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On-The-Fly Control of Unknown Systems: From Side Information to
Performance Guarantees through Reachability

Franck Djeumou, Abraham P. Vinod, Eric Goubault, Sylvie Putot, and Ufuk Topcu

Abstract—We develop data-driven algorithms for reachability
analysis and control of systems with a priori unknown nonlinear
dynamics. The resulting algorithms not only are suitable for
settings with real-time requirements but also provide provable
performance guarantees. To this end, they merge noisy data
from only a single finite-horizon trajectory and, if available,
various forms of side information. Such side information may
include knowledge of the regularity of the dynamics, algebraic
constraints on the states, monotonicity, or decoupling in the
dynamics between the states. Specifically, we develop two algo-
rithms, DaTaReach and DaTaControl, to over-approximate
the reachable set and design control signals for the system
on the fly. DaTaReach constructs a differential inclusion that
contains the unknown dynamics. Then, in a discrete-time setting,
it over-approximates the reachable set through interval Taylor-
based methods applied to systems with dynamics described as
differential inclusions. We provide a bound on the time step size
that ensures the correctness and termination of DaTaReach.
DaTaControl enables convex-optimization-based control using
the computed over-approximation and the receding-horizon con-
trol framework. Besides, DaTaControl achieves near-optimal
control and is suitable for real-time control of such systems.
We establish a bound on its suboptimality and the number
of primitive operations it requires to compute control values.
Then, we theoretically show that DaTaControl achieves tighter
suboptimality bounds with an increasing amount of data and
richer side information. Finally, experiments on a unicycle,
quadrotor, and aircraft systems demonstrate the efficacy of both
algorithms over existing approaches.

I. INTRODUCTION

Consider a scenario in which significant and unexpected
changes in the dynamics of a system occur. The changes in
the dynamics are such that the a priori known model cannot
be used, and there is a need to learn the new dynamics on the
fly. In such a scenario, the system has access to data from only
its current trajectory and needs to retain a certain degree of
control. This paper considers the problem of data-driven, on-
the-fly control of systems with unknown nonlinear dynamics
under severely limited data.

We develop data-driven algorithms, DaTaReach and
DaTaControl, for the reachability analysis and control
of systems with a priori unknown dynamics. DaTaReach
exploits the data from a given and and ongoing trajectory of the
system to compute an over-approximation of the set of states it
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Fig. 1. We use limited data and side information for on-the-fly control of
systems with unknown dynamics. At each sampling time, we compute an
over-approximation of the set of states the system may reach to describe
the uncertainty in its unknown trajectory and construct one-step optimal
controllers via convex optimization.

may reach. DaTaControl incorporates the computed over-
approximation into a constrained optimal control problem,
which is then solved on the fly.

Specifically, DaTaReach and DaTaControl can work
with possibly noisy data from only a single finite-horizon
trajectory of the system and take advantage of various forms of
side information on the dynamics. More specifically, the data
include finite (noisy) samples of the states, the derivatives of
the states, and the control signals applied. The side information
may be a priori knowledge of the regularity of the dynamics,
bounds on the vector field locally, monotonicity of the vector
field, decoupling in the dynamics among the states, algebraic
constraints on the states, or knowledge of parts of the dynam-
ics. For example, such side information may be due to known
elementary laws of physics or may be directly extracted from
the data, as we illustrate in the numerical simulations.
DaTaReach provides closed-form expressions for over-

approximations of the reachable set of unknown dynamical
systems. It first uses the available data and the given side
information to construct differential inclusions that contain
the unknown vector field. Unlike existing work [1] that pro-
vides state-independent differential inclusions, the constructed
differential inclusions account for dependencies on the states
and control signals. Then, DaTaReach provides closed-
form expressions for over-approximations of the reachable
set associated with these data-driven differential inclusions.
Specifically, it builds on interval Taylor-based methods [2]–[4]
to over-approximate the reachable set of dynamics described
by the differential inclusions. The closed-form expressions
can incorporate the available side information, and increasing
amount of data and richer side information provide tighter
over-approximations of the reachable set.

The closed-form expressions enable convex-optimization-
based, on-the-fly control of unknown dynamical systems
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through the one-step receding-horizon control framework [5].
Specifically, we seek to sequentially minimize a given one-step
cost function in a discrete-time setting. We refer to such an op-
timization problem as a one-step optimal control problem. The
one-step cost function, which encodes the desired behavior of
the system, has to be optimized in a black-box manner since it
is typically a function of the unknown future state, in addition
to the known current state and the currently applied control
input. DaTaControl computes approximate solutions to the
one-step optimal control problem through convex optimization
relaxations. The convex relaxations are obtained by replacing
the unknown future state with a control-affine linearization of
the corresponding over-approximation of the reachable set.

More specifically, we prove that DaTaControl achieves
near-real-time and near-optimal control of the unknown sys-
tem. Indeed, we provide bounds on the suboptimality of the
relaxed convex problems’ solutions with respect to the optimal
solutions if the dynamics were known. Then, we theoretically
show that the obtained bounds on the suboptimality become
tighter with an increasing amount of data and richer side infor-
mation. Besides, we prove that DaTaControl is suitable for
real-time control of the system through an explicit upper bound
on the number of primitive operations required to terminate.

Empirically, through a series of experiments on a unicycle,
quadrotor, and aircraft systems, we show that DaTaControl
is significantly more computationally efficient, robust to noise,
and less suboptimal than the baselines SINDYc [6], DeePC
[7], C2Opt [8], and CGP-LCB [9]. Indeed, the experiments
show that DaTaControl is three to five orders of magnitude
faster than the baselines, achieves the control objective using at
least three times fewer system’s interactions (less suboptimal),
and outperforms the baselines in terms of robustness to noise.
Contributions. This paper significantly extends our confer-
ence paper [10] by first augmenting DaTaControl and
DaTaReach with the ability to handle noise in the data.
Indeed, the approach in [10] assumes exact measurements of
the state and the state derivative. Then, we provide a bound
on the discrete-time step size such that DaTaReach and
DaTaControl are guaranteed to be correct and to terminate.
The algorithms in [10] assume ”sufficiently small” time step
to work, without any explicit bound to characterize such
small time step. Finally, we prove an explicit bound on the
number of primitive operations required by DaTaControl to
terminate and provide additional numerical experiments. With
respect to state-of-the-art data-driven techniques, this paper
proposes near-optimal and real-time data-driven algorithms
that work with an extremely scarce amount of data and that can
incorporate side information on the underlying dynamics when
learning to control nonlinear systems. We provide performance
guarantees such as bounds on the suboptimality and computa-
tional complexity of the algorithms. At last, through extensive
comparisons with state-of-the-art baselines, we empirically
demonstrate the efficiency of the proposed approach.
Related work. Several approaches for data-driven control
combine system identification with model predictive con-
trol [6], [8], [11]–[13]. In [11], the authors use Koopman
theory to lift the unknown nonlinear dynamics to a higher-
dimensional space where they perform linear system identifi-

cation. SINDYc [6] utilizes a sparse regression over a library
of nonlinear functions for nonlinear system identification.
DMDc [12] uses the spectral properties of the collected data to
obtain approximate linear models. Myopic control [13] uses a
finite sequence of perturbations to learn a local linear model,
which is then used to optimize a model-driven goodness
function that encodes desirable behaviors. DMDc, SINDYc,
Myopic control, and approaches based on the Koopman theory
require significantly more data than the proposed approach, do
not provide real-time guarantees, and, in their current forms,
cannot incorporate any of the side information in this paper.

Contextual optimization-based approaches tackle the data-
driven control problem via surrogate optimization and skip
the system identification step [8], [9]. These approaches it-
eratively minimize the one-step cost function in a black-box
manner using the data. C2Opt [8] exploits the structure in
the given problem and utilizes side information (for example,
smoothness) and convex optimization to solve this problem. It
overcomes the drawbacks of the traditional Gaussian process-
based approaches [9], namely high computational costs, ex-
pensive hyperparameter tuning, and inability to incorporate
side information. Unlike DaTaControl, C2Opt considers
limited forms of side information and relies on the knowledge
of the gradient of the one-step cost, that may not be accessible.

Recent work [7], [14]–[18] have proposed data-driven con-
trol techniques for unknown dynamical systems that bypass
the system identification step. These techniques mostly assume
linear time-invariant dynamical systems and are extremely
performant in such a setting. In contrast, the approach in
this paper works with general unknown nonlinear dynamical
systems and can incorporate side information on the under-
lying dynamics. Besides, on a linear version of the aircraft
dynamics, we provide a comparison with DeePC [7], which
is a traditional baseline using the same behavioral systems
theory foundation [19] as the approaches in [14]–[18]. We
show that DaTaControl is two orders of magnitude faster
than DeePC while being more accurate with a low amount of
data and as accurate with a high amount of data.

The authors of [20]–[22] have considered the problem of
data-driven estimation of the reachable sets of partially un-
known dynamical systems. The approaches in these work rely
on system identification using either supervised learning algo-
rithms [22] or Gaussian process-based algorithms [20], [21].
Such approaches are unable to take advantage of the side in-
formation, require significantly more data than DaTaReach,
and provide only probabilistic guarantees of the correctness of
the computed reachable sets. Instead, DaTaReach provides
correct over-approximations of the reachable set at the expense
of sometimes being conservative.

II. PRELIMINARIES

We denote an interval by [a, b] = {x ∈ R|a ≤ x ≤ b} for
some a, b ∈ R such that a ≤ b, the set {i, . . . , j} by N[i,j] for
i, j ∈ N with i ≤ j , the 2-norm by || · ||2, the kth component
of a vector x and the (k, j) component of a matrix X by
(x)k and (X)k,j , respectively, and the Lipschitz constant of
f : X → R by Lf = sup{L ∈ R | |f(x) − f(y)| ≤ L‖x −
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y‖2, x, y ∈ X , x 6= y} for X ⊆ Rn. A function f ∈ C k(X ),
referred as f is Ck, with k ≥ 0 if f is continuous on X ⊆ Rn
and all the partial derivatives of order 1, . . . , k exist and are
continuous on X , and f is piecewise-C k with k ≥ 0 if there
exists a partition of X such that f is C k on each set in the
partition. Comparisons (e.g., ≥) between matrices or vectors
are conducted elementwise.

A. Interval Analysis

We denote the set of intervals on R by IR = {A =
[A,A] | A,A ∈ R,A ≤ A}, the set of n-dimensional interval
vectors by IRn, and the set of n × m-dimensional interval
matrices by IRn×m. We carry forward the definitions [23]
of arithmetic operations, set inclusion, and intersections of
intervals to interval vectors and matrices by applying them
componentwise. We denote the absolute value of an interval
A by |A| = max{|A|, |A|}, the infinity norm of A ∈ IRn
by ‖A‖∞ = supi∈N[1,n]

|(A)i|, the Cartesian product between
intervals by ⊗, i.e., A⊗B = [[A,A], [B,B]] ∈ IR2 for any two
intervals A,B ∈ IR. We define An as the Cartesian product
of any interval A ∈ IR with itself n times. We use the term
interval to specify an interval vector or interval matrix when
it is clear from the context.

Given f : X 7→ Y with X ⊆ Rn and Y ⊆ Rm (or Y ⊆
Rn×m), we define an interval extension of f as an interval-
valued function f : IRn 7→ IRn such that

f(A) ⊇ R(f,A) = {f(x) | x ∈ A}, ∀A ⊆ X . (1)

Thus, given an interval A, f(A) is an interval that over-
approximates the range of values taken by f over A. We
denote interval-valued vector functions via bold lowercase and
interval-valued matrix functions via bold uppercase symbols.

Example 1 (INTERVAL EXTENSION OF 2−NORM). Consider
f = || · ||2. We compute its interval extension f via interval
extensions of α =

√
· and β = (·)2. For any A = [A,A] ∈ IR,

α(A) = [
√
A,
√
A], if A ≥ 0, (2)

β(A) =

{
[0,max{A2,A2}], if 0 ∈ A
[min{A2,A2},max{A2,A2}], otherwise.

(3)

Using (2) and (3) with interval arithmetic, we have, for any
S = [S1, . . . ,Sn] ∈ IRn, f(S) = α (

∑n
i=1 β(Si)).

B. Over-Approximations of the Reachable Set

Consider a nonlinear dynamical system,

ẋ = h(x, u), (4)

where the state x : R+ 7→ X is a continuous-time signal
evolving in X ∈ IRn, the control u ∈ U is a signal of time
evolving in the control set U ∈ IRm with U = {v : R+ 7→
U | v is piecewise-CDu} for Du ≥ 0, and the function h :
X × U 7→ Y is CDh for some Dh ≥ 1 and Y ⊆ Rn.

Definition 1 (TRAJECTORY OF THE SYSTEM). Given an
initial state xi = x(ti) at time ti and a control signal
u ∈ U, a trajectory of (4) is a continuous function of time
x(·;xi, u) : [ti,∞[7→ X that satisfies (4).

We are interested in the set of states reachable by trajectories
of the system when the initial state and the control signal are
uncertain quantities. We call such a set the reachable set of
the system, and we define it as follows.

Definition 2 (REACHABLE SET). Given a set Ii ⊆ X of states
at time ti and a set V ⊆ U of control signals, the reachable
set of the dynamics (4) at time t ≥ ti is given by R(t, Ii,V) =
{z ∈ X | ∃xi ∈ Ii, ∃v ∈ V, z = x(t;xi, v)}.

Given a set V ⊆ U and a set I0 ⊆ X of states at time
t0, we compute over-approximations of R(t, I0,V) at time
t ≥ t0 using interval Taylor-based methods [3], [23], [24].
Specifically, we consider a time grid t0 < · · · < tN such
that for all v ∈ V, v is CDu on each interval [ti, ti+1[. We
want to compute sets R+

i ∈ IRn (with R+
0 = I0) such

that for all i ∈ N[0,N−1], Ri+1 = R(ti+1,Ri,V) ⊆ R+
i+1.

First, interval arithmetic enables to inductively define h[d], the
interval extensions of the Taylor coefficients h[d] given by

h[1] = h, h[d+1] =
1

d+ 1

(∂h[d]

∂x
h+

d−1∑
l=0

∂h[d]

∂u(l)
u(l+1)

)
, (5)

where u(l) is the lth derivative of u and h[d] is a function of
higher order derivatives of h. Next, we start with R+

0 = I0,
and compute the over-approximations {R+

i }Ni=1 iteratively as

R+
i+1 = R+

i +
∑D−1

d=1

(
ti+1 − ti

)d(
h[d](R+

i ,v)
)
(ti)

+
(
ti+1 − ti

)D(
h[D](Si,v)

)
([ti, ti+1]), (6)

where D ≤ min(Du+1, Dh) is the order of the Taylor expan-
sion, we denote v(0)(A) by v(A) and the intervals v(d)(A)
for all d ∈ N[0,Du] are such that ∪v∈VR(v(d),A) ⊆ v(d)(A)
with A ⊆ R+. In other words, the interval v(d)(A) over-
approximates the range of the dth derivative of all functions
v ∈ V on the interval A. Note that v(d)(A) is used in the
computation of h[p] (5) for all p ∈ N[d+1,D] with A = ti and
A = [ti, ti+1]. Here, the set Si ⊆ X is an a priori rough
enclosure of R(·,R+

i ,V) on [ti, ti+1] and is a solution of

R+
i + [0, ti+1 − ti] R(h,Si × v([ti, ti+1])) ⊆ Si. (7)

Since it is a hard problem to compute exactly the range
R(h,Si×v([ti, ti+1]), we instead compute the a priori rough
enclosure Si recursively by solving

R+
i + [0, ti+1 − ti] h(Si,v([ti, ti+1])) ⊆ Si, (8)

where h is an interval extension of the known function h. Note
that a solution Si of (8) is also a solution of (7) by definition
of the interval extension h. The existence of the a priori rough
enclosure Si is guaranteed for a sufficiently small time step
size ti+1− ti. Hence, picking adequately the time step size is
primordial in order to find Si in a finite number of iterations
when solving the fixed-point equation (8).

C. One-Step Optimal Control

Constrained receding-horizon control [5] is a form of con-
strained control in which, at each sampling time, we obtain
the current control input by solving a finite-horizon open-
loop optimal control problem, using the current state of the
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system as the initial state. Consider a system with dynamics
in the form (4), the desired behavior of the system is generally
encoded as a one-step cost function c : X × U × X → R
that assigns preferences over the tuple of the current state,
the current control input, and the corresponding state at the
next time step. Given a constant time step size ∆t ≥ 0, we
define the next state xp+1 = x(tp+1;xp, up) as the value of
the trajectory of the system at time tp+1 = tp + ∆t, given
the initial state xp ∈ X at time tp and the constant control
signal up ∈ U . Therefore, the finite horizon open-loop optimal
control problem at a state xi ∈ X at time ti is given by

minimize
ui,...,ui+N−1∈U

∑i+N−1

p=i
c(xp, up, xp+1), (9)

where N ≥ 1 is the planning horizon of the control problem.
Note that even if the cost function c is convex, the optimization
problem (9) is generally nonconvex since the next state xp+1

is possibly highly nonlinear in the control variable up due to
the nonlinear dynamics function h.

In the setting where the dynamics of the system are un-
known, we cannot compute its trajectories, and c(xp, up, xp+1)
is therefore unknown. Hence, the optimization problem (9)
is similar to the problem of optimizing an a priori unknown
function. In such a setting, the inability to accurately predict
the next states of the system motivates using the short planning
horizon N = 1. Thus, at each time ti, we solve the one-step
optimal control problem [8], [25], [26] given by

minimize
ui∈U

c(xi, ui, xi+1), (10)

where xi is the state of the system at ti, xi+1 is the unknown
next state at time ti+1 = ti + ∆t, and ∆t is the constant time
step size. The reduction to a one-step optimal control problem
greatly improves the tractability of the problem of controlling
the unknown dynamical system [25].

III. PROBLEM STATEMENT

In this paper, we consider control-affine nonlinear systems,

ẋ = f(x) +G(x)u, (11)

where f : X 7→ Rn and G : X 7→ Rn×m are unknown vector-
valued and matrix-valued functions, respectively, for X ∈ IRn.
Note that even though we consider control-affine dynamics, in
the general case, we can construct a control-affine model of
the system locally and apply the results of the paper.

Assumption 1 (LIPSCHITZ SYSTEM). f and G are locally
Lipschitz-continuous functions. That is, each component of f
and G has a finite Lipschitz constant on each subset of Rn.

Assumption 1 is common in the frameworks of reachability
analysis and receding-horizon control. Since the domain X ∈
IRn is bounded, f and G are globally Lipschitz-continuous
on X . We exploit such global Lipschitz continuity on X by
assuming known upper bounds on the Lipschitz constants.
That is, we have access to Lf ∈ Rn+ and LG ∈ Rn×m+ with
(Lf )k = Lfk and (LG)k,l = LGk,l

as known upper bounds on
the Lipschitz constants of (f)k and (G)k,l for all k ∈ N[1,n]

and l ∈ N[1,m]. We emphasize that the Lipschitz bounds can

be directly estimated from data at the expense of weakening
some of the guarantees in this paper.

Let N ∈ N, N ≥ 1. Let TN = {(x̃i, ˜̇xi, ui)}Ni=1 denote
a single finite-horizon trajectory containing N noisy samples
of the exact state xi = x(ti), the derivative ẋi = ẋ(ti) of
the state, and the control signal ui = u(ti) from a trajectory
of the system. We build on the widely-used bounded noise
assumption and consider that the following bounds hold:

|x(t)− x̃(t)| ≤ η, |ẋ(t)− ˜̇x(t)| ≤ η̄, (12)

for all t ∈ R+ and for some vector values η, η̄ ∈ Rn+. Here the
absolute value and the comparison are conducted elementwise.

Given the current noisy measurements of the state x̃N+1 =
x̃(tN+1) and the trajectory TN , we first seek to over-
approximate the reachable set of the system.

Problem 1 (REACHABLE SET OVER-APPROXIMATION).
Given a set V ⊆ U of admissible control signals, a time step
size ∆t > 0, and a maximum number T > N of time steps,
compute an over-approximation of the reachable set at time
ti = tN + (i−N)∆t for all i ∈ N[N+1,T ].

Next, we seek to control the system by computing approx-
imate solutions to the one-step optimal control problem (10).

Problem 2 (APPROXIMATE ONE-STEP OPTIMAL CONTROL).
Given a single finite-horizon trajectory Ti−1 for some i ∈
N, i > N , the current measurement x̃i at time ti, compute, at
sampling time ti, approximate solutions of the one-step opti-
mal control problem (10) and characterize the suboptimality
of such solutions with respect to the solutions of the optimal
control problem if the dynamics were known.

Example 2 (UNICYCLE SYSTEM). Consider, as a running
example, the unicycle system with dynamics given by

ṗx = v cos(θ), ṗy = v sin(θ), θ̇ = ω, (13)

where the components of the state x = [px, py, θ] represent,
respectively, the position in the x plane, the y plane, and the
heading of the unicycle. The components of the control u =
[v, ω] represent the speed and the turning rate, respectively.
We consider the constraint set U = [−3, 3] × [−π, π]. In the
control-affine form (11), we have f = 0, (G)1,1 = cos(θ),
(G)2,1 = sin(θ), (G)3,2 = 1, and (G)k,l = 0 otherwise. We
assume the dynamics (13) are unknown and are given the loose
Lipschitz bounds Lf = [0.01, 0.01, 0.01], LG1,1 = LG2,1 =
1.1, LG3,2 = 0.1, and LGk,l

= 0 otherwise. These bounds
encode the knowledge about the influence of the current state
and control signals on the unicycle dynamics. For example,
since px and py are unchanged when no velocity is applied,
we can deduce that (G)1,2 = (G)2,2 = 0 and therefore LG1,2

and LG2,2 . The same reasoning allows to say that f = 0,
but we do not use such knowledge. Furthermore, we consider
the knowledge that the vector field does not depend on its
positions. That is, f(x) = f(θ) and G(x) = G(θ).

IV. OVER-APPROXIMATIONS OF THE REACHABLE SET OF
UNKNOWN DYNAMICAL SYSTEMS

We develop DaTaReach to address Problem 1. It con-
structs a differential inclusion that contains the unknown vec-
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tor field. Then, it utilizes the interval Taylor-based method to
over-approximate the reachable set of dynamics described by
the constructed differential inclusion. We also provide a bound
on the time step size that guarantees that an a priori rough
enclosure exists. Henceforth, the bound enables to ensure the
correctness and termination of DaTaReach.

A. Differential Inclusion based on Lipschitz Continuity

First, to aid the construction of the differential inclusion,
we over-approximate f and G at each data point of TN .

Lemma 1 (CONTRACTION VIA DATA). Given a data point
(x̃i, ˜̇xi, ui), an interval Fi ∈ IRn such that f(x̃i) ∈ Fi, and
an interval Gi ∈ IRn×m such that G(x̃i) ∈ Gi, the intervals
CFi

and CGi , defined sequentially for l = 1, . . . ,m by

(CFi
)k = (Fi)k ∩ ([˜̇xi − η̄, ˜̇xi + η̄]− Giui)k,

(s0)k = ([˜̇xi − η̄, ˜̇xi + η̄]− CFi)k ∩ (Giui)k,

(CGi)k,l =


(
((sl−1)k −

∑
p>l(Gi)k,p(ui)p) ∩ ((Gi)k,luli)

)
1
ul
i

,

if uli = (ui)l 6= 0

(Gi)k,l, otherwise,

(sl)k =
(
(sl−1)k − (CGi)k,l(ui)l

)
∩
(∑
p>l

(Gi)k,p(ui)p
)
,

(14)
for all k ∈ N[1,n], are the smallest intervals enclosing f(x̃i)
and G(x̃i), respectively, given only the data point, Fi, and Gi.

The proof for Lemma 1 is derived exactly as in our previous
work [10] for noiseless data, where we replace the unknown
exact derivative ẋi with the uncertain quantities ˜̇xi + [−η̄, η̄]
and propagate the result with interval arithmetic. Intuitively,
we use the constraint ˙̃xi = f(x̃i)+G(x̃i)ui, where | ˙̃xi− ˜̇xi| ≤
η̄, to remove from Fi and Gi some values of f(x̃i) and G(x̃i)
that do not satisfy the constraint. Note that, in practise, | ˙̃xi −
˜̇xi| ≤ η̄ holds since measurements of the state derivative are
usually obtained from derivatives of the noisy measurements
of the state x̃i. We also provide an illustration of Lemma 1 in
Appendix A for the unicycle system.

Next, we provide functions to globally over-approximate f
and G, via uncertain knowledge of f and G at the data points.

Lemma 2 (OVER-APPROXIMATION OF f AND G). Given a
set EN = {(x̃i, CFi

, CGi) | f(x̃i) ∈ CFi
, G(x̃i) ∈ CGi}Ni=0

and the bounds Lf and LG, the functions f : X → IRn and
G : X → IRn×m, given for all k ∈ N[1,n] and l ∈ N[1,m] by

(f(x))k =
⋂

(x̃i,CFi
,·)∈EN

(CFi)k + Lfk‖x− x̃i‖2[−1, 1],

(G(x))k,l =
⋂

(x̃i,·,CGi )∈EN

(CGi)k,l + LGk,l
‖x− x̃i‖2[−1, 1],

(15)
are such that f(x) ∈ f(x) and G(x) ∈ G(x) for all x ∈ X .

We provide a proof for Lemma 2 in our previous work [10],
where we use interval arithmetic with the definition of the
upper bounds on the Lipschitz constants to over-approximate
the unknown functions f and G. Note that interval extensions
of f and G can be obtained by replacing occurences of ‖ · ‖2

Algorithm 1 Optimal over-approximation of the values of f
and G at each data point of a finite-horizon trajectory.
Input: Single trajectory TN , sufficiently large M > 0, upper

bounds on the Lipschitz constants, noise bound η̄.
Output: EN = {(x̃i, CFi

, CGi)|f(x̃i) ∈ CFi
, G(x̃i) ∈ CGi}Ni=0

1: A ← X , RfA ← [−M,M ]n, RGA ← [−M,M ]n×m

2: Define x̃0 ∈ A, CF0
← RfA , and CG0 ← RGA

3: for i ∈ N[1,N ] ∧ (x̃i, ˜̇xi, ui) ∈ TN do
4: Compute Fi = f(x̃i),Gi = G(x̃i) via (15) and Ei−1

5: Compute CFi
, CGi via (14), Fi,Gi, and (x̃i, ˜̇xi, ui)

6: end for
7: do
8: Execute lines 3–6 with EN instead of Ei−1 on line 4
9: while EN is not invariant

10: return EN

with its interval extension given in Example 1. In the rest of
the paper, when the input of f and G are intervals, we use
such interval extensions.

Finally, we develop Algorithm 1 that utilizes the trajectory
TN to compute the set EN required in Lemma 2 to over-
approximate f and G. Then, we construct a differential
inclusion containing the unknown vector field.

Theorem 1 (DIFFERENTIAL INCLUSION). Given a trajectory
TN , the bounds Lf and LG, and the noise bound η̄, the
dynamics (11) are contained in the differential inclusion

ẋ ∈ f(x) +G(x)u, (16)

where the functions f : X → IRn and G : X → IRn×m are
obtained by (15) with EN being the output of Algorithm 1.

A proof of Theorem 1 is provided in our previous work [10],
where we show that the output EN of Algorithm 1 is such that
for all (x̃i, CFi

, CGi) ∈ EN , f(x̃i) ∈ CFi
and G(x̃i) ∈ CGi .

Therefore, Lemma 2 enables to conclude.
Figure 2 shows that the differential inclusion holds on the

unicycle system using a randomly generated trajectory T15.

0 0.5 1 1.5 2 2.5 3 3.5 4

-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4

Time (s)

ṗ
x

f(x) +G(x)u f(x) +G(x)u T15

Fig. 2. Time evolution of ṗx and its over-approximation (f(x) + G(x)u)1
for the unicycle system of Example 2 in a noiseless setting. We generate
the trajectory corresponding to ẋ(t) using a randomly generated piecewise-
constant input u(t) ∈ U for t ≤ t15 = 1.5s, and u(t) = [1, cos(6(t−t15))]
for t ∈ [t15, 4].

Remark 1 (PERSISTENT EXCITATION). The quality of the
differential inclusion of Theorem 1 depends on how much
information on f and G can be obtained from TN . Thus,
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if the trajectory is not diverse, it is likely impossible to obtain
tight differential inclusions. For example, consider one of the
corner cases where ui = 0 for every data point in TN .
In this case, it is impossible to retrieve any information on
G. When the goal is to control the system, control values
can be synthesized to diversify the trajectory and obtain tight
differential inclusions that help future control decisions. For
example, excitation-based control (i.e., control inputs that are
either zero or nonzero only on a single axis) can be performed
to learn the dynamics.

B. Bound on the Time Step Size for the Existence of an a
Priori Rough Enclosure

In this section, we consider the problem of finding an a
priori rough enclosure Si solution of the fixed-point equation

R+
i + [0,∆t] R(h,Si × v([ti, ti + ∆t])) ⊆ Si, (17)

where R(·, ·) defined in (1) represents the range of a function
over an interval domain, R+

i ∈ IRn is the set of states at
time ti ≥ 0, ∆t > 0 is the time step size, v([ti, ti + ∆t]) ∈
IRm over-approximates the range of all u ∈ V on the interval
[ti, ti + ∆t] for a given set V ⊆ U, and the unknown function
h is given by h(x, u) = f(x) + G(x)u for x ∈ X , u ∈ U .
Specifically, we give a bound on the time step size ∆t such
that Si exists and provide an analytic expression for Si. Recall
that Si and ∆t enable to compute an over-approximation of
the reachable set when using interval Taylor-based methods.

Theorem 2 (EXPLICIT A PRIORI ROUGH ENCLOSURE). As-
sume that the time step size ∆t satisfies

(
√
nβi)∆t < 1, (18)

where βi =

√∑n
k=1

(
Lfk +

∑m
l=1 LGk,l

|(v([ti, ti + ∆t]))l|
)2

.
Then, the set Si given by

Si = R+
i +

∆t‖f(R+
i ) +G(R+

i )v([ti, ti + ∆t])‖∞
1−
√
n∆tβi

[−1, 1]n

(19)

is an a priori rough enclosure solution of the fixed-point
equation (17). The functions f and G in (19) can be any
known interval extensions of the unknown functions f and G.

A proof of Theorem 2 is based on several lemmas and
is provided in Appendix A. Intuitively, we use the bounds
on the Lipschitz constants to provide explicit bounds on the
rate of changes of solutions of the differential equation (11),
which provide intuition on how to pick a set Si. However,
the condition involves βi which is also dependent on ∆t, as
v([ti, ti + ∆t]) depends on ∆t. The following corollary gives
an explicit bound on ∆t based on the constraint set U .

Corollary 1. Under the notation of Theorem 2, assume that

(
√
nβ∞)∆t < 1, (20)

where β∞ =
√∑n

k=1(Lfk +
∑m
l=1 LGk,l

|(U)l|)2. Then, Si
given by (19) is a solution of (17).

Proof. This is immediate by observing that 1
β∞
≤ 1

βi
since

v([ti, ti + ∆t]) ⊆ U . Hence, Theorem 2 applies.

C. Interval Taylor-Based Method for Differential Inclusions

We compute an over-approximation of the reachable set of
the dynamics described by the differential inclusion (16). The
obtained over-approximation is also an over-approximation of
the reachable set of the unknown system. Theorem 3 provides
a closed-form expression for such over-approximating sets.

Theorem 3 (REACHABLE SET OVER-APPROXIMATION).
Given a trajectory TN , a set V ⊆ U of piecewise-CDu control
signals for Du ≥ 1, the bounds Lf and LG, the set R+

i ∈ IRn
of states at time ti, assume that ∆t > 0 satisfies (18).
Then, an over-approximation R+

i+1 of the reachable set at
ti + ∆t of dynamics described by the differential inclusion
ẋ ∈ f(x) +G(x)u with u ∈ V is given by

R+
i+1 = R+

i +
(
f(R+

i ) +G(R+
i )v(ti)

)
∆t

+
(
Jf + JGVi

)(
f(Si) +G(Si)Vi

)∆t2

2

+G(Si)V(1)
i

∆t2

2
,

(21)

where v(ti), Vi = v([ti, ti + ∆t]), and V(1)
i = v(1)([ti, ti +

∆t]) denote the intervals that contain the range of all the con-
trol signals in V and their first derivative on [ti, ti + ∆t] and
at ti. The interval matrices Jf ∈ IRn×n and JG ∈ IRn×m×n
are interval extensions of the Jacobian of f and G, given by

Jf =

 Lf1 [−1, 1] · · · Lf1 [−1, 1]
...

. . .
...

Lfn [−1, 1] · · · Lfn [−1, 1]

 , (22)

JG =

 LG1,1 [−1, 1]
n · · · LG1,m [−1, 1]

n

...
. . .

...
LGn,1

[−1, 1]
n · · · LGn,m

[−1, 1]
n

 , (23)

and the set Si can be either obtained by (19) of Theorem 2
or by solving the fixed-point equation

R+
i + [0,∆t]

(
f(Si) +G(Si)Vi

)
⊆ Si. (24)

For k, p ∈ N[1,n], we define the (k, p) component of JGVi as

(JGVi)k,p =

m∑
l=1

(JG)k,l,p(Vi)l. (25)

A proof of Theorem 3 is provided in our previous work [10],
where we use a Taylor expansion (6) of order D = 2 with
an over-approximation of the unknown Jacobian of f and
G obtained from the Lipschitz bounds. Besides, Theorem 2
ensures the existence of an a priori rough enclosure Si.

Remark 2. Theorem 3 implicitly relies on the knowledge of
the intervals v(ti), v([ti, ti+∆t]), and v(1)([ti, ti+∆t]) given
solely by the definition of the set V. For such intervals to exist,
all the controls u ∈ V must be at least C 1 on the subdomain
[ti, ti + ∆t]. Hence, the assumption that the controls in V
are piecewise-CDu with Du ≥ 1. However, when V is such
that Du = 0, we propose Corollary 2 to over-approximate the
reachable set of the system. We will focus on Theorem 3 in the
remainder of the paper since, in practise, the control signals
of interest are piecewise-constants.
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Algorithm 2 DaTaReach: Over-approximation of the reach-
able set of unknown smooth systems.
Input: Single trajectory TN , upper bounds on the Lipschitz

constants, set V of control signals, time step size ∆t
satisfying (18) or (20), maximum number of time steps
T > N , noise bounds η ≥ 0 and η̄ ≥ 0.
Optional: Any of the side information 1–4.

Output: Over-approximations {R+
i }

T

i=N+1 of the reachable
sets at times ti = tN + (i−N)∆t with i ∈ N[N+1,T ].

1: Define R+
N+1 ← {[x̃N+1 − η, x̃N+1 + η]}

2: for i ∈ N[N+1,T−1] do
3: Compute v(ti), Vi, and V(1)

i in Theorem 3 from V
4: Compute f(R+

i ) and G(R+
i ) via Theorem 1

5: Get tighter f(R+
i ) andG(R+

i ) if any side information
6: Compute Si via (19) or (24), f(R+

i ), and G(R+
i )

7: Compute f(Si) and G(Si) via Theorem 1
8: Get tighter f(Si) and G(Si) if any side information
9: Compute Jf and JG via (22) and (23)

10: Get tighter Jf and JG if any side information
11: Compute R+

i+1 via (21)
12: end for
13: return {R+

i }
T

i=N+1

Corollary 2. Under the notation of Theorem 3, assume that
Du = 0. Then, an over-approximation R+

i+1 of the reachable
set of the dynamics described by the differential inclusion ẋ ∈
f(x) +G(x)u with u ∈ V is given by

R+
i+1 = R+

i +
(
f(Si) +G(Si)Vi

)
∆t.

D. Side Information

As motivated in the introduction, prior knowledge on the
underlying unknown dynamics might be available. However,
Theorem 3, as it is, does not incorporate any side information.
We now show how to incorporate a variety of side information
to obtain tighter over-approximations of the reachable sets.

Side information 1 (VECTOR FIELD BOUNDS). We are given
RfA ∈ IRn and RGA ∈ IRn×m as supersets of the range of
f and G, respectively, over a given set A ⊆ X .

Given a set S ⊆ A, tight extensions of f and G over S
can be obtained by the update f(S) ← f(S) ∩ RfA and
G(S)← G(S) ∩RGA .

Side information 2 (GRADIENT BOUNDS). We are given
bounds on the gradient of some components of f and G. Such
side information may include the monotonicity of f and G.

These bounds can be used in equations (22) and (23) to
provide tight interval extensions Jf and JG. For example, if
the function (f)k is known to be non-decreasing with respect
to the variable xp on a set A ⊆ X , then we obtain a tighter
R+
i+1 by the update (Jf )k,p ← (Jf )k,p ∩ R+ if Si ⊆ A.
This side information expresses properties such as decou-

pling between states. For example, if the state (x(t))p does not
directly affect (ẋ(t))k for some p, k ∈ N[1,n] under any control
signal in U , we can obtain a tighter over-approximation of
the reachable set by setting to zero the intervals (Jf )k,p

-2.30 -2.25 -2.20 -2.15 -2.10 -2.05 -2.00 -1.95

−4

−3

−2

px

p
y

DaTaReach (a) DaTaReach (b) T15

DaTaReach (c) Reachable set

Fig. 3. Over-approximation of the reachable set of the unicycle system in
the x-y plane. The trajectory T15 comes from a noise-free trajectory of the
system obtained by a randomly generated piecewise-constant control signal
u(t) ∈ U for t ≤ t15 = 1.5s. The parameters for DaTaReach were given
by ∆t = 0.02, T = 200, and V = {t 7→ [1+a1, cos(6(t−t15))+a2]|a1 ∈
[−0.1, 0.1], a2 ∈ [−0.01, 0.01]}. The case (a) ignores the side information
f(x) = f(θ), case (b) is exactly the setting of Example 2, and case (c)
assumes the extra knowledge that f = 0 and (G)3,2 = 1.

and (JG)k,l,p for all l ∈ N[1,m]. For the unicycle system of
Example 2, since f and G depends only on the heading θ, the
Jacobian terms (Jf )1,1, (Jf )1,2, (Jf )2,1, (Jf )2,2, (Jf )3,1,
(Jf )3,2, (JG)1,1,1, (JG)1,1,2, (JG)2,1,1, (JG)2,1,2, (JG)3,2,1,
and (JG)3,2,2 must all be set to zero.

Side information 3 (ALGEBRAIC CONSTRAINTS). We are
given a differentiable map g : Rn 7→ Rq satisfying the
constraint g(x) ≥ 0 over the state x of the unknown system.

Without loss of generality, we consider that g : Rn 7→ R.
This side information provides bounds on f , G, Jf , and JG
locally. Specifically, if we derivate the function t 7→ g(x(t)),
then we obtain a new constraint w : Rn×Rn×m×Rm×Rn 7→
R such that w(f(x), G(x), u, x) ≥ 0. If we compute the partial
derivatives of w with respect to all the states xi, then we obtain
a new constraint z : Rn×n×Rn×m×n×Rm×Rn 7→ Rn such
that z(∂f∂x (x), ∂G∂x (x), u, x) ≥ 0. The obtained constraints w
and z can be incorporated in the computation ofR+

i+1 through
the framework of contractors [27], [28]. Specifically, given
a set A of states, a set V of control values, and the over-
approximating sets f(A), G(A), Jf , and JG, the methods
based on contractor programming [27] compute the intervals
Cf(A) ⊆ f(A), CG(A) ⊆ G(A), CJf

⊆ Jf , and CJG
⊆ JG.

These intervals are such that for all fx ∈ f(A)\Cf(A), Gx ∈
f(A)\CG(A), pf ∈ Jf \CJf

, and pG ∈ JG\CJG
, there does

not exist x ∈ A and u ∈ V such that w(fx, Gx, u, x) ≥ 0 and
z(pf , pG, u, x) ≥ 0. In other words, it contracts f(A), G(A),
Jf , and JG by pruning out some values that do not satisfy the
constraints imposed by w and z. In the computation of R+

i+1,
the set A is either R+

i or Si, and the set V is Vi.

Side information 4 (PARTIAL DYNAMICS KNOWLEDGE). We
are given terms of some components of the vector field of (11).
That is, we consider that the dynamics are in the form

ẋ = fkn(x) + fukn(x) + (Gkn(x) +Gukn(x))u,

where the functions fkn and Gkn are known while fukn and
Gukn are unknown. Such side information is usually obtained



8

from the application of elementary laws of physics.
The new functions f and G are given by f = fkn + fukn

and G = Gkn + Gukn, where the functions fkn and fukn
are interval extensions of known functions fkn and Gkn,
respectively, and the functions fukn and Gukn are obtained
by Theorem 1 using Lfukn

, LGukn
, and the new trajectory

T
′

N = {(xi, ẋi − (fkn(xi) + Gkn(xi)ui), ui) | (xi, ẋi, ui) ∈
TN}. Furthermore, the new Jacobian terms in the compu-
tation of R+

i+1 are given by Jf = ∂fkn

∂x
(Si) + Jfukn and

(JG)k,l,p =
∂(Gkn)k,l

∂xp
(Si) + (JGukn)k,l,p, respectively.

DaTaReach (Algorithm 2) addresses Problem 1 by com-
bining Theorem 3 and the available side information. We
demonstrate the value of additional side information on the
unicycle system. Figure 3 shows that, as expected, the over-
approximation becomes tighter with richer side information.

V. CONTROL SYNTHESIS FOR UNKNOWN DYNAMICS

We develop DaTaControl to address Problem 2. It com-
putes approximate solutions to the one-step optimal control
problem (10) using the over-approximation of the reachable
set. Specifically, it replaces the unknown next state xi+1

in problem (10) with the corresponding over-approximation
of the reachable set R+

i+1, which may be computed using
Theorem 3. Unfortunately, R+

i+1 is a nonconvex function
of the control signal u, the decision variable. Therefore, it
constructs an over-approximation of R+

i+1, in Theorem 4, that
is convex in the given constant control signal u applied in the
time interval [ti, ti+1]. The new over-approximation provides
tractable approximations of the optimization problem (10).

A. Approximate One-Step Optimal Control

First, Theorem 4 provides a control-affine linearization of
the over-approximation R+

i+1 given by Theorem 3.

Theorem 4. Under the notation of Theorem 3 and given a
constant control signal u : t 7→ ui applied between ti and
ti+1 = ti + ∆t with ui ∈ U , the reachable set Ri+1 satisfies

Ri+1 ⊆
(
Bi +A+

i ui
)
∩
(
Bi +A−i ui

)
, (26)

where the intervals A−i , A+
i , and Bi are given by

A−i = G(R+
i )∆t+

(
JfG(Si) + J T

G (f(Si) +G(Si)U)
)∆t2

2
,

A+
i = G(R+

i )∆t+
(
(Jf + JGU)G(Si) + J T

G f(Si)
)∆t2

2
,

Bi = R+
i + f(R+

i )∆t+ Jff(Si)
∆t2

2
,

(27)
where (J T

G)k,p,l = (JG)k,l,p for k, p ∈ N[1,n] and l ∈ N[1,m],
and the a priori rough enclosure Si is either obtained by (19)
with v([ti, ti+1]) replaced by U or is a solution of

R+
i + [0,∆t]

(
f(Si) +G(Si)U

)
⊆ Si. (28)

A proof of Theorem 4 is provided in our previous work [10],
where we linearize the quadratic term in u of the closed-
form expression (21). Such linearization enables to have

a control-affine over-approximation at time ti + ∆t. Intu-
itively, the linearization comes from over-approximating the
quadratic term (JGui)(G(Si)ui) of Theorem 3 by linear
terms (JGU)(G(Si)ui) and (JGui)(G(Si)U). Thus, we ob-
tain two different over-approximations characterized by A+

and A−, which are finally intersected to provide a tighter set.
Next, we use the control-affine linearization of Theorem 4

to propose two convex optimization problems which solutions
approximate the one-step optimal control problem (10). The
first problem, called optimistic control problem, is given by

minimize
ui∈U

inf
xi+1∈X ,

xi+1∈(Bi+A+
i ui)∩(Bi+A−i ui)

c(x̃i, ui, xi+1), (29)

where the goal is to minimize the best possible cost value
over all possible state xi+1 in the over-approximation (26).
The second problem, called idealistic control problem, is an
idealistic approximation of (10) given by

minimize
ui∈U

c(x̃i, ui, b
ide
i +Aide

i ui), (30)

where the goal is to minimize the cost associated to a specific
trajectory xi+1 = bide

i +Aide
i ui in the over-approximation (11),

idealistically considered as the unknown next state evolution.
Specifically, we choose xi+1 according to the middle point
between a point x+

i+1 ∈ Bi +A+
i ui and a point x−i+1 ∈ Bi +

A−i ui. More specifically, given weights w+, w− ∈ [0, 1], we
pick bide

i and Aide
i as follows

bide
i =

1

2

(
w+Bi + (1− w+)Bi + w−Bi + (1− w−)Bi

)
,

Aide
i =

1

2

(
w+A+

i + (1− w+)A+
i + w−A−i + (1− w−)A−i

)
.

(31)

Remark 3. Another possible approximation of the one-step
optimal control problem (10) is a pessimistic control problem
where, in contrast to the optimistic control problem, the goal
is to minimize the worst possible one-step cost value over all
possible state xi+1 in the over-approximation of the reachable
set. Such a pessimistic control problem can be formulated as
a semidefinite program using tools from robust optimization.

Finally, we provide, in Theorem 5, bounds on the subopti-
mality of the optimistic and idealistic control with respect to
the optimal control when the cost function c is quadratic.

Assumption 2 (QUADRATIC ONE-STEP COST). We consider
that the one-step cost function c is a convex quadratic function,

c(x, u, y) =

[
y
u

]T [
Q S
ST R

] [
y
u

]
+

[
q
r

]T [
y
u

]
, (32)

where q ∈ Rn, r ∈ Rm, Q = QT ∈ Rn×n, R = RT ∈ Rm×m,
and S ∈ Rn×m.

Theorem 5 (SUBOPTIMALITY BOUND). Let c?i , copt
i , and

cide
i be the optimal cost of the one-step optimal control

problem (10), the optimistic control problem (29), and the
idealistic control problem (30), respectively, at the sampling
time ti. The following inequality holds

|c?i − ci| ≤ max
(
‖w(Bi) + w(A+

i )|U|‖2K(A+
i ),

‖w(Bi) + w(A−i )|U|‖2K(A−i )
)
,

(33)
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Algorithm 3 DaTaControl: Approximate one-step optimal
control solution at ti ≥ tN
Input: Single trajectory Ti−1 of length i > N , ime step size

∆t satisfying (20), Lipschitz bounds, noise bounds η ≥ 0
and η̄ ≥ 0, one-step cost c, current state x̃i = x̃(ti).
Optional: Any of the side information 1–4.

Output: Constant control ûi ∈ U to apply between ti and
ti + ∆t that approximates a solution of (10).

1: Define R+
i ← {[x̃i − η, x̃i + η]}

2: Compute f(R+
i ) and G(R+

i ) via Theorem 1
3: Get tighter f(R+

i ) and G(R+
i ) if any side information

4: Compute Si via (19) or (28), f(R+
i ), and G(R+

i )
5: Compute f(Si) and G(Si) via Theorem 1
6: Get tighter f(Si) and G(Si) if any side information
7: Compute Jf and JG via (22) and (23)
8: Get tighter Jf and JG if any side information
9: Compute Bi, A+

i , and A−i via (27)
10: Compute ûi as the solution of either (29) or (30)
11: return ûi

where ci is either copt
i or cide

i , w(A) = A−A is the width of
an interval A, and K(A), for any A ∈ IRn×m, is given by

K(A) = min
(
‖2|SU|+ q + 2|Q(Bi +AU)|‖2,
‖2|SU|+ q + 2|QX|‖2

)
.

We provide a proof for Theorem 5 in our previous work [10]
where we use the local Lipschitz property of the cost function
c to characterize its variations over the over-approximation
set (26).

Remark 4. The main term of the suboptimality bound in
Theorem 5 is directly related to the width of the over-
approximation of the reachable set at time ti + ∆t. Thus, as
the over-approximation of the reachable set becomes tighter,
the gap with the unknown optimal cost decreases. Specifically,
it is straightforward to see that the more data and richer side
information are used in the computation of Bi, A+

i , and A−i ,
the tighter the widths w(Bi), w(A+

i ), and w(A−i ) become.

B. Real-Time Approximate Control Synthesis

In this section, we investigate efficient algorithms to com-
pute solutions of the optimistic control problem (29) and
the idealistic control problem (30) when the one-step cost
function c satisfies Assumption 2. We provide a bound on the
number of elementary operations required by DaTaControl
to synthesize near-optimal control values. Such a bound makes
DaTaControl a good candidate for real-time control of
systems with a priori unknown dynamics.

Lemma 3 (APPROXIMATE QUADRATIC PROBLEMS). Without
loss of generality, consider that either (U)l ≥ 0 or (U)l ≤ 0
for a given l ∈ N[1,m]. The optimistic control problem (29)
can be reformulated as the quadratic programming problem

minimize
ui∈U,xi+1∈X

c(xi, ui, xi+1), (34a)

subject to Bi +Al+
i ui ≤ xi+1 ≤ Bi +As+

i ui, (34b)

Bi +Al−
i ui ≤ xi+1 ≤ Bi +As−

i ui, (34c)

and the idealistic control problem (30) as the convex, box-
constrained quadratic programming problem

minimize
ui∈U

1

2
uT
i Qiui + qT

i ui + pi, (35)

where Qi, pi, and qi are given by

Qi = 2(Aide
i )TQAide

i + 4(Aide
i )TS + 2R, (36)

qi = 2
(
S +QAide

i

)T
bide
i + (Aide

i )Tq + r, (37)

pi = (bide
i )TQbide

i + qTbide
i , (38)

the matrices Al+
i and As+

i are such that, for all k ∈ N[1,n]

and l ∈ N[1,m], if (U)l ≥ 0, then (As+
i )k,l = (A+

i )k,l

and (Al+
i )k,l = (A+

i )k,l, otherwise (Al+
i )k,l = (A+

i )k,l and
(As+

i )k,l = (A+
i )k,l, and the matrices Al−

i and As−
i are

obtained in a similar manner with A+
i replaced by A−i .

We provide a proof of Lemma 4 in Appendix A, where
interval arithmetic and elementary algebra provide (34), (35).

Remark 5. Lemma 3 assumes that the components of U are
either nonnengative or nonpositive in order to simplify the
notation and provide a simple expression for the optimistic
control problem. In the general case, U can be partitioned
into subsets where each component is either nonnegative or
nonpositive. Then, we solve the optimistic control problem
on each partition and return the control value from the
partition with the minimum cost. It is important to note
that the idealistic control problem (35) does not require any
partitioning of U and can therefore be solved as a one-shot
quadratic problem. Besides, if mi ≤ m is the number of
components of U having an indefinite sign, then solving the
optimistic control problem (29) requires to solve 2mi quadratic
programming problems similar to (34). As a consequence, the
number of problems drastically reduces when the intervals
(U)l are known to be nonnegative or nonpositive a priori.

We seek for algorithms to compute solutions of (34)
and (35) while providing bounds on the number of elementary
operations to obtain such solutions. The number of elementary
operations, referred as flops, is obtained by counting the
number of operations +,−, ∗, /, max, min, and

√
(·) executed

by the algorithms. When the cost function c is assumed to
be strongly convex, i.e., either Q is positive definite or R is
positive definite, the authors of [29] develop an algorithm [29,
Algorithm 1] based on applying the fast gradient-projection
method on the dual of the optimization problem. The algo-
rithm can be directly used to solve both the optimistic and
idealistic control problem. The rate of convergence of such
an algorithm is proportional to 1/

√
ε, where ε is the desired

accuracy for optimality. Furthermore, the authors provide a
maximum number of flops, cubic polynomial in both n and
m, required by the algorithm to terminate. We consider the
general case where c might not be strongly convex and develop
an algorithm inspired from [30] to solve the idealistic control
problem with a linear rate of convergence to a solution, i.e.
proportional to ln 1/ε. We deduce a maximum number of flops,
quadratic in both n and m and linear in the length of the
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Algorithm 4 AdaRES: Accelerated proximal gradient with
adaptive restart for optimization problems satisfying the hy-
pothesis of Lemma 4
Input: Desired accuracy ε for the optimality, a point y0 ∈

Rp, smoothness parameter L, an initial estimation µ0 of
µP(y0), and a function ΠP for projection onto P .

Output: ŷ ∈ P such that l(ŷ)− l? ≤ ε
1: s← −1, ts ← 0, ys,ts ← y0, ys+1,0 ← ΠP(ys,ts)
2: do
3: s← s+ 1, t← 0
4: Cs ← 16µ−1

s ‖ys,0 − ys−1,ts−1
‖22

5: Ks ← 2
√
eµ−1

s − 1
6: do
7: x0 ← ys,t, z0 ← x0, θ0 ← 1
8: for k ∈ N[0,...,Ks−1] do
9: xk+1 ← ΠP(zk − 1

L∇l(zk))
10: θk+1 solves θk+1 = (1− θk+1)θ2

k

11: βk+1 = θk(1− θk)/(θ2
k + θk+1)

12: zk+1 = xk+1 + βk+1(xk+1 − xk)
13: end for
14: ys,t+1 ← zKs , t← t+ 1
15: while ‖ΠP(ys,t) − ys,t‖22 > Cs(θ

2
Ks−1µ

−1
s )t or

L2‖ΠP(ys,t)− ys,t‖22 ≤ εµs/8
16: ts ← t, ys+1,0 ← ΠP(ys,ts), µs+1 ← µs/2
17: while L2‖ys+1,0 − ys,ts‖22 ≤ εµs/8
18: N̂ ← 1 +

∑s
k=0(tsKs + 1)

19: return ΠP(ys,ts)

trajectory Tp, required by DaTaControl to compute near-
optimal control values when the idealistic formulation is used.

Lemma 4 ( [30], THEOREM 2). Consider the convex opti-
mization problem inf

y∈P
l(y), where P ⊆ Rp is a convex set

and l : Rp 7→ R is a differentiable convex function. Let l∗ ∈ R
be the optimal cost, P? the set of minimizers of the problem,
and assume that there exists L > 0 and µP(y0) > 0 for any
y0 ∈ Rp such that l satisfies the smoothness and local error
bound assumption given respectively by

l(y) ≤ l(w) +∇l(w)T(y − w) +
L

2
‖y − w‖2, (39)

l(z) ≥ l? +
µP(y0)

2
dist2(z,P?), (40)

for all y, w ∈ Rp and for all z ∈ P such that l(z) ≤ l(y0).
Then, for any µ0 > 0 and ε > 0, Algorithm 4 returns a
solution ŷ ∈ P such that l(ŷ)− l? ≤ ε with a total number of
iterations N̂ satisfying

N̂ ≤
⌈
2

√
e

µ0
− 1
⌉⌈

ln
16(l(y0)− l?)

εµ0

⌉
, if µ0 ≤ µP(y0),

N̂ ≤ 1 +
2
√
e√

2− 1

(√ 2

µP(y0)
−
√

1

µ0

)⌈
ln

28(l(y0)− l?)
εµP(y0)2

⌉
+
⌈ 16

√
2e√

µP(y0)

⌉⌈
ln

2(l(y0)− l?

εµP(y0)

⌉
, otherwise. (41)

Remark 6. Lemma 4 guarantees a linear rate of convergence
of AdaRES without knowing explicitly the parameter µP(y0).

Specifically, AdaRES achieves this rate of convergence by
being able to check at iteration s whether the current estimate
µs of µP(y0) is too large and finally by refining such estimate.
Therefore, AdaRES can also be used to estimate a lower
bound on µP(y0) and thus providing the guarantees (41).
Note that the number of iterations N̂ represents also the total
number of calls to the projection ΠP(·) onto P .

We exploit Lemma 4 to provide a maximum number of flops
required by DaTaControl to terminate.

Theorem 6 (NUMBER OF FLOPS BY DATACONTROL). At
each sampling time ti ≥ tN , given a trajectory Ti of length
i ≥ N , if DaTaControl based on the idealistic control
problem (30) uses Algorithm 5 with µ0 ≤ µU (v0) and without
any side information 1–4, then DaTaControl takes at most
N ide flops to compute near-optimal control values with N ide

roughy given by

N ide =
⌈
2

√
e

µ0
− 1
⌉⌈

ln
32cmax

εµ0

⌉
(2m2 + 16m+ 2)

+ 2i(8n+ 9)(m+ 1) + 24n2m+ 8n2 + 8m2

+ 18nm+ 32n+ 2m+ 8, (42)

where cmax = |c(X ,U ,X )| is the maximum value in absolute
value taken by the cost function over the range X and U .
Furthermore, if any of the side information 1–4 is provided,
then only a maximum of R(n,m) flops will be added to N ide

where R is a polynomial of maximum degree 2.

We provide in Appendix A a proof of Theorem 6 where we
show that (30) satisfies the assumption of Lemma 4 in order
to bound the number of flops required by DaTaControl.

Remark 7. Even though the optimistic control problem (29)
satisfies the assumptions of Lemma 4, computing the projection
ΠP is as hard as solving directly (29). Hence, we choose to
focus on the idealistic control problem. Note that µ0 can be
empirically estimated offline by solving the idealistic control
problem on many instances of the same problem.

Algorithm 5 Solve the idealistic control problem
Input: Desired accuracy ε for optimality, a point v0 ∈ Rm,

an initial estimation µ0 > 0 of µU (v0), parameters Bi,
A+
i , A−i from (27), weights w+, w− ∈ [0, 1].

Output: ûi ∈ U solution of (30)
1: Compute Aide, bide via (31), w+, and w−

2: Compute Qi, qi, pi via (36), (37), (38), Q, R, S, q, r,
Aide, and bide

3: Define for l ≤ m, (ΠU (v))l =


(U)l, if vl ≤ (U)l

(v)l, if (v)l ∈ (U)l

(U)l, otherwise
4: return Output of AdaRES with inputs ε, L =

1/(
√
m‖Qi‖∞), ΠU , and ∇l(zk) = Qizk + qi

VI. NUMERICAL SIMULATIONS

We compare DaTaControl with existing data-driven con-
trol algorithms CGP-LCB [9], [31], C2Opt [8], DeePC [7],
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Fig. 4. DaTaControl outperforms state-of-the-art data-driven approaches in terms of computation and optimality of the computed control when applied
to a scenario with no noise in the measurements. Opt. traj. corresponds to the one-step optimal control with the known dynamics, and the solid black line
on the far right figure represents the optimality threshold for reaching the goal. We emphasize that the extremely low computation time of DeePC at the
beginning is due to randomly generated control inputs until the satisfaction of the persistent excitation condition.

and SINDYc [6]. These algorithms also solve the one-step
optimal control problem (10) approximately. CGP-LCB as-
sumes that the unknown one-step approximate cost function
C(xi, ui) = c(xi, ui, x(ti+1;xi, ui)) to minimize is described
by a Gaussian process, while C2Opt assumes that C has
Lipschitz continuous gradients. On the other hand, SINDYc
uses the limited data to perform sparse identification of
the dynamics over a library of nonlinear functions, which
then permits an approximate solution to (10) via numerical
solvers. DeePC directly computes control values by solving
an N -step model predictive control problem without the
system identification step. The experiments on the unicycle
system, a quadrotor, and an aircraft system demonstrate that
DaTaControl outperforms these algorithms both on the
computation time at each sampling time, the robustness to
noise, and the suboptimality of the control. We provide the
code for reproducibility of the results of this paper at the link:
https://github.com/wuwushrek/datacontrolreach.git.

A. The Unicycle System
We consider the problem of driving the unicycle of Exam-

ple 2 to the origin. We encode this control objective using the
one-step cost function c(xi, ui, xi+1) = 0.5‖xi+1‖22. We chose
the time step size ∆t = 0.1s and generated a random initial
trajectory T10 starting from the state x0 = [−2,−2.5, π/2]
and such that the unicycle goes away from the target. Note
that the time step size ∆t = 0.1s is within the limit enforced
by (20) as 1/(

√
nβinf) ≈ 0.123. Hence, we used the a priori

rough enclosure given by Theorem 2.
We applied DaTaControl with the side information dis-

cussed in Example 2. We use DaTaControl with Algo-
rithm 5 as the baseline to solve the idealistic control problem.
The weights w+ and w− were chosen randomly, and µ0 = 1.0.
We used the default parameters in GPyOpt [31] when imple-
menting CGP-LCB. We chose the Lipschitz constant for the
gradient L = 10 and trade-off hyperparameter α = 1/2 for
C2Opt [8]. For SINDYc, we considered monomials (up to
degree 6), sines and cosines of the state, and the products
of these functions with the velocity v and the turning rate ω
as the library functions. To perform sparse identification, we
swept the regularization parameter [6] λ ∈ {10p : p ∈ N[−6,5]}

and rounded-down the coefficients smaller than 10−3 to zero.
For DeePC, we use the data-driven model predictive control
scheme (8) in [7] with the slack variable and the regularization
in the cost to account for the nonlinearities in the unicycle
dynamics. After extensive tuning, we use the parameters
λy = 104, λg = 1, Tini = 8, and the horizon control N = 10.
We note that finding working hyperparameters for nonlinear
dynamics was a hard task and the hyperparameters did not
work for different initializations of the unicycle. We relaxed
the target state to the 0.1-sublevel set of the one-step cost
function as the stopping criteria for the algorithms.

Figure 4 shows the trajectories and the evolutions of the
cost functions for the different algorithms under noiseless
measurements. DaTaControl performs significantly better
than GPyOpt, SINDYc, DeePC, and C2Opt. It reaches the
origin in fewer time steps and significantly lower computation
time. Instead, SINDYc failed as it gets stuck close to the origin
and is unable to further improve its one-step cost function.

Additionally, we compare DaTaControl with the data-
driven baselines under the same conditions as the previous
experiment but with different levels of noise in the measure-
ments of the state and the state derivatives. Figure 5 shows
that DaTaControl has improved robustness to noise.
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Fig. 5. DaTaControl outperforms the baselines in terms of optimality
and robustness when applied to scenario with different levels of noise in
the measurements. On the left figure, the noise on the measurements of the
state and the state derivative is from a uniform distribution with bounds η =
[0.01, 0.01, 0.01] and η̄ = [0.1, 0.1, 0.1], respectively. On the right figure,
we have the bound on the noise η = [0.1, 0.1, 0.05] and η̄ = [1, 1, 0.5].

https://github.com/wuwushrek/datacontrolreach.git
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Fig. 6. DaTaControl outperforms the baselines in terms of computation time and optimality of the control even on a linear system in a noise-free scenario.

B. Damaged Aircraft System

In this section, we consider the problem of controlling an
aircraft with nonlinearities introduced as damage in the pitch.

ẋ1 = −0.021x1 + 0.122x2 − 0.322x3 + 0.01u1 + u2,

ẋ2 = −0.209x1 − 0.53x2 + 2.21x3 − 0.064u1 − 0.044u2,

ẋ3 = 0.017x1 + 0.01 cos(x1)x1 − 0.164x2 + 0.15 sin(x1)x2,

− 0.421x3 − 0.378u1 + 0.544u2 + 0.5 sin(x2)u2,

ẋ4 = x3, ẋ5 = −x2 + 2.21x4.

The model above is based on the linearized dynamics of an un-
damaged Boeing 747 in landing configuration at sea level [32],
[33], where the damages are introduced via nonlinear factors
in the dynamics [13]. The state of the aircraft is given by
x = [wl, wv, q, θ, h] and the control input by u = [δe, δt]. wl
is the deviation from the steady-state longitudinal speed, wv
the downwards-pointing vertical speed, q the pitch rate, θ the
pitch angle and h the altitude. The control inputs δe and δt
are the deviations from the elevator and thrust values.

The introduced damages emulate damages to the horizontal
stabilizer of the aircraft, which result in the pitch rate behaving
more erratically. We seek to control the pitch angle to a
setpoint θsp = 5 while assuming that the dynamics are
unknown. We encode this control objective using the cost
function c(xi, ui, xi+1) = 0.5((xi+1)4 − θsp)2. We chose the
time step size ∆t = 0.01s and generated a random initial
trajectory T10 starting from the state x0 = [0, 0, 0, 0, 100.0].
We used DaTaControl, CGP-LCB with the same hyper-
parameters as for the unicycle dynamics. For SINDYc, we
considered monomials (up to degree 2), sines and cosines of
the state. We did not investigate C2Opt due to the inability to
compute the gradient of C and the fact that it is a strong
assumption to assume measurements of such gradient. For
DaTaControl, we consider the elementary side information
θ̇ = q. Furthermore, we consider that G(x) = G(q, wv)
and f(x) = f(wl, wv, q, θ) as the longitudinal speed and the
altitude do not directly affect the derivative of the states. We
considered the loose Lipschitz bounds Lf = [0.4, 3, 4, 1, 3],
LG3,2

= 0.5, and LGk,l
= 0.01 otherwise.

We first consider a linear version of the aircraft dynamics
where we remove the nonlinear terms sin(x1), cos(x1), and
sin(x2) introduced for the damage. The objective here is
to show that DaTaControl is more performant on linear
systems than state-of-the art approaches based on behavioral

systems theory foundation, e.g., DeePC. For linear systems,
DeePC does not use slack variables and considers the pa-
rameters λy = 0, λg = 0 and Tini = 8 as instructed in [7].
Figure 6 shows the near-optimality of DaTaControl, while
CGP-LCB fails to stabilize the pitch in a noise-free scenario.

Then, we consider the nonlinear aircraft dynamics above
with bounded noise on the measurements on the state and the
state derivatives. In this scenario, we use the parameters λy =
103, λg = 10 to account for nonlinearities when using DeePC.
Figure 7 shows that DeePC is less performant on the nonlinear
dynamics, while SINDYc and DeePC fail when there is noise
in the measurements. We did not compare with CGP-LCB due
to its extremely high computation time for solving the control
problem at each time step.
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Fig. 7. DaTaControl outperforms the baselines in terms of optimality and
robustness when applied to scenarios with different levels of noise in the mea-
surements of the nonlinear aircraft dynamics. On the left figure, we consider a
scenario with noise-free measurements. On the right figure, the noise is from
a uniform distribution with the bound η = η̄ = [0.01, 0.01, 0.01, 0.01, 0.1].

C. Quadrotor System

Consider a quadrotor with control-affine dynamics [34]

ṗx = vx, v̇x = − 1

m
CvDvx −

T1

m
sinφ− T2

m
sinφ,

ṗy = vy, v̇y = − 1

m
(mg + CvDvy) +

T1

m
cosφ+

T2

m
cosφ,

φ̇ = ω, ω̇ = − 1

2Iyy
CφDω −

l

2Iyy
T1 +

l

2Iyy
T2,

where the components of the state x = [px, vx, py, vy, φ, ω]
represent, respectively, the horizontal position, horizontal ve-
locity, vertical position, vertical velocity, pitch angle, and pitch
rate. The components of the control u = [T1, T2] represent the
thrust exerted on either end of the quadrotor. We chose the
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Fig. 8. CGP-LCB and SINDYc fail in the task of controlling the horizontal speed vx of the quadrotor whereas DaTaControl reaches both setpoints.

constraint set U = [0, 18.4] × [0, 18.4]. The constants of the
dynamics are given by CvD = 0.25, CφD = 0.02255, g = 9.81,
m = 1.25, l = 0.5, and Iyy = 0.03.

We assume that the dynamics of the quadrotor are un-
known and consider the problems of controlling vx to a
setpoint vsp

x = 5 and py to a setpoint psp
y = 8. We encode

these control objectives, respectively, using the cost functions
c1(xi, ui, xi+1) = 0.5((xi+1)2 − vsp

x )2 and c2(xi, ui, xi+1) =
0.5((xi+1)3 − psp

y )2. We chose the time step size ∆t = 0.01s
and generated a random initial trajectory T10 starting from
the state x0 = [0, 0, 5, 0, 0, 0]. We consider the same hyper-
parameters for Algorithm 5 as in the unicycle case. We applied
DaTaControl with the side information ṗx = vx, ṗy = vy ,
and φ̇ = ω. Such extra knowledge is obtained from elementary
laws of physics. Furthermore, DaTaControl considered the
loose Lipschitz bounds Lf2 = Lf4 = 0.3, Lf6 = 0.9,
LG6,1 = LG6,2 = 0.01, LG2,1 = LG2,2 = LG4,1 =
LG4,2 = LG6,1 = LG6,2 = 0.9, and uses the side information
G(x) = G(φ) and f(x) = f(vx, vy, w). We used the default
parameters of GPyOpt when implementing CGP-LCB. For
SINDYc, we considered monomials (up to degree 1), sines and
cosines of the state, and the products of these functions with
the T1 and T2 as the library functions. We did not investigate
C2Opt due to the inability to compute the gradient of C.

Figure 8 shows the near-optimality of DaTaControl
while CGP-LCB and SINDYc fail to reach the setpoints.
Furthermore, the figure demonstrates that DaTaControl can
achieve near-optimal, near-real-time control of the vertical
position and horizontal speed. We justify the suboptimality of
Opt. traj. by the fact that the one-step optimal control prob-
lem is highly nonlinear, which makes possible the synthesis
of local optimum solutions by the numerical solvers.

VII. CONCLUSION

We developed two data-driven algorithms, DaTaReach
and DaTaControl, for on-the-fly over-approximation of the
reachable set and constrained near-optimal, real-time control
of systems with unknown dynamics. These algorithms are
suitable for scenarios with severely limited noisy data and can
take advantage of various side information on the underlying a
priori unknown dynamics. The numerical experiments demon-
strate the efficacy of the algorithms over existing approaches
both in terms of the suboptimality of the control, robustness to
noise, and the computation time to synthesize control values.
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APPENDIX A

In this appendix, we provide the proofs for all lemmas and
theorems presented in this paper.

PROOF OF THEOREM 2

First, we provide a bound on the maximum variation of the
function h given upper bounds on the Lipschitz constants of
f and G.

Lemma 5 (MAXIMUM VARIATION OF h). Let Lf and LG be
upper bounds on the Lipschitz constants of f and G. For all
x1, x2 ∈ X and u1 ∈ U , we have that

‖h(x1, u1)− h(x2, u1)‖2 ≤ β(u1)‖x1 − x2‖2, (43)

where β(u1) =
√∑n

k=1(Lfk +
∑m
l=1 LGk,l

|(u1)l|)2.

Proof. This is a direct application of the definition of the
Lipschitz bounds of fk and Gk,l. Specifically, we have that

|(h(x1, u1))k − (h(x2, u1))k|

= |(f(x1)− f(x2))k +

m∑
l=1

((G(x1)−G(x2))k,l(u1)l|

≤
(
Lfk +

m∑
l=1

LGk,l
|(u1)l|

)
‖x1 − x2‖2, (44)

for all k ∈ N[1,n]. The last inequality is obtained by the
definitions of Lfk and LGk,l

. Hence, we obtain (43).

Lemma 6 (GRÖNWALL’S INEQUALITY [35, LEMMA 2.7]).
Let Ψ, α, γ be real-valued functions on [t0, T ] with t0, T ∈ R.
Suppose Ψ satisfies for all t ∈ [t0, T ] the inequality

Ψ(t) ≤ α(t) +

∫ t

t0

γ(s)Ψ(s)ds, (45)

with γ(s) ≥ 0 for all s ∈ [t0, T ]. Then, for all t ∈ [t0, T ],

Ψ(t) ≤ α(t) +

∫ t

t0

α(s)γ(s) exp
(∫ t

s

γ(r)dr
)
ds. (46)

Next, we combine the results of Lemma 5 and Lemma 6 to
provide a bound on the variations of points in a trajectory.

Lemma 7 (VARIATION OF TRAJECTORIES OF (11)). Let x be
a continuous-time signal satisfying (11) for a given control
signal u ∈ V. For all t ∈ [ti, ti + ∆t], we have that

‖x(t)− x(ti)‖2 ≤ ‖αi‖2β−1
i (eβi∆t − 1), (47)

where the parameters βi ∈ R+ and αi ∈ Rn are given by

βi =

√√√√ n∑
k=1

(
Lfk +

m∑
l=1

LGk,l
|(v([ti, ti + ∆t]))l|

)2

, (48)

αi = f(x(ti)) + |G(x(ti))| |v([ti, ti + ∆t])|. (49)

Proof. For all t ∈ Ti = [ti, ti + ∆t], we have that

‖x(t)− x(ti)‖2

= ‖
∫ t

ti

h(x(s), u(s))ds‖2 (50)

≤
∫ t

ti

‖h(x(s), u(s))− h(x(ti), u(s))‖2ds

+

∫ t

ti

‖h(x(ti), u(s))‖2ds

(51)

≤
∫ t

ti

β(u(s))‖x(s)− x(ti)‖2ds+

∫ t

ti

‖h(x(ti), u(s))‖2ds

(52)

≤ ‖αi‖2(t− ti) +

∫ t

ti

βi‖x(s)− x(ti)‖2ds. (53)

We obtain (50) since x is a solution of (11). The passage
from (50) to (51) results from applying the triangle inequality.
We use Lemma 5 with x1 = x(s), x2 = x(ti), and u1 = u(s)
to obtain (52). We obtain (53) by showing that the inequalities
β(u(s)) ≤ βi and ‖h(x(ti), u(s))‖2 ≤ ‖αi‖2 hold for all

http://www.sciencedirect.com/science/article/pii/S0004370209000381
http://github.com/SheffieldML/GPyOpt
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s ∈ Ti. Specifically, the former inequality holds by upper-
bounding |(u(s))l| in β(u(s)) with |(v([ti, ti + ∆t]))l| ≥
sups∈Ti |(u(s))l|. The latter inequality holds since

|(h(x(ti), u(s)))k|

≤
∣∣(f(x(ti)))k +

m∑
l=1

|(G(x(ti))k,l| sup
s∈Ti
|(u(s))l|

∣∣ ≤ |(αi)k|.
The inequality (53) satisfies the condition (46) of Lemma 6
with Ψ(t) = ‖x(t)−x(ti)‖2, α(t) = ‖αi‖2(t−ti), and γ(t) =
βi. Thus, we have that

‖x(t)− x(ti)‖ ≤ ‖αi‖2(t− ti)

+ βi‖αi‖2
∫ t

ti

(s− ti)eβi(t−s)ds.

(54)

By integration by parts, we have that∫ t

ti

(s− ti)eβi(t−s)ds = − t− ti
βi

+
1

βi

∫ t

ti

eβi(t−s)ds

= − t− ti
βi

+
eβi(t−ti) − 1

β2
i

. (55)

Finally, by combining (55) and (54), we obtain (47).

Finally, we provide the proof of Theorem 2 below.
The expression (19) is derived by scaling adequately the

bound (47) from Lemma 7. Specifically, we seek for an a
priori rough enclosure Si such that

Si = R+
i + µ

αi
βi

(eβi∆t − 1)[−1, 1]n, (56)

where µ > 0 is a parameter to find in order for Si to satisfy
the fixed-point equation (17) and αi is given by

αi = sup
x(ti)∈R+

i

‖ f(x(ti)) + |G(x(ti))| |v([ti, ti + ∆t])| ‖2.

We over-approximate the set R(h,Si × v([ti, ti + ∆t])) as a
function of ∆t, βti,ti+∆t, and h = f +Gu. For all xi ∈ R+

i ,
ui ∈ v([ti, ti + ∆t]), and si ∈ Si, we have that

‖h(si, ui)− h(xi, ui)‖ ≤ βi‖si − xi‖ (57)

≤
√
nµαi(e

βi∆t − 1). (58)

The inequality (57) comes from Lemma 5 with β(ui) upper-
bounded by βi and the definition of Si (56) provides an
upper bound on ‖si − xi‖ that yields (58). Additionally, the
inequality (58) implies that

R(h,Si × v([ti, ti + ∆t]))

⊆ h(R+
i ,v([ti, ti + ∆t])) +

√
nµαi(e

βi∆t − 1)[−1, 1]n.

Hence, Si from (56) solves the fixed-point equation (17) if

[0,∆t]
(
h(R+

i ,v([ti, ti + ∆t])) +
√
nµαi(e

βi∆t − 1)[−1, 1]n
)

⊆ µαi
βi

(eβi∆t − 1)[−1, 1]n.

(59)

For notation brevity, let c1 = αi(e
βi∆t − 1). Observe that

[0,∆t][A,A] = [min(0,A),max(0,A)]. We use the observa-
tion to find µ > 0 such that the inclusion (59) holds. That is,
the inequalities

∆t
(

(h(R+
i ,v([ti, ti + ∆t])))k +

√
nµc1

)
≤ µc1

βi

⇐⇒ (
1

∆tβi
−
√
n)µ ≥ 1

c1
(h(R+

i ,v([ti, ti + ∆t])))k

and

∆t
(

(h(R+
i ,v([ti, ti + ∆t])))k −

√
nµc1

)
≥ −µc1

βi

⇐⇒ (
√
n− 1

∆tβi
)µ ≥ 1

c1
(h(R+

i ,v([ti, ti + ∆t])))k

hold for all k ∈ N[1,n]. Therefore, for a step size ∆t
satisfying (18), µ given by

µ =
‖f(R+

i ) +G(R+
i )v([ti, ti + ∆t])‖∞

c1( 1
∆tβi

−
√
n)

satisfies the above inequalities. Thus, the inclusion (59) holds
and the set Si is solution of the fixed-point equation (17). By
replacing µ in Si given by (56), we obtain (19).

�

PROOF OF LEMMA 3
We use the interval arithmetic to characterize exactly the

belonging relations xi+1 ∈ Bi+A+
i ui and xi+1 ∈ Bi+A−i ui

in term of linear constraints. Specifically, since (A+
i ui)k =∑m

l=1(A+
i )k,l(ui)l, interval arithmetic provides upper and

lower bound on each term (A+
i )k,l(ui)l as follows(A+

i )k,l(ui)l = [(A+
i )k,l(ui)l, (A+

i )k,l(ut)l], if (U)l ≥ 0

(A+
i )k,l(ui)l = [(A+

i )k,l(ut)l, (A+
i )k,l(ui)l], otherwise.

We can deduce that A+
i ui = As+

i ui and A+
i ui = Al+

i ui.

Similarly, it is easy to prove that A−i ui = As−
i ui and

A−i ui = Al−
i ui. As a consequence, the optimistic control

problem (29) can be immediately reformulated as the convex
quadratic programming problem (34).

Additionally, we have that

c(xi, ui, b
ide
i +Aide

i ui)

= uT
i

(
(Aide

i )TQAide
i + 2(Aide

i )TS +R
)
ui

+
(

2(bide
i )T

(
S +QAide

i

)
+ qTAide

i + rT
)
ui

+ (bide
i )TQbide

i + qTbide
i

= 0.5uT
i Qiui + qT

i ui + pi.

Hence we obtain the cost function of the idealistic control
problem (35). Therefore, it remains to prove that the matrix Qi
is positive semidefinite. Let prove that uT

i Qiui ≥ 0 for all ui ∈
Rm. Since by assumption, the cost function is convex, then the
matrix implied in the quadratic term is positive semidefinite.
Hence, we can deduce that[

Aide
i ui
ui

]T [
Q S
ST R

] [
Aide
i ui
ut

]
≥ 0,

for all ui ∈ Rm. Expanding the expression above immediately
provides that uT

i Qiui ≥ 0 for all ui ∈ Rm. �
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PROOF OF THEOREM 6
First, using the notation of Lemma 4, we have that l(y) =

0.5yTQiy + qT
i y + pi and P = U for the idealistic control

problem. Thus, l satisfies condition (39) with any parameter
L ≥ λmax(Qi) where λmax(Qi) is the maximum eigen value
of Qi. Recall that since we have

‖∇l(x)−∇l(y)‖22 = ‖Qix−Qiy‖22 = (x− y)TQTi Qi(x− y)

≤ λ2
max(Qi)‖x− y‖22,

then Lemma 3.4 in [36] implies that the condition (39) holds.
Since λmax(Qi) ≤

√
m‖Qi‖∞, we pick L =

√
m‖Qi‖∞. The

local error bound assumption holds due to Theorem 2.1 in [37]
where the authors prove that for a function h satisfying h(x) =
g(Ax)+cTx on a convex polyhedra P with g strongly convex,
there exists µP (x0) for any x0 such that the condition (40)
holds. As a consequence, since we assume that µ0 ≤ µP (x0),
Lemma 4 provides that the number of iterations N̂ required
by AdaRES is upper bounded as follows

N̂ ≤
⌈
2

√
e

µ0
− 1
⌉⌈

ln
16(2cmax)

εµ0

⌉
= Nmax.

As a consequence, since the computation of ΠP(·) is sim-
ple and requires at most 3m comparisons, and ∇l requires
2m2 + m flops, we can deduce that the maximum number
of flops required by AdaRES to terminate is roughly given
by Nmax(2m2 + 16m + 12). Such a number is obtained by
considering the worst case where each line of Algorithm 4 is
executed Nmax times even though in reality, only lines 9–12
of AdaRES will be executed maximum Nmax times.

Finally, since computing f and G requires N(8n+ 9) and
N(8n+9)m respectively, we can deduce that, without any side
information 1–4, lines 1–9 of DaTaControl require at most
2N(8n+ 9)(m+ 1) + 16n2m+ 8n2 + 2m2 + 6nm+ 24n+ 8.
Specifically, it is easy to check that Si using Theorem 2 can
be computed using 6mn+ 6n+ 4 flops. The matrices Bi, A+

i

and A−i can be computed using 4n2 + 6n flops for Bi and
8n2m+ 3nm+m2 flops for each A+

i and A−i . Hence, since
computing Aidei and Bide requires 8n + 8nm flops, we can
compute Qi and qi using 6n2m+ 6m2 and (2n2 + 4n+ 2)m
flops, respectively. Thus, after adding the number of flops for
AdaRES, lines 1–9 of DaTaControl, Aidei and Bide, and
Qi and qi, we obtain the bound N ide. �

ILLUSTRATION FOR LEMMA 1
Consider the unicycle system of Example 2, and assume that

(G)1,2 is unknown. Given the data point (xi, ẋi, ui) where
xi = [0, 0, π/2], ui = [1, 0.1] and ẋi = [0, 1, 0.1], and
the over-approximating ranges (Fi)1 = [−0.01, 1], (Gi)1,1 =
[−0.05, 0.05], and (Gi)1,2 = [−0.1, 1] of (f(xi))1 = 0,
(G(xi))1,1 = 0, and (G(xi))1,2 = 0. By Lemma 1, we have

(CFi)1 = [−0.01, 1] ∩ (0− [−0.05, 0.05]− 0.1[−0.1, 1])

= [−0.01, 1] ∩ [−0.15, 0.06] = [−0.01, 0.06].

Hence, (s0)1 = [−0.06, 0.01] ∩ [−0.06, 0.15] = [−0.06, 0.01]
and the interval (CGi)1,1 is given by

(CGi)1,1 =
(
([−0.06, 0.01]− 0.1[−0.1, 1]) ∩ [−0.05, 0.05]

)
= [−0.16, 0.02] ∩ [−0.05, 0.05] = [−0.05, 0.02].

Moreover, since

(s1)1 = ([−0.06, 0.01]− [−0.05, 0.02]) ∩ (0.1[−0.1, 1])

= [−0.08, 0.06] ∩ [−0.01, 0.1] = [−0.01, 0.06],

the interval (CGi)1,2 is given by

(CGi)1,2 = 10
(
[−0.01, 0.06] ∩ (0.1[−0.1, 1])

)
= [−0.1, 0.6].

Therefore, Lemma 1 provides the contractions (CF )1 ⊂ (Fi)1,
(CGi)1,1 ⊂ (Gi)1,1, and (CGi)1,2 ⊂ (Gi)1,2. �
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