
HAL Id: hal-04305535
https://polytechnique.hal.science/hal-04305535v1

Submitted on 9 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

3D deep convolutional neural network segmentation
model for precipitate and porosity identification in

synchrotron X-ray tomograms
S. Gaudez, M. Ben Haj Slama, A. Kaestner, Manas Vijay Upadhyay

To cite this version:
S. Gaudez, M. Ben Haj Slama, A. Kaestner, Manas Vijay Upadhyay. 3D deep convolutional neural
network segmentation model for precipitate and porosity identification in synchrotron X-ray tomo-
grams. Journal of Synchrotron Radiation, 2022, 29 (5), pp.1232-1240. �10.1107/S1600577522006816�.
�hal-04305535�

https://polytechnique.hal.science/hal-04305535v1
https://hal.archives-ouvertes.fr


research papers

1232 https://doi.org/10.1107/S1600577522006816 J. Synchrotron Rad. (2022). 29, 1232–1240

Received 20 December 2021

Accepted 4 July 2022

Edited by A. Bergamaschi, Paul Scherrer Institut,

Switzerland

‡ Current address: CESI Orion Nancy,

19 Avenue de la Forêt de Haye, 54500

Vandoeuvre-lès-Nancy, France.

Keywords: 3D U-net; deep convolutional neural

network; TXM; nanotomography; additive

manufacturing.

Supporting information: this article has

supporting information at journals.iucr.org/s

3D deep convolutional neural network
segmentation model for precipitate and porosity
identification in synchrotron X-ray tomograms

S. Gaudez,a M. Ben Haj Slama,a,b‡ A. Kaestnerc and M. V. Upadhyaya*
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New developments at synchrotron beamlines and the ongoing upgrades of

synchrotron facilities allow the possibility to study complex structures with a

much better spatial and temporal resolution than ever before. However, the

downside is that the data collected are also significantly larger (more than

several terabytes) than ever before, and post-processing and analyzing these

data is very challenging to perform manually. This issue can be solved by

employing automated methods such as machine learning, which show

significantly improved performance in data processing and image segmentation

than manual methods. In this work, a 3D U-net deep convolutional neural

network (DCNN) model with four layers and base-8 characteristic features

has been developed to segment precipitates and porosities in synchrotron

transmission X-ray micrograms. Transmission X-ray microscopy experiments

were conducted on micropillars prepared from additively manufactured 316L

steel to evaluate precipitate information. After training the 3D U-net DCNN

model, it was used on unseen data and the prediction was compared with manual

segmentation. A good agreement was found between both segmentations. An

ablation study was performed and revealed that the proposed model showed

better statistics than other models with lower numbers of layers and/or

characteristic features. The proposed model is able to segment several hundreds

of gigabytes of data in a few minutes and could be applied to other materials and

tomography techniques. The code and the fitted weights are made available with

this paper for any interested researcher to use for their needs (https://

github.com/manasvupadhyay/erc-gamma-3D-DCNN).

1. Introduction

Synchrotron X-ray tomography is a non-destructive char-

acterization technique that allows distinguishing micro-

structural features exhibiting different X-ray attenuation

contrasts (absorption or phase) in three dimensions (3D). This

technique is typically used to investigate phase changes as well

as the morphology, position and distribution of chemical

heterogeneities occurring at different length scales in different

material systems (Withers et al., 2021). In alloys, the technique

is widely used to investigate porosities (Dinda et al., 2016),

precipitates (Kaira et al., 2018; Torbati-Sarraf et al., 2021) and

phase changes (e.g. liquid to solid) (Daudin et al., 2017).

Synchrotron X-ray tomography experiments typically

generate a large amount of data (several terabytes), especially

with the development of time-resolved tomography (Garcı́a-

Moreno et al., 2021), and quantitatively analyzing these data

is often very challenging. One of the main challenges in data

analysis is to perform an unambiguous segmentation of the
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features of interest. The presence of (i) multiple kinds of

features of interest exhibiting similar X-ray absorption coef-

ficients and (ii) background noise with a brightness contrast

that is similar to some small features of interest can make

it very difficult to segment the data using conventional one-

parameter techniques, e.g. manual gray-scale thresholding,

Otsu’s method (Otsu, 1979), etc. While filters can be used to

enhance the contrast between features and background noise

in order to facilitate such segmentation (Kaestner et al., 2008),

nevertheless, conventional single-parameter gray-scale-based

techniques remain highly limited in their predictive capabil-

ities. For example, they are unable to account for the 3D

nature of features such as feature size and morphology, which

can play an important role in distinguishing between different

kinds of features.

One solution could be to perform manual segmentation.

However, this approach is highly time consuming and requires

a high attention to detail, which is impractical when dealing

with large amounts of data. In addition, manual segmentation

suffers from human bias, which varies from one operator

to another.

A more practical, and at times more accurate, solution is

to automate the segmentation process using deep learning

methods (LeCun et al., 2015). Deep learning is a subset of

machine learning methods that eliminates data pre-processing

involved in machine learning methods by using unstructured

data (unorganized data, e.g. an image) as input instead of

structured data (organized and tabulated data, e.g. a phone

book). Deep learning methods are composed of a succession

of operations aimed at finding data patterns and extracting

useful feature information. They are widely used to process

images, in particular to detect objects (object detection) and

recognize differences between them (object recognition), to

characterize an entire image (scene summarization), and to

associate each pixel of an image with a class of objects present

in the image (semantic segmentation) in many different fields

including medical, engineering and self-driving vehicles.

The convolutional neural network (CNN) is a subset of

deep neural network methods, commonly used for image

analysis. The difference between a CNN and a neural network

is the use of the convolution operation (convolutional layer)

allowing the former to capture local features as well as reduce

the complexity of the network. Semantic segmentation is one

of its applications. This approach significantly improves the

segmentation quality with respect to the single-parameter

gray-scale-based techniques for detection of microstructural

features such as porosities (Gobert et al., 2020), precipitates

(Senanayake & Carter, 2020; Torbati-Sarraf et al., 2021), and

phase and grain boundaries (Furat et al., 2019; DeCost et al.,

2019; Ajioka et al., 2020). In addition, it allows simultaneous

segmentation of objects such as precipitates (Senanayake &

Carter, 2020; Torbati-Sarraf et al., 2021), and phase and grain

boundaries (DeCost et al., 2019; Ajioka et al., 2020). Originally

proposed by Ronneberger et al. (2015) for semantic segmen-

tation of bio-medical images, U-Net is a special type of deep

CNN (DCNN) architecture for image segmentation. Thus

far, DCNN-based segmentation of data collected from tomo-

graphy experiments has been carried out by slicing volumes

into 2D slices and performing independent segmentation of

each slice (Furat et al., 2019; Gobert et al., 2020; Torbati-Sarraf

et al., 2021; Bellens et al., 2021; Ali et al., 2021). In following

this approach, however, the 3D information of the features

such as their size and morphology is lost. Then, in order to

recover the size and morphology information, one must

perform a 3D reconstruction of the segmented slices.

However, the error incurred in first slicing the data,

segmenting the 2D slices and then reconstructing the

segmented data is higher than directly segmenting the 3D data

set. To meet the needs of volumetric data segmentation, Çiçek

et al. (2016) proposed a 3D U-Net architecture showing

a performance gain to an equivalent 2D architecture. An

example of its application in material science can be found in

the recent work by Furat et al. (2019) who compared DCNN-

based segmentation of grains using both the aforementioned

techniques on data collected from 3D X-ray diffraction

experiments on an Al alloy. Their comparison revealed that

the model was able to segment better when it was trained

directly on 3D data.

In this work, we have numerically implemented a slightly

modified version of an existing 3D DCNN based on the U-net

architecture (Çiçek et al., 2016) in Python. The differences

between the two approaches are explained in Section 3. The

modified 3D U-net DCNN model is designed to segment

sphere-shaped features such as precipitates and porosities in

3D data-sets. The model is applied for the first time to identify

submicrometre-sized precipitates and porosities where both

objects and background present similar brightness contrast

from transmission synchrotron X-ray microscopy (TXM), or

nanotomography experiments conducted on micropillars

extracted from laser metal deposited (LMD, an additive

manufacturing technique) 316L stainless steel (316LSS)

subjected to thermal treatments. The proposed model is found

to be significantly faster than manual segmentation and it is

able to automate segmentation of investigated objects while

preserving the high-resolution details. Finally, along with this

paper, the entire code and the fitted weights have been made

available for any interested researcher to use to segment

similar data-sets in order to avoid the significantly time-

consuming part of data preparation and training.

2. Experimental procedure

2.1. Material and sample preparation

The 316LSS powder used in this work to additively manu-

factured samples was prepared using the inert gas atomization

process by Höganäs AB. The wrought alloy used to manu-

facture the powder had the following chemical composition

(wt%):

Fe-16.9Cr-12.7Ni-2.5Mo-1.5Mn-0.7Si-0.015P-0.011C-0.005S.

Additive manufacturing was performed via the LMD process

using the ‘Mobile’ machine from BeAM (AddUp). A single-

track bidirectionally printed three-layer thin-wall of dimen-
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sions 100 mm � 0.6 mm � 0.6 mm (x, y, z) was manufactured

using this machine; the process parameters were: laser power

= 225 W, powder flow rate = 6.5 g min�1, deposition speed =

2000 mm min�1, vertical displacement of focusing head =

0.2 mm after depositing one layer. Additional details on the

material, powder characteristics and specifications of the

LMD machine have been given by Upadhyay et al. (2021)

and Ben Haj Slama et al. (2022).

The as-built wall and substrate had been cut near the mid-

section and along the direction normal to the build and print

directions (yz plane). This cross-section had been mechani-

cally polished first using SiC papers with different grits (from

800-grit to 4000-grit) followed by diamond paste polishing

with grit sizes 3 mm and 1 mm and finally ion polishing. Scan-

ning electron microscopy (SEM) and electron back-scattered

diffraction analysis were performed on these samples using an

Environmental-SEM Quanta 650 FEG microscope to identify

regions of interest for micropillar extraction. Cylindrical

micropillars �25 mm in diameter and �75 mm in height

were extracted from the second and third deposited layers

using focused ion-beam (FIB) milling inside an FEI Helios

Nanolab 660 dual-beam scanning electron microscope, which

is equipped with a dual-beam FIB. Then, the micropillars were

subjected to different solid-state thermal cycling (SSTC) to

mimic the thermal cycling that would occur during additive

manufacturing but under controlled conditions that allow us

to monitor the evolution of sub-micrometre-sized precipitates

and porosities in the bulk material. These thermal treatments

were performed inside an FEI Titan3 G2 60-300 transmission

electron microscope (TEM). Each micropillar was attached

to an electrothermal chip, which can be inserted into an

electrothermal TEM sample holder (Protochips). This sample

holder allows SSTC to be performed inside the controlled

environment of the Titan3 TEM. Further information about

the technique used for applied controlled SSTC is given by

Ben Haj Slama et al. (2022). The micropillars were char-

acterized via TXM before and after each SSTC performed

inside the TEM.

2.2. TXM

TXM experiments were conducted on micropillars at the

ANATOMIX beamline of the SOLEIL synchrotron (Gif-sur-

Yvette, France). A monochromatic X-ray beam of energy

16.87 keV was used for the acquisitions allowing a small

intensity attenuation (�40%) according to the sample thick-

ness of the Fe-based micropillars (�25 mm). The condenser,

which illuminated the samples, was placed at 2 m in front of

the sample. The objective zone plate was 69.68 mm from the

sample. The Hamamatsu C12849-112U detector was placed at

30 m from the sample leading to a pixel size resolution of

29.33 nm (using 2 � 2 binning). TXM experiments were

performed by acquiring 1000 projections over an angular

range of 180� at room temperature. For each sample, the

acquisition was repeated four times and each set of four

acquisitions were merged to improve the signal-to-noise ratio.

Data pre-processing and tomographic reconstruction were

performed with the PyHST software package. The tomo-

graphy color scale is a gray scale from black to white: highly

dense regions (i.e. steel matrix) appear in bright contrast and

low-density regions (i.e. precipitates and environment) appear

in dark contrast.

3. 3D neural network-based segmentation model

3.1. CNN

We have based our 3D U-net DCNN approach on the work

of Çiçek et al. (2016) to perform semantic segmentation of

precipitates from TXM experiments performed on micro-

pillars extracted from the LMD 316LSS thin-wall. The key

difference between our model and that of Çiçek et al. (2016)

is that our model doubles the number of channels after the

max pooling operations instead of before. In addition, our

model uses a smaller number of characteristic features per

layer. These modifications allow us to decrease the number of

training parameters and thus speed up training and prediction

while still maintaining a good accuracy.

The architecture of our 3D U-Net DCNN is presented in

Fig. 1 and the layer operations are presented below; defini-

tions of the different layer operations described below are

given in Appendix A. The 3D U-net DCNN model consists of

two main parts: a contracting part (left) and an expanding part

(right). The contracting part consists of repeated units: two

convolutions with a (3 � 3 � 3) kernel size, each followed

by a batch-normalization (BN) and the rectified linear unit

(ReLU) activation function and finally by a max pooling

operation with a (2 � 2 � 2) kernel size with a stride of two

in each dimension. The sequence is repeated twice. The

expanding part consists of repeated units: up-sampling with a

(2 � 2 � 2) kernel size with a stride of two in each dimension

followed by a concatenation with the corresponding feature

map from the contracting part and finally two convolutions

with a (3 � 3 � 3) kernel size. Each convolution is followed
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Figure 1
The 3D U-net DCNN used in the present work has four layers and base-8
characteristic features. Arrows represent the different operations and
brown and blue boxes represent the multi-channel and copied feature
volumes, respectively. The input and output volumes are gray-scale data
with the same pixel size resolution.



by a BN and the ReLU activation function. To keep the

symmetry and restore a higher-resolution image, this sequence

is also repeated twice. The final layer consists of one convo-

lution with a (1 � 1 � 1) kernel size and a sigmoid activation

function providing the segmented map. The sigmoid activation

function allows to normalize the output [0 :1] returning the

probability of each pixel belonging to a class. The output

image has the same size resolution as the input image by

adding extra rows and columns around the feature maps for

each convolution (i.e. same padding). Direct links between

the contracting and expanding parts (concatenation) allow

to avoid bottleneck problems and loss of information by

combining higher-resolution maps from the contracting to the

expanding part. The concatenations allow the spatial infor-

mation to be preserved during image reconstruction.

Previous investigations via TEM (Upadhyay et al., 2021;

Ben Haj Slama et al., 2022) have revealed the presence of

precipitates (oxide, non-oxide and mixed precipitates) at a

length scale that is similar to the objects (precipitates or

porosities) observed in TXM micrographs, although no

distinction can be made between the objects in the TXM

micrographs. Furthermore, while no porosities were observed

in the TEM investigations (Upadhyay et al., 2021; Ben Haj

Slama et al., 2022), it has to be reminded that TEM investi-

gations only probe a very small volume within which porosities

may not have been present. In comparison with TEM

lamellae, micropillars have a volume that is four orders of

magnitude higher. As no distinction can be made between

precipitates and porosities by TXM, the present problem

simplified to the classification on each pixel between two

classes: the objects and the background, which is a binary task.

Following this, the performance of the 3D U-net DCNN is

calculated with the binary cross entropy loss function. This

function evaluates the difference between the pixel class,

which is known, and the probability calculated by the model

to be in the corresponding class during the training session.

The loss function is based on a negative logarithm allowing to

strongly penalize the predictions having a low probability (i.e.

bad predictions). The Adam optimizer (Kingma & Ba, 2014) is

used to reduce the loss value by updating the network para-

meters at each epoch (i.e. one cycle through the full training

dataset). The proposed 3D U-net DCNN model has four

layers and base-8 characteristic features which result in

366593 parameters. Out of these parameters, 365889 are

trainable corresponding to the weights, kernel filters and bias,

and 704 are non-trainable corresponding to BN.

The 3D U-net DCNN is implemented in Python version

3.8.5 using the Keras Python library version 2.4.3 and the

Tensorflow library version 2.5.0. To speed up the computa-

tions, the code was executed on a graphics processing unit

(GPU) from NVIDIA. To that end, Cuda version 11.2 and

cuDNN library version 8.2.1 were used. The training, valida-

tion and prediction were performed with the following hard-

ware specifications: NVIDIA Quadro RTX 5000 GPU,

Intel(R) Xeon(R) Gold 5220R 2.2 GHz 48-core CPU, 384 GB

RAM and Ubuntu 20.04 desktop operating system.

3.2. Data preparation

Training the model requires two types of volumes, which

are shown in Fig. 2 – the experimental TXM gray-scale data

obtained after reconstruction and the ground-truth data. In

the experimental data, the bright contrast (disk) represents a

slice of the micropillar while the surrounding dark contrast

is the environment. Dark spots within the disk are objects of

interest (precipitates or porosities or both). These objects

have been manually segmented to obtain the ground-truth

data. The bright ring encircling the disk is an undesirable

artifact due to the TXM technique.

Fig. 3(a) shows the gray intensity histograms of the back-

ground and the objects. Due to the very small object fraction

the area under the black curve (background) represents

�99.7% of the voxels while the area under the red curve

represents the remaining �0.3%, thus the two histograms

have different intensity scales allowing better visualization.

Fig. 3(b) shows gray intensity histograms corresponding to the

yellow squares shown in Fig. 3(c). They allow us to understand

the background histogram (here background histogram refers

to all the pixels that are not the investigated objects, i.e.

environment and sample): the sharp peak at the gray-scale

value of 34 is part of the region outside of the reconstruction,

the broad peak in the gray-scale range 0–75 is sample envir-

onment near to the sample, and the broad peak in the gray-

scale range �125–225 is the sample. For area 3 in Figs. 3(b)

and 3(c), the investigated objects are accounted for but they

have a low volume fraction, which makes it difficult to deduce

their presence. The overlap of gray-scale intensities between

the objects and the matrix highlights the difficulties to quan-

titatively segment such objects using a one-parameter gray-

scale-based manual thresholding and segmentation approach

(e.g. filters and mathematical operations) and strongly

supports the development of a machine learning method.

The input data for training the 3D U-net DCNN model was

prepared in the following manner. Experimental data were

normalized with a Z-score normalization (i.e. zero mean and
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Figure 2
TXM synchrotron experimental result and ground-truth (manually
segmented) images with 1024 � 1024 � z voxels from a �25 mm-
diameter micropillar extracted from an additively manufactured 316L
stainless steel sample (z represents the number of slices along its
direction, e.g. four in the figure). Dashed yellow squares represent the
192 � 192 � 192 voxels sub-volumes used to train the neural network.



unit variance) process allowing to standardize the input and

increase the machine learning performance. Labeled data

were obtained by manually labeling the objects of each slice of

the volume using ImageJ software (Schindelin et al., 2012) and

then 3D merging using the merge channel function in this

software. Two operators separately performed the manual

labeling for training, validation and test data in order to

limit human bias. Manually marking the objects is fastidious

and time-consuming work but it allows better results to

be obtained than the single-parameter gray-scale-based

segmentation approach and justifies the use of a neural

network. It has to be mentioned that few small objects were

missed by the operators during manual segmentation as will be

highlighted in the Results section. The ground-truth data could

also be generated from segmentation recipes (e.g. sequence of

filters, segmentation, erosion and reconstruction), as in Gobert

et al. (2020), but the resulting set of fitted parameters for the

neural network to be trained on will not lead to better

segmentation than the recipes themselves.

3.3. Neural network training, validation and testing

To train the 3D U-net DCNN, the original data were divided

into non-overlapping sub-volumes of 192 � 192 � 192 voxels

(multiple of 8). The sub-volumes are illustrated in Fig. 2 by

dashed yellow lines. A batch size of only two sub-volumes

could be used due to GPU memory limitation. Three different

samples were used: two samples for training and validation

data and one sample for testing. In total 1280 slices from three

micro-pillars were used: 60% of these slices were used for

training, 30% for validation and 10% for testing. Finally, to

limit over-fitting and generalize the 3D U-net DCNN, up-

scaling operations were used.

4. Results

For the present study, background class (i.e. sample matrix and

environment) represents more than 99.8% of the volume of

the test data set. A measure of the

global accuracy is often used to char-

acterize the quality of segmentation

models (Ajioka et al., 2020; Senanayake

& Carter, 2020; Ali et al., 2021). Here,

due to the very low volume of the

objects investigated, a measure of the

global accuracy is not relevant. For

example, if the whole volume is

predicted as background, then the

accuracy will be more than 99.8% even

though no object is correctly segmented.

Predicted outputs by the DCNN are

gray-level matrices in which the gray-

levels represent the probability to be

within a class: gray-level 0 is back-

ground class and gray-level 255 is

objects class. A probability of 0.5 (gray-

level 127) was used as a threshold

between the two classes during training and validation, i.e.

pixels with a gray-level equal to or lower than 127 are back-

ground and pixels with a gray-level higher than 127 are

objects. Thus, predicted outputs were thresholded at 127 to

compare with ground-truth data. Fig. 4 shows the confusion

matrix (Fawcett, 2006) obtained from a pixel-by-pixel

comparison of the ground-truth and predicted data for the test

set. This representation allows to highlight the accuracy of the

segmentation for each class (objects and background), inde-

pendently. Background prediction has the highest accuracy

(error lower than 0.001). Object prediction has a good accu-

racy (error of 0.081, i.e. 8.1% of pixels belonging to the object

class from the ground-truth data are predicted as belonging to

the background class); recall that objects represent less than

0.2% of the volume.

Fig. 5 shows qualitative examples of segmentation and

overlaying between ground-truth and predicted data. Figs. 5(a)

and 5(b) show reduced windows of TXM raw data. In Figs. 5(c)

and 5(d), white areas are true positive, black areas are true

negative, red areas are false positive and blue areas are false

negative predictions. True positive or negative predictions are
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Figure 4
Normalized confusion matrix for the test set. TP: true positive; FP: false
positive; FN: false negative; TN: true negative.

Figure 3
(a) Pixel intensities of background and objects (both features have their own intensity scales).
(b) Pixel intensities of the corresponding volumes numbered in the TXM partial image. (c) Partial
TXM image. Pixel intensity analysis was performed on the volume data.



pixels correctly predicted according to the ground-truth while

false positive or negative are not. In general, a good agree-

ment is found between the ground-truth and the predicted

data [Fig. 5(c)]. However, the model tends to underestimate

the object size in comparison with manual segmentation.

Fig. 5(d) shows an example of a bad prediction by the model

because of the size of the object, which is much larger than

other ones [e.g. as seen in Fig. 5(c)]. This bad prediction is

explained by the training and validation set in which such

object sizes are sparse; e.g. for the test set, there are only two

large objects that are badly segmented out of 666. Due to their

small number, the model was not able to learn such features

(even with the up-scaling operations). Only two examples are

given in the present work, but raw data, ground-truth data and

predicted data of the test set are made available as supporting

information.

Fig. 6(a) shows the size distribution histograms comparing

the ground-truth data and the predicted data from the test set.

Table 1 shows quantitative information about objects. Because

the model accounts for 3D information, objects at the surface

of the investigated volume (i.e. objects in contact with the first

and last slice in all directions; e.g. z = 0 and z = 128) are not

well segmented and were excluded from the quantitative

analysis. In addition, objects with a volume lower than 8 voxels

(2 � 2 � 2 voxels) are considered to be below the experi-

mental resolution limit and they were also excluded. As

qualitatively observed, prediction slightly underestimates the

object size in comparison with the ground-truth data (the

mean radius is 3.34 and 3.02 pixels for the ground-truth and

predicted data, respectively). But a higher density of objects

is found by the model (difference of 105 objects) and they

mostly fall within the 1–3 pixel radius, thus decreasing the

mean radius measured. Most of the additional objects found

by the 3D U-net DCNN are objects missed by the operators

during manual segmentation.

Figs. 6(b) and 6(c) show the measure of the sphericity as a

function of the equivalent radius as well as the average gray

intensity of the objects. The sphericity parameter characterizes

the degree of spherical shape of the object, and reads (Wadell,

1932)

 ¼
�1=3ð6VmÞ

2=3

Sm

2 ½0 : 1�; ð1Þ

where Vm is the measured volume and Sm is the measured

surface of the object.  = 1 for a perfect sphere and it

decreases with the increase of the degree of non-spherical

shape of the object. However, in the absence of surface

reconstruction (i.e. polygonal meshing) (Lorensen & Cline,
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Figure 6
(a) Histogram of the object size distribution from ground-truth data and predicted data. (b and c) The sphericity ( ) parameter as a function of radius for
the ground-truth and predicted data, respectively, for the test set. Color scales in (b) and (c) represent the average gray intensity value of the objects. The
gray line at  = 2/3 is the parameter  for a sphere discretized by voxels without surface reconstruction.

Table 1
Quantitative object information for the ground-truth data and the
predicted data for the test set.

Data
Number
of objects

Mean
radius
(pixel)

Standard
deviation
(pixel) Sphericity

Ground-truth 666 3.34 1.06 0.595
Predicted 771 3.02 1.09 0.622

Figure 5
TXM raw data (a and b) and hit map (c and d). TP: true positive; FP: false
positive; FN: false negative; TN: true negative.



1987; Rorato et al., 2019), due to the cubic shape (voxel)

discretization of the volume, the sphericity parameter is

biased. For a sphere with a cubic shape discretization, the

sphericity parameter tends toward �2/3 (i.e. for a cubic shape

discretization volume, lim r!1  ’ 2/3 where r is the radius;

see the supporting information).

Results show that the objects investigated are close to a

sphere-like morphology as qualitatively observed and that

smaller objects have a higher average gray intensity than

bigger objects. Both observations are accurately captured by

the 3D DCNN model.

Finally, to test the significance of the proposed model for

object segmentation, 3D U-net DCNN models with different

configurations were trained and evaluated on the same set of

data. Due to hardware limitations, only configurations with

lower numbers of layers as well as lower base numbers of

characteristic features could be tested. To be comparable, each

model was trained over 240 epochs and evaluated with class-

ification statistics (Fawcett, 2006). Metrics used to quantify

and compare model performances are

Accuracy ¼
TPþ TN

TPþ TNþ FPþ FN
2 ½0 : 1�;

Recall ¼
TP

TPþ FN
2 ½0 : 1�;

Precision ¼
TP

TPþ FP
2 ½0 : 1�;

where TP means true positive, FP means false positive, FN

means false negative, and TN means true negative. The valid

range of the accuracy is very limited due to the class imbal-

ance. Table 2 shows statistics for each trained model after 240

epochs. The originally proposed model with four layers and

base number of eight characteristic features has the best

statistics over others. The model with three layers and a base

number of eight characteristic features also presents good

statistics with a reduced number of parameters allowing to be

used with a less powerful hardware specification, but training

computation time remains similar. For a given model, in

general, decreasing its number of layers or base number of

characteristic features leads to less accurate predictions.

However, the model with four layers and base number of six

characteristic features is found to perform worse than the four

layers and base number of four characteristic features. Finally,

the computation time per epoch is not linearly proportional to

the number of parameters of the model and the largest gains

are obtained by decreasing the base number of characteristic

features, but this adversely affects the accuracy of the

segmentation.

5. Discussion

The proposed machine learning algorithm is able to segment

small objects well with a very small volume fraction and with

gray-scale intensities similar to the background from TXM

data. Qualitative and quantitative comparisons between the

ground-truth and predicted data gave good results. In addi-

tion, the segmentation quality is significantly improved in

comparison with single-parameter gray-scale thresholding.

However, it was also shown that some large objects may not

be correctly segmented by the model because of their small

density in the training and validation sets. A radius of

�8 pixels (V ’ 2000 voxels) can be seen as an upper limit of

the present fitted weights and model (see supporting infor-

mation). In the case where only large objects are present, the

resolution of the data can be decreased to eliminate this issue.

Our 3D U-net DCNN model is able to segment a volume of

1024 � 1024 � 256 voxels in 1 min 32 s with the hardware

specifications (given in Section 3.1) without human interven-

tion. In comparison, two humans took �60 h in total to

segment one data-set of the same size. These numbers show

the significant time gains with high accuracy that can be

achieved when using machine learning models to treat large

amounts of data without any human intervention after the

model has been trained. The proposed model showed the best

performance over other lighter configurations and imple-

mentations where the base number of characteristic features

and layers were decreased. However, the time to segment

the aforementioned volume is slightly longer than using a

model with fewer parameters (e.g. 1 min 22 s for model

three layers and base number of four characteristic features).

The main issue of the development of a machine learning

algorithm is data preparation for training and validation. The

preparation is fastidious, time-consuming and without guar-

antee of success. For this purpose, the fitted weights as well as

the Python codes used in the present work are shared (see

supporting information). They can be used by researchers

facing similar problems as discussed in the present study to

segment data or make tests before preparing their own model

or data or both. Furthermore, simulated data can be used

to train the model and to facilitate machine learning (Ali et

al., 2021).

6. Conclusions

In the present work, a 3D U-net DCNN model was developed

to segment precipitates and porosities from micrograms

obtained from synchrotron-based TXM experiments

performed on micropillars extracted from an additively
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Table 2
Object segmentation performance metrics for different 3D U-net DCNN
models (L: layers; CF: characteristic features) configuration and
implementation after 240 epochs; absolute time per epoch is also
provided and it is specific to the software and hardware specifications
used in the present work.

Model
Number of
parameters Min/epoch Accuracy Recall Precision

4 L/base-8 CF 365 593 �4.48 0.999334 0.696546 0.845458
3 L/base-8 CF 89 153 �4.42 0.999222 0.659309 0.802174
4 L/base-6 CF 206 581 �3.02 0.998942 0.572835 0.689927
3 L/base-6 CF 50 341 �2.88 0.998555 0.478548 0.536446
4 L/base-4 CF 92 145 �2.15 0.999086 0.627773 0.741001
3 L/base-4 CF 22 545 �2.03 0.998885 0.436197 0.734485



manufactured 316L stainless steel. The 3D U-net DCNN

architecture was used to improve the segmentation of the

volumetric data, to speed up and automate analysis, and to

limit human intervention. After training and validation, the

model was applied to an unseen data-set to test its robustness.

Quantitative (confusion matrix and histogram of sizes) and

qualitative (visual assessment of the segmentation) investi-

gations were used to interpret the results. They showed that

the 3D U-net DCNN architecture is able to segment investi-

gated objects and preserve the high-resolution details. In this

study, the predicted data are even better than the ground-truth

because of objects missed by the operators during manual

segmentation but predicted by the DCNN. The proposed

model showed the best statistics and the fastest training rate

over others tested, while it has the largest number of para-

meters. However, it has the longest training and predicting

times because of its larger number of parameters. Although

developed and applied to an additively manufactured 316L

stainless steel investigated by TXM, the proposed model and

fitted weights could be used for different materials and

tomography experiments as long as the data share common

features with the data used in this work. In order to facilitate

other users in their studies, the entire code and the fitted

weights of the proposed model is provided (see https://

github.com/manasvupadhyay/erc-gamma-3D-DCNN).

APPENDIX A
Definitions of the different layer operations

Convolution operation consists of applying a filter (kernel

weights) to an area and shifting and repeating the process over

the input data. At each slide, the kernel weights are multiplied

by the part of the input data being treated. Making the sum of

this multiplication leads to defining a single pixel value in the

feature map. This operation allows extracting features present

in the input such as lines.

Pooling operation consists of retaining the most important

features (summarize) from each subregion (information best

describing the image context) of the feature map leading

to a reduction in its size and have fewer trainable parameters.

Summarizing can be performed with different functions, but

the most common use is max pooling in which only the

maximal value of the subregion is kept.

Activation operation consists of deciding whether a neuron

should be activated or not. It applies a function on values

returned by the convolution operation before sending it to the

next layer. These functions control how the neural network

model learns the training data and the type of prediction the

model can make (e.g. probability). The most commonly used

activation function for hidden layers is the ReLU (rectified

linear unit) activation function; this function either returns the

input (if the input is greater than 0) or it returns 0 (if the input

is less than or equal to 0).

Up-sampling operation consists of increasing the size of a

feature map. In the simplest version, the operation simply

repeats the rows and columns by given factors (e.g. 2).

Batch-normalization consists of rescaling data to a mean

and a standard deviation close to zero and one, respectively. It

standardizes the inputs to a layer, stabilizing the learning. The

model is then more stable, less sensitive to weight initializa-

tion, less prone to overfitting and allows a faster learning rate

to be used.
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