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Abstract—In recent years, a new class of models for multi-
agent epistemic logic has emerged, based on simplicial complexes.
Since then, many variants of these simplicial models have been
investigated, giving rise to different logics and axiomatizations.
In this paper, we present a further generalization, which en-
compasses all previously studied variants of simplicial models.
Geometrically, this is achieved by generalizing beyond simplicial
complexes, and considering instead semi-simplicial sets. By doing
so, we define a new semantics for epistemic logic with distributed
knowledge, where a group of agents may distinguish two worlds,
even though each individual agent in the group is unable to
distinguish them. As it turns out, these models are the geometric
counterpart of a generalization of Kripke models, called “pseudo-
models”. We show how to recover the previously defined variants
of simplicial models as sub-classes of our models; and give a
sound and complete axiomatization for each of them.

Index Terms—Epistemic logic, Simplicial sets, Distributed
knowledge

I. INTRODUCTION

The usual semantics for multi-agent epistemic logic is based
on the classic Kripke possible worlds relational structure [1].
However, the intimate relationship between distributed com-
puting and algebraic topology [2] showed the importance of
moving from the focus on global states represented by worlds,
to local states, representing perspectives about possible worlds.
Namely, moving from graph structures to simplicial complex
structures. A formal semantics of multi-agent epistemic formu-
las in terms of simplicial models was presented [3], and shown
to be equivalent to the usual Kripke model semantics for S5n.
Further work explored bisimilarity of simplicial models [4]
and connections with covering spaces [5]. Remarkably, it has
been shown by Yagi and Nishimura [6], [7] that the implicit
topological information in Kripke models, exposed by the
simplicial complex point of view, can be leveraged to produce
a logical obstruction to the solvability of certain distributed
computing problems. The notion of distributed knowledge [8]
plays a crucial role there: in a sense, it is a higher-dimensional
notion of knowledge.

Eric Goubault was partially funded by AID/CIEDS project FARO. Part of
the work of Sergio Rajbaum was performed while he was an invited professor
at IRIF, Université Paris Cité, and at LIX, Ecole Polytechnique.

These first results assumed a finite, fixed set of agents,
whose local states appear in every world. As a consequence,
since a world with n + 1 agents is represented by a n-
dimensional simplex, every facet of the simplicial model is of
the same dimension. Such models are called pure simplicial
models. However, in distributed systems, processes may fail,
and it may happen that only a subset of the agents remain
in some worlds. To model such situations, the categorical
equivalence of [3] was extended by various authors to include
simplicial models that may not be pure [9], [10], [11]. These
situations have been thoroughly studied since early on in
distributed computability, e.g. the seminal work of Dwork
and Moses [12], where a complete characterization of the
number of rounds required to reach simultaneous consensus
was given in terms of common knowledge. By moving away
from pure simplicial models, we also move away from the
standard S5n epistemic logic. Indeed, there are a number
of design choices to be made, both to define the models
and their semantics. Should all simplices represent worlds,
or only the facets? Can we have a world with no agents?
How do we deal with formulas involving the knowledge of
agents that are not present in the current world? All these
choices can greatly influence the resulting logic: while [9]
drops Axiom T and works with the logic KB4n (augmented
with some extra axioms), other authors [11] take a completely
different route and define a three-valued logic (where formulas
may be undefined), with an axiom system called S5▷◁.

In this paper, we aim to bring order to chaos by defining
a class of simplicial models that encompasses all previous
variants. Thus, the main objective of our paper is to unify
previous work on simplicial complex models. For that purpose,
we introduce a new class of models called epistemic covering
models. As we will see in Section IV-B, the models studied
in [3], [9], [10], [15] can all be viewed as sub-classes of
epistemic covering models. This allows us to recover important
theoretical results about each of those sub-classes, by proving
them once and for all in our very general setting. Namely, our
paper contains two central results: (i) Theorem 1 shows an
equivalence of categories between epistemic covering models
and their Kripke-style counterpart, called generalized epis-
temic models. Crucially, we also show (Lemma 3) that this
equivalence can safely be restricted to sub-classes of epistemic979-8-3503-3587-3/23/$31.00 ©2023 IEEE
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covering models; allowing us to recover similar equivalence
results from [3], [9], [10]. (ii) The other essential result of our
paper is a sound and complete axiomatization of epistemic
covering models (Corollary 2). Once again, we are also
interested in axiomatizing the various sub-classes of epistemic
covering models, which we do in Section V-C. We show that
there is a close correspondence between structural properties
that define a sub-class, and axioms of the corresponding logic.
These results are summed up in Fig. 1 below. The first two
columns indicate the correspondence between properties of
epistemic coverings, and axioms of the logic (they will be
defined in Sections IV and V, respectively). The check marks
in the other columns indicate how to recover previously-
studied variants of simplicial models. One can check that the
axiomatization provided here matches the one given in each of
those papers (except for [10], which studies a different three-
valued semantics).

Covering properties Axioms [3] [9] [10] [15]
Proper (P) ✓ ✓ ✓ ✓
Pure (T) ✓ ✓
Minimal (Min) ✓ ✓ ✓
Maximal (Max) ✓
No empty world (NE) ✓ ✓ ✓ ✓
Simplicial complex no axiom ✓ ✓ ✓

Fig. 1. Sub-classes of epistemic covering models that have been studied in
previous papers, and their associated axioms.

One distinguishing feature of our models, which has not
been considered previously in the literature, is that we gen-
eralize beyond simplicial complexes and consider instead
semi-simplicial sets. Geometrically, this means that simplices
(a.k.a. worlds) can be connected in more complex ways;
for instance, two triangles might share two vertices but not
the edge between those vertices (see Fig. 2, which is not a
simplicial complex). This new feature enables us to model
situations where a group of agents may distinguish two worlds,
even though each individual agent in the group is unable to
distinguish them.

A toy example of such a situation, in the realm of distributed
computing is the following. Suppose we have three sensors,
s1, s2 and s3, in a sensor network, with overlapping visibility
regions of the form of a unit disk, that can only count the
number of targets within their visibility region. Suppose now
that each of these three sensors detects exactly one target,
indicated by a “×” below. There are 5 possible configurations
w1, w2, . . ., w5 (from left to right below), with the total
number of targets, ranging from 1 to 3:

s1 s2

s3

×

s1 s2

s3

×
×

s1 s2

s3

×
×

s1 s2

s3

×

×

s1 s2

s3

××

×

Alone, no sensor can distinguish between these 5 situations.
To disambiguate between configurations, we must indeed use
an inclusion-exclusion principle, so we need to identify if the

same target has been detected by different sensors. For this,
we suppose that, jointly, groups of sensors can determine if a
target they saw was seen by all in that group. In this example,
s1 and s2 together can for instance distinguish the worlds w1

and w2, but not w1 and w4. Only the three sensors together
can distinguish between all five worlds. The framework we
propose in this paper allows to formalize such applications.

We show the very important, and surprising fact that every
semi-simplicial set model is bisimilar to a simplicial complex
model (leading to Theorem 6). There are several reasons
why, despite this fact, we still believe that semi-simplicial set
models are worth studying. Indeed, some epistemic situations
are described much more naturally and concisely using a
semi-simplicial set model. This is for instance the case of
the sensor model described previously. By turning it into
a bisimilar simplicial complex model, we create a tree-like
model with an infinite number of worlds, and where the
underlying topology has disappeared. For some applications
(e.g. model-checking), it might be crucial to keep a model
which is as small as possible, let alone infinite. This situation is
akin to classical topology: semi-simplicial sets and simplicial
complexes describe the same spaces up to weak-homotopy.
Yet, both structures are used in algebraic topology in their own
right, according to the situation at hand. For some spaces, e.g.
when dealing with the classification of combinatorial struc-
tures (posets, graphs, etc.), the simplicial complex approach
is indeed very practical. However, in other situations (e.g. for
non-triangulable spaces), the semi-simplicial set approach is
much more convenient to use.

Plan of the paper: In Section II, we recall various
mathematical notions that we will be using in this paper. In
Section III, we define our two notions of models, generalized
epistemic models and epistemic covering models; and prove
that they are equivalent. We define various interesting sub-
classes of these models in Section IV. In Section V, we prove
that ECn is sound and complete with respect to these models
(Theorem 2), and give sound and complete axiomatizations
of interesting sub-classes (Theorems 3, 4, and 5). Finally, we
prove that every simplicial set model is bisimulation equivalent
to a simplicial complex model, bringing interesting questions
about the topological nature of bisimulation (Theorem 6).

II. PRELIMINARIES

A. Kripke semantics of distributed knowledge

Let A be a finite set of agents, and At a countable set
of atomic propositions. We consider the language LD of
epistemic logic with distributed knowledge [1], generated by
the following BNF grammar:

φ ::= p | ¬φ | φ ∧ φ | DU φ p ∈ At, U ⊆ A

The derived operators ∨,⇒, true, false, are defined as usual
in propositional logic. We also use the following operators:

Ka φ := D{a} φ D̂Uφ := ¬DU¬φ

Authorized licensed use limited to: Ecole Polytechnique. Downloaded on December 11,2023 at 16:09:25 UTC from IEEE Xplore.  Restrictions apply. 
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The operator DUφ is read “the group of agents U (collectively)
knows φ”, while its dual D̂Uφ means that the group U con-
siders possible the formula φ. Ka φ is the standard knowledge
operator of epistemic logic, “agent a knows φ”.

Definition 1. A Kripke model is a structure M =
⟨M, (∼a)a∈A, L⟩, where:

• M is a set of possible worlds,
• For every agent a ∈ A, ∼a is an equivalence relation,
• L :M →P(At) is a valuation function.

Given a Kripke model, the satisfaction relation M,w |= φ
is defined inductively as follows. We write ∼U =

⋂
a∈U ∼a.

M,w |= p iff p ∈ L(w)
M,w |= ¬φ iff M,w ̸|= φ
M,w |= φ ∧ ψ iff M,w |= φ and M,w |= ψ
M,w |= DU φ iff M,w′ |= φ for all w′ ∈M

such that w ∼U w′

B. Partial Equivalence Relations

Definition 2. A Partial Equivalence Relation (PER) on a set
X is a relation R ⊆ X ×X which is symmetric and transitive
(but not necessarily reflexive).

The domain of a PER R is the set dom(R) = {x ∈ X |
R(x, x)} ⊆ X , and it is easy to see that R is an equivalence
relation on its domain, and empty outside of it. Thus, a PER
on X is simply an equivalence relation on a subset of X .
The equivalence classes of a PER R are defined as usual,
when viewed as an equivalence relation on dom(R): for x ∈
dom(R), we write [x]R = {y ∈ X | xRy} for the equivalence
class of x, and X/R for the set of equivalence classes.

C. Semi-simplicial sets

(Semi)-simplicial sets can be viewed as a higher-
dimensional generalization of directed multigraphs, while sim-
plicial complexes are a generalization of simple graphs. Thus,
in dimension 1, simplicial sets allow loops and parallel edges;
whereas simplicial complexes do not. Similarly, in higher
dimensions, simplicial sets allow simplices to be assembled
together in more complex ways, as in Fig. 2. Standard ref-
erences for the theory of simplicial sets and some of their
many uses in algebraic topology are [17], [18] and a more
elementary introduction can be found in [19].

Fig. 2. A simplicial set which is not a simplicial complex.

Compared to simplicial complexes, simplicial sets exhibit
interesting geometric and categorical features:

• In algebraic topology, they provide a combinatorial model
for the homotopy theory of topological spaces, in fact
they are Quillen equivalent to the standard Quillen model
category of topological spaces [17].

• As a presheaf category, simplicial sets form a
Grothendieck topos. Still, simplicial complexes are al-
most as nice, they are known as forming a quasitopos,
see e.g. [20] for a discussion of the relationship between
the quasitopos of simplicial complexes and the topos of
simplicial sets.

Let ∆+
inj be the category of possibly empty linear orders with

injective maps between them. We write [n] for the (n + 1)-
element linear order [n] = {0 < . . . < n}, and [−1] = ∅.
The category of augmented semi-simplicial sets is defined
as the presheaf category ∆̂+

inj. Thus, its objects are functors
F : (∆+

inj)
op → Set, and morphisms are natural transforma-

tions. The elements of F ([n]) are called n-simplices, and we
use the terms vertices, edges, and triangles for simplices of
dimension 0, 1 and 2 respectively.

For example, the simplicial set depicted in Fig. 2 has 4 ver-
tices, 6 edges and 2 triangles. So, accordingly, the sets F ([0]),
F ([1]) and F ([2]) are chosen to have 4, 6 and 2 elements,
respectively. There are three face maps ∂i : F ([2]) → F ([1])
for i = 0, 1, 2 which assign to each triangle its three boundary
edges. The maps ∂i : F ([1]) → F ([0]) for i = 0, 1 assign to
each edge its source and target vertices.

III. GENERALIZED EPISTEMIC FRAMES AND EPISTEMIC
COVERINGS

In this section, we define two classes of models for dis-
tributed knowledge: one generalizes Kripke frames, and the
other generalizes simplicial models. We show that they are
structurally equivalent. In the following sections, we will show
that they subsume previous models found in the literature, and
study their axiomatization.

A. Generalized epistemic frames

As in [9] we will consider Kripke frames where the ac-
cessibility relation ∼ is not an equivalence relation but just a
partial equivalence relation. But we generalize one step further
by associating an accessibility relation not only for each agent,
but also for any set of agents, making it possible to interpret
distributed knowledge in a very general manner. Such models
have been considered before in the epistemic logic literature,
sometimes called “pseudo-models”, as an intermediate tool
in completeness proofs involving distributed knowledge [13],
[14]. One paper that used such models as the main object
of study is [15], in order to model observability in quantum
systems. Still, the models that we present here generalize
further, by allowing worlds where not all agents are necessarily
present, and as a consequence condition (b) below is new.

Definition 3. A generalized epistemic frame is a structure
M = ⟨M,∼⟩, where:

• M = {w0, w1, . . .} is a set of possible worlds,
• ∼ is a function assigning for every group of agents
U ⊆ A, a PER ∼U ⊆M ×M called the U -accessibility
relation. We write [w]U for the equivalence class of w
with respect to ∼U .

• The PERs ∼U satisfy the following conditions.

Authorized licensed use limited to: Ecole Polytechnique. Downloaded on December 11,2023 at 16:09:25 UTC from IEEE Xplore.  Restrictions apply. 
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(a) Compatibility:

∀U ′ ⊆ U, w ∼U w′ ⇒ w ∼U ′ w′

(b) Closure under union of the groups of alive agents:

∀U,U ′ ⊆ A, (w ∼U w ∧ w ∼U ′ w)⇒ w ∼U∪U ′ w.

The two conditions on ∼U can be interpreted as follows.
Condition (a) means that if a group of agents cannot distin-
guish between two worlds, all together, then there is no way
a subgroup of agents can distinguish the same two worlds.
Condition (b) implies that in each world w, there is a maximal
group of agents U such that w ∼U w. We call such a U the
group of alive agents in world w, and denote it by w. We say
that an agent a is alive in w when a ∈ w or, equivalently,
when w ∼{a} w.

Usually, we write w ∼a w
′ as shorthand for w ∼{a} w

′.
Additionally, we say that a world w is a sub-world of w′ when
w ⊆ w′ and w ∼w w′. The sub-world relation is a preorder,
and is denoted by w ≤ w′.

Example 1. An example of a generalized epistemic frame is
given on Figure 3. It has seven worlds M = {w0, . . . , w5} ∪
{w′

1}. Not all relations are shown, but only the generating
ones. Sets of alive agents can be read off directly on the
reflexive loops above a world; in w5, no agent is alive, that is
w5 ̸∼a w5 for all a ∈ A. The empty group can distinguish w5

from other worlds: w5 ̸∼∅ wi, i ̸= 5. In world w4, agents a
and c are alive, and they can distinguish it from all other
worlds, but the empty group cannot. In w2 and w3 all three
agents are alive. Agents b and c cannot individually distinguish
w2 from w3, however, together they can: we have w2 ∼b w3

and w2 ∼c w3, but w2 ̸∼{b,c} w3. In w1 and w′
1, agents a and b

are alive, but even together they cannot distinguish them, as
we have w1 ∼{a,b} w

′
1. World w0 is a sub-world of both w1

and w′
1: only b is alive in w0 and it cannot distinguish w0

from w1 or w′
1.

w2

{a, b, c}

w3

b
{a, b, c}

c

w1

w4 w5

w′
1

w0

{a, b}

{a, b}

b
b

b

{a, b}
∅

{a, c}
a

a

Fig. 3. An example of a generalized epistemic frame.

Example 2. In the example of the introduction, w1, . . ., w5

are worlds, s1, s2, s3 are agents, representing the sensors. For
all i, j, k, we have wi ∼sj wk: no individual sensor sj can
distinguish between any pair of worlds wi and wk. We also
have w1 ∼{s2,s3} w2 since in these two worlds, s2 and s3
jointly see the same target. More generally, w1 ∼{si,sj} wk

if and only if some target is in Ai ∩ Aj in world wk. But

the three sensors together can distinguish w1 from all other
worlds. Examining all other intersections in pairs of worlds
gives the epistemic frame on Figure 4.

w1

w2

w3

w5 w4

{1, 2, 3}

1, {2, 3}

{1, 2, 3}

{1, 2}, 3

{1, 2, 3}

1, {2, 3}

{1, 2, 3}{1, 3}, {2, 3}{1, 2, 3}

1, 2, 3

{1, 2}, {1, 3}
2, {1, 3}

{1,
2},

{2,
3}{1, 2}, 3

2, {1, 3}

Fig. 4. Sensor network as an epistemic frame.

Morphisms between epistemic frames are structure-
preserving functions between the sets of worlds.

Definition 4. Let M = ⟨M,∼⟩ and N = ⟨N,∼′⟩ be two
generalized epistemic frames. A morphism from M to N is
a function f : M → N such that for all U ⊆ A, for all
u, v ∈M , u ∼U v implies f(u) ∼′

U f(v),

We write GEFA for the category of generalized epistemic
frames with agents A. Later, in order to define the semantics
of LD formulas, we will equip these frames with a valuation
function, as in Section II-A. But first, let us first define the
geometric counterpart of these frames: epistemic coverings.

B. Epistemic coverings
1) Chromatic augmented semi-simplicial sets: As in the

case of simplicial models [3], our first step will be to decorate
the vertices of a simplicial set with colors, representing the
names of the agents in A. The resulting structure is called a
chromatic augmented semi-simplicial set, or cset for short. We
identify A with the linear order [n] = {0 < . . . < n}.

Let SA denote the standard (|A| − 1)-simplex, defined by:
• (SA)k = {(i0, . . . , ik) | 0 ≤ i0 < . . . < ik ≤ n},
• ∂j(i0, . . . , ik) = (i0, . . . , ij−1, ij+1, . . . , ik) ∈ (SA)k−1.

Given an augmented semi-simplicial set X , a coloring of X by
the agents in A is simply a map f : X → SA. Note that, since
we work with semi-simplicial sets here, without degeneracy
maps, morphisms preserve the dimension of simplices. Thus,
each simplex of X is well-colored, in the sense that all vertices
in a simplex are labelled with distinct agents. We then define
the category of chromatic augmented semi-simplicial sets to
be the slice category ∆̂+

inj/SA.
For the rest of the paper, we can either see this category as

a slice category, or notice that, by the fundamental theorem
of topos theory, the category of csets is once again a presheaf
category on a site Γ made of simplices of the standard n-
simplex. As with the site of semi-simplicial sets (see e.g.,
[21], [22]), Γ is the posetal category of subsets of A with the
inclusion partial order, defined below.

Authorized licensed use limited to: Ecole Polytechnique. Downloaded on December 11,2023 at 16:09:25 UTC from IEEE Xplore.  Restrictions apply. 
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Definition 5. The category Γ is such that:
• Objects are (possibly empty) subsets of A.
• There is a unique morphism δU,V : U → V in Γ

whenever U ⊆ V . Composition δV,W ◦ δU,V = δU,W is
given by the fact that U ⊆ V ⊆W implies U ⊆W .

We write CsetA for the presheaf category on Γ. This cate-
gory is equivalent to ∆̂+

inj/SA, hence a cset can equivalently be
viewed as a functor F : Γop → Set. Given a cset F ∈ CsetA,
and a group of agents U ⊆ A, the elements of F (U) are
called the U -simplices. When there is no ambiguity, we write
∂U,V : F (V ) → F (U) for the boundary operator F (δU,V ).
For x a V -simplex, ∂U,V (x) is called the U -face of x. If it is
clear which V is considered, we simply write ∂U (x).

Given U ⊆ A, the standard U -simplex Γ[U ], is defined as
the representable presheaf Γ(−, U), image of U by the Yoneda
embedding y : Γ→ CsetA.

Example 3. A cset X is depicted in the figure below. We
represent it as a simplicial set together with colors on the
vertices. Elements of X−1 are depicted as dashed regions (and
interpreted as generalized connected components). Elements
of X0 are depicted as vertices, X1 as edges, X2 as triangles,
etc. The boundary operators ∂i give the equations that permit
to glue these simplices together, along lower dimensional
simplices. The cset in the picture below is composed of seven
vertices (colored with three agents), eight edges, two triangles,
and two (−1)-simplices (the annotations will only be used
later).

w2 w3

w0
w4

w1, w
′
1

w5

In the rest of the paper, by a (chromatic) simplicial complex
we mean a cset in which if two simplices share the same set
of vertices, then they coincide. More formally, if for two U -
simplices s, s′ ∂a(s) = ∂a(s

′) for all a ∈ U , then s = s′.
2) Epistemic coverings: In previous papers about simplicial

models for epistemic logic, two issues have arisen:
(i) We need a way to describe which simplices of the

model represent actual worlds, and which ones do not.
Two canonical choices are possible: take all simplices as
worlds, or take only the facets. But one may also want
to consider something in-between.

(ii) Simplicial models usually correspond to proper Kripke
models, because each individual simplex can represent
only a single world.

In this section, we solve both issues by introducing a new
notion called epistemic coverings.

The idea is that, lying above the simplicial set B represent-
ing the geometry of the model, we have a projective simplicial

set E representing the worlds. A morphism f : E → B then
maps each world to its representation in the geometric model.
This allows us to (i) freely assign worlds to the simplices of
the model, and (ii) possibly assign several worlds to the same
simplex.

In a cset X , given a V -simplex t and a subset U ⊆ V , we
say that s = ∂U (t) is a subsimplex of t. We say that X is
projective when for every simplex s ∈ X , there is a unique
maximal simplex ↑s, such that s is a subsimplex of ↑s.

Definition 6. An epistemic covering is a morphism f : E →
B in CsetA such that E is projective and f : E → B
is surjective. Equivalently, a morphism f : E → B is an
epistemic covering if E is projective and every maximal
simplex of B has a preimage. We refer to E as top cset and
to B as base cset.

Epistemic coverings form a category where morphisms from
f : E → B to f ′ : E′ → B′ are pairs of morphisms αE : E →
E′, αB : B → B′, such that the following square commutes:

E E′

B B′
αB

f f ′

αE

We write this category eCovA. One can see that eCovA is
a full subcategory of the arrow category of CsetA.

An epistemic covering f : E → B can be visually
represented as an annotated cset by taking the base cset B
and writing on a simplex s the set of maximal simplices from
E that are mapped on s. In particular, as f is surjective, every
maximal simplex in B must have an annotation. For instance,
the annotation on the example of a cset from Example 3
represents an epistemic covering with the following maximal
simplices in E: two 2-simplices w2, w3; three 1-simplices
w1, w

′
1, w4 with f(w1) = f(w′

1); one 0-simplex w0; one −1-
simplex w5.

Remark 1. There are two ways to canonically produce an
epistemic covering out of a given cset X . We can take X
as the base of the covering, but we need to choose the
space E. Choosing E amounts to deciding which simplices
of X constitute the possible worlds. There are two natural
choices: either take all of the simplices of X , or take only the
maximal ones (a.k.a. the facets).

The first choice, that we call the “maximal” one, where E
is the disjoint union of all the simplices of X , yields a faithful
functor from CsetA to eCovA. A morphism g : X → Y is
sent to the morphism of coverings ⟨αE , αB⟩, where αB = g
and αE sends a simplex s to t if g sends s to t. This functor
is injective on objects, so it makes CsetA a subcategory of
eCovA, though not full. The maximal interpretation appears
(implicitly) in [11] for example, where a formula can be
evaluated in every simplex of a model.

The second choice, where E is the disjoint union of the
maximal simplices of X , is the “minimal” one. It is the one
that is studied in [3], [9], where a formula is only evaluated
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in a facet of a simplicial complex. However, this construction
is not functorial.

C. Isomorphism between epistemic frames and coverings

We want to show that the category of epistemic coverings
and the category of generalized epistemic frames are isomor-
phic. We first define the functor κ : eCovA → GEFA.

Let f : E → B be an epistemic covering. As E is projec-
tive, it can be represented as a disjoint union of disconnected
standard simplices, that is E =

⋃
U⊆A

⋃
EU

Γ[U ], where EU

are some sets. Then the set W of worlds in κ(f) = ⟨W,∼⟩
is exactly

⋃
U⊆AEU , that is every maximal simplex of E is

interpreted as a world. To define the group indistinguishability
relations ∼U between the worlds of the corresponding frame,
we proceed as follows. We think of two simplices in E as
U -indistinguishable, if their images in B share a U -face.
Formally, given two worlds ws, ws′ in κ(f), corresponding
to two maximal simplices s, s′ in E, we let ws ∼U ws′ if
∂U (f(s)) = ∂U (f(s

′)).
Now we define this functor on morphisms. Suppose we are

given a morphism of epistemic coverings ⟨αE , αB⟩. Then, the
morphism of epistemic frames κ(⟨αE , αB⟩) : κ(f) → κ(f ′)
sends a world ws to a world ws′ if the image of the maximal
simplex s in E is included in the maximal simplex s′ in E′.

Next, we construct the inverse functor σ : GEFA →
eCovA. Given a generalized frame ⟨M,∼⟩, we need to define
two csets EM and BM together with a map m : EM → BM .
For every world w ∈M we associate a simplex of type w to
EM , that is EM =

⋃
w∈M Γ[w].

It is slightly more intricate to build the base space BM of the
covering. We construct it as a presheaf on Γ, BM : Γop → Set.
For every group U ⊆ A of agents, define BM (U) = M/∼U

,
the quotient of M with respect to ∼U . The restriction ∂U,V :
M/∼V

→ M/∼U
sends the equivalence class [w]V to [w]U .

We need to verify that BM is indeed a cset.

Lemma 1. For any frame ⟨M,∼⟩, BM is a cset.

Proof: First, let us show that restriction maps are correctly
defined. Consider ∂U,V for U ⊆ V , and let w′ ∈ [w]U
be another representative of the equivalence class [w]U . By
monotonicity, we have w ∼V w′ ⇒ w ∼U w′, so they also
belong to the same equivalence class [w]U = [w′]U . Thus, the
function ∂U,V is correctly defined. To see that this is functorial,
given sets of agents U ⊆ V ⊆ W , we need to prove that
∂U,V ◦ ∂V,W = ∂U,W , which is straightforward.

One can see that there is a canonical map m : EM → BM

which sends a maximal simplex w of EM , representing a
world, to the corresponding equivalence class [w]w ∈ BM (w).
This describes σ on objects by setting σ(⟨M,∼⟩) = m.

To define σ on morphisms, consider a morphism of epis-
temic frames g :M→N . As both assignments of total spaces
EM , EN and base spaces BM , BN are functorial one needs
to check that the induced square commutes.

Proposition 1. The functors κ and σ define an isomorphism
of categories: κ ◦ σ = idGEFA

and σ ◦ κ = ideCovA
.

Proof: Consider an epistemic frame M. Then κσ(M)
has as its worlds the same worlds as in M, as κ and σ just
transfer this information. The relations ∼U are also just the
same: w ∼U w′ in κσ(M) iff the simplices ∂U (w), ∂U (w′) in
Eσ(M) are sent to the same simplex in Bσ(M), but this is the
case exactly when w ∼U w′ inM. The same line of argument
works for σ ◦ κ, and extends to morphisms.

Example 4. Let us illustrate the isomorphism using on the
epistemic frame M of Example 1. We now describe its
equivalent representation as an epistemic covering σ(M).
In fact, the base B of the covering is the one depicted in
Example 3. Then, we need a projective cset E, which can be
thought of as an “exploded view” of B, depicted below. Its
maximal simplices, labelled {w0, . . . , w5}∪{w′

1}, correspond
to the worlds of the original frame M.

w1 w′
1

w2 w3

w4

w5

w0

The covering f : E → B maps each world of E to its
geometric representation in the base B. Note that both w1 and
w′

1 are mapped to the same edge of B: this is how we model
non-proper behavior in epistemic frames. Moreover, world w0

is represented by a single vertex, because only one agent is
alive; it is mapped to the top blue vertex of B. This is how
we model sub-worlds: since w0 is a sub-world of w1 in M,
f(w0) is a sub-simplex of f(w1) in σ(M).

D. Semantics of distributed knowledge

We now use generalized epistemic frames, and equivalently
epistemic coverings, as a model for the logic of distributed
knowledge. The missing piece of data is to label the worlds
with atomic propositions, in order to specify which facts about
the system are either true or false in any given world.

Definition 7. A (generalized) epistemic model M =
⟨M,∼, L⟩ over the set of agents A consists of a generalized
frame ⟨M,∼⟩ together with valuation function L : M →
P(At). A morphism of epistemic models f : M → N is
a morphism of underlying frames that preserves valuations,
that is, if p ∈ LM (w), then p ∈ LN (f(w)). The category of
generalized epistemic models is denoted KMA.

Remark 2. Morphisms in KMA are also known as functional
simulations [23]. They are different from the morphisms
used in [3]: there the valuations of atomic propositions were
preserved and reflected, that is LM (s) = LN (f(s)), whereas
in our definition LM (s) ⊆ LN (f(s)). They are also different
from morphisms in [9]: there, morphisms can be seen as
relations, as they are maps f :M →P(N).

Given a generalized epistemic model, we can define the
satisfaction relation as we did in Section II-A. Note however
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that ∼U is now part of the structure of the model, and might
not be equal to

⋂
a∈U ∼a in general.

M,w |= DU φ iff M,w′ |= φ for all w′ ∈M
such that w ∼U w′

Similarly, we can equip epistemic coverings with a valuation:

Definition 8. An epistemic covering model
X = ⟨f : E → B, ℓ⟩ consists of an epistemic covering
f :E → B, together with a labelling ℓ : max(E) → P(At)
that associates with each maximal simplex s of E a set of
atomic propositions ℓ(s) that hold there. A morphism of
epistemic covering models α : X → Y is a morphism
of epistemic coverings that preserves the labelling:
ℓ(s) ⊆ ℓ′(↑ α(s)), where ↑ α(s) is the maximal simplex of
E that contains α(s). We denote by ECA the category of
epistemic covering models.

Given an epistemic covering model X = ⟨f, ℓ⟩ together
with a maximal simplex s in E, we can define the satisfaction
relation X, s |= φ by transporting what we did for generalized
epistemic models via the isomophism of Proposition 1.

X, s |= DU φ iff X, s′ |= φ for all maximal s′ ∈ E
such that ∂U (f(s′)) = ∂U (f(s))

Proposition 1 can be readily extended to show that the cate-
gories of models are also isomorphic:

Theorem 1. The category of epistemic covering models ECA
is isomorphic to the category of generalized epistemic models
KMA.

Proof: We provide two functors κ, σ. On the underlying
coverings and frames, they act as in Proposition 1. We just
need to extend them to valuations. For κ : ECA → KMA,
for each maximal simplex s in E, we have an associated
world ws in κ(f). We set Lκ(f)(ws) = ℓ(s). Similarly, for
σ : KMA → ECA, there is an associated maximal simplex sw
for every world w. We set ℓσ(M)(sw) = L(w). The rest of the
proof is the same as in Proposition 1.

As expected, the satisfaction relations for both kinds of
models yield the same result:

Lemma 2. Given a pointed epistemic covering model (X, s),
we have X, s |= φ iff κ(X), ws |= φ. Conversely, given a
pointed generalized epistemic model (M,w), we have M,w |=
φ iff σ(M), sw |= φ.

Proof: We prove the first equivalence by induction on the
structure of φ. The case of atomic propositions comes from
the fact that we keep the labelling L(ws) = ℓ(s). The case
of boolean connectives is straightforward. For a formula of
the form DUφ one can notice that we defined ws ∼U ws′ iff
∂U (f(s)) = ∂U (f(s

′)), which coincides with the semantics
of DU . The second equivalence follows from the first one,
together with Theorem 1.

IV. PROPERTIES OF EPISTEMIC MODELS

The models presented in Section III-D are very versatile.
Depending on what kind of applications we have in mind, we

might want to impose some extra properties on the structure of
our models. For instance in distributed computing, the model
is usually assumed to be a simplicial complex rather than a
simplicial set, because a global state of the system is merely
the sum of the local states of the agents, without any extra
information. In this section, we define a number of interesting
properties of epistemic frames, as well as their geometric
counterpart, epistemic coverings. We will see how some of
the results of previous papers on simplicial models arise as a
special case of Proposition 1.

A. Properties of epistemic frames and coverings

Definition 9. An epistemic frame M = ⟨M,∼⟩ is said to
• have trivial empty-group knowledge

if ∀w,w′ ∈M. w ∼∅ w′;
• have no empty worlds if ∀w ∈M. ∃a ∈ A. w ∼a w;
• be proper if (w = w′ ∧ w ∼w w′)⇒ w = w′;
• be maximal if ∀w ∈M. ∀U ⊆ w.
U ̸= ∅⇒ ∃w′ ∈M. (U = w′ ∧ w′ ∼U w);

• be minimal if ∀w,w′ ∈M. (w ⊊ w′)⇒ w ̸∼w w′;
• be pure if ∀w ∈M. w = A;
• have standard group knowledge

if ∀U⊆A. (∀a ∈ U. w ∼a w
′)⇒ w ∼U w′.

Let us explain the meaning of these properties. In a frame
with trivial empty-group knowledge, the empty group cannot
distinguish any worlds. It models the idea that an empty
group cannot measure anything, so all worlds have the same
properties for it.

If a frame has no empty worlds, then there is an alive agent
in every world, i.e., every possibility is observed by someone.

A frame is proper if every pair of worlds that has the same
set of alive agents is distinguishable by some subgroup of
agents. This also corresponds to the principle of observability:
if even a maximal group cannot distinguish worlds, then they
are the same. Notice that this allows sub-worlds.

Example 5. In the figure below, the leftmost frame has trivial
empty-group knowledge, (w0 ∼∅ w1 ∼∅ w2), but also has an
empty world w2, and is not proper (w0 ∼{a,b} w1). The middle
frame has non-trivial empty-group knowledge (w1 ̸∼∅ w2),
has no empty worlds, and is not proper. The rightmost frame
has non-trivial empty-group knowledge, has an empty world,
but is proper (w0 ̸∼b w1).

w0

w2

a, b

∅

w1 ∅
a, b

a, b

w0

w2

a, b

w1

a, b

a, b

a
w0

w2

a, b

w1

a

a, b

A frame is maximal if every world has a non-empty sub-
world. A certain intuition comes from distributed computing:
in a maximal frame, any number of agents may crash during
the execution of a program, as long as at least one of them
remains alive. Moreover, these crashes are undetectable.
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A frame is minimal if there are no strict sub-worlds. Once
again, this corresponds to a situation in distributed computing
where crashes are detectable, that is when a process crashes,
one of the remaining processes is aware of it.

A frame is pure if the set of alive agent in every world is
the same. In such a situation, crashes are not allowed at all,
and all agents always participate.

By “standard group knowledge”, we mean that group in-
distinguishability relations are generated by individual agents,
that is, knowledge of the group is exactly the sum of individual
agents’ knowledge. More formally, when ∼U =

⋂
a∈U ∼a.

Example 6. In the figure below, the upper left frame is
maximal, as it has all sub-worlds. The upper right frame is
minimal as it does not have sub-worlds at all. The bottom left
frame is pure as all its worlds have the same set of alive agents.
The bottom right frame has non-standard group knowledge,
contrary to all previous examples, since w0 ∼a w1, w0 ∼b w1,
but w0 ̸∼a,b w1.

w0 w2

a, b

w1
a

a b

b
w0

a, c

w1
a

a, b

w0

a, b, c

w1
b, c

a, b, c

w0

a, b

w1

a
a, b

b

Similarly, for epistemic coverings:

Definition 10. An epistemic covering f : E → B is said to
• have trivial empty-group knowledge if there is only one

simplex of dimension −1 in B;
• have no empty worlds if all maximal simplices of E have

dimension ≥ 0;
• be proper if no two maximal simplices of E have the

same image in B;
• be maximal if every simplex in B is the image of a

maximal simplex of E;
• be minimal if the image of a maximal simplex of E is

always a maximal simplex of B;
• be pure if all maximal simplices of E have dimension
|A| − 1;

• have standard group knowledge if B is a simplicial
complex.

The intuition behind the definitions is exactly the same as
in the case of frames. We give a few illustrative examples.
In the picture below, the leftmost covering has trivial empty-
group knowledge as there is only one (−1)-simplex in the base
space (one dashed region); but it has empty worlds because of
the maximal (−1)-simplex w2. The covering depicted in the
middle has no empty worlds since all the maximal simplices
have dimension 0 or 1. It, however, does not have trivial
empty-group knowledge as it has two (−1)-simplices in the
base space (depicted as two dashed regions). It is not proper
either because both worlds w0, w1 label the same edge. The

rightmost covering is proper, as every simplex is annotated
with at most one world. It has an empty world, w2, and does
not have trivial empty-group knowledge.

w2

w0, w1

w2

w0, w1

w2

w0

w1

In the examples below, the top left covering is maximal
as every simplex is annotated, that is, every simplex has a
maximal simplex that is sent to it. The top right covering is
minimal because only maximal simplices are annotated. The
bottom left covering is pure, as all annotated simplices are of
the same dimension. All of the examples above have standard
group knowledge since their base csets are in fact complexes.
The bottom right covering has non-standard group knowledge
as its base cset is not a simplicial complex.

w1
w0 w2 w1w0

w0 w1

w1

w0

As our terminology suggests, these properties of epistemic
coverings are the geometric counterpart of the ones of epis-
temic frames that we defined previously.

Lemma 3. The properties of Definition 9 agree with the
ones of Definition 10 up to the equivalence in Proposition 1.
Namely, if f is a covering of a certain type, then κ(f) is of
the same type, and conversely for σ.

Proof: We only show two cases, as the proofs are very
similar and just a matter of checking that we correctly trans-
lated the notions through the equivalence.

Consider a proper covering f :E → B. In the frame κ(f),
two worlds w1, w2 are indistinguishable by group w1 = w2

if and only if the simplices in E that correspond to w1 and
w2 are sent to the same simplex in B. But, as f is proper,
no two simplices have the same image, thus the frame is
proper too. Now, consider a proper frameM. By construction
of the functor σ, two simplices s1, s2 in EM of the same
color are sent to the same simplex in Bσ(M), if and only for
corresponding worlds w1, w2 in M w1 ∼w1

w2. But M is
proper, so it is never the case, thus σ(M) is proper too.

Consider a covering f : E → B with standard group
knowledge. Suppose that for a pair w1, w2 in the frame κ(f),
w1 ∼a w2 for all a in some U . It means that ∂a(s1) = ∂a(s2),
where s1 corresponds to w1 and s2 to w2. As B is a simplicial
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complex, it follows that ∂U (s1) = ∂U (s2), so κ(f) has
standard group knowledge. Take now a frame M with standard
group knowledge. Suppose there are two worlds w1, w2 in M
such that w1 = w2 = U and for all a ∈ U , [w1]a = [w2]a.
Since M has standard group knowledge, [w1]U =

⋂
a∈U [w1]a.

Thus, [w1]U = [w2]U , which means precisely that if two
simplices in Bσ(M) have the same set of vertices, then they
are equal.

B. Subclasses of epistemic frames and coverings

The properties of epistemic frames (or, equivalently, epis-
temic coverings) defined in the previous section can be com-
bined in various ways in order to define particular sub-classes
of interest. The only restriction is that minimal and maximal
are mutually exclusive properties (except in degenerate cases
where the model only has empty worlds). It is also possible,
and perhaps sometimes desirable, to consider models that are
neither maximal nor minimal. Moreover, a frame/covering
which is pure must also be minimal and have no empty world,
so there is no need to specify the latter if we already have the
former.

We can recover variants of simplicial models that have been
defined in previous papers. Since they are usually concerned
with distributed computing, where agents represent processes
that can reason about the system, there is little interest in
studying empty worlds or empty groups of agents. Thus,
they all have trivial empty-group knowledge and no empty
worlds. They also have standard group knowledge since they
work with simplicial complexes instead of semi-simplicial
sets. Moreover, all previous instances of simplicial models
were always proper, not out of necessity, but because without
the notion of covering, it is not possible to model non-proper
behaviors in the geometric approach. On top of that:

• The original paper introducing simplicial models [3] was
working with pure simplicial models (and thus, minimal).

• In the sequel [9], the “pure” assumption is dropped, but
models are still assumed to be minimal since formulas
are only evaluated at the facets.

• On the other hand, [10] and [11] study simplicial models
that may not be pure but are maximal: every simplex is
a possible world.

• An example that is not concerned about simplicial mod-
els, but which studies non-standard group knowledge,
is [15]. Their models are also pure, proper, and have
trivial empty-group knowledge.

In light of Lemma 3, we can easily restrict the equivalence of
categories proved in Proposition 1 to the various sub-categories
of frames and coverings. For instance, we can reformulate the
main result of [3] as follows:

Corollary 1 ([3]). The category of pure proper epistemic
frames with standard group knowledge is isomorphic to the
category of pure proper epistemic coverings with standard
group knowledge.

Proof: By Lemma 3, the restrictions of κ and σ to those
sub-categories is well-defined. Since we still have κ ◦ σ = id

and σ ◦ κ = id as proved in Proposition 1, this is still an
isomorphism of categories.

V. AXIOMATIZATION OF THE VARIOUS SUB-CLASSES

A. Reasoning about alive and dead agents

As in [9], we can express within the language LD the fact
that agents can be dead or alive. For any agent a ∈ A and
group of agents U ⊆ A, we define the following formulas:

dead(a) := Kafalse alive(a) := K̂atrue

dead(U) :=
∧
a∈U

dead(a) alive(U) := D̂U true

It is easy to check that they have the expected semantics: for
epistemic frames, we have M,w |= alive(U) iff w ∼U w; and
for epistemic coverings, X, s |= alive(U) iff s is a V -simplex
with U ⊆ V .

B. Axiomatization of epistemic covering models

We rely on the usual axiomatization of normal modal logics,
with all propositional tautologies, closure by modus ponens,
and the necessitation rule. On top of that, we add the following
five axioms:

• (K) DU (φ⇒ ψ)⇒ (DUφ⇒ DUψ)
• (4) DUφ⇒ DUDUφ
• (B) φ⇒ DU¬DU¬φ
• (Mono) for U ⊆ U ′, DUφ⇒ DU ′φ
• (Union) for U,U ′, alive(U)∧alive(U ′)⇒ alive(U ∪U ′)

We abbreviate KB4n +Mono+Union as ECn, which
stands for the logic of epistemic coverings (as we will see).
Notice that the difference between KB4n and the more
standard multi-agent epistemic logic S5n is the absence of
axiom T: DUφ ⇒ φ. Here are a few examples of valid
formulas in ECn related to the life and death of agents.

• ECn ⊢ dead(a) ⇒ Kaφ: dead agents know everything.
More generally, for a ∈ U , ECn ⊢ dead(a)⇒ DUφ.

• ECn ⊢ alive(a) ⇒ Ka alive(a): Alive agents know that
they are alive. The same holds for a group U of agents.

• ECn ⊢ alive(U) ⇒ (DUφ ⇒ φ): Axiom T is verified
when restricted to groups of agents that are alive.

We are going to show soundness and completeness of ECn

with respect to generalized epistemic models. In order to show
completeness, we use the standard approach: by providing a
canonical model, see for example [23].

Definition 11. The canonical generalized epistemic model
M c = ⟨W c,∼, L⟩ is defined as follows:

• W c = {Γ | Γ is a maximal consistent set of formulas}.
• Γ ∼U ∆ iff DU φ ∈ Γ implies φ ∈ ∆.
• L(Γ) = Γ ∩ At.

Lemma 4 (Truth Lemma). For any formula φ and any
maximal consistent set of formulas Γ ∈ M c, we have φ ∈ Γ
iff M c,Γ |= φ.

Proof: We proceed by induction on φ. The base case of
atomic propositions holds by definition of M c. For the boolean
connectives, the proof is trivial.
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Let us do the case of DUφ. Assume that DUφ is in Γ and let
∆ be an element of M c such that Γ ∼U ∆. By definition of ∼,
we have φ ∈ ∆, so by induction hypothesis M c,∆ |= φ. As
∆ is arbitrarily chosen, we have M c,Γ |= DUφ. Conversely,
assume that M c,Γ |= DUφ and suppose by contradiction that
DUφ ̸∈ Γ. Then the set ∆− = {¬φ} ∪ {ψ | DUψ ∈ Γ}
is consistent. Indeed, suppose ∆− is inconsistent. Then we
have a proof of ⊢ ψ1 ∧ · · · ∧ ψk ⇒ φ, where DUψi ∈ Γ for
every i. Then, by axiom K, we can prove ⊢ DUψ1 ∧ · · · ∧
DUψk ⇒ DUφ. As Γ is maximal consistent, this implies that
DUφ ∈ Γ, which contradicts the assumption. Thus, ∆− is
consistent, and by Lindenbaum’s Lemma, we can extend it to
a maximal consistent set ∆ ⊇ ∆−. By construction, Γ ∼U ∆,
and by induction hypothesis, M c,∆ ̸|= φ. This contradicts
the assumption that M c,Γ |= DUφ. Therefore, DUφ ∈ Γ,
and this concludes the proof.

Lemma 5. In the canonical generalized epistemic model M c,
for any Γ ∈M c, U ⊆ Γ iff alive(U) ∈ Γ.

Proof: Suppose U ⊆ Γ, Γ ∼U Γ. Hence, Γ |= D̂U true,
as there is Γ which is U -accessible from Γ, which means that
alive(U) is in Γ by the Truth Lemma. Conversely, assume
alive(U) ∈ Γ. Then, by Truth Lemma, Γ |= D̂U true, so there
is ∆, such that ∆ ∼U Γ. By symmetry and transitivity of ∼U ,
we have Γ ∼U Γ, so U ⊆ Γ.

Theorem 2. The logic ECn is sound and complete with
respect to the family of generalized epistemic models.

Proof: Soundness is straightforward to check: the axioms
K, B and 4 correspond exactly to the fact that the indistin-
guishability relations are PERs. Axiom Mono corresponds to
condition (a) and axiom Union corresponds to condition (b)
in the definition of generalized epistemic frames.

For completeness, consider the canonical model M c =
⟨W c,∼, L⟩ from Definition 11. Axioms K,B and 4 ensure
that ∼U is a PER, as in the standard treatment of completeness.
Similarly, axiom Mono ensures that the generated family of
PERs is monotone: assume U ⊆ U ′, Γ ∼U ′ ∆ and DUφ ∈ Γ,
then by Mono, DU ′ is also in Γ. As we assumed Γ ∼U ′ , φ ∈
∆, so Γ ∼U ∆. Axiom Union ensures that the condition (b)
is satisfied. Assume that Γ ∼U Γ, Γ ∼U ′ Γ and DU∪U ′φ ∈ Γ.
First, we have that if Γ ∼U Γ, then D̂U true ∈ Γ. Indeed,
by contraposition we have that for any ψ, ψ ̸∈ Γ entails
DUψ ̸∈ Γ. In particular, as Γ is consistent, false ̸∈ Γ, so
DU false ̸∈ Γ. By standard reasoning, ¬DU false ∈ Γ, as
we intended. Hence, alive(U) ∧ alive(U ′) ∈ Γ. By Union
and modus ponens, alive(U ∪ U ′) ∈ Γ. As the formula
alive(V )⇒ (DV φ⇒ φ) is deducible when V = U ∪ U ′, we
have DU∪U ′φ ⇒ φ ∈ Γ. As we assumed DU∪U ′φ ∈ Γ, by
modus ponens φ ∈ Γ, which shows that the canonical model
is indeed a generalized epistemic frame.

Applying the Lindenbaum Lemma and the Truth Lemma,
any consistent formula φ holds in some state of W c, and
thus φ is satisfiable.

The following corollary follows from Lemma 2.

Corollary 2. The logic ECn is sound and complete with
respect to epistemic covering models.

C. Axiomatization of other sub-classes

We now show how to axiomatize the various sub-classes
of epistemic models, as discussed in Section IV-B. As in the
previous section, we first establish soundness and complete-
ness for epistemic frames, and then we get the same result
for epistemic coverings thanks to Lemmas 2 and 3. The proof
is modular: each property of the frames (Definition 9) corre-
sponds to an extra axiom. We denote by U c the complement
of the set of agents U , that is A \ U .

• (NE)
∨

a∈A alive(a);
• (P) alive(U)∧dead(U c)∧φ⇒ DU (dead(U

c)⇒ φ);
• (Max) for U ̸= ∅, alive(U)⇒ ¬DU¬dead(U c);
• (Min) alive(U) ∧ dead(U c)⇒ DUdead(U

c);
• (Pure) alive(A).
However, there are no axioms related to trivial empty-group

knowledge and standard group knowledge. This is because
those two properties cannot be expressed in the language LD.
More formally, we will see in Theorem 3 and Theorem 6 that
ECn is complete with respect to both classes of structures.
As a consequence, they can be assumed “for free”, without
additional axiom. Indeed, to show that the logic ECn is sound
and complete with respect to frames with trivial empty-group
knowledge, we can use the strategy from [15]. The proof
that standard group knowledge requires no extra axiom is the
subject of Section V-D.

Remark 3. There are several interesting relationships between
those axioms. Axiom Pure, which says that all agents are
alive in all worlds, has many consequences. It entails the
axioms NE, Min, and Union. Axiom P is greatly simplified
and becomes φ ⇒ DAφ, where A is the set of all agents.
Furthermore, ECn + Pure together entail Axiom T, so
that the logic KB4n becomes S5n when Pure is assumed.
Another possible interaction is P + Min, which can be
reformulated together as alive(U) ∧ dead(U c) ∧ φ ⇒ DUφ.
This axiom appears in [9], in the particular case of U = {a}.

Now we prove soundness and completeness.

Theorem 3. The logic ECn+NE+P+Max is sound and
complete with respect to proper maximal epistemic models
with trivial empty-group knowledge and no empty worlds.

Proof: For brevity, call an epistemic model with the prop-
erties from the theorem statement a good maximal epistemic
model. First, we show soundness. Suppose we are given a good
maximal model M. Axioms of ECn hold in M as it is an
epistemic model in particular. Axiom P holds inM because it
is proper: assume that M, w |= alive(U)∧ dead(U c)∧φ, that
is, M, w |= φ and w = U . Let w′ ∈ M such that w′ ∼U w.
Assume then that M, w′ |= dead(U c), thus w′ = U , and by
properness of M, w = w′ and M, w′ |= φ. For axiom NE,
as every world is non-empty, for some a ∈ w, Kaφ ⇒ φ
holds. For axiom Max, suppose for some world w ∈ M ,
M, w |= alive(U), that is U ⊆ w. As M is maximal, there
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is always a world w′, such that w′ ∼U w and w′ = U . So
¬DU¬dead(U c) holds in w since dead(U c) holds in w′.

Now we show completeness. We define the canonical
model M c as in Definition 11, except that consistency now
refers to the new logic. The proof of the Truth Lemma
(Lemma 4) can easily be adapted. Let φ0 be a consistent
formula. We shall show that φ0 is satisfiable in some good
epistemic model. Let M c be the canonical model for the logic,
as in Theorem 2. We need to show that the canonical model
is a good model. Recall that in the canonical model Γ ∼U ∆
iff for any φ, DUφ ∈ Γ⇒ φ ∈ ∆. The model M c is:

Proper: Suppose Γ = ∆ = U and Γ ∼U ∆. We need to
show that Γ = ∆, that is for every formula φ, φ ∈ Γ iff φ ∈ ∆.
Suppose φ ∈ Γ. Then, by axiom P, DU (dead(U

c) ⇒ φ) is
in Γ. By the definition of ∼U , it means that dead(U c)⇒ φ ∈
∆. By modus ponens, φ ∈ ∆. Similarly, we can show that
φ ∈ ∆ ⇒ φ ∈ Γ. Hence, Γ = ∆ and the canonical model is
proper.

Maximal: Let U ⊊ Γ. We want to exhibit a sub-world
∆ of Γ, such that ∆ = U . By Lemma 5, alive(U) ∈ Γ, so by
axiom Max, maximality and consistency, ¬DU¬dead(U c) is
in Γ. Then the set ∆− = {dead(U c)} ∪ {ψ | DUψ ∈ Γ} is
consistent, by the same reasoning as in the proof of the Truth
Lemma. By Lindenbaum’s Lemma, ∆− can be extended to a
maximal consistent set ∆. Moreover, ∆ ∼U Γ by construction,
so U ⊆ ∆. Also, as dead(U c) ∈ ∆, ∆ ⊆ U . Hence, ∆ = U
and ∆ is a sub-world of Γ.

No empty worlds: By axiom NE, maximality and consis-
tency of any Γ, there is an agent a ∈ A, such that alive(a) ∈ Γ.
It entails that a ∈ Γ.

Trivial empty-group knowledge: The canonical model
M c, however, does not have trivial empty-group knowledge.
Nevertheless, for every φ0, we can extract a sub-model, M c

0 ,
which consists of the set {Γ ∈ M c | Γ ∼∅ Γ0}, where
Γ0 is some maximal consistent theory that contains φ0. By
monotonicity of ∼, this restriction preserves all worlds U -
accessible from Γ0 and properties of ∼. Moreover, M c

0 has
trivial empty-group knowledge. Thus, φ0 holds in at Γ0 in
M c

0 , which is proper, maximal, has no empty worlds and trivial
empty-group knowledge.

Inspecting the proof, one can see that the axioms and
properties of the model are pairwise independent. Hence, any
combination of those axioms yields a sound and complete
axiom system for the corresponding class of models. Another
example, with minimal models:

Theorem 4. The logic ECn+NE+P+Min is sound and
complete with respect to proper minimal epistemic models with
trivial empty-group knowledge and no empty worlds.

Proof: Call an epistemic that satisfies properties from the
statement of the theorem a good minimal model. The proof
of all clauses, except the correspondence between axiom Min
and minimality, is the same as in Theorem 3. So for soundness,
let us show the validity of axiom Min in any good minimal
model. Consider a good minimal model M and a world w ∈
M. Assume that alive(U) ∧ dead(U c) holds in w. It means

+Max
+NE

+Max
+NE
+P

+Max
+P

+Max +NE
+NE
+P

+P

KB4
+Mono
+Union

+Min
+NE

+Min
+NE
+P

+Pure
+NE
+P

+Min
+P

+Min

Fig. 5. Variants of epistemic logic

that w is exactly U . Then by minimality of M, as w is not a
subworld of any other world, in any w′, such that w ∼U w′,
we have w′ = U . Hence, M, w′ |= dead(U c) and M, w |=
DUdead(U

c), so axiom Min is valid.
For completeness, it remains only to verify that the canoni-

cal model M c for this logic is minimal. Consider Γ,∆ ∈M c,
such that Γ ⊊ ∆ and Γ = U . Suppose that Γ ∼U ∆. By
Lemma 5, alive(U)∧dead(U c) belongs to Γ. By modus ponens
and axiom Min, DUdead(U

c) is in Γ. By definition of ∼U ,
dead(U c) ∈ ∆. But ∆ is strictly bigger than U , thus there
a ∈ U c such that a ∈ ∆, so alive(a) ∈ ∆ which contradicts
with consistency of ∆. Thus, Γ ̸∼U ∆ as required.

For the case of pure models:

Theorem 5. The logic ECn+NE+P+Pure is sound and
complete with respect to proper pure epistemic models with
trivial empty-group knowledge and no empty worlds.

Proof: Extending the previous theorem, for soundness we
just need to check validity of axiom Pure in a pure model.
Take an epistemic model M that has properties from the
statement of the theorem. The formula D̂U true holds in any
world w because w ∼a w as M is pure.

For completeness, we need to verify that the canonical
model M c is pure. As alive(A) is in any Γ in M c, by Lemma 5
we have Γ = A, so M c is pure.

The relationship between all the axiom systems that we
consider is summarized in Figure 5.

D. Standard group knowledge

The last property that we did not axiomatize is the standard
group knowledge, or, geometrically, the distinction between
simplicial sets and simplicial complexes. In this section, we
show that restricting to simplicial complexes does not require
any additional axiom. For that purpose, we use a construc-
tion called unraveling, which turns a generalized epistemic
frame M into a new frame U(M) that is bisimilar to M and
has standard group knowledge.

Let M be a generalized epistemic model. A history in M
is a finite sequence of the form h = (w0, U1, w1, . . . , Uk, wk)
for some k ≥ 0, such that wi−1 ∼Ui

wi for all 1 ≤ i ≤ k
and Ui is a maximal such subgroup of agents. Notice that
since epistemic models do not necessarily have standard

Authorized licensed use limited to: Ecole Polytechnique. Downloaded on December 11,2023 at 16:09:25 UTC from IEEE Xplore.  Restrictions apply. 



12

group knowledge, every pair of worlds w,w′ can have sev-
eral groups U maximal with respect to inclusion such that
w ∼U w′. For example, if w ∼U w′, w ∼U ′ w′ and both
U,U ′ are maximal, then one has, in particular, two different
histories (w,U,w′) and (w,U ′, w′). We write last(h) = wk

for the last element of a history, and we write h →U h′ if
h′ = (h, U,wk+1) with U ⊆ U ′.

Definition 12. The unraveling of M is a generalized epistemic
model U(M) = (H,∼u, Lu) defined as follows:

• H is the set of histories of M ,
• ∼u

U is the transitive and symmetric closure of →U , i.e.,
∼u

U = (→U ∪ ←U )
∗,

• Lu(h) = L(last(h)).

The unraveling construction is similar to the tree unraveling
from [24], adjusted to the case of multiple relations related by
monotonicity.

Lemma 6. Let M be a generalized epistemic model. Then its
unraveling U(M) is a generalized epistemic model.

Proof: It is easy to see that every ∼u
U is a PER, as it is

transitive and symmetric closure. If U ⊆ U ′, →U ′⊆→U by
definition, so ∼u

U ′⊆∼u
U , that is ∼u satisfies the compatibility

condition. Now, suppose that h ∼u
U h and h ∼u

U ′ h. By
definition of ∼u, it means that there is a sequence of worlds in
M such that last(h) ∼U · · · ∼U last(h), so, by transitivity of
∼U , last(h) ∼U last(h). Similarly, last(h) ∼U ′ last(h). As M
is a generalized epistemic model, it follows that last(h) ∼U∪U ′

last(h). Thus, there is a history h′ = (h, U ∪U ′, last(h)), and
h ∼u

U∪U ′ h′. By transitivity and symmetry of ∼u
U∪U ′ , we have

h ∼u
U∪U ′ h, thus concluding that U(M) is closed under union

of the groups of alive agents.

Lemma 7. For every model M , its unraveling U(M) has
standard group knowledge.

Proof: We need to show that for any two h, h′ in U(M), if
h ∼u

U h′ and h ∼u
U ′ h′, then h ∼u

U∪U ′ h′. There are two cases:
if h = h′ and h ̸= h′. For the first case, the statement holds
since U(M) is a generalized epistemic model by Lemma 6.

For the second case, notice first that →V respects the
ordering of histories with respect to the prefix relation: if
h→V h′, then h is a prefix of h′. The prefix relation forms a
tree on the set of histories, and it implies that if h ∼u

V h′, then
there is a unique non-redundant path h ←V · · · ←V h′′ →V

· · · →V h′ from h to h′ that witnesses it, where h′′ is the
common prefix of h and h′. Moreover, this path is the same
for any V ⊆ A. We can write h = (h′′, V1, w1, . . . , Vn, wn)
and h′ = (h′′, V ′

1 , w
′
1, . . . , V

′
m, wm). As it is the same path

for both U and U ′, U ∪ U ′ ⊆ Vi and U ∪ U ′ ⊆ V ′
j for

all i, j. In particular, we have that last(h) = wn ∼U∪U ′

· · · ∼U∪U ′ last(h′′) ∼U∪U ′ · · · ∼U∪U ′ w′
m = last(h′). Thus,

h ∼u
U∪U ′ h′, and U(M) has standard group knowledge.

Remark 4. In the proof we have also shown that if h ∼u
U h′,

then last(h) ∼U last(h′).

Given two generalized epistemic models M,N , we say that
morphism p : M → N is a functional bisimulation if the
following conditions hold:

• (atoms) for any w ∈M , LN (f(w)) = LM (w);
• (forth) for all U ⊆ A, if w ∼M

U w′, then f(w) ∼U f(w′);
• (back) for all U ⊆ A, if f(w) ∼N

U v′, then there is
w′ ∈M such that f(w′) = v′ and w ∼M

U w′.
The definition we give is an extension of the standard notion

of bisimulation, which links structural similarity of models
with validity of formulas. In particular, we have the following
proposition by adapting the standard construction (see [23]).

Proposition 2. If f : M → N is a functional bisimulation,
then for any formula φ, we have that M,w |= φ if and only
if N, f(w) |= φ.

This is the essential proposition that allows us to show
that ECn is sound and complete with respect to frames with
standard group knowledge.

Lemma 8. For every generalized epistemic model M , its
unraveling U(M) is bisimilar to M .

Proof: We shall show that last : U(M) → M is a
functional bisimulation. First, by the definition of Lu, Lu(h) =
L(last(h)), so the atomic proposition are preserved.

Suppose now that h ∼u
U h′. By Remark 4, last(h) ∼U h′,

so (forth) condition is satisfied.
For (back) condition, suppose that last(h) ∼U w′. Then

there is a history h′ = (h, U ′, w′), such that U ⊆ U ′. Clearly,
h →U h′, so h ∼u

U h′, and the (back) condition holds too,
thus concluding that last : U(M)→M is a bisimulation.

Theorem 6. The logic ECn is sound and complete with
respect to models with standard group knowledge.

Proof: Soundness is straightforward, as models with
standard group knowledge are generalized epistemic models
in particular.

Consider the canonical model M c for ECn from The-
orem 2. It is shown that M c is a generalized epistemic
frame. By Lemma 6, U(M c) is a generalized epistemic frame,
and by Lemma 7 it has standard group knowledge. For any
formula φ, there is Γ in M c, such that M c,Γ |= φ. Since
last : U(M c) → M c is a bisimulation by Lemma 8, for any
h ∈ U(M c) such that last(h) = Γ, we have U(M c), h |= φ.
Thus, any formula φ is valid in a model with classic group
knowledge, which concludes completeness.

E. Topological interpretation

The completeness result with respect to models with stan-
dard group knowledge points us towards the study of expres-
sivity of modal logic with respect to topological properties of
csets. In particular, a natural question is what kind of similarity
between csets is induced by a bisimulation? In this subsection,
we give a partial answer to this question.

Let us restrict our attention to good maximal epistemic
models. By the isomorphism we have shown, it is the same as
to consider csets where every simplex is a unique world. Let
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α : X → Y be a functional bisimulation. We can translate the
definition of a bisimulation in terms of epistemic coverings: it
means that the valuation of a simplex s ∈ X coincides with
the valuation of its image α(s) ∈ Y ; if two simplices s, s′ in
X have a common U -subsimplex, then α(s) and α(s′) have a
common U -subsimplex; if α(s) has a common U -subsimplex
with t′ in Y , then there is a simplex s′ in X that shares a
U -subsimplex with s, and α(s′) = t′. The second condition is
always satisfied by any morphism of csets. The last condition
is more interesting, as it can be interpreted as a certain type
of lifting condition that is ubiquitous in topology. This point
of view can be traced back to [25].

Without giving a proof, we remark that the forgetful functor
from csets to simplicial sets (which just forgets colors of
vertices) sends functional bisimulations of csets with unique
lifting (corresponding to having a unique simplex s′ with
α(s′) = t′ in the condition above) to simplicial coverings (see
[26]). An example of such a bisimulation that can be seen as
a topological covering is depicted. It represents the classical
example of a covering of a circle by an infinite helix.

VI. CONCLUSIONS AND FUTURE WORK

We have introduced a very general class of epistemic models
based on generalized epistemic frames, and their geometric
counterpart based on simplicial sets, epistemic covering mod-
els. These models subsume many variants of simplicial models
found in the literature. We made good use of this generality
by establishing a close connection between properties of the
models and axioms of the logic. This yields soundness and
completeness for a variety of logics (Fig. 5).

A notable fact that we prove is that every model based
on simplicial sets is equivalent modulo bisimulation to a
model based on simplicial complexes. This unveils interest-
ing geometric considerations: epistemic modal logics do not
distinguish simplicial sets from their coverings because of the
local nature of the knowledge operators. Could we define a
logic that is able to capture better the global geometry of the
model?

In future work, we aim at putting these logics in action
for, in particular, distributed computing applications such as
in e.g. [3], [4], [27], [7], and bridge the gap between the
geometric interpretations [28] of distributed problems such as
sensor networks, as touched upon in Example 2, with their
logical interpretations.
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