points x in the interior of Dom(Φ) such that
Φ is not differentiable at x has Hausdorff dimension ≤ n − 1 (see [2]). Since

(grad Φ)−1(B) ∶= {x ∈ Rn s.t. Φ is differentiable at x and grad Φ(x) ∈ B} ,

2A convex function α ∶ Rn → R ∪ {+∞} is said to be proper if there exists at least one point
x ∈Rn such that α(x) < +∞. Its Legendre dual is

α∗(p) ∶= sup
x∈Rn

(p ⋅ x − α(x)) , p ∈Rn .

If α is a l.s.c. proper convex function on Rn, then the function α∗ is also l.s.c. proper and convex

on Rn, and one has α∗∗ = α. See section 1.4 and Theorem 1.11 in [17].
3If Φ ∶ Rn →R ∪ {+∞} is a proper convex function, its subdifferential at x ∈Rn is the set

∂Φ(x) ∶= {ξ ∈Rn s.t. Φ(y) ≥ Φ(x) + ξ ⋅ (y − x) , y ∈Rn} .

See Example 2.1.4 in [16]. The subdifferential of a proper convex function is an example of
monotone operator: if x1, x2 ∈Rn and if ξ1 ∈ ∂Φ(x1) and ξ2 ∈ ∂Φ(x2), then

(ξ2 − ξ1) ⋅ (x2 − x1) ≥ 0 .

One can check that (1) Φ is differentiable at x ∈Rn if and only if ∂Φ(x) contains a single element,
which is grad Φ(x), and (2) if a l.s.c. proper convex function Φ on Rn is strictly convex in a

neighborhood of x ∈ Rn, its Legendre dual Φ∗ is differentiable on ∂Φ(x), and grad Φ∗(ξ) = x for
all ξ ∈ ∂Φ(x).
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and since grad Φ(x) exists for µ-a.e. x ∈ Rn, the push-forward measure (grad Φ)#µ
is well-defined.

We shall conclude this section with a brief list of the most important topological
properties of W2.

Properties of W2.
(1) The functional W2 is a metric on P2(Rn).

In particular

W2(µ, ν) = 0 ⇐⇒ µ = ν ;

the optimal coupling in that case is ρ(dxdy)=µ(dx)δx(dy), and the Brenier trans-
port map is the identity, which is the gradient of the convex function x↦ 1

2
∣x∣2.

(2) Let µ ∈ P2(Rn) and µj be a sequence of elements of P2(Rn). Then the two
conditions below are equivalent:
(a) W2(µj , µ)→ 0 as j →∞,
(b) µj → µ weakly in the sense of probability measures, and

lim
R→∞

sup
j≥1
∫
∣x∣>R

∣x∣2µj(dx) = 0 .

Statement (1) is Theorem 7.3 in [63], while statement (2) is Theorem 7.12 in
[63]. The proof of the triangle inequality is definitely nontrivial, at variance with
the case of W1, for which the triangle inequality follows from the expression of W1

using the Kantorovich duality.

Here is a nontrivial example where W2(µ, ν) can be computed explicitly. See
[34] for a proof of the formula below.

Example. Let G1,G2 be Gaussian laws on Rn with means m1,m2 and covariance
matrices A1,A2. Then

W2(G1,G2)2 = ∣m1 −m2∣2 + trace(A1 +A2 − 2 (
√
A1A2

√
A1)

1
2 )

Quiz 2. For all m1,m2 ∈ Rn, compute Wp(δm1 , δm2) for p = 1 and p = 2. Does
there exist optimal transport map(s) in both cases?

In most reference textbooks on optimal transport, the proof of the triangle in-
equality for Wp with 1 < p < ∞ is based on a nontrivial construction referred to
as “glueing” couplings having a common marginal (Lemma 7.6 in [63], or Lemma
5.3.2 in [4]). This procedure is itself based on the notion of “disintegration” of a
probability measure on a Cartesian product with respect to one of its marginals
(obviously related to the notion of conditional probability): see Theorem 5.3.1 in
[4]. There is an alternative to the approach based on the disintegration theorem,
which uses instead the Hahn-Banach theorem: see Exercise 7.9 in [63].

In the case where there exist optimal transport maps (e.g. when the sets of
Hausdorff codimension ≥ 1 are negligible for the probability measures considered in
the triangle inequality, according to the Brenier theorem), the proof of the triangle
inequality is very simple: see Lemma 5.3 in [58]. In the setting considered here
(where the underlying metric space is Rn with its canonical Euclidean distance),
one can always reduce the triangle inequality for general probability measures to
this simple case by an approximation argument (Lemma 5.2 in [58]).

However, we shall see later that the very notion of a transport map in the
quantum setting remains to be clarified. Likewise, the possibility of “glueing”
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couplings with a common marginal in the quantum setting seems to be an open
problem at the time of this writing.

For these reasons, a third approach to the triangle inequality for W2, entirely
based on the Kantorovich duality formula, is proposed in the exercise below4. Per-
haps this could be useful later, for instance in the quantum setting.

Quiz 3. Let µ, ν, ρ ∈ P2(Rn), and let A,Γ be optimal functions in the Kantorovich
duality formula for W2(µ, ρ) such that A ∈ L1(Rn, µ) and Γ ∈ L1(Rn, ρ), i.e.

W2(µ, ρ)2 = ∫
Rn

A(x)µ(dx) + ∫
Rn

Γ(z)ρ(dz) .

while α and γ defined by α(x) ∶= 1
2
(∣x∣2 −A(x)) and γ(z) ∶= 1

2
(∣z∣2 −Γ(z)) are l.s.c.

convex functions such that α∗ = γ and γ∗ = α. For each η > 0, set

Bη(y) ∶= (1 + 1
η
) inf
z∈Rn

(∣y − z∣2 − Γ(z)

1+ 1
η

) , y ∈ Rn .

(1) Prove that the function

y ↦ 1
2

⎛
⎝
∣y∣2 − Bη(y)

1+
1
η

⎞
⎠

is the Legendre transform of a l.s.c. proper convex function to be computed in
terms of Γ.
(2) Prove that A(x) −Bη(y) ≤ (1 + η)∣x − y∣2 for all x, y ∈ Rd.
(3) Prove that Bη ∈ L1(Rn, ν) for each η > 0.
(4) Prove that, for each η > 0

∫
Rn

A(x)µ(dx) − ∫
Rn

Bη(y)ν(dy) ≤ (1 + η)W2(µ, ν)2 .

(5) Prove that, for each η > 0

∫
Rn

Bη(y)ν(dy) + ∫
Rn

Γ(z)ρ(dz) ≤ (1 + 1
η
)W2(ν, ρ)2 .

(6) Prove that, for each η > 0

W2(µ, ρ)2 ≤ (1 + η)W2(µ, ν)2 + (1 + 1
η
)W2(ν, ρ)2 .

(7) Prove that W2 satisfies the triangle inequality.

1.2. Density Operators in Quantum Mechanics. In classical mechanics, the
state of a point particle is completely defined by its position q ∈ Rd and its momen-
tum p ∈ Rd. The point particle phase space is therefore Rd ×Rd, and it is natural
to study the probability of finding a point particle in subsets of the phase space.
This is precisely the statistical formalism used by Maxwell and Boltzmann in the
kinetic theory of gases.

In quantum mechanics, the analogous formalism involves density operators, a
special class of operators on the Hilbert space L2(Rd). Before studying density
operators, we need to recall some fundamental notions in the theory of operators
on Hilbert spaces.

4I came up with this proof during the week of the summer school at the Rényi Institute.

The same method applies to the Wasserstein distance of exponent p for all p ∈ (1,∞), but the

computations (which I shall publish elsewhere) are more involved than in the case p = 2, which
is the only one of interest here. I have not seen this proof in any of the reference textbooks on

optimal transport that I have been using, and I do not know whether it is original.
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1.2.1. Trace of an Operator. Let H be a complex, separable Hilbert space with
inner product denoted by (⋅ ∣ ⋅)H, and let L(H) designate the algebra of bounded
operators on the Hilbert space H.

Positive operators. An operator T ∈ L(H) is said to be positive if

T = T ∗ , and (x∣Tx)H ≥ 0 , x ∈ H .
Equivalently, if T ∈ L(H), then

T = T ∗ ≥ 0 ⇐⇒ there exists S ∈ L(H) s.t. T = S∗S .

Trace of a positive operator. For T ∈ L(H) such that T = T ∗ ≥ 0, we define

traceH(T ) ∶=∑
j≥1

(ej ∣Tej)H ∈ [0,+∞] for all Hilbert basis (ej)j≥0 of H .

One easily checks that, if this sum is finite for one Hilbert basis (ej)j≥0 of H, it is
finite for all Hilbert basis of H, since the (infinite dimensional) “transition matrix”
from any Hilbert basis of H to (ej)j≥0 is a unitary operator on H.

The definition of the trace follows the definition of the Lebesgue integral on the
real line: first we define trace of any self-adjoint positive operator, as we define the
integral of any measurable positive function. Then we define the analogue of the
Lebesgue space L1, and extend the trace to this space by linearity, exactly in the
same way as the integral is extended from the set of measurable positive functions
to the Lebesgue space L1.

Trace-class operators. The set of trace-class operators is

L1(H) ∶= {T ∈L(H) s.t. ∥T ∥1 ∶=traceH(∣T ∣) <∞} ,
where ∣T ∣ ∶=

√
T ∗T for each T ∈ L(H).

The following properties of L1(H) are well known.

Properties of trace-class operators.
(a) Trace-class operators are compact:

L1(H) ⊂ K(H) ,
where K(H) is the set of compact operators on H, i.e. the operator-norm closure of
the set of finite rank operators on H. (One easily checks that K(H) is a two-sided
ideal of L(H), stable by the involution T ↦ T ∗.)
(b) The set of trace-class operators L1(H) is a two-sided ideal of L(H), which is
stable by the involution T ↦ T ∗:

A ∈ L(H) and T ∈ L1(H) Ô⇒ AT and TA ∈ L1(H) ,
T ∈ L1(H) Ô⇒ T ∗ ∈ L1(H) .

(c) The trace, which is defined on the set of positive trace-class operators on H,
extends as a linear functional on L1(H) satisfying the properties

trace(T ∗) = trace(T ) , trace(AT ) = trace(TA) , and ∣ trace(AT )∣ ≤ ∥A∥∥T ∥1 ,

for all T ∈ L1(H) and all A ∈ L(H).
(d) The C-linear space L1(H) is a Banach space for the trace norm T ↦ ∥T ∥1;
besides5

K(H)′ = L1(H) , and L1(H)′ = L(H) .

5The topological dual of a real or complex normed linear space E, i.e. the set of continuous
linear functionals on E (with real or complex values), is denoted by E′.
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In both equalities, the duality is defined by the trace, i.e.

⟨T,K⟩L1(H),K(H) ∶= traceH(TK) , ⟨A,T ⟩L(H),L1(H) ∶= traceH(AT ) .

Partial Trace. The construction of the trace explained before is strikingly similar
to the construction of the Lebesgue integral. In the present section, we are going
to study an analogue of the Fubini theorem.

For each T ∈ L1(H1 ⊗H2), one defines T1 = trace2(T ) ∈ L1(H1) by the formula

traceH1(T1A) = traceH1⊗H2(T (A⊗ IH2)) , for all A ∈ L(H) .
There is a similar definition of trace1(T ) ∈ L1(H2).

Observe indeed that the map

K(H1) ∋ A↦ traceH1⊗H2(T (A⊗ IH2)) ∈ C

is a norm-continuous linear functional on K(H1), and is therefore represented by
a unique trace-class operator T1 on H1. That the defining identity for trace2(T )
holds for all A ∈ L(H1) follows from the density of finite rank operators in L1(H)
for the trace-norm.

Remark. The analogue of this construction in the context of integration is the
following form of the Fubini theorem: if f ∈ L1(Rm ×Rn), the function y ↦ f(x, y)
belongs to L1(Rn) for a.e. x ∈ Rm, the function

F ∶ x↦ ∫
Rn

f(x, y)dy

belongs to L1(Rm), and

∫
Rm×Rn

f(x, y)dxdy = ∫
Rm

F (x)dx .

The function F in this statement is easily seen to be the analogue of trace2(T ) for
T ∈ L1(H1 ⊗H2).

1.2.2. Hilbert-Schmidt Operators. An operator T ∈ L(H) is said to be a Hilbert-
Schmidt operator if

traceH(T ∗T ) <∞ .

The Hilbert-Schmidt class is the set of Hilbert-Schmidt operators:

L2(H) ∶= {T ∈ L(H) s.t. traceH(T ∗T ) <∞} .
The Hilbert-Schmidt class L2(H) is a Hilbert space for the inner product

(T1∣T2)2 ∶= traceH(T ∗1 T2)
defining the Hilbert-Schmidt norm

∥T ∥2 ∶=
√

traceH(T ∗T ) .
Moreover

L1(H) ⊂ L2(H) ⊂ K(H) ⊂ L(H)
with continuous inclusions, and

∥T ∥ ≤ ∥T ∥2 ≤ ∥T ∥1 , T ∈ L1(H) .
Besides L2(H) is a two-sided ideal of L(H).
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If T = T ∗ ∈ L2(H), then T is a compact operator, so that there exists (ej)j≥1, a
Hilbert basis of H and (τj)j≥1 ∈ `2(N∗;R) such that

T =∑
j≥1

τjPj , ∥T ∥2
2 =∑

j≥1

τ2
j with Pjφ ∶= (ej ∣φ)Hej .

Besides, in the case where H = L2(Rd), one has therefore

(1) Tφ(x) = ∫
Rd
t(x, y)φ(y)dy , for all φ ∈ H ,

where
t(x, y) ∶=∑

j≥1

τjej(x)ej(y) .

In particular

(2) ∥T ∥2
2 =∑

j≥1

τ2
j =∬

Rd×Rd
∣t(x, y)∣2dxdy .

Conversely, an integral operator T of the form (1) belongs to L2(H) if and only
if t ∈ L2(Rd ×Rd), and the first left-hand side in (2) is equal to the last right-hand
side of in (2).

The interested reader will discover additional important properties of trace-class
and Hilbert-Schmidt operators in the next two exercises.

Quiz 4. In this exercise, H ∶= L2(Rd).
(1) Prove that any T ∈ L1(H) can be put in the form T = T1T2 with T1, T2 ∈ L2(H),
and that ∥T ∥1 ≤ ∥T1∥2∥T2∥2.
(2) For all T ∈ L1(H), can one find T1, T2 ∈ L2(H) such that

T = T1T2 and ∥T ∥1 = ∥T1∥2∥T2∥2 ?

(3) Prove that for each T ∈ L1(H), there exists t ≡ t(x, y) such that z ↦ t(x + z, x)
belongs to Cb(Rd

z ;L
1(Rd

x)), which is an integral kernel for T , in the sense that

Tφ(x) = ∫
Rd
t(x, y)φ(y)dy , for all φ ∈ H ,

and that

traceH(T ) = ∫
Rd
t(x,x)dx .

Question (3) suggests that t(x, y) is the analogue for T of the entries of a matrix
if the infinite dimensional Hilbert space H is replaced with Cn. One might therefore
believe that an integral operator is trace-class if the restriction of its integral kernel
to the diagonal is summable. This is not the case, as shown by the next example.

Quiz 5. Consider the Volterra operator V defined on L2([0,1]) by the formula

V φ(x) ∶= ∫
x

0
φ(y)dy , φ ∈ L2([0,1]) .

(1) Prove that V is the operator defined by the integral kernel v(x, y) = 10≤y≤x.
(2) Is V a Hilbert-Schmidt operator on L2([0,1])?
(3) Does the function x↦ v(x,x) belong to L1([0,1])?
(4) Is V a trace-class operator on L2([0,1])?
(5) What are the eigenvalues of V ?
(6) What is the spectral radius of V ?

This last exercise shows the importance of the continuity condition in question
(3) of Quiz 3. Any trace-class operator T on L2(Rd), being a Hilbert-Schmidt
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operator, is an integral operator defined by a unique integral kernel in L2(Rd×Rd).
Since the diagonal is a Lebesgue-negligible set in Rd × Rd, the restriction to the
diagonal of this integral kernel is a priori not a well defined function. Yet, any
trace-class operator T on L2(Rd) has an integral kernel satisfying the continuity
condition of (3) in Quiz 3, which is a representative of the unique L2(Rd × Rd)
integral kernel of T viewed as a Hilbert-Schmidt operator on L2(Rd), and the trace
of T is indeed the integral of the restriction of this particular integral kernel to the
diagonal, which is a well-defined element of L1(Rd).

1.2.3. Density Operators. As mentioned above, density operators on L2(Rd) are
the quantum analogue of Borel probability measures on the single-particle phase
space Rd ×Rd. The positivity of a probability measure µ on Rd ×Rd becomes the
positivity of an operator R on L2(Rd), while the analogue of the normalization
condition µ(Rd ×Rd) = 1 in the quantum setting is the condition traceH(R) = 1.

Throughout this section, we set H = L2(Rd).
(Quantum) Density operators. A density operator on H is an element of

D(H) ∶= {T ∈ L(H) s.t. T = T ∗ ≥ 0 and traceH(T ) = 1} ⊂ L1(H) .
As explained above, D(H) is the quantum analogue of P(Rd ×Rd).

When dealing with computations involving quantum states, it will be especially
convenient to use the notation involving bras and kets, which is recalled below.

Dirac bra-ket notation. For φ,ψ ∈ H, we denote by ∣ψ⟩ the vector ψ, while

⟨φ∣ denotes the linear functional ψ ↦ ∫
Rd
φ(x)ψ(x)dx = ⟨φ∣ψ⟩ .

With this notation, one easily checks that

ψ ∈ H and ∥ψ∥H = 1 Ô⇒ ∣ψ⟩⟨ψ∣ = orthogonal projection on Cψ .

Example: Schrödinger’s coherent state. For q, p ∈ Rd, set

∣q, p⟩(x) ∶= (2πh̵)−d/4 exp (− 1
2h̵

∣x − q∣2) exp ( i
h̵
p ⋅ (x − q

2
)) .

One easily checks that ∥ ∣q, p⟩ ∥H = 1 so that ∣q, p⟩⟨q, p∣ ∈ D(H).
The density operator ∣q, p⟩⟨q, p∣ defined above is a quantum analogue (and by no

means the only one) of the probability measure δ(q,p) ∈ P(Rd ×Rd).
Since density operators are the quantum analogue of phase space (Borel) prob-

ability measures, a natural problem is that of comparing two density operators by
some procedure which corresponds to a comparison between phase space (Borel)
probability measures in the classical limit of quantum mechanics. In the sequel, we
shall consider an important example, involving Schrödinger’s coherent states, for
which explicit computations are very easy.

Key example. For (q1, p1) /= (q2, p2) ∈ Rd ×Rd, set

R1 ∶= ∣q1, p1⟩⟨q1, p1∣ and R2 = ∣q2, p2⟩⟨q2, p2∣ .
Then R1 −R2 is a self-adjoint, rank-2 operator, such that trace(R1 −R2) = 0, and
hence there exists λ > 0 and an orthonormal basis (e, f) of Ran(R1 −R2) for which

R1 −R2 = λ∣e⟩⟨e∣ − λ∣f⟩⟨f ∣ .
Therefore

∥R1 −R2∥1 = 2λ and ∥R1 −R2∥2 =
√

2λ ,
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so that
∥R1 −R2∥1 =

√
2∥R1 −R2∥2 .

On the other hand, R1 −R2 is the Hilbert-Schmidt integral operator with integral
kernel

r(x, y) ∶=(2πh̵)−d/2 exp (− 1
2h̵

(∣x − q1∣2 + ∣y − q1∣2)) exp ( i
h̵
p1 ⋅ (x − y))

− (2πh̵)−d/2 exp (− 1
2h̵

(∣x − q2∣2 + ∣y − q2∣2)) exp ( i
h̵
p2 ⋅ (x − y)) ,

so that

∥R1 −R2∥2
2 =∬

Rd×Rd
∣r(x, y)∣2dxdy = 2(1 − e−(∣q1−q2∣

2
+∣p1−p2∣

2
)/2h̵) .

Thus

∥R1 −R2∥1 = 2
√

1 − e−(∣q1−q2∣2+∣p1−p2∣2)/2h̵ → 2 as h̵→ 0+

since (q1, p1) /= (q2 − p2). In other words, passing to the limit as h̵→ 0,

∥ ∣q1, p1⟩⟨q1, p1∣−∣q2, p2⟩⟨q2, p2∣ ∥1 → ∥δ(q1,p1)−δ(q2,p2)∥TV = {
2 if (q1, p1) /= (q2, p2) ,
0 if (q1, p1) = (q2, p2) ,

In particular, ∥ ⋅ ∥1 fails to discriminate between density operators concentrating on

phase space points at a distance ≫ O(h̵1/2) of each other in the classical limit.

1.3. The Connes Distance in Noncommutative Geometry. It is well known
that one of the main differences between quantum and classical mechanics is that
the product of phase space coordinates of a point particle in classical mechanics is
a commutative operation, whereas the quantum analogues of these quantities are
operators on a Hilbert space, and their product is in general noncommutative. For
example, think of a point particle in space dimension 1, and let q, p ∈ R designate
respectively its position and momentum in classical mechanics. Obviously

pq − qp = 0 .

In quantum mechanics, the real-valued functions (q, p) ↦ q and (q, p) ↦ p are
replaced with (unbounded) operators q̂ and p̂ on L2(R) satisfying the canonical
commutation relation (CCR)

[p̂, q̂] = p̂q̂ − q̂p̂ = −ih̵Id .

To the best of our knowledge, the first attempt at extending the notions of
optimal transport to the noncommutative setting is due to Connes [24]. We shall
briefly describe his work on this topic in this section.

Let A be a unital C∗-algebra. (We recall that a C∗-algebra is a complex Banach
algebra endowed with a linear involution x↦ x∗ such that (αx)∗ = ᾱx∗ for all α ∈ C
and ∥x∗x∥ = ∥x∥2 for all x in the algebra. The latter condition is known as “the
C∗ identity”. This is a very strong condition, which connects the norm with the
algebraic structure. For instance, it implies that ∥x∥2 is the spectral radius of x∗x
for each x in the algebra.) Here are a few examples of C∗-algebras:
(a) A = C(X,C) with X compact; in this example

f∗(x) ∶= f(x) for all x ∈X , ∥f∥ ∶= sup
x∈X

∣f(x)∣ .

This is the prototype of a unital commutative C∗-algebra, the unit being the con-
stant function x↦ 1.
(b) A = L(H) where H is a separable complex Hilbert space; in this example, the
involution is T ↦ T ∗ where T ∗ is the adjoint of the operator T on H, while ∥T ∥
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is the operator-norm of T , i.e. ∥T ∥ ∶= sup{∥Tx∥H ∶ ∥x∥H = 1}. This is a unital
C∗-algebra, with unit IdH, and it is not separable for the norm topology.
(c) A = K(H), the set of compact operators on an infinite dimensional, separable
complex Hilbert space H; this is a non unital C∗-subalgebra of L(H); in fact K(H)
is the only norm-closed two-sided ideal of L(H).
(d) A = L(H)/K(H) where H is an infinite dimensional, separable complex Hilbert
space; this a unital C∗-algebra, which is simple — meaning that its only closed
two-sided ideals are {0} and A — and known as the Calkin algebra; obviously A
is not of the form L(H1) for any separable Hilbert space.

A state on a C∗-algebraA is a positive linear functional onA— positive meaning
that ω(a∗a) ≥ 0 — of norm 1 — meaning that

∥ω∥ ∶= sup{∣ω(x)∣ ∶ x ∈ A and ∥x∥ ≤ 1} = 1 .

It is a classical exercise6 to check that, if ω is continuous linear functional on a
unital C∗-algebra A, then

ω is positive ⇐⇒ ∥ω∥ = ω(1) .

Examples of states
●A = C(X;C) with X compact, and ω(f) = f(x0) = ⟨δx0 , f⟩, for some x0 ∈X;
●A = L(H) and ω(A) ∶= ⟨ψ∣A∣ψ⟩ for some ψ ∈ H with ∥ψ∥H = 1;
●A = L(H) and ω(A) ∶= traceH(RA) for some R ∈ D(H).

Let (H,D) be a Fredholm module on A, meaning that
(a) there is a ∗-linear representation7 π of A in H,
(b) D =D∗ is a self-adjoint unbounded operator on H such that

(I +D2)−1 ∈ K(H) ,
(c) {a ∈ A s.t. [D,π(a)] ∈ L(H)} is norm-dense in A.

Theorem (Connes [24]). Assume that

{a ∈ A s.t. ∥[D,π(a)]∥H ≤ 1}/C1 is bounded.

Then, the following formula metrizes the set of states on A:

distC(ω1, ω2) ∶= sup{∣ω1(a) − ω2(a)∣ s.t. ∥[D,π(a)]∥H ≤ 1} .

There is an obvious similarity between Connes’ definition and the Kantorovich(-
Rubinstein) duality for W1: it clearly suggests to think of Connes’ distance as the
analogue of the metric W1 in noncommutative geometry.

It is interesting to see how Connes’ definition can be applied to a commutative
setting, corresponding to example (a) above of a C∗-algebra.

Example 1: the Dirac operator as a Fredholm module. SetA = C(M) where
M is a compact spin Riemannian manifold (see for instance [13]), with Riemannian
metric g. Let S be the spinor bundle on M , and set H ∶= L2(M ;S), the Hilbert
space of L2 sections of S. Let A act on H by scalar multiplication — to avoid

6Here is a hint for the interested reader to prove the direct implication. If ω is a positive linear

functional on A, check that (x, y) ↦ ω(x∗y) is a positive sesquilinear form on A, and use the

Cauchy-Schwarz inequality to check that ω(x∗) = ω(x) and that ω is continuous on A with norm

∥ω∥ = ω(1).
7I.e. π is a morphism of algebras from A to L(H) satisfying the condition π(a∗) = π(a)∗)
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unnecessary complications in the notation, we write aξ instead of π(a)ξ everywhere
in this example. Finally, let D be the Dirac operator on M .

Then, the geodesic distance distg on M satisfies the following property:

distg(x, y) = sup{∣a(x) − a(y)∣ ∶ a ∈ C(M) s.t. ∥[D,a]∥ ≤ 1} = distC(δx, δy) .
Proof. Denote by γ(v)ζ the Clifford multiplication of ζ ∈ Sx by v ∈ TxM . Since D
is a differential operator of order 1, one easily checks that

([D,a]ξ)x=γ((grad a)x)ξx , ξ ∈ H ,
for all a ∈ C1(M), so that

∥[D,a]∥=∥grad a∥L∞(M) .

Hence
distC(δx, δy) = sup

Lip(a)≤1

∣a(x) − a(y)∣ ,

and
distg(x, y) ≤ distC(δx, δy) ≤ distg(x, y) .

The upper bound is obvious by definition of the Lipschitz constant; as for the lower
bound, it suffices to pick the function a(z) ∶= distg(z, y). �

Example 2: the word length on a discrete group as a Fredholm module.
Let Γ be a discrete group, with reduced C∗-algebra C∗

red(Γ) defined as the C∗-
algebra generated by the left regular representation λ on H ∶= `2(Γ). (We recall
that (λ(g)ξ)h ∶= ξg−1h for each ξ = (ξh)h∈Γ ∈ `2(Γ).) Let L ∶ Γ → R+ be a length
function (for instance the word length with respect to a system of generators of Γ).
In other words, we assume that

L(1) = 0 , L(g−1)L(g) , L(gh) ≤ L(g) +L(h) , g, h ∈ Γ .

Assume that L(g)→ +∞ as g →∞, and set

Dξ ∶= (L(g)ξg)g∈Γ for all ξ = (ξg)g∈Γ ∈ `2(Γ) .
Then (H,D) is an unbounded Fredholm module on C∗

red(Γ). As in the preceding
example, we seek to compute ∥[D,a]∥ for a ∈ C∗

red(Γ). One finds that

∥[D,λ(g)]∥ = L(g) .
(Indeed, one has

(λ(g)Dλ(g−1)ξ)h = (Dλ(g−1)ξ)g−1h = L(g−1h)(λ(g−1)ξ)g−1h = L(g−1h)ξh ,
so that

((λ(g)Dλ(g−1) −D)ξ)h = (L(g−1h) −L(h))ξh ,
and

∥[λ(g),D]∥ = ∥λ(g)Dλ(g−1) −D∥ = sup
h∈Γ

∣L(g−1h −L(h)∣ = L(g) .

Connes’ distance in noncommutative geometry is defined via an analogue of the
Kantorovich(-Rubinstein) duality formula. Whether there exists a formula involv-
ing a notion of noncommutative coupling or transport plan seems to be an open
question at the time of this writing — see however an interesting contribution to
this problem by D’Andrea and Martinetti [25].

In spite of its great interest, the Connes distance is not exactly the quantum
analogue of the Wasserstein distance which we are looking for. The first example
presented above suggests that the Connes distance is a noncommutative analogue
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of the classical distance on the space of positions, and not of a phase space distance.
Moreover, the Connes distance is clearly an analogue of the Monge, or Wasserstein
distance of exponent 1, instead of the Wasserstein distance of exponent 2, for which
the optimal transport problem seems to have more structure (in particular by the
Knott-Smith or the Brenier theorems).

1.4. A Quantum Analogue of W2. This section gathers together analogues of
the Wasserstein distance W2 in the quantum setting introduced in [37, 38]. The
presentation given here is closer in spirit to [40].

Other approaches to the problem of generalizingW2 to the quantum setting have
been proposed by other authors: see for instance [26] and the earlier reference [65].

1.4.1. Transport Cost. The first step in extending the Wasserstein distance W2 to
the quantum setting is obviously to find some appropriate definition of the transport
cost.

In classical mechanics, the phase space coordinates of a point particle are its
position q ∈ Rd and its momentum p ∈ Rd.

In quantum mechanics, these coordinates, or functions thereof, must be replaced
with appropriate operators. This procedure — associating operators on a Hilbert
space to functions of the classical phase space coordinates — is called “quantiza-
tion”.

The simplest quantization procedure
(i) associates to each function of the position variable only a multiplication operator

a(q)→ multiplication by a(y) in L2(Rd
y) ;

(ii) associates to the classical momentum variable p the momentum operator

p↦ −ih̵∇y viewed as an unbounded self-adjoint operator on L2(Rd
y) .

The classical transport cost is a function on the Cartesian product of the phase
space with itself which is the square Euclidean distance from the phase space point
(x, ξ) to the phase space point (q, p) in Rd ×Rd, i.e.

∣x − q∣2 + ∣ξ − p∣2 .
The most natural thing to do is to quantize this expression in the variables

(q, p) to measure the cost of transporting a particle from the classical phase space
point (x, ξ) to a quantum state with position y and momentum −ih̵∇y (whatever
it means). This leads to the
Classical-to-quantum transport cost, which is an operator on L2(Rd

y):
ch̵(x, ξ) ∶= ∣x − y∣2 + ∣ξ + ih̵∇y ∣2 .

This is “the” quantization8 in (y, η) of (q, p)↦ ∣x − q∣2 + ∣ξ − p∣2.
One can also quantize this expression in both variables (x, ξ) and (q, p) to mea-

sure the cost of transporting a quantum particle from a quantum state with position
x and momentum −ih̵∇x to a quantum state with position y and momentum −ih̵∇y.
This leads to the
Quantum-to-quantum transport cost, which is an operator on L2(Rd

x ×Rd
y):

Ch̵ ∶= ∣x − y∣2 − h̵2(∇x −∇y) ⋅ (∇x −∇y) .

8In truth, there is more than one quantization procedure; we shall see later in this lecture a

notion of “Toeplitz quantization”, which in this case would give a slightly different result, with a

difference of order O(h̵).



QOT AND MANY-BODY PROBLEMS 17

This is “the” quantization of the function (x, ξ, q, p)↦ ∣x − q∣2 + ∣ξ − p∣2.

Notice that ch̵(x, ξ) is the Hamiltonian of the harmonic oscillator, shifted in
phase space by (x, ξ), while Ch̵ is the Hamiltonian of a harmonic oscillator in the
variable x − y.

Observe that
ch̵(x, ξ) ≥ dh̵IH , for all x, ξ ∈ Rd ,

while
Ch̵ ≥ 2dh̵IH⊗H ,

where H = L2(Rd). These lower bounds are implied by Heisenberg’s uncertainty
inequalities.

The exercise below gathers together several important facts related to the Hamil-
tonian of the harmonic oscillator y2 − h̵2∂2

y on the real line.

Quiz 6. In this exercise H = L2(R). Set

ω(x) ∶= π−1/4e−x
2
/2 ,

and
a ∶= 1

√
2
(x + ∂x) , a∗ ∶= 1

√
2
(x − ∂x) .

(1) Find Ker(a), and prove that Ker(a) ⊂ H. Compute the commutator

[a, a∗] = aa∗ − a∗a
together with the operators aa∗ and a∗a.

Set V ∶= {ψ ∈H1(R) s.t. y ↦ yψ(y) ∈ L2(R)}.
(2) Find

inf
ψ∈V, ∥ψ∥L2=1

∫
R
ψ(y)(y2 − h̵2∂2

y)ψ(y)dy .

(3) Find

inf
ψ∈V, ∥ψ∥L2=1

(∫
R

∣y∣2∣ψ(y)∣2dy)
1/2

(∫
R

∣h̵∂yψ(y)∣2dy)
1/2

.

(Hint: change h̵ in εh̵ in question (2) where ε > 0 is arbitrary, and conclude by a
minimization argument in ε > 0.)

Question (3) leads to an inequality which is a mathematical formulation of
Heisenberg’s uncertainty principle (for its physical interpretation, see for instance
§16 in [48] or chapter I.C.3 in [23].
(4) Find the spectrum of a∗a. (Hint: find Ker(a∗a) by using question (1). Then,
argue as in the solution of the following classical exercise in algebra: if A is a unital
algebra with unit denoted by 1, and if a, b ∈ A, then 1−ab is invertible in A iff 1−ba
is invertible in A. To solve this exercise, the idea is to guess a formula relating
(1− ab)−1 and (1− ba)−1, which can be done easily by writing (1−x)−1 as a formal
series in powers of x.)
(5) Compute a∗afn for each integer n ≥ 0, where fn ∶= (a∗)nω.

(6) Set φn = fn/
√
n!. Prove that (φn)n≥0 is an orthonormal system of H.

(7) Prove that φn = (−1)nωHn/
√

2nn! for each integer n ≥ 0, where

Hn = (−1)nω−2∂nxω
2

is the n-th Hermite polynomial in the so-called “physical form”. What is the leading
coefficient in Hn?
(8) Prove that the orthonormal system (φn)n≥0 is complete in H.
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(9) Consider the Fourier transform scaled as follows:

Fψ(ξ) ∶= 1
√

2π ∫R ψ(x)e
−iξxdx .

Compute F(φn) for each integer n ≥ 0.

1.4.2. Finite Energy Density Operators. Before going further in the definition of a
quantum analogue of the Wasserstein distance W2, we need to define the analogue
of P2(Rd ×Rd).

Using the basic quantization procedure given in the previous section, shows that
the phase space Euclidean norm is transformed into the Hamiltonian of a quantum
harmonic oscillator:

∣q∣2 + ∣p∣2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
phase space

Euclidean norm

→ ∣x∣2 − h̵2∆x
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

harmonic oscillator

.

This suggests the following definition of a quantum analogue to P2(Rd ×Rd) (the
set of Borel probability measures on phase space with finite second order moments):

D2(H) ∶= {R ∈ D(H) s.t. traceH(R 1
2 (∣x∣2 − h̵2∆x)R

1
2 ) <∞} .

In other words, D2(H) is the set of density operators with finite energy for the
quantum harmonic oscillator.

If {ψn ∈L2(Rd, ∣x∣2dx)∩H1(Rd)} is an orthonormal system in H=L2(Rd), then

R=∑
n≥1

ρn∣ψn⟩⟨ψn∣∈D2(H) ⇐⇒
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ρn ≥ 0 and ∑
n≥1

ρn = 1 ,

∑
n≥1

ρn(∥xψn∥2
H+h̵2∥∇ψn∥2

H)<∞ .

The very simple verification of this statement is left to the reader.

1.4.3. Couplings. We already know the notion of coupling between two probability
densities µ and ν belonging to P(Rd ×Rd): the set of such couplings is denoted by
C(µ, ν).

Similarly, we define the set of couplings of 2 quantum density operators
R,S ∈ D(H):
C(R,S) ∶= {T ∈ D(H⊗H) s.t. traceH(T (A⊗ I + I ⊗B)) = traceH(RA + SB) ,

for all A,B ∈ L(H)} .

The condition involving the test operators A,B ∈ L(H) can be equivalently replaced
by conditions on partial traces:

trace2(T ) = R and trace1(T ) = S .

Finally, we define a notion of coupling of a classical probability density f
and a quantum density operator R. Let f(x, ξ) be a probability density on
R2d and let R ∈ D(H). A coupling of f and R is a measurable9 operator-valued

9Since f ∈ L1(Rd×Rd) and traceH(Q(x, ξ)) = ∥Q(x, ξ)∥1 = f(x, ξ) <∞ for a.e. (x, ξ) ∈Rd×Rd,

one has Q(x, ξ) ∋ L1(H) for a.e. (x, ξ) ∈Rd ×Rd. Since L1(H) is separable, the map Q is weakly
measurable if and only if it is strongly measurable by the Pettis Theorem (see Theorem 2 in
chapter II of [28]). In other words, there are no measurability issues with Q.
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map Q defined on Rd×Rd, with values in L(H), satisfying the following properties:

R2d ∋ (x, ξ)↦ Q(x, ξ) = Q(x, ξ)∗ ∈ L(H) s.t. Q(x, ξ) ≥ 0 a.e.

traceH(Q(x, ξ)) = f(x, ξ) a.e., and ∫
R2d

Q(x, ξ)dxdξ = R .

In this case again, the set of couplings of f with R will be denoted by C(f,R).
Here are trivial examples of couplings (usually not the most clever couplings in

optimal transport).
Examples of couplings.
(a) For all R,S ∈ D(H), the tensor product R⊗ S belongs to C(R,S).
(b) For each f probability density on R2d, and each density operator R on H, the
operator-valued map

fR = f ⊗C R ∶ (x, ξ)↦ f(x, ξ)R
belongs to C(f,R).

In particular
C(R,S) /= ∅ and C(f,R) /= ∅ .

(We have already observed that the set of couplings of two probability measures is
never empty, since it always contains the tensor product of these two measures.)

1.4.4. Extending the Wasserstein Distance to D ∶= P2(Rd ×Rd) ∪D2(H). We are
now ready to define the most important object in these lectures, namely the exten-
sion of the Wasserstein W2 distance to the (disjoint) union of the sets of classical
and quantum densities.

First we define the (disjoint) union of the set of (classical) Borel probability
measures on phase space with finite second order moments, and of the set of finite
energy (quantum) density operators:

D ∶= P2(Rd ×Rd) ∪D2(H) .
Definition of d on D ×D.
(1) For each µ, ν ∈ P2(R2d), set

d(µ, ν) ∶=W2(µ, ν) .
(2) For each phase space probability density f such that f(x, ξ)dxdξ ∈ P2(R2d)
and each R ∈ D2(H), set

d(f,R) ∶= inf
Q∈C(f,R)

(∫
R2d

traceH(Q(x, ξ) 1
2 ch̵(x, ξ)Q(x, ξ) 1

2 )dxdξ)
1
2

.

(3) For each R,S ∈ D2(H), set

d(R,S) ∶= inf
T ∈C(R,S)

(traceH⊗H(T 1
2Ch̵T

1
2 ))

1
2
.

Remark. For all f(x, ξ)dxdξ ∈ P2(R2d) and all R,S ∈ D2(H), one has

d(f,R) ≥
√
dh̵ and d(R,S) ≥

√
2dh̵ .

In particular d(R,R) > 0, so that d is not a bona fide metric on D.

Quiz 7. Let H be a (complex) separable Hilbert space.
(1) Let A,B ∈ L(H). Prove that

A∗B +B∗A ≤ ∣A∣2 + ∣B∣2 .
(We recall that ∣A∣2 ∶= A∗A.)
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(2) Prove that, for all ε > 0 and all A,B ∈ L(H), one has

A∗B +B∗A ≤ ε∣A∣2 + 1
ε
∣B∣2 .

(3) Prove that, for all ε > 0 and all A,B ∈ L(H), one has

∣A +B∣2 ≤ (1 + ε)∣A∣2 + (1 + 1
ε
)∣B∣2 .

(4) Let A,B be Hilbert-Schmidt operators on H. Deduce from (2) that

∣ traceH(B∗A)∣ ≤
√

traceH(∣A∣2)
√

traceH(∣B∣2) .
(5) Let R = R∗ ≥ 0 be a trace-class operator on H. Prove that

∣ traceH(B∗AR)∣ ≤
√

traceH(∣A∣2R)
√

traceH(∣B∣2R) .
(6) Let f be a convex function on R (in particular f ∈ C(R)), let R ∈ D(H), and
let A = A∗ ∈ L(H). Prove that

f(traceH(AR)) ≤ traceH(f(A)R) .
(Hint: prove that, for each z,m ∈ R and for all λ ∈ [f ′g(m), f ′d(m)], one has the
inequality f(z) ≥ f(m) + λ(z − m). Using the spectral measure (ξ∣E(dz)ξ) of
A, where ξ ∈ H and E is the spectral decomposition10 of A, prove that f(A) ≥
f(m)I + λ(A −mI). Conclude by choosing m appropriately.)
(7) How should one modify (1) if A and B are unbounded operators on H?
(8) Prove that

d(f,R) + d(R,S) <∞
for each probability density f with finite second order moments on Rd ×Rd, and
all R,S ∈ D2(H).

In practice, the “pseudometric” d is not easy to compute, except in a few cases.
But before discussing these cases, we need to return to the question of “quantiza-
tion” — i.e. associating an operator on L2(Rd) to a function on phase space (i.e.
Rd ×Rd).

1.4.5. Toeplitz Operators and Husimi Transform. We begin with the definition of
a quantum analogue of the Dirac mass at the phase space point (q, p) ∈ Rd ×Rd.
Gaussian wave packet (Schrödinger coherent state). For all q, p ∈ Rd, set

∣q, p⟩(x) ∶= (πh̵)−d/4 exp(− 1
2h̵

∣x − q∣2) exp( i
h̵
p ⋅ (x − q

2
)) .

This is a plane wave oscillating at frequency ∣p∣/h̵ in the direction p/∣p∣, modulated

by a Gaussian envelope of width O(
√
h̵), centered at the position q. Therefore, the

oscillating profile of the wave function ∣q, p⟩ encodes the momentum vector p, while
the envelope of the oscillations encodes the position q ∈ Rd.
Toeplitz map. To m, a (complex) Radon measure on the phase space Rd ×Rd,
one associates the operator

T [m] ∶= ∫
Rd

∣q, p⟩⟨q, p∣m(dqdp) .

The form-domain of T [m] is the set of φ ∈ H such that the function (q, p)↦ ⟨q, p∣ψ⟩
belongs to L2(R2d;m).

Observe that ∣q, p⟩⟨q, p∣ is a self-adjoint positive operator (specifically, a rank-1
projection in H). Therefore, if the measure m is real-valued, the operator T [m]
(with some appropriate domain) is expected to be self-adjoint, and if m is a positive

10See for instance chapter 12 in [57].



QOT AND MANY-BODY PROBLEMS 21

−0.05 −0.04 −0.03 −0.02 −0.01 0.00 0.01 0.02 0.03 0.04 0.05
−0.05

−0.04

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

Figure 1. Oscillating structure of a Gaussian wave-packet
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Figure 2. With h̵ = 8 ⋅ 10−5, plot of Z = real part of the coherent
state centered at q = (0,0) with momentum p = (1,0) with space
variable (X,Y ) ∈ R2

measure on phase space, the associated Toeplitz operator T [m] is expected to be
a positive operator on H (possibly unbounded, with some appropriate domain).

Basic properties of the Toeplitz map.
(1) The set of Schrödinger coherent states is a resolution of the identity:

T [1] = ∫
R2d

∣q, p⟩⟨q, p∣dqdp = (2πh̵)dIH .

(2) The image by the Toeplitz map T of the set of Borel phase space probability
measure on Rd ×Rd is included in D(L2(Rd)):

m ∈ P(Rd ×Rd) Ô⇒ T [m] ∈ D(H) , with H = L2(Rd) .
(3) One has

T [q] = (2πh̵)dx (position operator),
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while
T [p] = (2πh̵)d(−ih̵∇x) (momentum operator).

(4) If f is a quadratic form on Rd, then

⎧⎪⎪⎨⎪⎪⎩

T [f(q)] = (2πh̵)d (f(x) + 1
4
h̵(∆f)IH) , and

T [f(p)] = (2πh̵)d (f(−ih̵∇x) + 1
4
h̵(∆f)IH) .

Quiz 8. Prove the statements (1)-(4) above. (Hint: recall the formulas for moments
of order ≤ 2 of Gaussian distributions, together with the oscillating integrals

1
2π ∫

Rd
eip⋅(x−y)dp = δ0(x − y) , 1

2π ∫
Rd
pje

ip⋅(x−y)dp = −i∂xjδ0(x − y) ,

and
1

2π ∫
Rd
pjpke

ip⋅(x−y)dp = −∂xj∂xkδ0(x − y) , j, k = 1, . . . , d

— which are to be understood in the sense of tempered distributions. For instance,
the first formula above is equivalent to the Fourier inversion formula on the set of
tempered distributions.)

The Toeplitz map associates an operator on H = L2(Rd) to a function on the
phase space Rd ×Rd. Conversely, given an operator on H, we seek to associate a
function on phase space. There are various ways of doing this, one of which is the
Husimi transform.
Husimi Transform. To T ∈ L(H), one associates its Husimi transform

H[T ](q, p) ∶= 1
(2πh̵)d

⟨q, p∣T ∣q, p⟩ .
This definition can be extended to all unbounded operators on T such that the
Gaussian wave packet ∣q, p⟩ belongs to the form domain of T for each q, p ∈ Rd.

Basic properties of the Husimi transform.
(1) For each T ∈ L(H),

T = T ∗ Ô⇒ H[T ](q, p) ∈ R , and T ≥ 0 Ô⇒ H[T ] ≥ 0 .

(2) The Husimi transform is an “almost inverse” of the Toeplitz map: for each
m ∈ P(Rd ×Rd)

H[T [m]] = e h̵2 ∆q,pm,

since
⟨q, p∣q′, p′⟩ = e− 1

4h̵ (∣q−q′∣2+∣p−p′∣2)e−
i
h̵ (p⋅q′−q⋅p′) .

(3) One has

H[I] = (2πh̵)−d ,
while ⎧⎪⎪⎨⎪⎪⎩

H[f(x)](q, p) = (2πh̵)−d(I + 1
4
h̵∆)f(q) , and

H[f(−ih̵∇x)](q, p) = (2πh̵)−d(I + 1
4
h̵∆)f(p) .

(4) One has

traceH(R∗T [f]) = (2πh̵)d∬
Rd×Rd

H[R](q, p)f(q, p)dqdp .

Quiz 9. Prove the statements (1)-(4) above.

An important property of the Husimi transform is that it is a one-to-one transfor-
mation. In other words, the Husimi transform of an operator specifies it completely.
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Quiz 10. Set H ∶= L2(Rd).
(1) Let R ∈ D2(H). Prove that H[R] is a probability density, and compute

∬
Rd×Rd

(∣q∣2 + ∣p∣2)H[R](q, p)dqdp .

(2) Let R,S ∈ D2(H), and assume that H[R] =H[S]. Prove that R = S. (Hint: let
r ≡ r(y, y′) be an integral kernel of R. Set

J(x, ξ) =∬
Rd×Rd

r(y, y′)e−(∣y∣
2
+∣y′∣2)/2h̵ex⋅(y+y

′
)−iξ⋅(y−y′)/h̵dydy′ .

Prove that J extends as a holomorphic function on Cd×Cd, and therefore is uniquely
determined by its restriction to Rd ×Rd. Conclude by (a) computing the formula
relating H[R] to J , and (b) by computing the integral kernel r of R in terms of J .)

Here is another way of associating a function on the phase space Rd ×Rd to an
operator on L2(Rd).
Quiz 11. Set H ∶= L2(Rd). To each A ∈ L1(H) with integral kernel a ≡ a(x, y)
such that z ↦ a(x + z, x) belongs to Cb(Rd;L1(Rd)) (see Quiz 4), we associate its
Wigner transform

W [A](x, ξ) ∶= 1
(2π)d ∫

Rd
a(x + 1

2
h̵y, x − 1

2
h̵y)e−iξ⋅ydy

(where the integral above is to be understood as the partial Fourier transform of
the continuous bounded function y ↦ a(x + 1

2
h̵y, x − 1

2
h̵y) with values in L1(Rd

x),
which is therefore a tempered distribution).
(1) Prove that

W [A] =W [A∗] ,
and that, for each A,B ∈ L1(H)

traceH(A∗B) = (2πh̵)d∬
Rd×Rd

W [A](x, ξ)W [B](x, ξ)dxdξ ,

and

∥A∥2 = (2πh̵)d/2∥W [A]∥L2(Rd×Rd) .

Prove that the Wigner transform has a unique extension to L2(H).
(2) Prove that, for each A ∈ L1(H),

traceH(A) =∬
Rd×Rd

W [A](x, ξ)dxdξ .

(3) Let t↦ R(t) be a time-dependent density operator, solution of the von Neumann
equation

ih̵∂tR(t) = [− 1
2
h̵2∆ + V,R(t)] .

Prove that W [R(t)] is a solution of the Wigner equation

(∂t + ξ ⋅ ∇x)W [R(t)](x, ξ) +Θ[V ]W [R(t)](x, ξ) = 0 ,

where Θ[V ] is the linear operator with distribution kernel

1
(2π)d ∫

Rd

1
ih̵

(V (x + 1
2
h̵y) − V (x − 1

2
h̵y))eiy⋅(η−ξ)dy .

Prove that

Θ[V ] = −∇V (x) ⋅ ∇ξ
in the case where V is a polynomial of degree 2.
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In that case (for a quadratic potential V ), the Wigner equation coincides with
the classical Liouville equation on the phase space Rd ×Rd

∂tW [R(t)](x, ξ) + { 1
2
∣ξ∣2 + V (x),W [R(t)](x, ξ)} = 0 .

(4) However, one cannot think of W [A] as a distribution function as in the kinetic
theory of gases. Indeed

0 ≤ A = A∗ ∈ L1(H) does not imply W [A] ≥ 0 .

To see this, compute W [∣ψ⟩⟨ψ∣](0,0) where ψ(x) =
√

2π−1/4xe−x
2
/2 for x ∈ R.

(5) The relation between the Wigner and the Husimi transform is given by the
following formula: for each A ∈ L1(H), one has

H[A](x, ξ) = exp( h̵
4
∆x,ξ)W [A](x, ξ) .

(6) Let ψ ∈ L2(R) satisfy ∥ψ∥L2(R) = 1 and W [∣ψ⟩⟨ψ∣] ≥ 0. Prove that there exist

q0, p0 ∈ Rd and u ∈ C with ∣u∣ = 1 such that ψ = u∣q0, p0⟩. (Hint: prove that

F (z) ∶= ∫
R
ψ(x)e− 1

2x
2
−zxdx

defines an entire function on C, that

0 < ∣F (z)∣2 ≤ CeR(z)2

, z ∈ C ,

for some constant C > 0. Conclude by Hadamard’s theorem11 that F (z) = eg(z)
where g is a polynomial of degree 2.)

1.4.6. Explicit Computations/Estimates. We have gathered together in this section
several useful explicit computations, or bounds, on the “pseudometric” d.

Theorem 1.
(1) For all f, g probability densities on R2d with finite 2nd order moments,

d(T [f],T [g])2≤W2(f, g)2+2dh̵, d(T [f],T [f]) =
√

2dh̵ ,

d(f,T [g])2≤W2(f, g)2+dh̵, d(f,T [f]) =
√
dh̵ .

(2) For all R,S ∈ D2(H) and all probability density f on R2d with finite 2nd order
moments,

W2(H[R],H[S])2 ≤ d(R,S)2 + 2dh̵ ,

W2(f,H[R])2 ≤ d(f,R)2 + dh̵ .
(3) Moreover, if rank(R) = 1, then

d(R,S) = traceH⊗H((R⊗ S) 1
2Ch̵(R⊗ S) 1

2 ) 1
2 , and

d(f,R) = (∫
R2d

f(x, ξ) traceH(R 1
2 ch̵(x, ξ)R

1
2 )dxdξ)

1
2

.

Remark. The second inequality in (1) can be recast as

d(f,T [g])2 ≤ d(f, g)2 + d(g,T [g])2

since
d(g,T [g]) =

√
dh̵ = mind .

This suggests that
(1) “the segment [g,T [g]] is orthogonal to the set of classical densities”, and

11See for instance chapter 5.3.2 in [1].
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Figure 3. A geometric interpretation of Theorem 1 (1).

(2) the “angle” θ between the “segment” [g, f] and the “segment” [g,T (g)] in D2

is acute.

Therefore, one could think of P2(Rd ×Rd) as a limit set (for the classical limit
h̵→ 0) — or boundary — of D, and that the set D(H) of quantum densities lies on
the “concave” side of the set of classical densities.

Proof of Theorem 1.
Proof of (1). Let ∇Φ (with Φ convex) be the Brenier map pushing f to g. The

optimal coupling of f and g for W2 is

Λ ∶= f(x, ξ)δ∇Φ(x,ξ)(dydη)dxdξ .

Hence

T [Λ]∈C(T [f],T [g]) and (x, ξ)↦f(x, ξ)T [δ∇Φ(x,ξ)]∈C(f,T [g]) .

On the other hand (see Appendix B, and especially formulas (52)-(53), in [37])

H[Ch̵](q, p, q′, p′) = (2πh̵)−2d(∣q − q′∣2 + ∣p − p′∣2 + 2dh̵) ,
H[ch̵(x, ξ)](q, p) = (2πh̵)−d(∣x − q∣2 + ∣ξ − p∣2 + dh̵) .

Therefore

d(T [f],T [g])2 ≤ traceH⊗H(T [Λ] 1
2Ch̵T [Λ] 1

2 )

=∫
R4d

(∣q − q′∣2 + ∣p − p′∣2 + 2dh̵)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=(2πh̵)2dH[Ch̵](q,p)

Λ(dqdpdq′dp′)

=W2(f, g)2 + 2dh̵ ,

and

d(f,T [g])2 ≤∫
R2d

traceH(T [δ∇Φ(x,ξ)]
1
2 ch̵(x, ξ)T [δ∇Φ(x,ξ)]

1
2 )f(x, ξ)dxdξ

=∫
R2d

(∣(x, ξ) −∇Φ(x, ξ)∣2 + dh̵)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=(2πh̵)dH[ch̵(x,ξ)](∇Φ(x,ξ))

f(x, ξ)dxdξ

=W2(f, g)2 + dh̵ .
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Proof of (2). Pick sequences an, bn ∈ Cb(R2d;R) such that

an(q, p) + bn(q′, p′) ≤ ∣q − q′∣2 + ∣p − p′∣2 , and

∫
R2d

an(q, p)H[R](q, p)dqdp
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=(2πh̵)−d traceH(T [an]R)

+∫
R2d

bn(q′, p′)H[S](q′, p′)dq′dp′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=(2πh̵)−d traceH(T [bn]S)

→W2(H[R],H[S])2

as n → ∞. That such sequences exist is a consequence of the Kantorovich duality
formula for the Wasserstein distance W2.

On the other hand, for each T ∈ C(R,S), one has

(2πh̵)−d traceH(T [an]R) + (2πh̵)−d traceH(T [bn]S)

= (2πh̵)−d traceH⊗H(T 1
2 (T [an]⊗ I + I ⊗ T [bn])T

1
2 )

= (2πh̵)−2d traceH⊗H(T 1
2 T [an ⊗ 1 + 1⊗ bn]T

1
2 )

≤ (2πh̵)−2d traceH⊗H(T 1
2 T [∣q−q′∣2+∣p−p′∣2]T 1

2 ) .
Now, one has (see the basic properties of the Toeplitz map and Quiz 8 above)

T [∣q−q′∣2+∣p−p′∣2] = (2πh̵)2d(Ch̵ + 2dh̵IH⊗H) .
Thus, for all T ∈ C(R,S), one has

W2(H[R],H[S])2 = lim
n→∞

(2πh̵)−d (traceH(T [an]R) + traceH(T [bn]S))

≤ traceH⊗H(T 1
2 (Ch̵ + 2dh̵IH⊗H)T 1

2 )

= traceH⊗H(T 1
2Ch̵T

1
2 ) + 2dh̵ .

Minimizing the r.h.s. in T ∈ C(R,S) leads to

W2(H[R],H[S])2 ≤ d(R,S)2 + 2dh̵ .

Proof of (3). We begin with a question of a rather fundamental nature in quantum

mechanics.
Question. What is the structure of couplings for rank-1 density operators?

This question is answered by the following lemma.

Lemma 2. Let R ∈ D(H). Then

rank(R) = 1 Ô⇒
⎧⎪⎪⎨⎪⎪⎩

C(f,R) = {fR} , f ∈P(Rd×Rd) ,
C(R,S) = {R⊗ S} , S ∈ D(H) .

Obviously Lemma 2 implies statement (3) in Theorem 1.
◻

Proof of Lemma 2. Since rank(R) = 1, it is of the form R = ∣φ⟩⟨φ∣, with ∥φ∥H = 1.
We shall prove the second statement in the lemma. Let Q ∈ C(R,S). Then

trace(((I −R)⊗ I)Q((I −R)⊗ I)) = trace(Q((I −R)2 ⊗ I))
= trace(Q((I −R)⊗ I)) = trace(R(I −R)) = 0 ,

Since

((I −R)⊗ I)Q((I −R)⊗ I) ≥ 0 ,
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one has

((I −R)⊗ I)Q((I −R)⊗ I) = 0 .

Next, we deduce from the Cauchy-Schwarz inequality that

∣⟨ψ1 ⊗ ψ2∣(R⊗ I)Q((I −R)⊗ I)ψ′1 ⊗ ψ′2⟩∣2

≤ ⟨ψ′1 ⊗ ψ′2∣((I −R)⊗ I)Q((I −R)⊗ I)ψ′1 ⊗ ψ′2⟩
×⟨ψ1 ⊗ ψ2∣(R⊗ I)Q(R⊗ I)ψ1 ⊗ ψ2⟩ .

Hence
(R⊗ I)Q((I −R)⊗ I) = 0 = ((R⊗ I)Q((I −R)⊗ I))∗

= ((I −R)⊗ I)Q(R⊗ I) ,
Since we already know that ((I −R)⊗ I)Q((I −R)⊗ I) = 0, this implies that

Q = (R⊗ I)Q(R⊗ I) .
Therefore Q = R⊗ T , where

⟨ψ∣T ∣ψ′⟩ ∶= ⟨φ⊗ ψ∣Q∣φ⊗ ψ′⟩ .
Finally, T = S, since, for all A ∈ L(H), one has

trace(SA) = trace(Q(I ⊗A)) = trace((R⊗ T )(I ⊗A)) = trace(TA) .
This proves the second statement in the lemma.

◻
Quiz 12. Complete the proof of Lemma 2: prove that C(f,R) = {f ⊗C R}, in the
case where f is a probability density on Rd×Rd and R is a rank-1 density operator
on H = L2(Rd).
Remark. It is well known that, for all µ ∈ P(Rd ×Rd) and all (q, p) ∈ Rd ×Rd,
the set of couplings of µ with δ(q,p) contains only one element:

C(µ, δ(q,p)) = {µ⊗ δ(q,p)} .
Lemma 2 suggests that all rank-1 density operators are quantum analogues of the
Dirac mass in phase space. Thus the Schrödinger equation governing the evo-
lution of the wave function ψ(t, x) — or the von Neumann equation specialized
to ∣ψ(t, ⋅)⟩⟨ψ(t, ⋅)∣ — is the quantum analogue of Newton’s second law of motion
in classical mechanics, which can be viewed as the equation governing δ(q(t),p(t)),
where q(t) and p(t) are respectively the position and the momentum of a moving
classical particle. This analogy also explains why the wave function is a purely
quantum object, which has no classical analogue. Indeed, if a classical analogue of
the wave function existed, it could be thought of as a “square root” of the phase
space Dirac measure δ(q(t),p(t)).

Quiz 13: another proof of Theorem 1 (2).
(1) Prove that

T [∣q − q′∣2 + ∣p − p′∣2] = (2πh̵)2d(Ch̵ + 2dh̵IH⊗H) .
(2) For each T ∈ C(R,S), prove that

traceH⊗H (T 1
2Ch̵T

1
2 ) + 2dh̵ ≥ 1

(2πh̵)d
traceH⊗H (TT [ ∣q−q′∣2+∣p−p′∣2

1+ε∣q−q′∣2+ε∣p−p′∣2
])

=∫
R4d
H[T ](q, p, q′, p′) ∣q−q′∣2+∣p−p′∣2

1+ε∣q−q′∣2+ε∣p−p′∣2
dqdpdq′dp′ .
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Figure 4. Left: equal masses; Right: unequal mass case

(3) Conclude by monotone convergence in the right-hand side of the inequality
above as ε→ 0+, after observing that H[T ] is a coupling of H[R] and H[S].

1.5. Quantum Optimal Transport is Cheaper! To conclude this first lecture,
we shall study an example where d can be computed essentially explicitly, with
interesting implications on the structure of optimal couplings. The material in this
section — together with the somewhat provocative title — is taken from [19].

We begin with a simple lemma, which can be viewed as an amplification of
statement (1) in Theorem 1.
Lemma 3. For ρ1, ρ2 ∈ P2(Rd ×Rd) with optimal coupling Π for W2, one has

d(T [ρ1],T [ρ2])2 =W2(ρ1, ρ2)2 + 2dh̵

⇐⇒ T [Π] ∈ C(T [ρ1],T [ρ2]) is a quantum optimal coupling for d .

The proof of this lemma is left to the reader as an easy exercise (see the proof
of Theorem 1).

Here is an example of this kind of situation. With d = 1 and 0 < a < b, set

µ ∶= 1
2
(δ(+a,0) + δ(−a,0)) and ν ∶= 1

2
(δ(+b,0) + δ(−b,0)) ∈ P2(R ×R) .

In other words, we have equal masses (1/2), but different positions — since 0 < a < b.
Proposition 4. One has

d(T [µ],T [ν])2 =W2(µ, ν)2 + 2h̵ .

The classical optimal transport in this case is obvious: send mass 1/2 from −a
to −b, and mass 1/2 from +a to +b.

Next we consider the following example, with identical locations, but unequal
masses: for 0 < ε < 1, set

µ = 1
2
(δ(+a,0) + δ(−a,0)) and ρε = 1+ε

2
δ(+a,0) + 1−ε

2
δ(−a,0) ∈ P2(R ×R) .

Proposition 5. For each ε ∈ (0,1), one has

d(T [µ],T [ρε])2 <W2(µ, ρε)2 + 2h̵ .

We shall not prove Propositions 4 and 5, which rely on rather intricate computa-
tions, and refer instead the interested reader to the article [19]. However, we shall
discuss both results.
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Because of Lemma 3, an optimal coupling for T [µ] and T [ν] is T [λ], where λ
is the optimal coupling of µ and ν, i.e.

λ ∶= 1
2
(δ(+a,0) ⊗ δ(+b,0) + δ(−a,0) ⊗ δ(−b,0)) ,

so that
λ ∶= 1

2
(∣ + a,0,+b,0⟩⟨+a,0,+b,0∣ + ∣ + a,0,+b,0⟩⟨+a,0,+b,0∣) ,

with the notation

∣q, p, q′, p′⟩(x, y) = ∣q, p⟩⊗ ∣q′, p′⟩(x, y) = ∣q, p⟩(x)∣q′, p′⟩(y) .
In the unequal mass case, it is proved in [19] that there exists a quantum coupling

of the form

T = ∑
k,l∈{±}

τklkl∣ka,0, la,0⟩⟨ka,0, la,0∣

+ ∑
(k,l)/=(m,n)∈{±}

τklmn∣ka,0, la,0⟩⟨ma,0, na,0∣ ∈ C(T [µ],T [ρε]) ,

with

∑
(k,l)/=(m,n)∈{±}

∣τklmn∣2 > 0 ,

and
trace(T 1/2Ch̵T

1/2) <W2(µ, ρε)2 + 2h̵ .

Clearly, any coupling of µ and ρε must be of the form

∑
k,l∈{±}

qklδ(ka,0) ⊗ δ(la,0) ,

and therefore belongs to the 4-dimensional linear space

span{δ(±a,0) ⊗ δ(±a,0)} .
On the contrary, couplings of two rank-2 operators with

R = 1
2
(∣ + a,0⟩⟨+a,0⟩ + ∣ − a,0⟩⟨−a,0∣)

and
Sε = 1+ε

2
∣ + a,0⟩⟨+a,0∣ + 1−ε

2
∣ − a,0⟩⟨−a,0∣

with 0 < ε < 1 belong to the 16-dimensional linear space

span{∣ka,0, la,0⟩⟨m,a,0, na,0∣ ∶ k, l,m,n ∈ {±}} .
Therefore, one could summarize the results in [19] as follows: since there are

more degrees of freedom in the set of quantum couplings than in the set of classical
couplings, it is natural to surmise that quantum optimal transport is cheaper than
classical optimal transport, since more couplings are allowed in the quantum case
than in the classical case. However, this simple argument is not sufficient to prove
a strict inequality as in [19]. Putting together Proposition 5 and Lemma 3 shows
that any optimal coupling for d(T [µ],T [ρε]) must be of the form

T = ∑
k,l∈{±}

τklkl∣ka,0, la,0⟩⟨ka,0, la,0∣

+ ∑
(k,l)/=(m,n)∈{±}

τklmn∣ka,0, la,0⟩⟨ma,0, na,0∣ ∈ C(T [µ],T [ρε]) ,

with

∑
(k,l)/=(m,n)∈{±}

∣τklmn∣2 > 0 .
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While the term

∑
k,l∈{±}

τklkl∣ka,0, la,0⟩⟨ka,0, la,0∣

has a classical interpretation, since it is the image of a bounded, positive Radon
measure on phase space by the Toeplitz map, the term

∑
(k,l)/=(m,n)∈{±}

τklmn∣ka,0, la,0⟩⟨ma,0, na,0∣ /= 0

does not have any classical interpretation.
At the time of this writing, the structure of optimal couplings for d(R1,R2)

with R1,R2 ∈ D2(H) is not very well understood in general, at variance with the
classical case (see however the discussion of this point in [20]), which is completely
clarified by the Knott-Smith and the Brenier theorems. The very simple examples
discussed in [19] show that optimal couplings between quantum densities are much
more involved than in the classical case.

2. Lecture II: Applying the Quantum Wasserstein Pseudometric
to Particle Dynamics

In this lecture, we shall discuss several applications of the quantum Wasserstein
pseudometric d introduced in Lecture I. These applications include

●various limits of many-body problems in quantum mechanics (section 2.3),
●proofs of the uniform in h̵ convergence of some numerical schemes for quantum
dynamics (section 2.4), and
●observation inequalities for the Schrödinger and for the von Neumann equations
(section 2.4).

2.1. Basics of Quantum Dynamics. As already explained, one does not need
to be an expert in quantum mechanics to read these notes.

However, some familiarity with the most elementary notions of quantum mechan-
ics is required in order to understand the simple ideas behind the computations and
the mathematical apparatus studied in this course. An excellent reference to learn
quantum mechanics is [10]; see also [23] for a more detailed, yet equally lucid pre-
sentation. The reference [44] is interesting for mathematicians, but contains few
physical explanations, at variance with [10, 23].

2.1.1. Classical Mechanics. We recall the fundamentals of classical dynamics for a
point particle of mass m, in Hamiltonian form.

The position of this point particle at time t is denoted by q(t) ∈ Rd, while its
momentum at time t is denoted by p(t) ∈ Rd.

The Hamiltonian for the point particle is the total energy of that particle,
expressed in terms of its position q and momentum p — a word of caveat: it
is essential at this point to use these variables, and not other variables, say for
instance the velocity instead of the momentum. For a point particle with mass m

H(q, p) = ∣p∣2/2m
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
kinetic

+ V (q)
²

potential

= total energy.

With this, we can write Newton’s 2nd law of motion in Hamiltonian form:

q̇(t) = ∂H/∂p = p(t)/m, ṗ(t) = −∂H/∂q = −∇V (q(t)) .
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(In fact, the first equation is of a kinematic nature, since it can be viewed as a
definition of the momentum p(t) in terms of the particle mass m and of the velocity
q̇(t). Only the second equation corresponds to Newton’s second law.)

Newton’s second law of motion can be viewed as the governing equation for
the special phase space probability measure δ(q(t),p(t)). But of course, it is equally
interesting to consider the dynamics of phase space Borel probability measures more
general than δq(t),p(t).

This is precisely the purpose of the Liouville equation: if f ≡ f(t, x, ξ) is
the probability density of finding the point particle at the position x ∈ Rd with
momentum ξ ∈ Rd at time t, it satisfies the equation

∂tf(t, x, ξ) + 1
m
ξ ⋅ ∇xf(t, x, ξ) −∇V (x) ⋅ ∇ξf(t, x, ξ) = 0 .

This equation can be recast in terms of the Poisson bracket:

{H(x, ξ), f(x, ξ)} ∶= ∇ξH(x, ξ) ⋅ ∇xf(x, ξ) −∇xH(x, ξ) ⋅ ∇ξf(x, ξ) ,
as follows:

∂tf(t, x, ξ) + {H(x, ξ), f(t, x, ξ)} = 0 .

Newton’s second law of motion in Hamiltonian form is a system of ODEs to which
one can apply the Cauchy-Lipschitz theorem. Specifically, the local existence of a
unique solution of the Cauchy problem for the Hamiltonian formulation of Newton’s
second law of motion is implied by the assumption

V ∈ C1,1(Rd)
— meaning that V ∈ C1(Rd) and ∇V is Lipschitz continuous on Rd. Since

H(q(t), p(t)) =H(q(0), p(0))
(the verification of this is left to the reader as an exercise), which corresponds to the
conservation of total energy by the dynamics deduced from Newton’s second law
of motion, it is easily seen that all solutions of the Cauchy problem for Newton’s
second law of motion are defined for all t ∈ R under the condition

lim
∣x∣→+∞

V (x) = +∞ .

(Indeed, in that case, the map (q, p) ↦ H(q, p) is proper on Rd × Rd, i.e. the
inverse image of any compact subset of R is compact in Rd ×Rd; this implies that
the Hamiltonian flow generated by Newton’s second law of motion is global by
the most elementary continuation argument for ODEs; see for instance (10.5.5) in
section 5 of chapter X in [29].)

2.1.2. Quantum Mechanics. The state of a quantum particle at time t is given by
its wave function:

ψ ≡ ψ(t, x) ∈ L2(Rd;C) =∶ H
such that

∥ψ(t, ⋅)∥H = 1 .

In classical mechanics, the Hamiltonian is a function on the phase space Rd×Rd;
in quantum mechanics, the quantum Hamiltonian is an (unbounded) self-adjoint
operator on H:

H = − h̵2

2m
∆x + V (x) = H∗ .

(Here, the real-valued potential operator V is to be understood as a multiplication
operator, i.e. ψ(x)↦ V (x)ψ(x).)
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The reason for considering this specific operator by analogy with the case of a
point particle in classical mechanics is
The correspondence principle.

V (q)→multiplication by V (x) and pj → −ih̵∂qj = h̵Dqj .

With these mathematical objects, the quantum analogue of Newton’s second law
of motion is
The Schrödinger equation.

ih̵∂tψ(t, x) = Hψ(t, x) .
Assuming that H is an unbounded self-adjoint operator on H, it generates a unitary
group on H by Stone’s theorem, denoted by e−itH/h̵, so that

ψ(t, ⋅) = e−itH/h̵ψ(0, ⋅) , t ∈ R .

As explained in Lecture I, the quantum analogue of Borel probability measures
on Rd ×Rd are density operators on H = L2(Rd). The quantum analogue of the
Liouville equation, defining the dynamics of phase space distribution functions is
The von Neumann equation for R(t) ∈ D(H),

ih̵∂tR(t) = HR(t) −R(t)H
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶[H,R(t)]

.

One easily checks that, under the assumption that H is an unbounded self-adjoint
operator on H,

R(t) = e−itH/h̵R(0)eitH/h̵ .

For instance, one easily checks that, if ψ(t, ⋅) is a solution of the Schrödinger equa-
tion, then the rank-1 density operator R(t) ∶= ∣ψ(t, ⋅)⟩⟨ψ(t, ⋅)∣ is a solution of the
von Neumann equation.

This brings forward a further analogy in the correspondence principle, between
the Poisson bracket {f, g} of two C1 functions defined on Rd ×Rd, and the com-
mutator [A,B] of two operators on L2(Rd):

{⋅, ⋅}→ i
h̵
[⋅, ⋅] .

We conclude this section with a quick discussion of sufficient conditions on the

potential V under which the quantum Hamiltonian H = − h̵2

2m
∆ + V is self-adjoint

on H = L2(Rd). As explained above, if H is self-adjoint, by Stone’s theorem, it

generates a quantum dynamics, namely the unitary group e−itH/h̵ on H.
Self-adjointness of H. A first procedure for generating self-adjoint Hamiltonians
of the form −∆+V is based on the associated (sesquilinear) quadratic form b defined
as follows:

(φ,ψ)↦ b(φ,ψ) = ∫
Rd

∇φ(x) ⋅ ∇ψ(x)dx + ∫
Rd
V (x)φ(x)ψ(x)dx

for all φ,ψ ∈ Q(b), where

Q(b) ∶= {φ ∈H1(Rd) s.t. ∣V ∣1/2φ ∈ L2(Rd)} .
Assume that V is real-valued, and satisfies the following condition:

V ∈ L∞loc(Rd) , and there exists M ≥ 0 s.t. V (x) ≥ −M for a.e. x ∈ Rd .
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Then C∞
c (Rd) ⊂ Q(b) which is therefore dense in H = L2(Rd). Then, the quadratic

form b is semi-bounded, since

φ ∈ Q(b) Ô⇒ b(φ,φ) ≥ −M∥φ∥2
H .

Besides, the quadratic form is closed, meaning that, for each sequence φn ∈ Q(b)
such that

φn → φ in H as n→∞ , and b(φn − φm, φn − φm)→ 0 as m,n→∞ ,

one has

φ ∈ Q(b) , and b(φn − φ,φn − φ)→ 0 as n→∞ .

(Indeed, one easily checks that ∇φn is a Cauchy sequence in L2(Rd;Rd), and
therefore converges towards an L2 vector field ξ on Rd; since ∇φn → ∇φ in the sense
of distributions on Rd, one has φ ∈H1(Rd) and ξ = ∇φ. Similarly, (1+M +V )1/2φn
is a Cauchy sequence in H, and therefore converges to some limit ` ∈ H; then, one
easily checks that `/

√
1 +M + V ∈ H and that φn → `/

√
1 +M + V as n → ∞, so

that φ = `/
√

1 +M + V by uniqueness of the limit in H. Hence
√

1 +M + V φ ∈ H, so
that φ ∈ Q(b). The remaining part of the proof is routine, and left to the reader.)
By Theorem VIII.15 of [53], there exists an unbounded self-adjoint operator A with
domain D(A) ⊂ Q(b) such that

for all φ,ψ ∈D(A) , b(φ,ψ) = ⟨ψ∣Aφ⟩ .
Obviously C∞

c (Rd) ⊂D(A) and A coincides with −∆ + V on C∞
c (Rd).

A second procedure is the Kato-Rellich Theorem (see Theorem X.12 of [54]).
Assume that A is a self-adjoint operator on H with domain D(A), and B is a
symmetric12 operator on H with domain D(B). Assume that D(A) ⊂ D(B), and
that there exists a ∈ [0,1) and b ≥ 0 such that

∥Bφ∥ ≤ a∥Aφ∥ + b∥φ∥ , φ ∈D(A) .
Then A +B is self-adjoint on D(A).

With this result, one can prove that −∆+V is self-adjoint on D(−∆) =H2(R3)
provided that

V ∈ L2(R3) +L∞(R3) .
This result is particularly important in atomic physics, since the Coulomb potential

V (x) = ± 1

∣x − x0∣
= ±(

1∣x−x0∣≤1

∣x − x0∣
+

1∣x−x0∣>1

∣x − x0∣
) ∈ L2(R3) +L∞(R3) .

Here, V is the potential energy of an electron at the position x interacting with a
nucleus located at the position x0.

One can also combine these two result to treat the case of −∆ + V + V∞ where
V ∈ L2(R3) + L∞(R3), while V0 ≥ 0 belongs to L∞loc(R3) and V0(x) → +∞ as
∣x∣→ +∞ (in other words, V0 is a confining potential).

In all these cases, one can see that much less regularity is required on the potential
in order to define the quantum dynamics, than in the case of the classical dynamics.
Perhaps the reason for this difference is that classical mechanics deals with the
dynamics of much more singular objects (i.e. δ(q(t),p(t))) than the wave function

ψ(t, ⋅) ∈ L2(Rd) in quantum mechanics.

12I.e. ⟨φ∣Bψ⟩ = ⟨Bφ∣ψ⟩ for all φ,ψ ∈ D(B). In other words, D(B) ⊂ D(B∗) and B∗∣
D(B) = B.
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Quiz 14. Explain how one can use the Kato-Rellich theorem to prove that

V ∈ L2(R3) +L∞(R3) Ô⇒ −∆ + V is self-adjoint with domain H2(R3) .
(Hint: use the Sobolev embedding.)

In all the situations described above, one starts from the operator − h̵2

2m
∆ + V ,

which is well defined on C2
c (Rd) ⊂ L2(Rd). Both methods described above (either

the method involving a quadratic form, or the Kato-Rellich Theorem) produce an
unbounded self-adjoint operator on L2(Rd), which is therefore densely defined in
L2(Rd). The domain of this self-adjoint operator contains C2

c (Rd), and this self-

adjoint operator coincides with the differential operator − h̵2

2m
∆+V on C2

c (Rd). This

self-adjoint operator is therefore an extension of the differential operator − h̵2

2m
∆+V ,

defined on C2
c (Rd) ⊂ L2(Rd), and we shall keep the notation − h̵2

2m
∆+V to designate

this extension.

2.1.3. The Classical Limit of Quantum Mechanics. Consider a point particle of
mass m, moving at a speed v; its de Broglie wavelength is the ratio 2πh̵/mv. For
instance a dust particle of diameter 1µ with mass m = 10−6µg moving at speed
1mm/s, has a de Broglie wavelength 6.6 ⋅ 10−6Å≪ 1µ, the size of the dust particle.
(This example is taken from chapter I, complement A in [23].) If the de Broglie
wavelength of a particle is negligible when compared to its size, or to the typical
length scale of the experiment, one expects that the laws of classical mechanics
should be sufficient to describe its behavior.

There are various ways of describing the classical limit of quantum mechanics.
As explained in §6 of [48], in the quasi-classical regime, the phase of the wave

function of a particle is proportional to the mechanical action of that particle, and
the constant of proportionality is Planck’s constant h̵. One could therefore study
solutions of the Schrödinger equation

ih̵∂tψ = −( h̵2

2m
∆ + V )ψ

in the form of a WKB ansatz i.e. a formal series

ψ(t, x) = ∑
n≥0

h̵nan(t, x)eiS(t,x)/h̵ , S(t, x) and an(t, x) ∈ R ,

where the phase S and the amplitude coefficients a0, a1, . . . are smooth.
Assuming that a0(t, x) /= 0 for all (t, x), one finds that

(a) the phase S is a solution of the eikonal equation, that is a Hamilton-Jacobi
equation:

∂tS +H(∇xS,x) = 0 ;

(b) at leading order, the amplitude a0 is a solution of the transport equation:

∂ta
2
0 + divx(a2

0∇xS(t, x)) = 0 .

However, this description usually fails after some finite time, for the following rea-
son: the graph of the map x ↦ ∇xS(t, x) is the image of the graph of the map
x ↦ ∇xS(0, ⋅) by the flow of the classical Hamiltonian H(x, ξ). In general, the
graph of ∇xS(0, ⋅) becomes folded after some finite time in such a way that it is no
longer the graph of map from Rd to Rd. The image of these folds by the projection
Rd×Rd ∋ (x, ξ)↦ x ∈ Rd is referred to as the “caustic”, by analogy with geometric
optics. The appearance of caustics is the reason why the WKB ansatz is in general
only local in time.
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Quiz 15. Write the WKB ansatz for the free Schrödinger equation

ih̵∂tψ(t, x) = − h̵2

2m
∂2
xψ(t, x) , ψ(0, x) = ain(x)eiS

in
(x)/h̵ , x ∈ R ,

where

Sin(x) =
⎧⎪⎪⎨⎪⎪⎩

− x1/3 for x ≥ 0 ,

+ ∣x∣1/3 for x < 0 .

Study the dynamics for all t ∈ R (in the past t < 0 as well as in the future t > 0),
and describe the caustic in this case.

Another approach to the classical limit of quantum mechanics involves the Wigner
Transform already introduced in Quiz 11. We briefly recall the essentials: start
from some integral operator R ∈ L(H) of the form

Rφ(x) = ∫
Rd
r(x, y)φ(y)dy .

For R = projection on Cψ with ∥ψ∥H = 1, written R = ∣ψ⟩⟨ψ∣ in Dirac’s notation:

Rφ(x) = (∫
Rd
ψ(y)φ(y)dy)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶⟨ψ∣φ⟩

ψ(x) Ô⇒ r(x, y) = ψ(x)ψ(y) .

We consider its Wigner transform at scale h̵, given by the formula

Wh̵[R](q, p) ∶= 1
(2π)d ∫

Rd
r(q + 1

2
h̵y, q − 1

2
h̵y)eip⋅ydy .

Some assumptions are needed on the integral kernel r for the Wigner transform to
make sense. For instance, if R ∈ L2(H) is a Hilbert-Schmidt operator, its integral
kernel r belongs to L2(Rd ×Rd), so that the map

(q, y)↦ r(q + 1
2
h̵y, q − 1

2
h̵y)

belongs to L2(Rd
q ×Rd

y), since the Jacobian of the transformation

(q, y)↦ (q + 1
2
h̵y, q − 1

2
h̵y)

is (−h̵)d, which is in particular independent of (q, y). In that case, the Wigner
transform Wh̵[R] belongs to L2(Rd

q ×Rd
p) by the Plancherel theorem, as the partial

Fourier transform of a square integrable measurable function.
Observe that

R = R∗ Ô⇒ Wh̵[R](q, p) ∈ R ,

but

R ≥ 0 does not imply that Wh̵[R] ≥ 0 .

(For instance, if ψ is an odd wave function, then Wh̵[∣ψ⟩⟨ψ∣](0,0) < 0.)
We have seen in Quiz 11 that, if a continuous, time-dependent density operator

R(t) is a weak solution of the von Neumann equation

ih̵∂tR(t) = [− h̵2

2m
∆ + V,R(t)] ,

its Wigner transform Wh̵[R(t)] is a weak solution of the Wigner equation

(∂t + q ⋅ ∇q)Wh̵[R(t)](q, p) +Θ[V ]Wh̵[R(t)](q, p) = 0 ,

where Θ(V ) is the nonlocal (linear) operator with distribution kernel

1
(2π)d ∫

Rd

1
ih̵

((V (q + 1
2
h̵y) − V (q − 1

2
h̵y))eiy⋅(p

′
−p)dy .
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If V is a polynomial of degree ≤ 2, one easily checks that

Θ[V ] = −∇V (q) ⋅ ∇p .

The classical limit of quantum mechanics can be formulated in terms of the
Wigner function, in the following manner.
Theorem (Lions-Paul). Assume that V is a real-valued function satisfying the
assumptions

inf
q∈R

V (q) > −∞ , V ∈ C1,1(Rd) and V (q) = O(∣q∣n) for some n ≥ 0 as ∣q∣→∞ ,

and let

H = − h̵2

2m
∆ + V

be the quantum Hamiltonian, with domain H2(Rd) ∩ L2(Rd;V (x)2
+dx). Let Rinh̵

be a family of D(H) such that

Wh̵[Rinh̵ ]→ f in in S ′(Rd ×Rd) as h̵→ 0 .

Then

f in is a probability density on Rd ×Rd ,

and

Wh̵[e−itH/h̵Rinh̵ e
itH/h̵]→ f(t, ⋅, ⋅) in S ′(Rd ×Rd) as h̵→ 0

uniformly in t ∈ [0, T ] for each T > 0, where f is the probability density solution to
the Liouville equation

∂tf(t, q, p) + { 1
2m

∣p∣2 + V (q), f(t, q, p)} = 0 , f ∣
t=0

= f in .

This is Theorem IV.1 in [50], and the interested reader is referred to this article
for its proof, together with several other interesting examples involving the Wigner
transform.

The connection between these two approaches to the classical limit of quantum
mechanics is made clear by the following example, which is left to the reader as an
exercise.
Quiz 16. Consider a WKB wave function

ψinh̵ (x) = ain(x)eiS
in

(x)/h̵ ,

with ∥ain∥L2 = 1 and S ∈ Lip(Rd;R). Prove that

Wh̵[∣ψin⟩⟨ψin∣](q, p)→ ∣ain(q)∣2δ(p −∇Sin(q))

in the sense of tempered distributions as h̵ → 0. Explain how the eikonal and the
transport equation predicted in statements (a)-(b) above in this section emerge
from the dynamics of f in predicted by the Lions-Paul Theorem.

2.2. Amplification of the Pseudometric d by Hamiltonian Dynamics. This
is the core of the present lecture. Our goal is to control amplifications of the
pseudometric d constructed in Lecture I by Hamiltonian dynamics (classical or
quantum).
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2.2.1. Pair Dispersion in Classical Mechanics. In this brief section, we seek to
compare the evolution of two different initial data, with two different potentials,
in classical and in quantum mechanics. (The term “pair dispersion” is used in
Lagrangian fluid mechanics, and is perhaps not so common in the present setting.)
The results obtained here should be thought of as a warm-up — and a motivation
— for the study of the dynamical amplification of d.

Classical dynamics. We seek to compare two solutions of Newton’s equations,
t ↦ (X,Ξ)(t) and t ↦ (Y,H)(t) with two different potentials V and W belonging
to C1,1(Rd):

⎧⎪⎪⎨⎪⎪⎩

Ẋ= 1
m

Ξ ,

Ξ̇ = −∇V (X) ,
and

⎧⎪⎪⎨⎪⎪⎩

Ẏ = 1
m
H ,

Ḣ = −∇W (Y ) ,

with initial data

(X,Ξ)(0) = (Xin,Ξin) , (Y,H)(0) = (Y in,Hin) .

Setting L ∶= Lip(∇V ), we compute

d
dt
(∣X − Y ∣2 + ∣Ξ −H ∣2)

= 2
m
(Ξ −H) ⋅ (X − Y ) − 2(∇V (X) −∇W (Y )) ⋅ (Ξ −H)

= 2
m
(Ξ −H) ⋅ (X − Y ) − 2(∇V (X) −∇V (Y )) ⋅ (Ξ −H)

+2(∇W (Y ) −∇V (Y )) ⋅ (Ξ −H)
≤ ( 1

m
+L)(∣X − Y ∣2 + ∣Ξ −H ∣2)

+2∥∇(V −W )∥L∞(Rd)(∣Ξ∣ + ∣H ∣)
≤ ( 1

m
+L)(∣X − Y ∣2 + ∣Ξ −H ∣2)

+2∥∇(V −W )∥L∞(Rd)

√
∣Ξ∣2 + 2V (X) + 2∥V ∥L∞(Rd)

+2∥∇(V −W )∥L∞(Rd)

√
∣H ∣2 + 2W (Y ) + 2∥W ∥L∞(Rd)

= ( 1
m
+L)(∣X − Y ∣2 + ∣Ξ −H ∣2)

+2∥∇(V −W )∥L∞(Rd)

√
∣Ξin∣2 + 2V (Xin) + 2∥V ∥L∞(Rd)

+2∥∇(V −W )∥L∞(Rd)

√
∣Hin∣2 + 2W (Y in) + 2∥W ∥L∞(Rd) ,

where the last equality follows from the energy conservation. By Gronwall’s in-
equality

(∣X(t) − Y (t)∣2 + ∣Ξ(t) −H(t)∣2) ≤ (∣Xin − Y in)∣2 + ∣Ξin −Hin∣2)e( 1
m+L)t

+M e(
1
m+L)t − 1

( 1
m
+L)

∥∇(V −W )∥L∞(Rd) ,

where

M ∶= 2(
√

∣Ξin∣2 + 2V (Xin) + 2∥V ∥L∞(Rd) +
√

∣Hin∣2 + 2W (Y in) + 2∥W ∥L∞(Rd)) .

Quantum dynamics. Consider the quantum dynamics of two different wave
functions, driven by two potentials V and W such that both quantum Hamiltonians
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− h̵2

2m
∆ + V and − h̵2

2m
∆ +W have self-adjoint extensions to H = L2(Rd):

ih̵∂tφ = (− h̵2

2m
∆ + V )φ , φ∣

t=0
= φin ,

ih̵∂tψ = (− h̵2

2m
∆ +W )ψ , ψ∣

t=0
= ψin .

Thus

∂t(φ − ψ) = 1
ih̵

(− h̵2

2m
∆ + V )(φ − ψ) + 1

ih̵
(V −W )ψ ,

so that

∥(φ − ψ)(t, ⋅)∥H ≤ ∥φin − ψin∥H +
1

h̵
∫

t

0
∥V −W ∥L∞(Rd)∥ψ(s, ⋅)∥L2(Rd)ds

= ∥φin − ψin∥H +
t

h̵
∥V −W ∥L∞(Rd) .

If we compare these two estimates, we immediately see the following differences:
(a) the L2 bound on the difference of wave functions of the quantum particle involves
the difference of potentials in sup norm, whereas the difference in the position and
momenta of the classical particle involves the difference of the force fields, i.e. of
the gradients of the potentials, in sup norm;
(b) there is no exponential amplification of the L2 norm of the difference of wave
functions in the quantum case, whereas the bound on the difference in positions
and momenta of the classical particle involves an amplification factor eLt, where L
is the Lipschitz constant of one of the force fields; yet
(c) the L2 estimate on the difference of wave functions is not uniform in h̵ as h̵→ 0+.

Notice however that the L2 bound on this difference is uniform in h̵ in the very
special case where both potentials are equal. This is perhaps of limited interest
in the context of numerical analysis, since numerical schemes typically replace the
true potential V by an approximation thereof.

Also, the L2 bound on the difference of wave functions is an estimate of the same
kind as a bound in trace, or Hilbert-Schmidt norm for the difference of the density
operators, since

∥ ∣φ⟩⟨φ∣ − ∣ψ⟩⟨ψ∣ ∥2
2 ≤ 2∥φ − ψ∥2

H∥φ∥2
H + 2∥ψ∥2

H∥φ − ψ∥2
H = 4∥φ − ψ∥2

H .

We have seen in Lecture I, in the case where φ = ∣q1, p1⟩ and ψ = ∣q2, p2⟩, that the
Hilbert-Schmidt norm for the difference between such density operators converges to
∥δ(q1,p1) − δ(q2,p2)∥TV = 2 unless (q1, p1) = (q2, p2) in the limit as h̵→ 0+. Therefore,
in the case where V = W , the fact that the quantum dynamics is unitary would
typically result in the perfectly true, but uninteresting inequality 2 ≤ 4 in the small
h̵ limit — assuming that φ(t, ⋅) = ∣q1, p1⟩ and ψ(t, ⋅) = ∣q2, p2⟩, corresponding to

φ(0, ⋅) = U(t)∗∣q1, p1⟩ and ψ(0, ⋅) = U(t)∗∣q2, p2⟩, with U(t) ∶= exp(−it(− h̵2

2m
∆+V )h̵).

On the contrary, the pair dispersion estimate in the classical setting can be
understood as

W2(δ(X(t),Ξ(t)), δ(Y (t),H(t)))2 ≤W2(δ(Xin,Ξin), δ(Y in,Hin))2e(
1
m+L)t

+M e(
1
m+L)t − 1

( 1
m
+L)

∥∇(V −W )∥L∞(Rd) .

It is an easy exercise (left to the reader) to extend this estimate to arbitrary phase
space probability measures that are weak solutions of the Liouville equation — not
necessary of the form δ(z(t),ζ(t)), where t ↦ (z(t), ζ(t)) is a solution of Newton’s
motion equations.
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This suggests the following question: is there an estimate analogous to the clas-
sical pair dispersion estimate in the quantum setting for d(R1(t),R2(t)), where R1

and R2 are time-dependent density operators on H = L2(Rd) whose dynamics is
governed by the von Neumann equation with two different potentials? Should such
an estimate exist, it would be
●uniform in h̵ as h̵→ 0+, and

●should involve the same amplification factor e(
1
m+L)t as in the classical case, and

a similar error term of order

e(
1
m+L)t∥∇(V −W )∥L∞(Rd) instead of

1

h̵
∥V −W ∥L∞(Rd) .

Of course, such an estimate, should it exist, would require more regularity on
the potentials (typically the same kind of regularity as in the classical setting) than
what is needed for the quantum Hamiltonians

− h̵2

2m
∆ + V and − h̵2

2m
∆ +W

to have (unbounded) self-adjoint extensions to H = L2(Rd).

2.2.2. Propagation Estimate for d. It will be convenient to consider, instead of the
pseudometric d introduced in the previous lecture, a deformation thereof, henceforth
designated by dλ, where λ > 0 is the deformation parameter.

Pseudometric dλ. For all R,S ∈ D2(H), and all probability density f on the phase
space Rd ×Rd with finite 2nd order moment

dλ(f,R)2 ∶= inf
Q∈C(f,R)

∬
R2d

traceH(Q(x, ξ) 1
2 cλ,h̵(x, ξ)Q(x, ξ) 1

2 )dxdξ ,

dλ(R,S)2 ∶= inf
Q∈C(R,S)

traceH⊗H(Q1/2Cλ,h̵Q
1/2) ,

where cλ,h̵ and Cλ,h̵ are the differential operators defined on Rd and Rd × Rd

respectively by the formulas

cλ,h̵(x, ξ)φ(y) ∶=(λ2∣x − y∣2 + ∣ξ + ih̵∇y ∣2)φ(y) ,
Cλ,h̵Φ(x, y) ∶=(λ2∣x − y∣2 − h̵2(∇x −∇y) ⋅ (∇x −∇y))Φ(x, y) .

We leave it to the reader as an easy exercise to check that

ch̵(x, ξ) ≥ λdh̵IH , Ch̵ ≥ 2λdh̵IH⊗H .

Theorem 6. Assume that V ∈ C1,1(Rd) satisfies

V (y)→ +∞ as ∣y∣→∞ , and Lip(∇V ) <∞ .

Hence H ∶= − h̵2

2m
∆+ has a self-adjoint extension to H, and defines a quantum dynam-

ics via the unitary group U(t) ∶= e−itH/h̵. On the other hand, let Φ(t; ⋅, ⋅) be the flow
of the classical Hamiltonian H(x, ξ) ∶= 1

2m
∣ξ∣2 +V (x), which is defined for all t ∈ R,

since V is confining (tends to +∞ at infinity). Then, for each Rin1 ,R
in
2 ∈ D2(H)

and each probability density f on the phase space Rd ×Rd with finite 2nd order
moment, one has

dλ(f in ○Φ(−t, ⋅, ⋅), U(t)Rin1 U(t)∗) ≤dλ(f in,Rin1 )eL∣t∣ ,

dλ(U(t)Rin1 U(t)∗,U(t)Rin2 U(t)∗) ≤dλ(Rin1 ,Rin2 )eL∣t∣ ,
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for all t ∈ R, with

L ∶= 1
2
( λ
m
+ Lip(∇V )

λ
) .

Proof. Let Qin ∈ C(f in,Rin1 ); set

Q(t, x, ξ) ∶= U(t)Qin(Φ(t, x, ξ))U(t)∗ .
One easily checks that

traceH(Q(t, x, ξ)) = traceH(U(t)Qin(Φ(−t, x, ξ))U(t)∗)
= traceH(Qin(Φ(−t, x, ξ))) = f in(Φ(−t, x, ξ)) ,

while

∬
R2d

U(t)Qin(Φ(−t, x, ξ))U(t)∗dxdξ = U(t) (∬
R2d

Qin(Φ(−t, x, ξ))dxdξ)U(t)∗

= U(t) (∬
R2d

Qin(X,Ξ)dXdΞ)U(t)∗ = U(t)RinU(t)∗ ,

so that

Q(t, ⋅, ⋅) ∈ C(f in ○Φ(−t, ⋅, ⋅), U(t)Rin1 U(t)∗) .
Thus

dλ(f in ○Φ(−t, ⋅, ⋅), U(t)Rin1 U(t)∗)2

≤∬
R2d

traceH(Q(t, x, ξ)1/2cλ,h̵(x, ξ)Q(t, x, ξ)1/2)dxdξ

=∬
R2d

traceH(Qin(X,Ξ)1/2U(t)∗cλ,h̵(Φ(t,X,Ξ)U(t)Qin(X,Ξ)1/2)dXdξ ,

and

d
dt∬

R2d
traceH(Q(t, x, ξ)1/2cλ,h̵(x, ξ)Q(t, x, ξ)1/2)dxdξ

=∬
R2d

traceH(Q(t, x, ξ)1/2{ 1
2m

∣ξ∣2 + V (x), cλ,h̵(x, ξ)}Q(t, x, ξ)1/2)dxdξ

+∬
R2d

traceH(Q(t, x, ξ)1/2 i
h̵
[− h̵2

2m
∆ + V, cλ,h̵(x, ξ)]Q(t, x, ξ)1/2)dxdξ .

Now, we compute

{ 1
2m

∣ξ∣2 + V (x), cλ,h̵(x, ξ)} + i
h̵
[− h̵2

2m
∆ + V, cλ,h̵(x, ξ)]

= λ2

m
((ξ + ih̵∇y) ⋅ (x − y) + (x − y) ⋅ (ξ + ih̵∇y))

−(ξ + ih̵∇y) ⋅ (∇V (x) −∇V (y)) − (∇V (x) −∇V (y)) ⋅ (ξ + ih̵∇y)
= λ
m
((ξ + ih̵∇y) ⋅ λ(x − y) + λ(x − y) ⋅ (ξ + ih̵∇y))

−Lip(∇V )

λ
((ξ + ih̵∇y) ⋅ λ∇V (x)−∇V (y)

Lip(∇V )
+ λ∇V (x)−∇V (y)

Lip(∇V )
⋅ (ξ + ih̵∇y))

≤ ( λ
m
+ Lip(∇V )

λ
)(λ2∣x − y∣ + ∣ξ + ih̵∇y ∣2) .

Therefore

d
dt∬

R2d
traceH(Q(t, x, ξ)1/2cλ,h̵(x, ξ)Q(t, x, ξ)1/2)dxdξ

≤ ( λ
m
+ Lip(∇V )

λ
)∬

R2d
traceH(Q(t, x, ξ)1/2cλ,h̵(x, ξ)Q(t, x, ξ)1/2)dxdξ ,
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and hence

dλ(f in ○Φ(−t, ⋅, ⋅), U(t)Rin1 U(t)∗)2

≤∬
R2d

traceH(Q(t, x, ξ)1/2cλ,h̵(x, ξ)Q(t, x, ξ)1/2)dxdξ

≤ exp(∣t∣( λ
m
+ Lip(∇V )

λ
))∬

R2d
traceH(Qin(x, ξ)1/2cλ,h̵(x, ξ)Qin(x, ξ)1/2)dxdξ .

Choosing a minimizing sequence Qinn of elements of C(f in,Rin1 ) so that

∬
R2d

traceH(Qinn (x, ξ)1/2cλ,h̵(x, ξ)Qinn (x, ξ)1/2)dxdξ → dλ(f in,Rin1 )2

as n→∞ leads to the first inequality. �

Quiz 17. Prove the second inequality in Theorem 6 (the argument follows the one
presented above for the first inequality).

Theorem 6 will often be used together with Theorem 1 from Lecture I, in the
following manner. For instance, one could start from Toeplitz density operators, for
which the pseudometric dλ is very well-known, by using Theorem 1 (1). Usually, the
quantum dynamics fails to preserve the Toeplitz structure of the density operator,
but at time t, one can use the lower bound for dλ deduced from Theorem 1 (2) to
compare the Husimi transforms of the (quantum) density operators by means of
the classical Wasserstein W2 metric. The resulting statement is as follows.
Corollary 7. Under the same assumptions as in Theorem 6, let f in be a probability
density with finite second order moments on Rd×Rd, and let gin1 , g

in
2 ∈ P2(Rd×Rd).

Set Rin1 ∶= T [gin1 ] and Rin2 ∶= T [gin2 ]. Then

W2(f in ○Φ(−t, ⋅, ⋅),H[U(t)Rin1 U(t)∗])2 ≤eL∣t∣ max(1, λ2)
min(1, λ2)W2(f in, gin1 )2

+ (1 + λ2)dh̵
2 min(1, λ2)(e

L∣t∣ + 1) ,

W2(H[U(t)Rin1 U(t)∗],H[U(t)Rin2 U(t)∗])2 ≤eL∣t∣ max(1, λ2)
min(1, λ2)W2(gin1 , gin2 )2

+ (1 + λ2)dh̵
min(1, λ2)(e

L∣t∣ + 1) ,

where L ∶= 1
2
( λ
m
+ Lip(∇V )

λ
).

Quiz 18. Prove Corollary 7. (Hint: compute the operators

∬
Rd×Rd

F (p)∣q, p⟩⟨q, p∣dqdp and ∬
Rd×Rd

F (q)∣q, p⟩⟨q, p∣dqdp ,

where F is a polynomial of degree 2 on Rd. See Appendix B of [37], or the basic
properties of the Toeplitz map in Lecture I, and Quiz 8.)

In the remaining part of this lecture, we shall study three (more or less direct)
applications of the propagation bound in Theorem 6:

Application 1: mean-field and classical limits of quantum mechanics (section 2.3);

Application 2: time-splitting schemes for quantum mechanics (section 2.4);

Application 3: observation inequalities for quantum dynamics (section 2.5).
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2.3. Mean-Field and Classical Limits of Quantum Mechanics. So far, we
have considered the quantum dynamics of a single particle. In this section, we
consider the quantum dynamics of N identical particles. We are concerned with
two different limiting regimes:
●the large N limit, and
●the semiclassical regime.
The large N limit is of special interest: in that case, the problem is set on a space

of large dimension (typically 3N , the number of position variables for N points in
space dimension 3). Numerical simulations for problems of this type are very often
untractable.

For this reason, one seeks to replace the original equation governing the dynamics
of N -particle systems with “reduced models”, where the space dimension does not
increase with the number of particles considered. The situation studied in this
section is summarized by the following diagram.

von Neumann
N→∞Ð→ Hartree

↓ ↓

h̵→ 0 ↘ h̵→ 0

↓ ↓

Liouville
N→∞Ð→ Vlasov

The upper horizontal arrow (quantum mean-field limit) has been proved by
Spohn [60] — see also [8] — in the case of bounded potentials; the case of a
Coulomb potential was treated subsequently by [31] — see also [7], by the method
of the “BBGKY hierarchy” (see for instance [35] for an elementary introduction to
the BBGKY hierarchy). Other approaches involve the method of second quantiza-
tion [56] — see also an original method due to Pickl [52], which makes use of some
notions originating from second quantization without the full machinery of Fock
spaces. Both [56] and [52] include a treatment of potentials with a singularity at
the origin of the same type as for the Coulomb potential.

The lower horizontal arrow is the mean-field limit in classical mechanics; it has
been proved by Braun-Hepp [14] by using the notion of “Klimontovich” solutions —
i.e. phase-space empirical measures — of the Vlasov equation, with a convergence
rate obtained by Dobrushin [30], who used optimal transport distances for the
first time on this kind of problem. Dobrushin’s analysis is our first motivation for
defining a quantum analogue of the Wasserstein distance, and for the analysis in
the present section.

The limit corresponding to the left vertical arrow follows from the Lions-Paul
Theorem mentioned above (Theorem IV.1 in [50]). The limit corresponding to the
right vertical arrow follows from Theorem IV.2 in [50]. It should be mentioned
that the case of the classical limit of the Hartree equation for singular potentials
including the Coulomb case is treated in Theorem IV.4 of [50] — one should however
keep in mind that this proof assumes that the Wigner function of the density
operator solution of the Hartree equation is assumed to be bounded in L2, which
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excludes the case of pure states, such as solutions of the Schrödinger equation with
WKB initial data, for instance.

Since we are interested in a situation involving two small parameters (specifically
1
N

and h̵), it is natural to investigate the uniformity of the mean-field (large N)
limit in the semiclassical (small h̵) regime. It seems that the first result in that
direction is [43] — see also [51].

To conclude this introduction, one should also mention that the mean-field limit
in classical mechanics (the lower horizontal arrow) remains an open problem in the
case of the Coulomb potential — see however [45, 46] in the case of interactions
with a singularity at the origin weaker than that of the Coulomb potential, and
[59] in the case of the Coulomb potential itself, but for a restricted class of initial
data (specifically for monokinetic data). The quantum analogue of [59], i.e. the
joint mean-field and classical limit of the N -particle quantum dynamics in the
case of monokinetic data, which is based on Serfaty’s remarkable inequality on the
Coulomb potential (Proposition 2.3 in [59]).

2.3.1. Quantum N -Particle Dynamics. The state of a quantum N -particle system
at time t is represented by a density operator R(t) ∈ D(HN), where HN = H⊗N is the
N -particle Hilbert space. If H = L2(Rd), then it is easily seen that HN = L2(RdN).

Since the N particles are indistinguishable, their density operator should com-
mute with permutations of the particle labels. More precisely, for each σ ∈SN , we
define the map

Uσ ∶ HN ∋ Ψ ≡ Ψ(x1, . . . , xN)↦ (UσΨ) ≡ Ψ(xσ−1(1), . . . , xσ−1(N)) ∈ HN .
One easily checks that the map σ ↦ Uσ is a unitary representation of the symmetric
group SN on the set of N elements in HN . A density operator for a system of N
identical particles should satisfy the relation

UσR(t)U∗
σ = R(t) , σ ∈SN , t ∈ R .

Henceforth, we denote by Ds(HN) the set of density operators on HN satisfying
this symmetry property:

Ds(HN) ∶= {R ∈ D(HN) s.t. UσRU
∗
σ = R for all σ ∈SN} .

Remark. One should avoid confusing this symmetry, corresponding to indistin-
guishable particles, with the symmetries corresponding to the Bose-Einstein, or
the Fermi-Dirac statistics. The Bose-Einstein statistics applies to particles with
integer spin, referred to as bosons, such as photons, 4He nuclei (α particles). At
low temperature, large numbers of bosons can condense in a a single energy state,
thereby forming a Bose-Einstein condensate. The Fermi-Dirac statistics applies to
particles. with half-integer spin, referred to as fermions, such as electrons, protons,
neutrons, 3He atoms. Fermions satisfy the Pauli exclusion principle: two (or more
than two) fermions in a given quantum system cannot occupy simultaneously the
same quantum state. The difference between bosons and fermions can be read on
their N -particle wave functions: for all σ ∈SN , one has

UσΨN =ΨN , if the N particles are bosons,

UσΨN =(−1)sign(σ)ΨN , if the N particles are fermions.

Notice that, in both cases, one has

Uσ ∣ΨN ⟩⟨ΨN ∣U∗
σ = ∣UσΨN ⟩⟨UσΨN ∣ = ∣ΨN ⟩⟨ΨN ∣ , σ ∈SN ,
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so that the density operator ∣ΨN ⟩⟨ΨN ∣ ∈ Ds(HN).
The quantum N-particle Hamiltonian is the unbounded operator on the N -
particle Hilbert space HN = L2(RdN)

N

∑
k=1

− h̵2

2m
∆xk + ∑

1≤k<l≤N

V (xk−xl) .

Of course, it is assumed that N ≥ 2.
Since the N particles are identical, the total mass of the system is M = Nm, so

that the “energy per particle” is

1
N

(
N

∑
k=1

− h̵2

2m
∆xk + ∑

1≤k<l≤N

V (xk−xl)) =
N

∑
k=1

− h̵2

2M
∆xk + 1

N ∑
1≤k<l≤N

V (xk−xl) .

Henceforth we set M = 1 without loss of generality, and consider as the quantum
Hamiltonian the energy per particle, i.e.

HN ∶=
N

∑
k=1

− h̵2

2
∆xk + 1

N ∑
1≤k<l≤N

V (xk−xl) .

We shall adopt the following assumptions on the interaction potential:

V ∈ C1,1(Rd) with V − ∈ L∞(Rd) and V (z) = V (−z) ∈ R .

Hence

HN is self-adjoint on HN with domain Dom(HN) ⊃H2(RdN) .

By Stone’s theorem, the quantum Hamiltonian HN generates a unitary group
UN(t) ∶= e−itHN /h̵ on HN .

The operatorRh̵,N(t) = UN(t)RinN UN(t)∗ solves the N-particle von Neumann
equation

ih̵∂tRh̵,N(t) = [HN ,Rh̵,N(t)] , Rh̵,N(0) = RinN ∈ D(HN) .

If RinN is a pure state, meaning that RinN = ∣Ψin
N ⟩⟨Ψin

N ∣, then

Rh̵,N(t) = ∣Ψh̵,N(t)⟩⟨Ψh̵,N(t)∣

where Ψh̵,N(t, ⋅) ∶= UN(t)Ψin
N is the solution of the N -particle Schrödinger equation

ih̵Ψh̵,N(t, ⋅) = HNΨh̵,N(t, ⋅) , Ψh̵,N(0, ⋅) = Ψin
N .

We leave it to the reader, as an easy exercise, to check that

UσUN(t) = UN(t)Uσ for all σ ∈SN and all t ∈ R .

Therefore

RinN ∈ Ds(HN) Ô⇒ Rh̵,N(t) = UN(t)RinN UN(t)∗ ∈ Ds(HN) for all t ∈ R .

Henceforth, we are interested in situations where N ≫ 1 (mean-field regime) and
h̵≪ 1 (semiclassical regime).
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2.3.2. Mean-Field Equations. The purpose of the mean-field limit is to replace the
description of a N -particle system by the quantum Hamiltonian HN — involving
functions of N variable in L2(RdN), therefore functions of dN ≫ 1 variables, by
an equation, or a system of equations posed on the single-particle phase space H
instead of HN . The physical idea leading to these mean-field equations can be
expressed as follows: one seeks to write an equation governing the evolution of a
single, “typical” particle. This typical particle is driven by the interaction with
the N − 1 other particles, approximated as follows: call ρ(t, x) the single-particle
density function, i.e.

ρ(t, x) = r(t, x, x)

where r(t, x, y) is an integral kernel of R(t) ∈ D(H), the density operator of the
typical, single particle, such that z ↦ r(t, x + z, x) belongs to Cb(Rd;L1(Rd)) for
each t ∈ R (see Lecture I, Quiz 4). Then, one expects that

1
N ∑

1≤j≤N

V (xj − y) ≃ ∫
Rd
V (x − y)ρ(t, x)dx =(V ⋆ ρ(t, ⋅))(y)

= trace(V (⋅ − y)R(t)) =∶ VR(t)(y)

as N →∞. This time-dependent potential VR(t) is usually referred to as the mean-
field, self-consistent potential. Then one can write the equation governing the
(quantum) evolution of R(t): this is a von Neumann equation where the potential
is the mean-field potential, i.e.

ih̵∂tR(t) = [− 1
2
h̵2∆ + VR(t),R(t)] .

This is a quantum dynamical equation, referred to as the (time-dependent) Hartree
equation, set on the single-particle Hilbert space H = L2(Rd), instead of the N -
particle Hilbert space HN = L2(RdN). The advantage of this description is obvious:
one has to manipulate wave functions depending on d space variables (d ≤ 3 in
practice) instead of Nd space variables, which is untractable. The drawback is that
the mean-field equation is nonlinear (but the nonlinearity is relatively mild since it
involves a convolution), and that it is only an approximation of the true, N -particle
dynamics.

In the case of pure states, the (time-dependent) Hartree equation takes the form

ih̵∂tψ(t, x) = − 1
2
h̵2∆xψ(t, x) + ψ(t, x)V ⋆x ∣ψ∣2(t, x) , x ∈ Rd ,

and R(t) = ∣ψ(t, ⋅)⟩⟨ψ(t, ⋅)∣.
In the classical setting, the idea is the same: the classical mean-field potential

is defined in terms of the single-particle distribution function f ≡ f(t, x, ξ) by the
formula

Vf(t, x) ∶=∬
Rd×Rd

V (x − y)f(t, y, η)dydη = (V ⋆ f(t, ⋅, ⋅))(x) .

Then, the mean-field equation, known as the Vlasov equation is written in terms
of the mean-field Hamiltonian with the usual single particle Poisson bracket:

∂tf(t, x, ξ) + ξ ⋅ ∇xf(t, x, ξ) −∇xVf(t, x) ⋅ ∇ξf(t, x, ξ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

={ 1
2 ∣ξ∣

2+Vf (t,x),f(t,x,ξ)}

= 0 .
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2.3.3. Uniform in h̵ Error Bounds for the Quantum Mean-Field Limit. In this sec-
tion, we present error bounds comparing the solution of the N -particle von Neu-
mann equation and the solution of the quantum (Hartree), or the classical (Vlasov)
mean-field equations.

We begin with the error bound for the quantum mean-field limit (from the N -
particle von Neumann equation to the Hartree equation). This is the upper hori-
zontal arrow in the diagram above.
Theorem 8. Assume that V ∈ C1,1(Rd) is a real-valued function such that

V (z) = V (−z) ≥ −M for some M > 0 ,

and set

L ∶= 2(1 + 4Lip(∇V )2) .
Choose an initial (1-particle) distribution function f in such that f indxdξ ∈ P2(R2d).
Set the Hartree initial data to be Rin = T [f in], and the N -particle initial data to be
RinN = (Rin)⊗N = T [(f in)⊗N ]. Let t ↦ R(t) be the solution of the time-dependent
Hartree equation with initial data Rin, while t ↦ UN(t)T [(f in)⊗N ]UN(t)∗ is the
solution of the N -particle von Neumann equation with initial data RinN .

Then, for each t > 0,

d (R(t)⊗N ,UN(t)T [(f in)⊗N ]UN(t)∗)2

N
≤ 2dh̵eLt + 8∥∇V ∥L∞

N−1

eLt−1

L
.

Next we study the error bound for the joint mean-field and classical limits (from
the N -particle von Neumann equation to the Vlasov equation). This is the diagonal
arrow in the diagram above.
Theorem 9. Under the same assumptions as in Theorem 8, choose an initial (1-
particle) distribution function f in such that f indxdξ ∈ P2(R2d). Set the N -particle
initial data to be RinN = T [(f in)⊗N ]. Let t ↦ f(t, ⋅, ⋅) be the solution of the Vlasov
equation with initial data f in, while the solution of the N -particle von Neumann
equation with initial data RinN is t↦ UN(t)T [(f in)⊗N ]UN(t)∗.

Then, for each t > 0,

d (f(t, ⋅, ⋅))⊗N ,UN(t)T [(f in)⊗N ]UN(t)∗)2

N
≤ dh̵eLt + 8∥∇V ∥L∞

N−1

eLt−1

L
.

Several comments are in order before going further.
Remarks.
(1) In both Theorems 8 and 9, we have restricted our attention to Toeplitz initial
density operators. The reason for using such well-prepared initial data comes from
statement (1) in Theorem 1: if T is a Toeplitz operator in D2(H), then

d(T,T ) =
√

2dh̵ = min
R∈D(H)

d(R,R) .

Similarly, if f is the symbol of T — i.e. if T = T [f] — then

d(f, T ) =
√
dh̵ = min

g∈P2(R2d)
R∈D2(H)

d(g,R) .

Therefore, for this choice of initial data, the first terms in the right-hand side of
the upper bounds in both theorems are as small as possible.
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(2) The reason for considering the expressions

d (R(t)⊗N ,UN(t)T [(f in)⊗N ]UN(t)∗)2

N

and

d (f(t, ⋅, ⋅))⊗N ,UN(t)T [(f in)⊗N ]UN(t)∗)2

N
,

instead of

d (R(t)⊗N ,UN(t)T [(f in)⊗N ]UN(t)∗)2

and

d (f(t, ⋅, ⋅))⊗N ,UN(t)T [(f in)⊗N ]UN(t)∗)2

comes from the fact that the quantum-to-quantum transport cost and the classical-
to-quantum transport cost in HN are sums of N terms, respectively

N

∑
k=1

I
⊗(k−1)
H⊗H ⊗Ch̵ ⊗ I⊗(N−k)

H⊗H ,

and
N

∑
k=1

I
⊗(k−1)
H ⊗ ch̵(xk, ξk)⊗ I⊗(N−k)

H .

(3) For all RN ∈ Ds(HN), we consider its k-th marginal RN ∶k ∈ Ds(Hk) defined
by the following prescription

traceHk(RN ∶kA) = traceHN (RN(A⊗ IN−k
HN−k

)) , for all A ∈ L(Hk) .
Quiz 19. Let RN , SN ∈ Ds2(HN) and let fN be a symmetric probability density on
(Rd ×Rd)N with finite second order moments. Prove that

d(RN ∶1, SN ∶1)2 ≤ . . . ≤ d(RN ∶k, SN ∶k)2

k
≤ . . . ≤ d(RN , SN)2

N
, 1 ≤ k ≤ N ,

and that

d(fN ∶1, SN ∶1)2 ≤ . . . ≤ d(fN ∶k, SN ∶k)2

k
≤ . . . ≤ d(fN , SN)2

N
, 1 ≤ k ≤ N ,

where

fN ∶k(x1, ξ1, . . . , xk, ξk) ∶= ∫
(Rd×Rd)N−k

fN(x1, ξ1, . . . , xN , ξN)dxk+1dξk+1 . . . dxNdξN .

(Hint: use the formulas for the quantum-to-quantum and the classical-to-quantum
costs in (2)).

In particular, Theorems 8 and 9 imply the following result on the first marginal
of the N -particle density operator.
Corollary 10. Under the same assumptions as in Theorems 8 and 9, one has

d (R(t), (UN(t)T [(f in)⊗N ]UN(t)∗)∶1)
2 ≤ 2dh̵eLt + 8∥∇V ∥L∞

N−1

eLt−1

L
,

d (f(t, ⋅, ⋅)), (UN(t)T [(f in)⊗N ]UN(t)∗)∶1)
2 ≤ dh̵eLt + 8∥∇V ∥L∞

N−1

eLt−1

L
.

(4) One can obviously use Theorems 8 and 9, together with Corollary 10 and
Theorem 1 (2) in order to compare the Vlasov solution and the Husimi transform
of the Hartree solution to the Husimi transform of the first marginal of the N -
particle density operator.
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Corollary 11. Under the same assumptions as in Theorems 8 and 9, one has

W2 (H[R(t)],H[(UN(t)T [(f in)⊗N ]UN(t)∗)∶1])
2 ≤ 2dh̵(eLt + 1) + 8∥∇V ∥L∞

N−1

eLt−1

L
,

W2 (f(t, ⋅, ⋅)),H[(UN(t)T [(f in)⊗N ]UN(t)∗)∶1])
2 ≤ dh̵(eLt + 1) + 8∥∇V ∥L∞

N−1

eLt−1

L
.

(5) Since density operators are characterized by their Husimi transforms (see Quiz
20 below), and since the Husimi transform of a density operator is a probability den-
sity, a natural idea to define optimal transport distances between density operators
is to use the formula

dZS(ρ1, ρ2) =W2(H[ρ1],H[ρ2]) , ρ1, ρ2 ∈ D2(H) .

This approach has been proposed by K. Życzkowski and W. S lomczyński [65].
This definition has some advantages over the pseudometric d discussed in these

lectures
(a) it is a bona fide metric (see quiz below), and
(b) one is always dealing with probability densities, i.e. functions on phase space,
which are easier to manipulate than operators.

Similarly, one might prefer considering

W2(f,H[R]) instead of d(f,R)
for R ∈ D2(H) and f a probability density on P(Rd ×Rd) with finite second order
moments. Indeed, with the first quantity, one transforms the density operator R
into a probability density by means of the Husimi transform, and then compares this
probability density with f by means of the Wasserstein distance. On the contrary,
the second quantity compares two very different objects (a probability density and
a density operator), which is like comparing apples with pears.
Quiz 20: the Husimi transform is one-to-one. Set H = L2(Rd).
(1) Let R ∈ D2(H). Prove that H[R] is a probability density, and compute

∬
Rd×Rd

(∣q∣2 + ∣p∣2)H[R](q, p)dqdp

in terms of R.
(2) Let R,S ∈ D2(H), and assume that H[R] =H[S]. Prove that R = S. (Hint: let
r ≡ r(y, y′) be an integral kernel of R. Set

J(x, ξ) ∶=∬
Rd×Rd

r(y, y′)e−(∣y∣
2
+∣y′∣2)/2h̵ex⋅(y+y

′
)−iξ⋅(y−y′)/h̵dydy′.

Prove that J extends as a holomorphic function on Cd×Cd, and therefore is uniquely
determined by its restriction to Rd × Rd. Conclude (a) by finding the formula
relating H[R] to J , and (b) by computing the integral kernel r of R in terms of J .)

However, there is a rather heavy price to pay with this approach, which is that
the Husimi transform, and therefore dZS is not easy to propagate by usual quantum
dynamics. This is easily explained if one returns to Quiz 11 (3) and (5): if t↦ R(t)
is a time-dependent density operator, solution of the von Neumann equation

ih̵∂tR(t) = [− 1
2
h̵2∆ + V,R(t)] , R(0) = Rin ,

we have seen that its Wigner transform Wh̵[R(t)] satisfies the Wigner equation

(∂t + ξ ⋅ ∇x)Wh̵[R(t)](x, ξ) +Θ[V ]Wh̵[R(t)](x, ξ) = 0 ,
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and that
H[R(t)] = exp( h̵

4
∆x,ξ)Wh̵[R(t)] .

Therefore, the evolution of H[R(t)] can be described as follows:

H[Rin]↦W [Rin]↦Wh̵[R(t)]↦H[R(t)] .
The second arrow is the value at time t of the group generated by the Wigner
equation, and the third arrow is exp( h̵

4
∆x,ξ). But the first arrow corresponds to

expressing Wh̵[Rin] in terms of H[Rin] by solving

exp( h̵
4
∆x,ξ)Wh̵[Rin] =H[Rin] .

This first step corresponds to inverting the heat flow at time h̵/4, hence the difficulty
of this problem.

A more thorough discussion of the evolution of the Husimi transform of a solution
of the von Neumann equation can be found in [5].

This discussion explains one of the advantages of the pseudometric d over dKS ,
that is the remarkable simplicity of the propagation estimate stated in Theorem
6, and the fact that the bounds reported in that theorem are exactly the same
as the pair dispersion estimate in classical mechanics (with the same potential in
both dynamics). In other words, when compared by means of the pseudometric d,
quantum particles behave as if they were points moving on classical phase-space
trajectories. This picture of quantum dynamics is known to be wrong in general
— see for instance Young’s double-slit experiment and its discussion in chapter I,
section 2 of [23] — but turns out to be true as far as the pseudodistance d, or its
variants dλ discussed in Theorem 6, are concerned. Accordingly, the assumptions
on the potential used in Theorem 6 are those used in the definition of a classical
dynamics by means of the Cauchy-Lipschitz theorem, which require in particular
that V ∈ C1,1(Rd), which are much more restrictive than the conditions on V

which imply that − h̵2

2m
∆+V has a self-adjoint extension as an unbounded operator

on L2(Rd).
After this long list of remarks, here is a quick sketch of the proof of Theorems 8.

Theorem 9 is proved in essentially the same way, and the necessary modifications
are left to the reader as a (relatively) easy exercise.

Sketch of the proof of Theorem 8. This proof is split in several steps.
Step 1. Pick QinN ∈ C(RinN , (Rin)⊗N) and solve for QN(t) ∈ D(HN ⊗HN) the linear
von Neumann equation with time-dependent potential

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ih̵∂tQN(t)=[HN⊗IHN + IHN ⊗
N

∑
k=1

Jk,N(− h̵2

2
∆+VR(t)),QN(t)] ,

QN(0) = QinN ,

with the notation
Jk,NA ∶= I⊗(k−1)

H ⊗A⊗ I⊗(N−k)
H .

One checks, by taking partial traces and using uniqueness for the solution of the
von Neumann equation with time-dependent potential, that

QN(t) ∈ C(RN(t),R(t)⊗N) , for all t ≥ 0 ,

where R(t) is the Hartree solution, while

RN(t) ∶= UN(t)RinN UN(t)∗ .
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Step 2. Let

DN(t) ∶= 1
N

traceHN⊗HN (QN(t) 1
2Ch̵QN(t) 1

2 ) ,
with Ch̵ defined for all Φ ≡ Φ(XN , YN) ∈ S(R2dN) by

Ch̵Φ ∶≡
N

∑
j=1

(∣xj − yj ∣2Φ − h̵2(divxj−divyj)((∇xj−∇yj)Φ))(XN , YN) .

Step 3. By definition of DN(t), Step 1 shows that

DN(t) ≥ 1
N
d(RN(t),R(t)⊗N)2 , for all t ≥ 0 .

Step 4. On the other hand

ih̵
dDN

dt
= 1
N

traceHN⊗HN (QN(t) 1
2 [HN ⊗ IHN ,Ch̵]QN(t) 1

2 )

+
N

∑
k=1

1
N

traceHN⊗HN (QN(t) 1
2 [IHN ⊗ Jk,N(− 1

2
h̵2∆ + VR(t)),Ch̵]QN(t) 1

2 ) ,

and it remains to compute

ZN = − i
h̵
[HN ⊗ IHN + IHN ⊗

N

∑
k=1

Jk,N(− 1
2
h̵2∆ + VR(t)),Ch̵] .

Step 5. Using the notation A ∨B ∶= AB +BA, one finds that

ZN =
N

∑
j=1

(xj − yj) ∨ (−ih̵∇xj + ih̵∇yj)

+
N

∑
j=1

1
N

N

∑
k=1

(−∇V (xj − xk) +∇VR(t)(yj)) ∨ (−ih̵∇xj + ih̵∇yj) ,

and one uses the elementary operator inequality (see Quiz 7 (2))

AB∗ +BA∗ ≤ AA∗ +BB∗

to prove that

ZN ≤ 2Ch̵ +
N

∑
j=1

∣∇VR(t)(yj) − 1
N

N

∑
k=1

∇V (xj − xk)∣
2

.

Split the summand so as to involve the difference between the N -body and the
mean-field potentials on the yj variables only

ZN ≤2Ch̵ + 2
N

∑
j=1

∣ 1
N

N

∑
k=1

(∇V (yj − yk) −∇V (xj − xk))∣
2

+ 2
N

∑
j=1

∣∇VR(t)(yj) − 1
N

N

∑
k=1

∇V (yj − yk)∣
2

≤2Ch̵ + 2
N

Lip(∇V )2
N

∑
j,k=1

∣(yj − yk) − (xj − xk)∣2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤4NCh̵

+ 2
N

∑
j=1

∣∇VR(t)(yj) − 1
N

N

∑
k=1

∇V (yj − yk)∣
2

.
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Step 6. It remains to bound

N

∑
j=1

traceHN⊗HN
⎛
⎝
QN(t) 1

2 ∣∇VR(t)(yj) − 1
N

N

∑
k=1

∇V (yj − yk)∣
2

QN(t) 1
2
⎞
⎠

=
N

∑
j=1

traceHN
⎛
⎝
∣∇VR(t)(yj) − 1

N

N

∑
k=1

∇V (yj − yk)∣
2

R(t)⊗N
⎞
⎠
.

This is easy since all the potentials considered involve only the variables yj for
j = 1, . . . ,N , so that QN(t) can be replaced with the factorized density R(t)⊗N ,
where R(t) is the Hartree solution. Here is the argument.

traceHN
⎛
⎝
∣∇VR(t)(y1) − 1

N

N

∑
k=1

∇V (y1 − yk)∣
2

R(t)⊗N
⎞
⎠

= traceHN
⎛
⎝
∣ 1
N

N

∑
k=1

(∇VR(t)(y1) −∇V (y1 − yk))∣
2

R(t)⊗N
⎞
⎠

= 1

N2
traceHN (

N

∑
k=1

∣∇VR(t)(y1) −∇V (y1 − yk)∣2R(t)⊗N)

+2 ∑
1≤k<m≤N

traceHN (∇VR(t)(y1)−∇V (y1−yk)

N
⋅ ∇VR(t)(y1)−∇V (y1−ym)

N
R(t)⊗N)

= 1

N2
traceHN (

N

∑
k=1

∣∇VR(t)(y1) −∇V (y1 − yk)∣2R(t)⊗N) ≤ 4

N
∥∇V ∥2

L∞(Rd) ,

since

traceHN ((∇VR(t)(y1) −∇V (y1 − yk)) ⋅ (∇VR(t)(y1) −∇V (y1 − ym))R(t)⊗N) = 0

for all m > k ≥ 1.
Step 7. Hence

ZN ≤ 2(1 + 4 Lip(∇V )2)Ch̵ + 2
N

∑
j=1

∣∇VR(t)(yj) − 1
N

N

∑
k=1

∇V (xj − xk)∣
2

,

and therefore

d

dt
DN(t) = traceHN⊗HN (Q(t) 1

2ZNQ(t) 1
2 )

≤2(1 + 4 Lip(∇V )2)DN(t) + 8

N
∥∇V ∥2

L∞(Rd) .

By Step 3 and the Gronwall inequality, one has

1
N
d(RN(t),R(t)⊗N)2 ≤DN(t) ≤DN(0)eLt + 8

N
∥∇V ∥2

L∞(Rd)

eLt − 1

L
.

This inequality holds for each initial coupling QinN of (Rin)⊗N with RinN , so that

1
N
d(RN(t),R(t)⊗N)2 ≤ 1

N
d(RinN , (Rin)⊗N)2eLt + 8

N
∥∇V ∥2

L∞(Rd)

eLt − 1

L
.

Specializing this inequality to

Rin = T [f in] and RinN = (Rin)⊗N

and using Theorem 1 (1) leads to the announced result. �
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2.4. Time-Splitting Numerical Schemes for Quantum Mechanics. In this
section, we study the numerical error relative to some time-discretizations of quan-
tum dynamical equations.

Consider the von Neumann equation with unkown R(t) ∈ D(H)

ih̵∂tR = [− 1
2
h̵2∆ + V,R] , R∣

t=0
= Rin ,

where the potential V is chosen so that the operator

Hh̵ ∶= − 1
2
h̵2∆ + V

has a self-adjoint (unbounded) extension to H = L2(Rd).
Our purpose is to obtain uniform in h̵ error bounds for various time-splitting

schemes for the von Neumann equation. The simplest example of time-splitting
scheme for the von Neumann equation is as follows:

Time-split Heisenberg equation. Starting from R0 = Rin ∈ D(H), we define a
sequence Rm(t) ∈ D(H) for m ∈ 1

2
N by the following formulas:

Rn+
1
2 = exp( ih̵∆t

2
∆)Rn exp(− ih̵∆t

2
∆) ,

Rn+1 = exp(∆t
ih̵
V )Rn+ 1

2 exp(−∆t
ih̵
V ) .

The analysis of time-splitting schemes like this one has been studied in detail, for
instance by [27]. This particular time-splitting scheme is known as the Lie-Trotter
splitting method.
Error bound. [27] Pick Rin ∈ D(H) such that

∥⟨h̵Dx⟩Rin⟨h̵Dx⟩∥1=∶M <∞ with ⟨h̵Dx⟩ ∶=(1−h̵2∆x)
1
2 .

Then, for each integer n ≥ 0, one has

∥R(n∆t) −Rn∥1 ≤ C(M, ∥V ∥W 2,∞)∆t
h̵
.

This error bound is obviously not uniform as h̵ → 0. The convergence of this
scheme requires that ∆t ≪ h̵, which is obviously very costly in the semiclassical
regime, where h̵≪ 1.

In the sequel, we seek to obtain an error bound for the Lie-Trotter time-splitting
scheme that is uniform in h̵ by the methodology of asymptotic preserving (AP)
schemes. The idea is to use the Descombes-Thalhammer error bound for h̵ ≥ 1, and,
in the case where h̵ ≪ 1, to use the same time-splitting scheme for the classical
Liouville equation, which is the classical dynamical equation obtained by passing
to the h̵ → 0 limit in the von Neumann equation, as explained for instance by the
Lions-Paul theorem recalled above. This last error estimate involves comparing the
numerical quantum and the classical solutions, and the exact classical and numerical
solutions on the other hand. This leads to two different error bounds depending on
h̵, and one hopes to get a uniform in h̵ error estimate by optimizing in h̵ > 0. This
is summarized by the diagram in Figure 5.

The first result on the uniform in h̵ convergence of the Lie-Trotter method for
the von Neumann equation was obtained in [6], without any error bound. The goal
of the present section is to provide such uniform in h̵ error estimates by means of
the d pseudometric.
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Figure 5. The horizontal arrows represent the semiclassical limit
h̵ ≪ 1 and the vertical arrows the convergence of the numerical
scheme ∆t≪ 1.

2.4.1. Lie-Trotter Time Splitting for the Liouville Equation. As recalled above, the
classical dynamical equation corresponding to the von Neumann equation is the
Liouville equation with unknown f ≡ f(t, x, ξ) ≥ 0, written as

∂tf(t, x, ξ) + {H(x, ξ), f(t, x, ξ)} = 0 , f ∣
t=0

= f in ,
where the classical Hamiltonian is

H(x, ξ) ∶= 1
2
∣ξ∣2 + V (x) .

We shall assume here that V ∈ W 2,∞(Rd), and that V ≥ −M on Rd for some
constant M > 0.

This is a first order PDE that is solved by the method of characteristics. If
one denotes by Φt the Hamiltonian flow generated by H, one finds that

f(t, x, ξ) = f in(Φ−t(x, ξ)) , x, ξ ∈ Rd , t ∈ R .

The Lie-Trotter time-splitting method for the Liouville equation is

fn+
1
2 (y, η) = fn ○K−∆(y, η) ,

fn+1(y, η) = fn+ 1
2 ○ P−∆t(y, η) ,

starting from f0 ∶= f in, where the maps K−∆t and P−∆t are defined by the following
formulas:

Kt(y, η) ∶= (y + tη, η) , Pt(y, η) ∶= (y, η − t∇V (y)) .
The error bound for the Lie-Trotter splitting scheme for the Liouville
equation is formulated below in terms of the Wasserstein distance of exponent 2.
Setting

(Xt,Ξt) ∶= Φt(x, ξ) and (Yt,Ht) ∶= Pt ○Kt(y, η) ,
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one finds that

∣Xt − Yt∣2 + ∣Ξt −Ht∣2 ≤(∣x − y∣2 + ∣ξ − η∣2)e(2+Λ)∣t∣

+ e
(2+Λ)∣t∣ − 1

2 +Λ
9
4
Λ2( 1

2
+Λ)2t2(1 + ∣y∣2 + ∣η∣2) ,

with

Λ ∶= max(1,E, ∥∇2V ∥L∞) , E ∶= ∣∇V (0)∣ .
Quiz 21. Prove the inequality above. (Hint: write a differential system satisfied
by t ↦ (Yt,Ht), and compare the trajectories of that system with those of the
Hamiltonian system corresponding to H(x, ξ) by means of the Gronwall inequality.)

The inequality above implies the following error estimate for the Lie-Trotter
scheme in the case of the Liouville equation.
Lemma 12. Let V ∈W 2,∞(Rd) satisfy V ≥ −M for some M > 0. Assume that f in

is a probability density on R2d such that

∬
Rd×Rd

(∣x∣2 + ∣ξ∣2)f in(x, ξ)dxdξ <∞ .

Then, for each ∆t ∈ (0,1) and each n = 0, . . . , [T /∆t], one has

W2(fn, f(n∆t)) ≤ CT [Λ,E, f in]∆t ,

where CT [Λ,E, f in] is a positive constant depending only on the computing time
T , on the constants Λ and E defined above, and on the initial data f in.

2.4.2. Lie-Trotter Time Splitting for the Liouville Equation. At this point, we use
Theorem 6 first with λ =m = 1 and V = 0, so that

d(fn ○K−∆t,R
n+ 1

2 ) ≤ d(fn,Rn)e∆t
2 .

Next we use Theorem 6, this time with λ = 1 and m→ +∞, so that

d(fn+ 1
2 ○ P−∆t,R

n+1) ≤ d(fn+ 1
2 ,Rn+

1
2 )e∆t

2 Lip(∇V ) .

Hence, for all integer n ≥ 0, one has

d(fn,Rn) ≤ d(f in,Rin) exp ( 1
2
n∆t(1 + Lip(∇V ))) .

On the other hand, applying Theorem 6 with m = 1 shows that, for all t ≥ 0,

d(f(t, ⋅, ⋅),R(t)) =d(f in ○Φ−t, e
−itHh̵/h̵RineitHh̵/h̵)

≤d(f in,Rin) exp ( 1
2
t(1 + Lip(∇V ))) .

Putting together these two bounds, and the error estimate in the previous sec-
tion, we arrive at the following result.
Theorem 13. Let V ∈ W 2,∞(Rd) satisfy V ≥ −M for some M > 0. Let f in be a
probability density on Rd ×Rd such that

∬
Rd×Rd

(∣x∣2 + ∣ξ∣2)f in(x, ξ)dxdξ <∞ .

Set Rin = T [f in]. Then, the Lie-Trotter splitting scheme for the Heisenberg equa-
tion satisfies the uniform as h̵→ 0 error bound

d(Rn,R(n∆t)) ≤ CT [Λ, ∥V ∥W 2,∞ , f in]∆t + 2
√
dh̵e

T
2 (1+Lip(∇V )) .
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This implies the uniform in h̵ convergence rate

sup
max(2∥φ∥L∞ ,Lip(φ))≤1

∣∫
R2d

φ(x, ξ)(H[Rn] −H[R(n∆t)])dxdξ∣

≤ C ′
T [Λ, ∥V ∥W 2,∞ , f in]∆t1/3 .

The uniform as h̵ → 0 error estimate follows from the two bounds obtained in
this section before Theorem 13, and the error bound for the Lie-Trotter method
for the Liouville equation in the previous section (Lemma 12). One uses also the
following triangle inequality, which will be discussed in Lecture III:

d(R,S) ≤ d(R,f) +W2(f, g) + d(g,S) .
The uniform in h̵ convergence rate follows from optimizing between the uniform as
h̵→ 0 bound and the Descombes-Thalhammer bound.

There is a similar result with higher order splitting formulas, such as Strang’s
splitting scheme, leading to a uniform O (∆t2/3) estimate. The interested reader is
referred to [36] for these higher order estimates, and for the missing details on the
case of the Lie-Trotter splitting method.

2.5. Observation Inequalities for Quantum Dynamics. The observation prob-
lem for a general PDE can be formulated as follows: let P (x, ∂x) be a (linear) partial
differential operator on some open set Ω ⊂ Rd, and let ω be an open subset of Ω.
Is a solution u of the PDE P (x, ∂x)u(x) = 0 for all x ∈ Ω completely determined by
its restriction to ω?
Example. Here is an elementary example. Set d = 2, and identify R2 to C (by
sending (x, y) ∈ R2 to z = x + iy ∈ C). Set

P (x, y,Dx,Dy) = ∂̄ = 1
2
(∂x + i∂y) ,

(the Cauchy-Riemann operator) and set ω ⊂ Ω ⊂ C be (nonempty) open sets in C.
Any distribution u on Ω such that ∂̄u = 0 on Ω is a holomorphic function on Ω.
The restriction of u to the connected component of ω in Ω is uniquely determined
by the restriction u∣

ω
. In particular, if u∣

ω
= 0, then u = 0 on Ω.

In the context of quantum dynamics, the observation problem can be formulated
as follows. Consider the von Neumann equation with unkown t↦ R(t) ∈ D(H)

ih̵∂tR = [− h̵2

2m
∆ + V,R] , R∣

t=0
= Rin .

The real-valued potential V is chosen so that the quantum Hamiltonian

H ∶= − h̵2

2m
∆ + V

has a self-adjoint (unbounded) extension to L2(Rd).
Specialists of control usually consider R(t) = ∣ψ(t, ⋅)⟩⟨ψ(t, ⋅)∣ with

ih̵∂tψ(t, x) = − 1
2
h̵2∆xψ(t, x) + V (x)ψ(t, x) .

A class K of solutions t ↦ R(t) ∈ D(H) of the von Neumann equation can be
observed on a domain Ω ⊂ Rd during time T if there exists a constant COBS > 0,
which may depend on K, on T and on Ω, but not on the specific solution R ∈ K,
such that

1(= ∥R(t)∥1) ≤ COBS ∫
T

0
traceH(1ΩR(t))dt for all R ∈ K .
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The reason for the interest in this notion is explained by the HUM method (Hilbert
Uniqueness Method) introduced by J.-L. Lions: if Ω and T are such that all solu-
tions of the Schrödinger equations — meaning that K = Cb(R;L2(Rd)) — can be
observed on (0, T )×Ω, one can control the Schrödinger equation by acting only on
the domain Ω and on the time interval (0, T ) via a source term in the Schrödinger
equation. (As a matter of fact, Lions’ initial interest was with the wave equation,
or with the equations of linear elasticity [49], and the problem was to eliminate
vibrations on large solid structures by acting with motors on small regions of the
structure; the question was obviously to find the optimal way of placing the stabi-
lizing motors.)
Quiz 22: The Lions HUM method. Let H be an unbounded self-adjoint

operator on L2(Rd) — for instance the Hamiltonian H = − h̵2

2m
∆ + V under some

appropriate conditions on the real-valued potential V . Consider the control problem

{
i∂tφ =Hφ + 1(0,T )×Ωf ,

φ∣
t=T

= 0 .

Can one drive any solution φ ∈ Cb(R;L2(Rd)) to 0 at time T by acting on the
domain Ω only via the control f? In other words, is the control operator

C ∶ L2((0, T ) ×Ω) ∋ f ↦ −iφ∣
t=0

∈ L2(Rd)
onto?

To answer this question, one considers instead the observation problem

⎧⎪⎪⎨⎪⎪⎩

i∂tψ =Hψ ,
ψ∣
t=0

= ψin ,

and the observation operator

O ∶ L2(Rd) ∋ ψin ↦ ψ∣
(0,T )×Ω

∈ L2((0, T ) ×Ω) .

If the full class Cb(R;L2(Rd)) of solutions of the Schrödinger equation is observable
on (0, T ) ×Ω in the sense of the definition above, the operator O is one-to-one.
(1) Prove that C and O are bounded operators.
(2) Prove that O is the adjoint of C.
(3) Which statement about the control operator can be deduced from the fact that
the class Cb(R;L2(Rd)) of solutions of the Schrödinger equation is observable on
(0, T ) ×Ω?

The controllability problem for the wave (or elasticity) equation has been stud-
ied by several authors under various specific conditions, until Bardos, Lebeau and
Rauch [9] came up with a very satisfying answer based on the propagation of high
frequency waves. As is well known, high frequency waves propagate according to
the laws of geometric optics, and one approach to relating geometric optics to the
wave equation is through the consideration of the wave front set in microlocal anal-
ysis. (There was a serious additional difficulty in the Bardos-Lebeau-Rauch paper,
namely the fact that they sought to control the solution only at the boundary of
the domain, which involved using the Melrose-Sjöstrand theory of propagation of
the wave front set along “broken bicharacteristics”, in other words, optical rays
from the theory of geometric optics interacting with the boundary.) However, the
key idea in the Bardos-Lebeau-Rauch approach was a “geometric condition” saying
that all the rays of geometric optics should hit the region of control at the boundary
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at least once in the time interval (0, T ). Under this condition, all solutions of the
wave equation can be driven to 0 after time T by some appropriate action on the
region of control at the boundary of the domain.

In view of the analogy between geometric optics and the classical limit of quan-
tum mechanics (see for instance §§6 and 46 in [48]), we shall consider the following
geometric condition, which can be formulated in terms of the trajectories of the
classical mechanics for the same potential as in the quantum problem for which the
observation problem is posed.

Thus, to the quantum Hamiltonian H above, we associate the classical Hamil-
tonian

H(x, ξ) ∶= 1
2m

∣ξ∣2 + V (x)
generating a flow Φ(t; ⋅, ⋅) = (X(t; ⋅, ⋅),Ξ(t; ⋅, ⋅)) on Rd ×Rd defined by the following
prescription:

⎧⎪⎪⎨⎪⎪⎩

Ẋ = 1
m

Ξ , X(0;x, ξ)= x ,
Ξ̇ = −∇V (X) , Ξ(0;x, ξ) = ξ .

Bardos-Lebeau-Rauch Geometric Condition. Let K ⊂ R2d be compact, con-
sider a domain Ω ⊂ Rd and let T > 0; the triple (K,Ω, T ) is said to satisfy the
Bardos-Lebeau-Rauch (BLR) geometric condition if

(GC) {
for each (x, ξ) ∈K , there exists

t∈(0, T ) such that X(t;x, ξ)∈Ω.

Lemma 14. Assume that V ∈ C1,1(Rd) is real-valued and satisfies V ≥ −M on Rd

for some M > 0. Let K be a compact subset of Rd ×Rd, let Ω be an open set in
Rd and let T > 0. Assume that the triple (K,Ω, T ) satisfy (GC). Then

C[K,Ω, T ] ∶= inf
(x,ξ)∈K

∫
T

0
1Ω(X(t;x, ξ))dt > 0 .

Proof. Since Ω is open in Rd, its indicator function 1Ω is lower semicontinuous
(l.s.c.) on Rd. By Fatou’s lemma, the function

(x, ξ)↦ ∫
T

0
1Ω(X(t;x, ξ))dt ∈ (0,+∞) is l.s.c. on Rd ×Rd .

Since K is compact in Rd ×Rd, there exists (x∗, ξ∗) ∈K such that

C[K,Ω, T ] = ∫
T

0
1Ω(X(t;x∗, ξ∗))dt .

By the geometric condition, there exists t∗ ∈ (0, T ) such that

1Ω(X(t∗;x∗, ξ∗)) = 1 .

Since t↦ 1Ω(X(t;x∗, ξ∗)) is l.s.c. on (0, T ), there exists η ∈ (0, T ) such that

∣t − t∗∣ < η Ô⇒ 1Ω(X(t;x∗, ξ∗)) = 1 .

Hence

C[K,Ω, T ] = ∫
T

0
1Ω(X(t;x∗, ξ∗))dt ≥ η > 0 .

�
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R

Φ (1/2;K) (1;K)ΦK

ξ

x
O

Ω ω

ω x

Figure 6. The geometric condition in space dimension d = 1, with
V ≡ 0. The classical free flow is Φ(t;x, ξ) ∶= (X(t;x, ξ),Ξ(t;x, ξ))=
(x + tξ, ξ). The picture represents the image of the closed phase-
space rectangle K by the map (x, ξ)↦ Φ(t;x, ξ) at time t = 1

2
and

t = 1. The interval Ω satisfies the geometric condition with T = 1,
at variance with ω. Indeed, phase-space points on the bottom side
of K stay out of the strip ω ×R for all t ∈ [0,1].

With the propagation estimate for d presented in Theorem 6 above, one can
formulate a quantitative observation inequality for the von Neumann equation, with
rather explicit observation constants defined in terms of the classical dynamics. The
following result has been obtained in [41].
Theorem 15. Let V ∈ C1,1(Rd) be a real-valued potential satisfying V ≥ −M for
some M > 0. Let K be a compact subset of Rd ×Rd, let Ω be an open set in Rd

and let T > 0. Assume that the triple (K,Ω, T ) satisfy (GC). Then, for all initial
density operator Rin ∈ D2(H) and all δ > 0, one has the “observation” inequality
on the open set Ωδ = Ω +B(0, δ)

∫
T

0
traceH(1ΩδU(t)RinU(t)∗)dt ≥C[K,Ω, T ]

−1

δ
inf
λ>0

1

l

exp( 1
2T( λm+

Lip(∇V )
λ ))−1

1
2
( λm+

Lip(∇V )
λ )

inf
supp(fin)⊂K

dλ(f in,Rin) .

We have put the word observation between quotes in Theorem 15, since the
inequality in that theorem is a bona fide observation inequality only if there exists
λ > 0 and a probability density f in with support in K such that

dλ(f in,Rin) < C[K,Ω, T ]
δλ
2

( λ
m
+ Lip(∇V )

λ
)

exp (T
2
( λ
m
+ Lip(∇V )

λ
)) − 1

.

Here are two examples where this inequality is known to be true.
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Example 1: Toeplitz initial data. Assume that the initial density operator Rin

is of the form

Rin ∶= T [µin] , where µin ∈ P(R2d) satisfies supp(µin) ⊂K .

By Theorem 1 (1) (see Lecture I)

λdh̵ ≤ dh̵(f in,Rin)2 ≤ max(1, λ2)W2(f in, µin)2 + dh̵ ,
so that

supp(µin) ⊂K Ô⇒ inf
supp(fin)⊂K

dλ(f in,Rin) =
√

1
2
(λ2 + 1)dh̵ .

Indeed,

supp(µin) ⊂K Ô⇒ inf
supp(fin)⊂K

W2(f in, µin) = 0 ,

since any probability measure µin supported in K is the weak limit of a sequence
of absolutely continuous (with respect to the Lebesgue measure of R2d) probability
measures supported in K. (To see this, let ζε be a regularizing sequence on R2d,
and set

fε(x, ξ) ∶= Z−1
ε (µin ⋆ ζε)(x, ξ)1K(x, ξ) , with Zε ∶=∬

K
µin ⋆ ζε(x, ξ)dxdξ .

Then fε is a probability density on R2d with support in K, and one easily check
that

fε → µin weakly in the sense of probability measures as ε→ 0 ,

and since supp(fε) ⊂K for each ε > 0, this implies that W2(fε, µin)→ 0 as ε→ 0+.)
Example 2: Pure state. Assume now that R(t) = ∣U(t)ψin⟩⟨U(t)ψin∣, where

U(t) = e−itH/h̵ is the Schrödinger group. (We recall that

H ∶= − h̵2

2m
∆ + V ,

and the assumptions on V imply that H has a self-adjoint extension to L2(Rd).)

Choosing

f in(q, p) ∶= ∣⟨q, p∣ψin⟩∣2
(2πh̵)d =H[∣ψin⟩⟨ψin∣]

and setting λ = 1 leads to

1

COBS
= C[K,Ω, T ]∬

K
∣⟨q, p∣ψin⟩∣2 dqdp

(2πh̵)d
−D[T,Lip(∇V )]Σ[ψin]

δ
,

where

D[T,L] ∶=4
e(

1
m+L)T /2 − 1

1
m
+L

,

Σ[ψin]2 ∶=⟨ψin∣ ∣x∣2∣ψin⟩ − ∣⟨ψin∣x∣ψin⟩∣2

+ ⟨ψin∣ − h̵2∆x∣ψin⟩ − ∣⟨ψin∣ − ih̵∇x∣ψin⟩∣2 .
Quiz 23. The missing argument to arrive at the formula for COBS in the pure
state case is a good opportunity to revise some elementary facts about d.
(1) Find C(H[∣ψin⟩⟨ψin∣], ∣ψin⟩⟨ψin∣).
(2) Compute d(H[∣ψin⟩⟨ψin∣], ∣ψin⟩⟨ψin∣). (Hint: observe that xj , −ih̵∂xj , x2

j and

−h̵2∂2
xj are Toeplitz operators, and compute their symbols.)

Here is a sketch of the proof of Theorem 15.
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Proof. Call f(t, ⋅, ⋅) ∶= f in ○Φ(−t; ⋅, ⋅) and R(t) ∶= U(t)RinU(t)∗. For each coupling
Q(t) ∈ C(f(t, ⋅, ⋅),R(t)), one has

∣traceH(χR(t)) −∬
R2d

χ(x)f(t, x, ξ)dxdξ∣

= ∣∬
R2d

traceH((χ(x) − χ(y))Q(t, x, ξ)dxdξ∣

≤ Lip(χ)
λ

(∬
R2d

traceH(Q
1
2
t (λ2∣x−y∣2+∣ξ + ih̵∇y ∣2)Q

1
2
t )dxdξ)

1
2

,

so that, by the propagation estimate in Theorem 6,

∣traceH(χR(t)) −∬
R2d

χ(x)f(t, x, ξ)dxdξ∣ ≤ Lip(χ)
λ

dλ(f(t, ⋅, ⋅),R(t))

≤ Lip(χ)
λ

dλ(f in,Rin) exp( 1
2
t( λ
m
+ Lip(∇V )

λ
)) .

Since

∬
R2d

χ(x)f(t, x, ξ)dxdξ =∬
R2d

χ(X(t;x, ξ))f in(x, ξ)dxdξ ,
one has

∫
T

0
traceH(χR(t))dt ≥ inf

(x,ξ)∈K
∫

T

0
χ(X(t;x, ξ))dt∬

K
f in(x, ξ)dxdξ

− Lip(χ)
λ

exp ( 1
2
T ( λ

m
+ Lip(∇V )

λ
)) − 1

1
2
( λ
m
+ Lip(∇V )

λ
)

dλ(f in,Rin) .

Conclude by choosing χ(x) ∶= (1 − dist(x,Ω)

δ
)
+
, so that Lip(χ) = 1

δ
. �

The main result in this lecture is obviously Theorem 6, which explains how the
pseudometric d, or its variant dλ are propagated by self-adjoint quantum Hamilto-
nians of the form

− h̵2

2m
∆ + V .

However, there are other quantum dynamics for which it may be useful to know
how d is propagated. The example in the following exercise was communicated to
us by E. Carlen.
Quiz 24: Quantum Heat Equation.
(1) Let µ, ν ∈ P2(Rn). Prove that

W2(et∆µ, et∆ν) ≤W2(µ, ν) .
(Hint: represent et∆µ(x) by means of the Brownian motion, and consider the
process (x +Bt, y +Bt) ∈ Rn ×Rn, with the same Brownian motion Bt.)
(2) Find another proof of (1) without appealing to the representation of the solution
by means of the Brownian motion. (Hint: pick ρin ∈ C(µ, ν) and propagate ρin by
a degenerate diffusion operator A∗A, i.e. set

∂tρt +A∗Aρt = 0 , ρ0 = ρin ,
where A is a 1st order differential operator such that A∣x − y∣2 = 0.)

(3) Set H ∶= L2(R) and qψ(y) ∶= yψ(y) while pψ(y) ∶= −ih̵dψ
dy

(y). Consider the

Quantum Heat Equation

∂tR = − 1
h̵2 [p, [p,R]] − 1

h̵2 [q, [q,R]] , R(0) = Rin ∈ D2(H) .
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Prove that the Cauchy problem above is solved by a contraction semigroup on
L2(H), and that R(t) ∈ D2(H) for all t ≥ 0.
(4) Let R1,R2 be the solutions of

∂tR1 = − 1
h̵2 [p, [p,R1]] − 1

h̵2 [q, [q,R1]] , R1(0) = Rin1 ∈ D2(H) ,
∂tR2 = − 1

h̵2 [p, [p,R2]] − 1
h̵2 [q, [q,R2]] , R2(0) = Rin2 ∈ D2(H) .

Prove that

d(R1(t),R2(t)) ≤ d(Rin1 ,Rin2 ) , t ≥ 0 .

(Hint: consider the operators [p⊗I+I⊗p, q⊗I−I⊗q] and [q⊗I+I⊗q, p⊗I−I⊗p].)

3. Lecture III: Triangle Inequalities and Optimal Transport
in the Quantum Setting

We have seen in Lecture II that the pseudometric d defined in Lecture I behaves
very satisfyingly under propagation by the most fundamental quantum dynamics

(i.e. the unitary group generated by self-adjoint Hamiltonians of the form − h̵2

2m
∆+V ,

and also by the quantum heat equation). We have not treated the interesting case
of the Schrödinger equation with a magnetic field, leading to Hamiltonians of the
form

1
m
∣ − ih̵∇+A∣2 + V

where A is the vector potential (so that the magnetic field is B = curlA): see [12]
for a comprehensive treatment of this case.

Although Lecture II gives (hopefully) convincing arguments, mostly based on
applications, in favor of the pseudometric d, we have already seen in Lecture I, that
d is not a bona fide metric, in particular because13 d(T,T ) > 0 for all T ∈ D2(H).

In Lecture I, we have postponed the necessary task of exploring the properties
of the pseudometric d, except those reported in Theorem 1, which have proved
already very useful for applications of the pseudometric d to quantum dynamical
problems. For instance, we have not discussed the triangle inequality for d, in spite
of the fact that we used it in Lecture II in deriving a uniform in h̵ error estimate
for the Lie-Trotter splitting scheme for the von Neumann equation.

In this last lecture we shall return in particular to this question. We shall also
discuss further properties of the pseudometric d by analogy with the Wasserstein
distance W2. Specifically, we shall study the following topics:
●a Kantorovich-type duality for quantum optimal transport (section 3.3)
●two kinds of triangle inequalities for the quantum pseudometric d on D (presented
in section 3.1), and
●the structure of optimal couplings for the pseudometric d (section 3.5).

13One might think of changing the definition of d, for instance by replacing the quantum-to-

quantum cost operator Ch̵ in Lecture I by Ch̵ − 2dh̵IH⊗H. However, if you have understood the
essence of the proof of Theorem 6, this is not going to help. Indeed, this proof is based on the
operator inequality

[H ⊗ IH + IH ⊗H,Ch̵] ≤ LCh̵

for some positive constant L, where H is a Hamiltonian of the form − h̵2

2m
∆ + V . Changing Ch̵

into Ch̵ −αIH⊗H will obviously not change the commutator on the left-hand side, but changes the
right-hand side.
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3.1. Restricted Triangle Inequalities. In this section, we shall prove the trian-
gle inequality for d in some special cases — hence the terminology of “restricted”
triangle inequality used here. Our goal is the following statement.
Theorem 16. For all ρ1, ρ2, ρ3 ∈D = P2(Rd ×Rd) ∪D2(H), one has

d(ρ1, ρ3) ≤ d(ρ1, ρ2) + d(ρ2, ρ3) ,
provided that ρ2 is a probability density in Rd ×Rd or one of the ρjs is a rank-1
density operator on H.

See Theorems A and 3.1 in [40]; see also Theorem 3.5 in [39].

3.1.1. Operator Inequalities. As a preparation to the proof of Theorem 16, we
prove several inequalities involving the quantum-to-quantum and the classical-to-
quantum transport cost operators. These inequalities are of the same type as
triangle inequalities, with some arbitrary parameter α > 0.

First, we discuss inequalities where the intermediate “point” is an operator.
Lemma 17. For all α > 0, one has

∣x − z∣2 + ∣ξ − ζ ∣2 ≤(1 + α)ch̵(x, ξ; y, h̵∇y)
+ (1 + 1

α
)ch̵(z, ζ; y, h̵∇y) ,

ch̵(x, ξ; z, h̵∇z) ≤(1 + α)ch̵(x, ξ; y, h̵∇y)
+ (1 + 1

α
)Ch̵(y, h̵∇y, z, h̵∇z) ,

Ch̵(x, h̵∇x, z, h̵∇z) ≤(1 + α)Ch̵(x, h̵∇x, y, h̵∇y)
+(1 + 1

α
)Ch̵(y, h̵∇y, z, h̵∇z) .

These operator inequalities mean that, for all φ ∈ S(R2d
x,ξ × Rd

y × R2d
z,ζ), or all

φ ∈ S(R2d
x,ξ ×Rd

y ×Rd
z), or all φ ∈ S(Rd

x ×Rd
y ×Rd

z),
⟨φ∣r.h.s. − l.h.s.∣φ⟩ ≥ 0 .

Proof. Write

Ch̵(x, h̵∇x, z, h̵∇z) =∣x − y + y − z∣2 − h̵2∣∇x −∇y +∇y −∇z ∣2

=Ch̵(x, h̵∇x, y, h̵∇y) +Ch̵(y, h̵∇y, z, h̵∇z)
+ 2(x − y) ⋅ (y − z) − 2h̵2(∇x −∇y) ⋅ (∇y −∇z) .

Use the Peter-Paul elementary inequality

2(x − y) ⋅ (y − z) ≤ α∣x − y∣2 + 1
α
∣y − z∣2 ,

and, for operators A,B, the analogous inequality

A∗B +B∗A ≤ α∣A∣2 + 1
α
∣B∣2

with A = A∗ = −ih̵(∂xj −∂yj) and B = B∗ = −ih̵(∂yj −∂zj) for all indices j = 1, . . . , d.
(Observe that these operators commute, which is inessential here). The operator
inequality comes from expanding

0 ≤ ∣α 1
2A − α− 1

2B∣
2
= α∣A∣2 + 1

α
∣B∣2 −A∗B −B∗A.

See also Quiz 7 in Lecture I.
Hence

2(x − y) ⋅ (y − z) − 2h̵2(∇x −∇y) ⋅ (∇y −∇z)
≤ αCh̵(x, h̵∇x, y, h̵∇y) + 1

α
Ch̵(y, h̵∇y, z, h̵∇z)
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With the previous equality involving Ch̵(x, h̵∇x, z, h̵∇z), we arrive at the 3rd in-
equality of Lemma 17. �

Quiz 25. Prove the first two inequalities in Lemma 17.

Next, we discuss inequalities similar to those of Lemma 17, but with classical
phase-space point as intermediate term.
Lemma 18. For all α > 0, one has

ch̵(x, ξ; z, h̵∇z) ≤(1 + α)(∣x − y∣2 + ∣ξ − η∣2)
+ (1 + 1

α
)ch̵(y, η; z, h̵∇z)

Ch̵(x, h̵∇x, z, h̵∇z) ≤(1 + α)ch̵(x, h̵∇x, y, η)
+(1 + 1

α
)ch̵(y, η, z, h̵∇z) .

These operator inequalities mean that

⟨φ∣r.h.s. − l.h.s.∣φ⟩ ≥ 0

for all φ ∈ S(R2d
x,ξ ×Rd

y,η ×R2d
z,ζ), or all φ ∈ S(Rd

x ×Rd
y,η ×Rd

z).
Quiz 26. Prove Lemma 18 (by the same method as in the proof of Lemma 17).

3.1.2. The Rank-1 Case. At this point, we can prove the part of Theorem 16 in-
volving a rank-1 density operator.

Proof of Theorem 16: sketch for the rank-1 case. Assume for example that ρ1 and
ρ2 ∈ D2(H) while ρ3 is a rank-1 density operator, and let Q ∈ C(ρ1, ρ2). Set

T ∶= Q⊗ ρ3 , T13 = trace2 T ∈ C(ρ1, ρ3) .
Hence, by the 3rd inequality in Lemma 17,

d(ρ1, ρ3)2 ≤ traceH⊗2(T
1
2

13Ch̵(x, h̵∇x, z, h̵∇z)T
1
2

13)

= traceH⊗3(T 1
2Ch̵(x, h̵∇x, z, h̵∇z)T

1
2 )

≤ (1 + α) traceH⊗3(T 1
2Ch̵(x, h̵∇x, y, h̵∇y)T

1
2 )

+(1 + 1
α
) traceH⊗3(T 1

2Ch̵(y, h̵∇y, z, h̵∇z)T
1
2 )

= (1 + α) traceH⊗2(Q 1
2Ch̵(x, h̵∇x, y, h̵∇y)Q

1
2 )

+(1 + 1
α
) traceH⊗2((ρ2 ⊗ ρ3)

1
2Ch̵(y, h̵∇y, z, h̵∇z)(ρ2 ⊗ ρ3)

1
2 )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=d(ρ2,ρ3)2

.

That the last term on the r.h.s. is equal to d(ρ2, ρ3)2 follows from the fact that
C(ρ2, ρ3) = {ρ2 ⊗ ρ3} since ρ3 has rank 1 (see Lemma 2 in Lecture I). Minimizing
the last r.h.s. in Q ∈ C(ρ1, ρ2) shows that

d(ρ1, ρ3)2 ≤ (1 + α)d(ρ1, ρ2)2 + (1 + 1
α
)d(ρ2, ρ3)2 .

Minimizing the r.h.s. in α > 0, i.e. setting

α ∶= d(ρ2, ρ3)
d(ρ1, ρ2)

assuming d(ρ1, ρ2) > 0 ,

leads to
d(ρ1, ρ3)2 ≤ d(ρ1, ρ2)2 + d(ρ2, ρ3)2 + 2d(ρ1, ρ2)d(ρ2, ρ3) .

Conclude by taking the square root of both sides of this inequality. �
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Quiz 27. Complete the missing argument in the proof by justifying the equality

traceH⊗2(T
1
2

13Ch̵(x, h̵∇x, z, h̵∇z)T
1
2

13)

= traceH⊗3(T 1
2Ch̵(x, h̵∇x, z, h̵∇z)T

1
2 ) .

(1) Prove this identity when Ch̵ is replaced with (IH⊗2 + 1
n
Ch̵)−1Ch̵.

(2) Using the Fatou lemma for trace-class operators, prove that

lim
n→∞

traceH⊗2 (T
1
2

13
Ch̵(x,h̵∇x,z,h̵∇z)

IH⊗2+
1
nCh̵(x,h̵∇x,z,h̵∇z)

T
1
2

13)

= traceH⊗2 (T
1
2

13Ch̵(x, h̵∇x, z, h̵∇z)T
1
2

13) ,

lim
n→∞

traceH⊗3 (T 1
2

Ch̵(x,h̵∇x,z,h̵∇z)

IH⊗3+
1
nCh̵(x,h̵∇x,z,h̵∇z)

T
1
2 )

= traceH⊗3 (T 1
2Ch̵(x, h̵∇x, z, h̵∇z)T

1
2 ) .

Quiz 28. Complete the proof of Theorem 16 by treating the missing cases where
one of the ρj ’s is a rank-1 density operator.

3.1.3. The Case of a Classical Intermediate Density. All the cases of the triangle
inequality involving a rank-1 operator are easy, because of Lemma 2. Indeed, the
set of couplings of any density (quantum or classical) with a rank-1 density operator
is a singleton, and therefore the pseudometric d is easily computed explicitly in such
a case.

In the present section, we shall discuss all the cases of the triangle inequality
where the intermediate point is a classical density on phase-space. The triangle
inequality in such cases is much more involved, but fortunately, the proof can be
modelled on one of the proofs of the triangle inequality for W2 (See the proof of
Theorem 7.3 in [63].)

The key step is the following lemma, which explains how to disintegrate a cou-
pling between a classical probability density on phase-space and a density operator.
Lemma 19. Let f be a probability density on Rd × Rd, let R ∈ D(H) and let
Q ∈ C(f,R). There exists a weakly measurable map

Rd ×Rd ∋ (x, ξ)↦ Qf(x, ξ) ∈ L1(H)

defined a.e. on Rd ×Rd, which satisfies

Qf(x, ξ) = Qf(x, ξ)∗ ≥ 0 , trace(Q(x, ξ)) = 1 ,

and

Q(x, ξ) = f(x, ξ)Qf(x, ξ) a.e. in (x, ξ) ∈ Rd ×Rd .

Proof. First replace f with a Borel representative, and consider the set

N ∶= f−1({0}) ,
which is Borel measurable. Pick u ∈ H such that ∥u∥H = 1, and set

Qf(x, ξ) ∶=
Q(x, ξ) + 1N (x, ξ)∣u⟩⟨u∣
f(x, ξ) + 1N (x, ξ) ∈ L(H) .

Obviously

Q(x, ξ) = Q(x, ξ)∗ ≥ 0 and f(x, ξ) ≥ 0
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and hence

Qf(x, ξ) = Qf(x, ξ)∗ ≥ 0 , for a.e. (x, ξ) ∈ Rd ×Rd .

Moreover

traceH(Q(x, ξ) + 1N (x, ξ)∣u⟩⟨u∣) = f(x, ξ) + 1N (x, ξ) ,
so that

traceH(Qf(x, ξ)) = 1 , for a.e. (x, ξ) ∈ Rd ×Rd .

Finally

f(x, ξ)Qf(x, ξ) =
f(x, ξ)Q(x, ξ)

f(x, ξ) + 1N (x, ξ) = Q(x, ξ)

for a.e. (x, ξ) ∈ Rd ×Rd. Indeed, whenever f(x, ξ) > 0, one has 1N (x, ξ) = 0 and
the claimed equality is obvious. On the other hand, since

Q(x, ξ) = Q(x, ξ)∗ ≥ 0 and traceH(Q(x, ξ)) = f(x, ξ)
for a.e. (x, ξ) ∈ Rd ×Rd, it follows that

f(x, ξ) = 0 Ô⇒ Q(x, ξ) = 0 = f(x, ξ)Qf(x, ξ) .
�

With Lemma 19 at our disposal, the proof of Theorem 16 in the case where the
intermediate point is a classical density follows the proof of Theorem 7.3 in [63].

Proof of Theorem 16: the case of a classical intermediate density. Consider for ex-
ample the case where both ρ1 and ρ3 ∈ D2(H), and assume that ρ2 = f(y, η)dydη ∈
P2(Rd × Rd). Choose couplings Q1 ∈ C(ρ1, f) while Q3 ∈ C(f, ρ3). Call Q3

f the

disintegration of Q3 with respect to f as in Lemma 19. Set

T (y, η) ∶= Q1(y, η)⊗Q3
f(y, η) .

By construction

T (y, η) = T (y, η)∗ ≥ 0 ,

and
trace1(T (y, η)) =f(y, η)Q3

f(y, η) = Q3(y, η) ,
trace3(T (y, η)) =Q1(y, η) traceH(Q3

f(y, η)) = Q1(y, η) .
In particular

∫
R2d

T (y, η)dydη =∶ Q ∈ C(ρ1, ρ3) .

By the second inequality in Lemma 17

d(ρ1, ρ3)2 ≤ traceH⊗2(Q 1
2Ch̵(x, h̵∇x, z, h̵∇z)Q

1
2 )

= ∫
R2d

traceH⊗2(T (y, η) 1
2Ch̵(x, h̵∇x, z, h̵∇z)T (y, η) 1

2 )dydη

≤ (1 + α)∫
R2d

trace1 (trace3(T (y, η) 1
2 ch̵(x, h̵∇x, y, η)T (y, η) 1

2 ))dydη

+(1 + 1
α
)∫

R2d
trace3 (trace1(T (y, η) 1

2 ch̵(x, h̵∇x, y, η)T (y, η) 1
2 ))dydη

≤ (1 + α)∫
R2d

traceH(Q1(y, η) 1
2 ch̵(x, h̵∇x, y, η)Q1(y, η) 1

2 )dydη

+(1 + 1
α
)∫

R2d
traceH (Q3

f(y, η)
1
2 ch̵(x, h̵∇x, y, η)Q3

f(y, η)
1
2 ) f(y, η)dydη .
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Minimizing the last right-hand side in Q1 ∈ C(ρ1, ρ2) and in Q3 ∈ C(ρ2, ρ3) leads to
the inequality

d(ρ1, ρ3)2 ≤ (1 + α)d(ρ1, ρ2)2 + (1 + 1
α
)d(ρ2, ρ3)2 ,

and we conclude as in the rank-1 case. �

Quiz 28.
(1) Complete the missing details in the proof of Theorem 16 in the case where
ρ1, ρ3 ∈ D2(H) and ρ2 = f(y, η)dydη. In particular, prove the identity

traceH⊗2(Q 1
2Ch̵(x, h̵∇x, z, h̵∇z)Q

1
2 )

= ∫
R2d

traceH⊗2(T (y, η) 1
2Ch̵(x, h̵∇x, z, h̵∇z)T (y, η) 1

2 )dydη .

(2) Write the proof of Theorem 16 in the missing cases.

3.2. Applications of the Restricted Triangle Inequalities. Before going fur-
ther in our discussion of the triangle inequality for the pseudometric d, we shall
present two easy applications of the (restricted) triangle inequalities already estab-
lished in the previous section.

3.2.1. Definition of d on P2(Rd ×Rd) ×D2(H). Our first application is of a quite
fundamental nature, since it completes our definition of d in Lecture I. So far we
have defined d(µ,R) = d(R,µ) for µ ∈ P2(Rd × Rd) and R ∈ D2(H) only when
µ = f(x, ξ)dxdξ, with f a probability density on Rd × Rd — i.e. only when µ is
absolutely continuous with respect to the phase-space Lebesgue measure, by the
Radon-Nikodym theorem.
Theorem 20. For each R ∈ D2(H), the map f ↦ d(f,R), defined for all probability
density f with finite second order moments on Rd ×Rd has a unique extension to
P2(Rd ×Rd) satisfying

∣d(µ,R) − d(ν,R)∣ ≤W2(f, g) , µ, ν ∈ P2(Rd ×Rd) .
See section 3 in [40].

Remark. This extension of d obviously satisfies the restricted triangle inequality

d(ρ1, ρ3) ≤ d(ρ1, ρ2) + d(ρ2, ρ3)
for all ρ1, ρ2, ρ3 ∈D provided that ρ2 ∈ P2(Rd ×Rd) or if one of the ρjs is a rank-1

density operator on H = L2(Rd).

Proof. For all f, g probability densities with finite 2nd order moments on Rd ×Rd,
one has the triangle inequality

d(f,R) ≤ d(f, g) + d(g,R)
by Theorem 16, so that

d(f,R) − d(g,R) ≤ d(f, g) =W2(f, g) .
Exchanging f and g in the inequality above implies that

∣d(f,R) − d(g,R)∣ ≤W2(f, g) .
Thus the function f ↦ d(f,R) is Lipschitz-continuous for the metric W2. It has
therefore a unique Lipschitz-continuous extension to P2(Rd ×Rd) by the density
argument recalled in Lemma 21 below. �
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Lemma 21. Let µ ∈ P2(Rn) and let χε(x) = χ(x/ε)/εn be an even C∞ mollifier
with support in Bε(0). Then fε ∶= χε ⋆ µ is a C∞ probability density on Rn and

W2(fε, µ)→ 0 as ε→ 0 .

This is Lemma 3.2 in [40].

Proof. For all φ ∈ C0(Rn), one has

∫
Rn

φ(x)µ(dx) − ∫
Rn

fε(x)φ(x)dx = ∫
Rn

(φ(x) − χε ⋆ φ(x))µ(dx)

since χε is even, so that

∣∫
Rn

φ(x)µ(dx) − ∫
Rn

fε(x)φ(x)dx∣ ≤ ∥φ − φ ⋆ χε∥L∞(Rn) → 0 .

Hence fε → µ weakly in P(Rn) as ε→ 0.
It remains to establish the tightness property (see the properties of W2 recalled

in Lecture I). Since χε is even,

∫
Rn

1∣x∣>R∣x∣2χε ⋆ µ(x)dx = ∫
Rn

χε ⋆ (1∣x∣>R∣x∣2)µ(dx) .

On the other hand, for all ε ∈ (0,1)

χε ⋆ (1∣x∣>R∣x∣2) ≤1∣x∣+1≥R ∫
Rn

∣x − εy∣2χ(y)dy

≤21∣x∣+1≥R

⎛
⎜⎜⎜⎜
⎝
∣x∣2 + ε2 ∫

Rn
∣y∣2χ(y)dy

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤1

⎞
⎟⎟⎟⎟
⎠

Hence

sup
0<ε<1

∫
Rn

1∣x∣>R∣x∣2χε ⋆ µ(x)dx ≤ 2∫
Rn

1∣x∣+1>R(∣x∣2 + 1)µ(dx)→ 0

as R →∞, by dominated convergence.
Therefore, by Theorem 7.12 of [63]

W2(χε ⋆ µ,µ)→ 0 as ε→ 0 .

�

3.2.2. W2 is the Classical Limit of d. Our next application of the restricted triangle
inequalities presented in Theorem 16 can be thought of as a confirmation of the
geometric picture proposed in Lecture I.

We recall the idea of considering P2(Rd ×Rd) as a limit set, or boundary set,
of D2(H) in D. The next result completes this picture by showing that W2 is the
limiting metric deduced from the pseudometric d on D(H).
Theorem 22. Let Rh̵, Sh̵ ∈ D2(H) and µ, ν ∈ P2(Rd ×Rd). Assume that µ, ν are
the classical limits of Rh̵, Sh̵ respectively, i.e.

d(µ,Rh̵) + d(ν,Sh̵)→ 0 as h̵→ 0 .

Then

lim
h̵→0

d(Rh̵, Sh̵) = d(µ, ν) .

This is Theorem C (see also Theorem 5.5) in [40].
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Figure 7. The Wasserstein distance W2 is the classical limit of
the pseudometric d as h̵→ 0.

Proof. By the restricted triangle inequality

d(Rh̵, Sh̵) ≤ d(Rh̵, µ) + d(µ, ν) + d(ν,Sh̵) ,
so that

lim
h̵→0

d(Rh̵, Sh̵) ≤ d(µ, ν) =W2(µ, ν) .

On the other hand, by Theorem 1 (2) of Lecture I,

d(Rh̵, µ)2 ≥W2(H[Rh̵], µ)2 − dh̵ Ô⇒ lim
h̵→0
W2(H[Rh̵], µ) = 0 ,

d(Sh̵, ν)2 ≥W2(H[Sh̵], ν)2 − dh̵ Ô⇒ lim
h̵→0
W2(H[Sh̵], ν) = 0 .

Hence

d(Rh̵, Sh̵)2 ≥W2(H[Rh̵],H[Sh̵])2 − 2dh̵ ,

implies that

lim
h̵→0

d(Rh̵, Sh̵) ≥ lim
h̵→0
W2(H[Rh̵],H[Sh̵]) =W2(µ, ν) .

(This part of the argument does not appeal to the restricted triangle inequality,
and had been already established in Theorem 2.3 (2) of [37], albeit in a slightly
different form). Summarizing

W2(µ, ν) ≤ lim
h̵→0

d(Rh̵, Sh̵) ≤ lim
h̵→0

d(Rh̵, Sh̵) ≤W2(µ, ν) .

�

3.3. Quantum Kantorovich Duality. In the classical setting, Kantorovich du-
ality has several important consequences. The Knott-Smith and Brenier theorems,
giving invaluable information on the structure of optimal couplings between two
(Borel) probability measures on Rn are among the most important applications of
duality — at least in the case of the Wasserstein distance W2.

It is therefore natural to seek extensions of Kantorovich duality to the quantum
setting. However, the examples studied at the end of Lecture I (in the section
showing that “quantum optimal transport is cheaper”) suggest that the structure of
quantum optimal couplings might differ significantly from that of classical optimal
couplings.

First we consider the case of d(f,R), where f is a probability density on Rd×Rd

with finite 2nd order moments and R ∈ D2(H).
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Define the set k of test Kantorovich potentials, as follows:

k ∶= {(a,B) ∶ a ∈ Cb(Rd ×Rd) and B = B∗ ∈ L(H) s.t. a(x, ξ)IH +B ≤ ch̵(x, ξ)} .
The operator inequality in the definition of k means that

a(x, ξ)∥φ∥2
H + ⟨φ∣B∣φ⟩ ≤ ⟨φ∣ch̵(x, ξ)∣φ⟩ , x, ξ ∈ Rd ,

for all φ ∈H1(Rd) ∩L2(Rd; ∣y∣2dy).
Theorem 23. Let f be a probability density on Rd ×Rd with finite second order
moments and let R ∈ D2(H). Then

d(f,R)2 = sup
(a,B)∈k

(∫
R2d

a(x, ξ)f(x, ξ)dxdξ + traceH(BR)) .

The proof of Theorem 23 is somewhat involved technically, and we shall not
repeat it in these notes. We refer instead the interested reader to Theorem 4.1 and
section 4 of [40].

However, it is a good idea to keep in mind the core argument in that proof,
which is based on convex duality, exactly as in the classical setting.

Set E ∶= Cb(R2d;L(H)) with

∥T ∥E ∶= sup
x,ξ∈Rd

∥T (x, ξ)∥L(H) .

Define

G(T ) ∶= {
0 if T (x, ξ) = T (x, ξ)∗ ≥ −ch̵(x, ξ),
+∞ otherwise,

and

H(T ) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
R2d

ãf(x, ξ)dxdξ + traceH(B̃R) if

⎧⎪⎪⎨⎪⎪⎩

T (x, ξ)=T (x, ξ)∗

= ã(x, ξ)IH + B̃,

+∞ otherwise.

Theorem 23 follows from the Fenchel-Rockafellar duality formula

inf
T ∈E

(G(T ) +H(T )) = max
Λ∈E ′

(−G∗(−Λ) −H∗(Λ)) .

The role of the functional G in this formulation is obviously to penalize the inequal-
ity constraint in the definition of k. (Sometimes, in convex analysis, the functional
equal to 0 if a constraint is satisfied, and to +∞ otherwise is referred to as the “in-
dicator function” of that constraint. This is not to be confused with the classical
notion of indicator function of a set, equal to one on the set, and to zero outside.)

Next we consider the case of d(R,S) where R,S ∈ D2(H). Here again, there is
an analogue of the classical Kantorovich duality theorem.

Define the set K of test Kantorovich potentials as follows

K ∶= {(A,B) ∶ A = A∗ and B = B∗ ∈ L(H) s.t. A⊗ IH + IH ⊗B ≤ Ch̵} .
The operator inequality means that for all Φ ≡ Φ(x, y) ∈ H⊗H such that

(∇x −∇y)Φ ∈ L2(Rd ×Rd) and Φ ∈ L2(Rd ×Rd; ∣x − y∣2dxdy) ,
it holds

⟨Φ∣A⊗ IH + IH ⊗B∣Φ⟩ ≤ ⟨Φ∣Ch̵∣Φ⟩ .
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Theorem 24. For all R,S ∈ D2(H), one has

d(R,S)2 = sup
(A,B)∈K

traceH(AR +BS) .

Here again, the proof of Theorem 24 is too technically involved to be of immediate
interest for these lecture notes. We refer the interested reader to [20] for a detailed
exposition of duality in the quantum-to-quantum setting, together with various
applications thereof.

Although we have chosen to avoid reproducing the proofs of Theorems 23 and 24,
we believe that both results are of key importance in the study of the pseudometric
d, and in our approach of quantum optimal transport. As a matter of fact, the end
of Lecture III will be focussed on two applications of Theorem 23, which we believe
are of some importance.

3.4. Generalized Triangle Inequalities. In this section, we return to the ques-
tion of the triangle inequality for d for ρ1, ρ2, ρ3 ∈ D, and consider the case where
the intermediate point ρ2 is a density operator and none of the points ρ1, ρ2, ρ3 are
rank-1 density operators.

In that case, we do not know of any analogue of Lemma 19, and at the time
of this writing we do not know how to “glue” Q12 ∈ C(ρ1, ρ2) and Q23 ∈ C(ρ2, ρ3)
along ρ2 as in Lemma 7.6 in [63], to mimic the proof of Theorem 7.3 in [63] in the
classical setting.

At the beginning of this lecture, we have proved “restricted” triangle inequalities
for d, i.e. the triangle inequality under addditional assumptions on ρ1, ρ2, ρ3 —
specifically if one of the points ρ1, ρ2, ρ3 is a rank-1 density operator, or if the
intermediate point ρ2 is an element of P2(Rd ×Rd).

In the sequel, we shall prove a “generalized triangle inequality”, which holds for
all ρ1, ρ2, ρ3 ∈D, but includes a correction term of order

√
h̵ in the right-hand side.

Theorem 25. For all ρ1, ρ2, ρ3 ∈D, one has

d(ρ1, ρ3) < d(ρ1, ρ2) + d(ρ2, ρ3) +
√
dh̵ .

In particular

d(ρ1, ρ3) < d(ρ1, ρ2) + d(ρ2, ρ3) + 1
√

2
d(ρ2, ρ2) .

Remark. One should compare this result with the De Palma-Trevisan generalized
triangle inequality for their distance — which is reminiscent of our generalization of
the Wasserstein distanceW2 toD2(H) in [37] (the restriction of d toD2(H)×D2(H)).
They arrive at the inequality

ddPT (R,T ) ≤ ddPT (R,S) + ddPT (R,T ) + ddPT (S,S)
for all R,S,T ∈ D2(H) for ddPT defined in formula (38) of Definition 8, on p. 3208
in [26]: see formula (51) in Theorem 2 of [26] on p. 3210. Notice however that ddPT
differs from the restriction of d to D2(H) ×D2(H) — in particular the definition of
couplings in [26] uses the notion of quantum channel and is very different from the
definition used in these lectures, which comes from [37].

Quiz 29. Can one slightly modify the definition of d so as to obtain a functional
d̃ defined on D ×D that is symmetric and satisfies the (genuine) triangle inequal-
ity? Same question for the DePalma-Trevisan functional ddPT . (Of course, the
functional d̃ so obtained satisfies d̃ > d > 0 and therefore is not a bona fide metric
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either, since d̃(ρ, ρ) > 0 for each ρ ∈D. The functional d̃ obtained in this exercise is
therefore of limited interest.)

The proof of Theorem 25 is very different from the proof of the triangle inequal-
ity for the original Wasserstein metric W2 — although it uses at some point the
restricted triangle inequality in Theorem 16, whose proof is modelled on the proof
of Theorem 7.3 in [63].

A key step in the proof of Theorem 25 is the following lemma, which can be seen
as a consequence of duality for the classical-to-quantum pseudometric presented in
Theorem 23.
Lemma 26. For each R,S ∈ D2(H), one has

d(R,S)2 ≥ d(R,H[S])2 − dh̵ .

Taking this lemma for granted, we give a quick proof of Theorem 25.
Proof of Theorem 25. Using H[ρ2] as intermediate point, the restricted triangle
inequality implies that

d(ρ1, ρ3) ≤ d(ρ1,H[ρ2]) + d(H[ρ2], ρ3) .

Then, Lemma 26 implies that

d(ρ1,H[ρ2]) ≤
√
d(ρ1, ρ2)2 + dh̵ < d(ρ1, ρ2) + 1

2

√
dh̵ ,

d(H[ρ2], ρ3) ≤
√
d(ρ2, ρ3)2 + dh̵ < d(ρ2, ρ3) + 1

2

√
dh̵ .

The second inequalities above result from the following elementary observation

X > Y > 0 Ô⇒
√
X2 + Y 2 ≤X + 1

2
Y ,

whose proof is left to the reader as an (easy) exercise.
With the restricted triangle inequality above (Theorem 16), this implies the first

generalized triangle inequality in Theorem 25.
To get the second inequality, observe that

ρ2 ∈ D2(H) Ô⇒ d(ρ2, ρ2) ≥
√

2dh̵ .

◻
Remark. In fact, we have proved the slightly more precise inequality

d(ρ1, ρ3) ≤
√
d(ρ1, ρ2)2 + dh̵ +

√
d(ρ2, ρ3)2 + dh̵ .

Proof of Lemma 26. For all a ∈ Cb(Rd ×Rd) and all B = B∗ ∈ L(H) satisfying

a(x, ξ)IH +B ≤ ch̵(x, ξ) ,

one applies the Toeplitz map to both sides of the inequality above in the variables
x, ξ, to find

T [a]⊗ IH + (2πh̵)dIH ⊗B ≤(2πh̵)d ∫ ∣q, p⟩⟨q, p∣ch̵(q, p)dqdp

≤(2πh̵)d (Ch̵ + dh̵IH⊗H)
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(see the basic properties of the Toeplitz map and Quiz 8 in Lecture I). Thus, for
all T ∈ C(R,S), one has

(2πh̵)d (traceH⊗H(T 1
2Ch̵T

1
2 ) + dh̵)

≥ traceH⊗H (T 1
2 (T [a]⊗ IH + (2πh̵)dIH ⊗B)T 1

2 )

= traceH⊗H (T (T [a]⊗ IH + (2πh̵)dIH ⊗B))
= traceH(RT [a]) + (2πh̵)d traceH(SB) .

Transforming traceH(RT [a]) into an integral involving the functions a and
H[R], i.e. (see Lecture I, formula (4) on Husimi transforms)

traceH(RT [a]) = (2πh̵)d ∫
R2d
H[R](q, p)a(q, p)dqdp ,

we arrive at the formula

(2πh̵)d (traceH⊗H(T 1
2Ch̵T

1
2 ) + dh̵)

≥ (2πh̵)d (∫
R2d
H[R](q, p)a(q, p)dqdp + traceH(SB)) .

Maximizing the right-hand side above in a ∈ Cb(Rd ×Rd) and B = B∗ ∈ L(H) s.t.

a(x, ξ)IH +B ≤ ch̵(x, ξ) ,
and applying the duality formula in Theorem 16 shows that

(2πh̵)d (traceH⊗H(T 1
2Ch̵T

1
2 ) + dh̵) ≥ (2πh̵)dd(H[R], S)2

i.e.

traceH⊗H(T 1
2Ch̵T

1
2 ) ≥ d(H[R], S)2 − d .

Minimizing the left-hand side of the inequality above in T ∈ C(R,S) leads to the
desired inequality. �

Quiz 30. Use Lemma 26 to recover the following result (already known as state-
ment (2) in Theorem 1 of Lecture I)

d(R,S)2 ≥ d(H[R],H[S])2 − 2dh̵ .

Remarks.
(1) If you include the proof of the duality formula in Theorem 16, this is the longest
and most difficult proof of the inequality above... On the other hand, Lemma 26 is
a (much) stronger statement — it is the key to the generalized triangle inequality.
That its proof is more involved than the proof of the inequality (2) in Theorem 1
is only natural.
(2) Summarizing, in order to prove the triangle inequality for d when the interme-
diate point is not a classical density and none of the density operators involved are
rank-1 projections, you
(i) first use the exact (restricted) triangle inequality from Theorem 16

d(ρ1, ρ3) ≤ d(ρ1,H[ρ2]) + d(H[ρ2], ρ3) ,
(ii) and then pay the price for replacing ρ2 with its Husimi function

d(ρ1, ρ3) ≤
√
d(ρ1, ρ2)2 + dh̵ +

√
d(ρ2, ρ3)2 + dh̵
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which is the result in Lemma 26, based on the Kantorovich duality for the the
classical-to-quantum distance (Theorem 23). The end of the proof is Kindergarten
analysis.

The reason for the detour through H[ρ2] instead of ρ2 is due to the fact that
question (5) in the following quiz is answered in the negative14.

Before working on this exercise, it is a good idea to review the proofs of Theorem
7.3 (the triangle inequality for Wp) and of Lemma 7.6 (i.e. the disintegration and
the glueing of couplings) in [63].

Quiz 31. Pick ρ1, ρ2, ρ3 ∈ D2(H), all of them or rank ≥ 2 — otherwise, there is
nothing to prove. Pick R12 and R23 to be optimal couplings of ρ1, ρ2 and ρ2, ρ3

(recall briefly why such couplings exist).
(1) Assume there exists T ∈ D(H⊗H⊗H) such that

trace1(T ) = R23 and trace3(T ) = R12 .

Prove that
d(ρ1, ρ3) ≤ d(ρ1, ρ2) + d(ρ2, ρ3) .

(Hint: observe that trace2(T ) ∈ C(ρ1, ρ3).)
Therefore, proving the triangle inequality boils down to proving the existence of

such a T . The classical analogue of this is precisely the content of Lemma 7.6 in
Villani’s book [63].

Let us consider this problem in finite dimension: H = C2 — notice that 2 is
the first interesting dimension, because if one of the densities ρj for j = 1,2,3 has
rank 1, the triangle inequality is already known (see Theorem 16 on the restricted
triangle inequality).
(2) Let R,R′ ∈M2(C). Find a necessary and sufficient condition on R,R′ such that
there exists A,B,C ∈M2(C) for which the block-wise matrix

T ∶= ( A B
B∗ C

) , A = A∗ , C = C∗ ,

satisfies

τ ′(T ) ∶= A +C = R and τ(T ) ∶= ( trace(A) trace(B)
trace(B∗) trace(C)) = R′ .

(3) Assume now that R,R′ ∈M2(M2(C)). Find a necessary and sufficient condition
on R,R′ such that there exists A,B,C ∈ M2(M2(C)) for which the block-wise
matrix

T ∶= ( A B
B∗ C

) , A = A∗ , C = C∗

satisfies

τ ′(T ) = A +C = R and ( traceM2(C)(A) traceM2(C)(B)
traceM2(C)(B∗) traceM2(C)(C)) = R′.

14While preparing the final version of these lecture notes, I showed the problem to Prof. Denis
Serre, who found a counterexample. At first sight, Serre’s counterexample does not seem to suggest

that the triangle inequality itself (without the extra
√
dh̵ term on the right-hand side) should be

wrong. However, it shows that the procedure of “glueing” classical couplings described in Lemma

7.6 of [63], which is key to proving the triangle inequality forWp with 1 < p <∞, does not have an
analogue for general quantum couplings. This is a rather fundamental difference between classical

and quantum optimal transport.
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The notation needs being explained. An element of B ∈M2(M2(C)) is of the form

B = (B11 B12

B21 B22
) with Bkl ∈M2(C) .

Then

B∗ ∶= (B
T
11 BT21

BT12 BT22

)

while

traceM2(C)(B) ∶= B11 +B22 .

(4) Explain how (3) is related to the problem of finding T as in (1), in the case
where ρ1, ρ2, ρ3 ∈ D(C2).

Now, there’s the rub...
(5) Assuming that R,R′ ∈ D(C2), does (the) block-wise matrix (matrices) T ob-
tained in (3) satisfy T = T ∗ ≥ 0?

Remark. A final observation on the generalized triangle inequality is in order.
The presence of the additional term

√
dh̵ in the right-hand side of the generalized

triangle inequality may be related to the fact that some points in D have positive
thickness, in the sense that d(R,R) ≥

√
2dh̵ for all R ∈ D2(H). However, the idea

of relating this additional term to the “thickness” of the intermediate point ρ2 in
the triangle inequality could be misleading. In the first place, the genuine triangle
inequality holds if ρ2 is a rank-1 density operator, although d(ρ2, ρ2) ≥

√
2dh̵ in

that case.
Besides, the extra term

√
dh̵ on the right-hand side of the generalized triangle

inequality seems more related to the method of proof of Theorem 25 (viz. the idea
of replacing the intermediate point ρ2 with its Husimi transform H[ρ2]) than to
some intrinsic feature of d.

Ultimately, it could be that question (5) in Quiz 31 is answered in the negative,
and yet the genuine triangle inequality holds on D because there always exists
an optimal coupling with a special structure for each pair of finite energy density
operators on H, and this special structure acts in favor of the genuine triangle
inequality.

This suggests investigating the structure of optimal couplings for the “pseudo-
metric” d — however, the example discussed in Proposition 5 suggests that this is
not an easy task.

3.5. Towards Quantum Optimal Transport. Until now, we have not said much
about quantum optimal transport per se, although it is the topic of this school.

We shall conclude these lectures with some (partial) remarks in that direction.
The material in this section mostly comes from [40].

We recall that the proofs of the Brenier, or of the Knott-Smith theorems use
some form of Kantorovich duality to obtain some additional information on the
structure of optimal couplings. That an optimal coupling for W2 is supported in
the graph of the subdifferential of some appropriate function comes from the specific
structure of the inequality constraint in the Kantorovich dual formulation of the
W2 metric, and from the specific structure of the quadratic transport cost.

It is therefore natural to study the quantum analogue of Kantorovich duality in
order to obtain some information on the structure of optimal couplings for d. In the
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sequel, we shall follow this approach with the classical-to-quantum duality formula
in Theorem 23.

Our first task is to give a systematic procedure for constructing elements of the
class k of test Kantorovich potentials defined before the statement of Theorem 23.

Set z ∶= (x, ξ) ∈ Rd ×Rd and Z ∶= (y,−ih̵∇y), with the notation

z ⋅Z ∶= x ⋅ y − ih̵ξ ⋅ ∇y .
Thus ch̵(x, ξ) = ∣Z ∣2 + ∣z∣2IH − 2z ⋅Z ≥ dh̵IH and by Weyl’s theorem (see Corollary 2
of Theorem XIII.14 in [55])

B̃ ∈ L(H) Ô⇒ ch̵(z)−1B̃ ∈ K(H) Ô⇒ ess-spec(ch̵(z) − B̃) = ∅ .
Assume that B̃ = B̃∗ is such that ch̵(z)− B̃ has nondegenerate ground state (i.e.

with geometric multiplicity 1) for each z ∈ R2d. (For instance, choose for B̃ to be
a bounded multiplication operator, and apply Theorem XIII.47 in [55]).

Define next

ã(z) ∶= min spec(ch̵(z) − B̃) = inf
∥φ∥H=1

⟨φ∣ch̵(z) − B̃∣φ⟩

Ô⇒ ch̵(z) − B̃ ≥ ã(z)IH .
Besides, z ↦ ã(z) is continuous (even real-analytic) by the Kato-Rellich theorem
(Theorem XII.8 of [55]), and

ã(z) ≤ ⟨z∣ch̵(z) − B̃∣z⟩ = dh̵ − ⟨z∣B̃∣z⟩ ≤ dh̵ + ∥B̃∥ ,
ã(z) ≥ dh̵ + inf

∥φ∥H=1
⟨φ∣ − B̃∣φ⟩ ≥ dh̵ − ∥B̃∥ .

Hence ã ∈ Cb(Rd ×Rd), and we have obtained in this way

(ã, B̃) ∈ k .
The Kato-Rellich theorem recalled above also implies the existence of a continuous
(even real-analytic) map

Rd ×Rd ∋ z ↦ ψz ∈ H s.t.

⎧⎪⎪⎨⎪⎪⎩

(ch̵(z) − B̃)ψz = ã(z)ψz ,
and ∥ψz∥H = 1, z ∈ R2d .

With this, we can define a notion of quantum optimal transport from P2(Rd×Rd)
to D2(H).
Theorem 27. Let B̃ = B̃∗ be such that ch̵(z)− B̃ has nondegenerate ground state,

set ã(z) ∶= min spec(ch̵(z)− B̃), and let z ↦ ψz be a continuous map from Rd ×Rd

to H such that ∥ψz∥H = 1 and ψz ∈ Ker(ch̵(z) − B̃ − ã(z)IH).
Then, for each probability density f with finite 2nd order moments, the map

z ↦ f(z)∣ψz⟩⟨ψz ∣ is an optimal coupling for the pseudometric d between f and the
operator

T B̃[f] ∶= ∫
R2d

f(z)∣ψz⟩⟨ψz ∣dz ∈ D2(H) .

Example. Take for example B̃ = 0; then, one easily checks that

ã(z) = dh̵ , Ker(ch̵(z) − dh̵IH) = C∣z⟩ ,
where ∣z⟩ is the Schrödinger coherent state centered at z ∶= q + ip, so that

T 0[f] = T [f]
is the Toeplitz operator of symbol f .
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We already knew from Theorem 1 (1) in Lecture I that

d(f,T [f]) =
√
dh̵ = inf

P2(R2d)×D2(H)
d .

Proof of Theorem 27. Set Q(z) ∶= f(z)∣ψz⟩⟨ψz ∣, so that Q(z) 1
2 =

√
f(z)∣ψz⟩⟨ψz ∣,

and

∫
R2d

traceH (Q(z) 1
2 ch̵(z)Q(z) 1

2 )dz = ∫
R2d

⟨ψz ∣ch̵(z)∣ψz⟩f(z)dz

= ∫
R2d

(ã(z)⟨ψz ∣ψz⟩ + ⟨ψz ∣B∣ψz⟩)f(z)dz

= ∫
R2d

ã(z)f(z)dz + traceH (B̃T B̃[f]) .

Since (ã, B̃) ∈ k and Q ∈ C(f,T B̃[f]), this implies that

∫
R2d

traceH (Q(z) 1
2 ch̵(z)Q(z) 1

2 )dz

= min
T ∈C(f,T B̃[f])

∫
R2d

traceH (T (z) 1
2 ch̵(z)T (z) 1

2 )dz = d (f,T B̃[f])
2

.

This also implies that

∫
R2d

ã(z)f(z)dz + traceH (B̃T B̃[f])

= sup
(a,B)∈k

∫
R2d

a(z)f(z)dz + traceH (BT B̃[f]) .

Therefore, in this case, the sup is attained in k (this is not true in general).
◻

Remarks.
(1) Thus the optimal transport map for d between P2(Rd ×Rd) and D2(H) can be

thought of as a deformation of the Toeplitz quantization, at least when B̃ is such
that ch̵(z) − B̃ has a ground state of geometric multiplicity 1.

(2) Notice that the starting point in Theorem 27 is the pair (ã, B̃) ∈ k, and not the
pair consisting of f (the probability density) and the density operator which are the
arguments of d. This approach is vaguely reminiscent of the notion of geodesic in
Riemannian geometry: the original definition of a geodesic curve on a Riemannian
manifold is that of the shortest path between two points on the manifold. The
calculus of variations shows that geodesics define local solutions of an ODE system
set on the tangent, or cotangent bundle of the manifold. Conversely, solutions of
this ODE system define local geodesic curves, which may differ from prescribing
arbitrary end points and finding a shortest path between these points. There is a
very loose analogy between the local theory of geodesics through the ODE system,
and the definition of optimal couplings starting from elements of k as explained in

Theorem 27. In other words, the transport map T B̃ is independent of the choice

of the endpoints — or more precisely the endpoints f and T B̃[f] follow from the
optimal transport map, instead of the other way around.

This raises the following question: in Brenier’s theorem, the (classical) opti-
mal transport map is the gradient of a convex function. Is there some analogous
property in the quantum setting?
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Operator Legendre Duality and Quantum Optimal Transport. If (ã, B̃) ∈ k, one has

∣Z ∣2 + ∣z∣2IH − 2z ⋅Z
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=ch̵(z)

≥ ã(z)IH + B̃ ⇐⇒ a(z) +B ≥ z ⋅Z ,

with
a(z) ∶= 1

2
(∣z∣2 − ã(z)) , B = 1

2
(∣Z ∣2 − B̃) .

Besides, one has

Dom(ch̵(z))=Dom(∣Z ∣2)=H2(Rd) ∩L2(Rd, ∣y∣4dy)=∶D .

After these preliminaries, we define a notion of Legendre transform of an (un-
bounded) operator on H.
Definition. Let B satisfy ∣Z ∣2 − 2B ∈ L(H). The Legendre dual of B is the convex
function (upper envelope of affine functions)

BL(z) ∶= sup
φ∈D, ∥φ∥H=1

(z ⋅ ⟨φ∣Z ∣φ⟩ − ⟨φ∣B∣φ⟩) .

Indeed, we recall that, if T is an operator on H, one can think of ψ ↦ ⟨ψ∣T ∣ψ⟩ as
the noncommutative analogue of the evaluation at x ∈ Rn of a real-valued function
f defined on Rn. Therefore, the definition above is analogous to the usual definition
of the Legendre(-Fenchel) transform

φ∗(ξ) = sup
x∈E

(⟨ξ, x⟩E′,E − φ(x)) , ξ ∈ E′ ,

for all φ ∶ E → (−∞,+∞] where E is a normed linear space on R, and φ is not
identically equal to +∞, and E′ is the topological dual of E, i.e. the space of linear
functionals on E that are continuous for the norm topology.
Theorem 28. Let B̃ = B̃∗ be such that ch̵(z)− B̃ has nondegenerate ground state,

set ã(z) ∶= min spec(ch̵(z)− B̃), and let z ↦ ψz be a continuous map from Rd ×Rd

to H such that ∥ψz∥H = 1 and ψz ∈ Ker(ch̵(z) − B̃ − ã(z)IH).
(1) Setting

a(z) ∶= 1
2
(∣z∣2 − ã(z)) , B ∶= 1

2
(∣Z ∣2 − B̃) ,

one has
a = BL .

(2) Besides
∇a(z) = z −∇ã(z) = ⟨ψz ∣Z ∣ψz⟩ .

Proof. Statement (1) follows from the definition and the variational formula for the
ground state. As for (2), differentiate in z the identity

Bψz − z ⋅Zψz + a(z)ψz = 0 ,

and take the inner product with ψz to get

⟨ψz ∣B − z ⋅Z + a(z)∣ψ̇z⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0 since B=B∗,Z=Z∗, a(z)∈R

+⟨ψz ∣ −Z +∇a(z)∣ψz⟩ = 0 .

◻
Remarks.
(1) In the Knott-Smith theorem recalled in Lecture I, optimal couplings forW2 are
supported in the graph of the subdifferential of a l.s.c. convex function, while, in the
Brenier theorem, the optimal transport map is the gradient of a convex function.
In both results, the function is obtained from an optimal Kantorovich potential by
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the same transformation as ã ↦ a. Theorem 28 (2) is a partial analogue of this
crucial piece of information, except that, in the quantum setting, density operators
are not “functions of Z”.
(2) In classical optimal transport, there exist an optimal pair (a, b) of Kantorovich
potentials; they are l.s.c. proper convex functions and are Legendre duals of each
other, so that ∇a ○ ∇b = Id; besides a ∈ L1

µ and b ∈ L1
ν . If one tries to proceed by

analogy, in the present case, one should define some notion of “quantum gradient”
of the operator B.

One idea to do so is to use the phase space symplectic structure. For a smooth
function α ≡ α(x, ξ) on Rd ×Rd, one has

∂xjα = {ξj , α} , ∂ξjα = −{xj , α} , j = 1, . . . , d .

This suggests to define “quantum derivatives” as follows,

∂QyjB ∶= i
h̵
[−ih̵∂yj ,B] , ∂QηjB ∶= − i

h̵
[yj ,B], , j = 1, . . . , d ,

by using the correspondence principle and the analogy between commutator and
Poisson bracket

i
h̵
[⋅, ⋅]→ {⋅, ⋅}

recalled in Lecture II. Since

Bψz = z ⋅Zψz + a(z)ψz , B = B∗ , Z = Z∗ and a(z) ∈ R ,

one easily checks that
⎧⎪⎪⎨⎪⎪⎩

xj = ⟨ψz ∣∂QyjB∣ψz⟩
ξj = ⟨ψz ∣∂QηjB∣ψz⟩

This formula can be viewed as the inverse transform of Theorem 28 (2).
(3) Analogous ideas on a definition of an optimal transport “map” between elements
of D2(H) can be found in [20]. Partial results analogous to Theorem 28 have been
obtained there, but much remains to be done.

Following the proof of Theorems 27–28 suggests viewing the operator

− 1
2
(∣x∣2 − h̵2∆x −A)

as the “smallest eigenvalue” of the operator

1
2
(∣y∣2 − h̵2∆y −B) − x ⋅ y + h̵2∇x ⋅ ∇y ,

viewed as a “matrix” whose entries are operators in the x-variables. However,
inequalities between operators do not define a total order relation, so that even the
notion of ground state in this setting does not seem to make much sense.

New ideas on this problem are obviously needed.
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[23] C. Cohen Tannoudji, B. Diu, F. Laloë: “Quantum Mechanics. Volume I”. 2nd edition. Her-
mann, Paris, and J. Wiley & Sons, Inc., 1977.

[24] A. Connes: Compact metric spaces, Fredholm modules, and hyperfiniteness. Ergodic Theory

Dyn. Syst. 9 (1989), 207–220.
[25] F. D’Andrea, P. Martinetti: A dual formula for the spectral distance in noncommutative

geometry. J. Geom. Phys. 159 (2021), Art. 103920, 8 p.

[26] G. De Palma, D. Trevisan: Quantum optimal transport with quantum channels. Ann. H.
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