
HAL Id: hal-04336373
https://polytechnique.hal.science/hal-04336373v1

Preprint submitted on 11 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Estimating the Coverage Measure and the Area
Explored by a Line-Sweep Sensor on the Plane

Maria Costa Vianna, Eric Goubault, Luc Jaulin, Sylvie Putot

To cite this version:
Maria Costa Vianna, Eric Goubault, Luc Jaulin, Sylvie Putot. Estimating the Coverage Measure and
the Area Explored by a Line-Sweep Sensor on the Plane. 2023. �hal-04336373�

https://polytechnique.hal.science/hal-04336373v1
https://hal.archives-ouvertes.fr


1

Estimating the Coverage Measure and the Area
Explored by a Line-Sweep Sensor on the Plane

Maria Costa Vianna, Eric Goubault, Luc Jaulin, Sylvie Putot

Abstract—This paper presents a method for determining the
area explored by a line-sweep sensor during an area-covering
mission in a two-dimensional plane. Accurate knowledge of the
explored area is crucial for various applications in robotics,
such as mapping, surveillance, and coverage optimization. The
proposed method leverages the concept of coverage measure
of the environment and its relation to the topological degree
in the plane, to estimate the extent of the explored region. In
addition, we extend the approach to uncertain coverage measure
values using interval analysis. This last contribution allows for
a guaranteed characterization of the explored area, essential
considering the often critical character of area-covering missions.
Finally, this paper also proposes a novel algorithm for computing
the topological degree in the 2-dimensional plane, for all the
points inside an area of interest, which differs from existing
solutions that compute the topological degree for single points.
The applicability of the method is evaluated through a real-world
experiment.

Index Terms—Plane exploration; topological degree; robotics;
interval analysis.

I. INTRODUCTION

Mobile robots are increasingly being used to carry out
dangerous tasks that otherwise would put human lives at risk,
such as bomb disposal, firefighting, and search and rescue
missions. Their use in these situations can considerably reduce
the risk to human workers while providing more detailed and
accurate information about the situation. Additionally, mobile
robots can be equipped with specialized tools, such as cameras,
grippers, and cutting devices, that enable them to perform
a wide range of tasks that would be difficult or impossible
for humans to do. In the context of these operations, the
robotic platform often needs to perform an area-covering
mission. During these missions, a designated part of the robot’s
environment is thoroughly searched or monitored to develop
a complete understanding of the situation or identify potential
threats or opportunities.

Determining the area explored by a mobile robot during an
area-covering mission is important to establish if the mission
is successful. It is also essential for validating path-planning
algorithms that will lead to complete coverage of an area
of interest [1] or complete avoidance of an area of risk.
Overall, determining the explored area is essential for ensuring
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efficient and safe operations, planning future actions, and
gaining valuable insights from the acquired data.

In addition, we are also interested in determining the
coverage measure of a point in the environment. The coverage
measure represents how many times this point was covered by
the robot’s sensors or tools, in other words, how many times
it was explored.

Counting the number of times an area was explored is of
interest for different reasons, for example, when assessing
revisiting missions. In these missions the robot is required
to come back to a previous point, therefore to revisit it,
to improve the quality of information collected around this
point through redundancy. Indeed, studies have shown that
target classification improves dramatically when a multi-view
approach is adopted. Usually, single-view approaches do not
provide enough information to make a confident identification
with, for example, Synthetic Aperture Sonars (SAS) [2] and
Synthetic Aperture Radars [3]. A multi-view method is also
essential when recognizing or reconstructing 3-dimensional
objects from 2-dimensional data such as camera images [4]. In
these examples, counting how many times a point or an area,
as a set of points, has already been explored will be essential
to determine the mission completeness. On the contrary, if the
robot is not supposed to cover areas previously visited, the
coverage measure will be useful for planning optimal paths,
reducing unnecessary effort.

In this context, in this work, we present a technique for
quantifying the extent of coverage achieved by a mobile robot
during a sweep exploration in a two-dimensional environment.
Sweep exploration refers to missions where the robot uses
a line-sweep sensor. Line-sweep sensors are one-dimensional
sensors that provide data along a single axis and must sweep
the environment in order to create a two-dimensional repre-
sentation of its surroundings. With this purpose, we establish a
relation between the exploration problem and the topological
degree and we demonstrate how it can be used to determine
the coverage measure.

Topological concepts have already been explored for count-
ing [5] and for addressing coverage problems in robotics
contexts, e.g. [6], [7]. The main advantage of the approach
presented in this paper, is that we determine the number
of times an area was explored, with the coverage measure,
and different from more common approaches, such as grid-
based analysis, our topological method does not require a
previous discretization of the environment into fixed cells. We
demonstrate that the whole environment can be characterized
from very basic information on the robot’s state and on the
range of visibility of the exploration sensors, resulting in
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a method of low computational complexity. This approach
has already been explored at [8], but here we deepen its
mathematical definition and extend it to address previous
limitations such as the coverage measure of points on the
maximal range of visibility and of points that are swept on
the opposite direction of movement.

We also address the crucial issue of uncertainty in a robot’s
trajectory to achieve a guaranteed estimation of the explored
area. In [9], a method to estimate the explored area considering
the uncertain state of a robot was presented. We extend their
method by introducing the concept of uncertain coverage
measure.

Our last contribution is an algorithm for computing the
winding number of a continuous cycle with respect to all the
point in the two-dimensional plane. Algorithms for general
topological degree computation have already been proposed
by different works [10], [11]. However, methods available in
the literature will compute the winding number of a cycle with
respect to a single point, needing to be applied to each point
individually for a full characterization of the plane. In this
context, we present a set-membership approach that efficiently
determines the winding number for a whole area of interest.
The resulting algorithm and all the concepts defined in this
work are applied to determine the area explored by a real
autonomous underwater vehicle doing an exploration mission
with two line-sweep sensors.

II. PROBLEM STATEMENT

We are interested in the problem of a mobile robot that
explores an unknown planar environment. We assume that the
robot’s pose can be fully described by a function of time:
x : R → R3 that is at least C2. The robot’s visible area at
time t is a subset V(t) ⊂ R2 of the environment that is sensed
by the robot’s embedded exteroceptive sensors.

We define V as a set-valued function that depends on the
robot’s pose and the geometry and technology of the sensors
employed. In this work, we focus on the problem of line-
sweep exploration sensors and we treat the example of one
that osculates the environment on the robot’s left side as it
moves around the plane, Figure 1. In this context, the robot’s
pose at instant t can be represented by the vector

x(t) =
(
x(t) y(t) ψ(t)

)T
where the pair (x, y) represents the robot’s position in the
plane and ψ its orientation. Let L ∈ R+ be the sensor’s visible
range, the visible set in this configuration can be defined as

V(t) = {p ∈ R2|prx = 0 and 0 ≤ pry ≤ L} (1)

where

pr =
(
prx pry

)T
= R−1(ψ(t))(p−

(
x y

)T
) (2)

represents in the robot’s coordinate frame a point p in the
environment and R(ψ(t)) is the rotation matrix associated with
the robot’s orientation angle ψ(t).

The set AE corresponds to the area explored by the robot
during a time interval [0, T ], for some maximal value T > 0.

y

x

ψ

X

Y
V(t)

p

(a)

Xr

Yr

L

pr = (prx, pry)

(b)

Fig. 1. (a): Mobile robot with a line sweep exploration sensor on the plane.
At instant t the point p is sensed by the robot ; (b): The point pr is the
representation of point p in the robot’s coordinate frame XrYr .

Robot at

Robot’s trajectory

V(0)
Explored Area AE

x(0)

Fig. 2. Area explored by a line-sweep sensor on the robot’s left side along
its trajectory.

It can be defined as the union of the robot’s visible area along
its trajectory

AE =
⋃

t∈[0,T ]

V(t) (3)

Figure 2 shows the resultant AE if we consider the illustrated
robot’s trajectory and the visible set function described by (1).

The robot’s visibility region in this case can be parameter-
ized by u ∈ U ⊆ R. In the considered example U = [0, L] rep-
resents the lateral distance of a point in the visible area to the
robot. We can define the sweep function f : U × [0, T ] → R2

as a continuously differentiable function whose image over the
space U × t, with t ∈ [0, T ], represents the visible area V(t),

V(t) = f(U, t) (4)

By analogy to a common terminology adopted in sonar
imagery [12], we name space W = U × [0, T ] the Waterfall
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L
0

T

W = U × [0, T ] M ⊆ R2
X

Y

f

f−1

f(L, [0, T ])

f(0, [0, T ])

f([0, L], 0)

f([0, L], T )

Robot atx(0)

Fig. 3. Waterfall and Mosaic Spaces for the line-sweep sensor example.

Space. Points in W are of the form (u, t), u representing the
parameterization of the visible area, t the time of exploration.
All points (u, t) ∈W are points that were in the robot’s visible
area at least once and therefore, points that were explored
during the mission. The robot’s pose x, its visible area V and
AE are all defined inside an absolute coordinate system, the
Mosaic Space M ⊆ R2 or the World Frame, as it is usually
called in robotics. The sweep function f maps points from the
Waterfall to the Mosaic space, Figure 3.

p
Robot att2
Robot at t1

L
0

T

W = [0, L]× [0, T ]

f

f−1

M

p2

p1

Fig. 4. Point p is revisited once during the mission and f−1(p) = {p1,p2}.

The coverage measure, or how many times a point in the
environment was explored by the robot during a mission, is
given by the function cm :M → N0. A point is considered to
be revisited if once in the robot’s visibility range, it goes out
of reach and then is sensed again later in time. In Figure 4,
for example, point p is sensed for the first time at instant t1
and revisited at instant t2, in this case, cm(p) = 2.

Let det be the determinant function and Jf represents the
Jacobian matrix of the sweep function. We adopt the following
condition:

∀w ∈W,det(Jf (w)) > 0 (5)

that implies that the robot is constantly moving and that the
sensor sweeps the environment on the same direction of its
advancement movement. By assuming this condition is met,
we can say that the number of times that a point appears in the
waterfall space corresponds to the number of times that this
point was explored during a mission. If Ker f is the kernel of
function f , considering the definitions stated in this Section:
for p ∈M , it can be concluded that

cm(p) = #Ker (f − p) (6)

The explored area AE can be characterized as the set of
points that were sensed by the robot at least once and therefore
in terms of the coverage measure of its points:

AE = {p ∈M |cm(p) ≥ 1} (7)

Describing the mosaic space using the coverage measure
of its points is the method adopted in this work for defining
the explored area. To achieve this, the following section
establishes a connection between the topological degree and
the coverage measure and this relation is explored with this
purpose.

III. COVERAGE MEASURE AND TOPOLOGICAL DEGREE

In [8] a relation between the coverage measure of a point
in the plane and the topological degree has been explored.
Here we give a general axiomatic definition of the notion of
topological degree and recap the main properties that we use.

Definition 1 (Topological degree). Let D be an open subset of
Rn and f a continuous function from its closure D to Rn. A
degree of f is a family of functions deg : (f , D,p) → Z for
all D open subsets of Rn, f continuous and p ∈ Rn\f(∂D)
such that:

• (identity) deg(IdD, D,p) = 1 if p ∈ D
• (excision) deg(f , D,p) = deg(f , D1,p)+deg(f , D2,p)

where D1, D2 are opens in D with p ̸∈ f(D\(D1∪D2))
• (homotopy invariance) deg(h(α, .), D,p(α)) is indepen-

dent of α for any homotopy h : [0, 1] ×D → Rn, and
p(α) ̸∈ h(α, ∂D) for all α ∈ [0, 1].

When such a family of function exists, it is known to be
unique [13]. In particular, when f is at least continuously dif-
ferentiable, and p is a regular value of f (i.e. the determinant
of the Jacobian of f , det(Jf ), is non zero on each d with
f(d) = p):

deg(f , D,p) =
∑

d∈f−1(p)

sign(det(Jf (d))) (8)

As well known in complex analysis, the topological degree
of differentiable functions from the unit ball D2 in R2 to R2

is linked to the winding number of f(∂D2). We are going to
take the homological view on winding numbers in this paper.
Let S1 = ∂D2 be the 1-sphere, p a point in the interior of
the image by f of D2. Function f maps S1, on a cycle in
R2, and the winding number is the number of times this cycle
turns around p. By convention, counterclockwise turns count
positively and clockwise turns negatively.

Definition 2 (Winding number). Let f : D2 → R2 be
a continuous function and p ∈ f(D2)\f(S1). Consider its
restriction f|S1 : S1 → R2\{p}. It induces a linear map in
homology:

f̃ : H1(S
1) → H1(R2\{p})

i.e. from Z to Z, i.e. is of the form f̃(C) = ηC, where
C represents an equivalence class in H1(S

1). This η is
called the winding number of γ = f(S1) around point
p ∈ f(D2)\f(S1). For all other points in R2\∂D2 the
winding number is set to zero.
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We can now state the relation between the topological
degree and the winding number:

Lemma 1. Let f be a continuously differentiable map from
D2 to R2 and let y ∈ R2\f(∂D2) such that f−1(y) is finite
and y is a regular point for f . Then deg(f , D2,y) is equal
to the winding number η(f(∂D2),y) of f(∂D2) at y.

Proof. For all y ∈ R2\f(∂D2), either there exists no d such
that y = f(d), or there exists a finite, non-zero number of d,
d1, . . . ,dm in D2, such that f(di) = y.

In the first case, this means that both, deg(f , D2,y) is zero
and y is in the complement of f(D2) and the winding number
η(f(∂D2),y) is also zero.

In the second case, y being regular for f , we have

deg(f , D,y) =
m∑
i=1

sign(det(Jf (di))). Take small enough

open neighborhoods Ui of di in D such that the sign of
det(Jf (d)) is the same as the sign of det(Jf (di)) for all
d ∈ Ui. This is always possible since Jf is continuous.
Note that this implies that f restricted to Ui induces an
homeomorphism onto its image. Also we can always choose
the Ui to have empty pairwise intersections and to have f
being an homeomorphism from Ui onto its image, by taking
them small enough (the di are isolated points within D).

Now, the map f̃ is the same as the map induced in

homology f̃ by f : D2\
m⋃
i=1

Ui → R2\{y}. We note also that

within D2\
m⋃
i=1

Ui, the cycle ∂D2 is homologous to the sum of

the ∂(Ui), for i = 1, . . . ,m. Hence f̃(∂D2) =
m∑
i=1

f̃(∂(Ui)).

But f(∂(Ui)) is a Jordan curve homeomorphic (by f ) to
∂(Ui), since we chose Ui such that f restricted to Ui onto
its image is a homeomorphism. Hence f̃(∂Ui) is either plus
or minus identity, according to the orientation of f̃(∂Ui), i.e.
f̃(∂Ui) = sign(det(Jf (d))) for any d ∈ Ui, which we know
is equal to sign(det(Jf (di)). Hence

η(f(∂D2),y) =

m∑
i=1

sign(det(Jf (di))) = deg(f , D2,y)

.

γ

Fig. 5. The sensor’s contour γ for the mission represented in Figure 2.

Now let f represent the sweep function, mapping from the
Waterfall Space W , which is homeomorphic to D2, to the

Mosaic Space M . According to (8) and under hypothesis (5),
for p ∈ Rn\f(∂W ),

deg(f ,W,p) =
∑

w∈f−1(p)

+1 = #Ker (f − p) (9)

Finally, from (6), it can be concluded that deg(f ,W,p) =
cm(p). Moreover, from Definition 2,

η(γ,p) = cm(p), (10)

where γ = f(∂W ) represents the sensor’s contour, a counter-
clockwise oriented closed curve that surrounds all the points
that have been explored, Figure 5, and η(γ,p) is its winding
number with respect to p.

Throughout the remainder of this Section, we extend the
relation between the coverage measure and the topological
degree so it comprehends more general scenarios.

A. Coverage Measure for Points with Undefined Winding
Numbers

When the robot’s pose and its visible set are well defined,
the coverage measure of all the points in the environment
during a mission can be uniquely determined. However, if
we adopt the method proposed by [8], using relation (10),
the coverage measure of a point p ∈ γ will be undefined
considering the definition of winding numbers.

γ

p1p2

Fig. 6. The coverage measure of point p1 is equal to 1 and of point p2

is equal to 2, but the winding number of γ with respect to these points is
undefined.

For example, in Figure 6, point p1 ∈ γ is the image by
f of a point (0, t) ∈ W , for some t ∈ [0, T ]. This point
is inside the robot’s visible area V(t) and according to the
definition of the coverage measure on (6), cm(p1) = 1 even
if η(γ,p1) is undefined. In this context, to extend the validity
of (10), we define a bounded function η as the extension of
the winding number function to the full domain f(W ). For
that, we consider the followingadapted from [14]:

Definition 3 (Limit Superior). Let M be a metric space and
g a function from M to R. For any limit point y ∈ M the
limit superior, when it exists, is defined as:

limsup
p→y

g(p) = lim
ϵ→0

(sup{g(p) | p ∈ B(y, ϵ)\{y}})

where B(y, ϵ) denotes the ball within M , centered at y, of
radius ϵ.

The sweep function f is a continuous map from a compact
subset W to R2, therefore f(W )\f(∂W ) is composed of a
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disjoint union of opens Vi, i ∈ I , for some index set I . All
points of f(∂W ) are limits of some sequence of points f(y),
with y ∈ W̊ . We can now state:

Lemma 2. Consider a function w :
⋃
i∈I

Vi → Z. Suppose that

w is bounded on
⋃
i∈I

Vi then there is an upper semi-continuous

extension of w, w : f(W ) → Z defined as:

w(p) =


w(p) if p ∈

⋃
i∈I

Vi

limsup
p′∈

⋃
i∈I

Vi→p

w(p′) otherwise

Proof. This is immediate: the limit sup exists since w is
bounded on

⋃
i∈I

Vi, and the definition of w precisely imposes

that w is upper semi-continuous.

Supposing that the number of connected components of
f(W )\f(∂W ) is finite, as the winding number is constant
on each component, this defines a bounded function η that we
can extend to the full domain f(W ) by Lemma 2 to obtain η.
Finally, if the condition expressed in (5) is satisfied, we can
say that for any p ∈M ,

η(γ,p) = cm(p) (11)

Considering Definition 3, if p ∈ γ, its coverage measure
will be equal to the coverage measure of points on the open
Vi with the biggest winding number value for which p is a
limit, as expected by the original definition on (6).

This new definition extends the applicability of the method
but condition (5) is still necessary for (11) to be true. Next
section introduces new concepts to remove this constraint.

B. Coverage Measure for Points Swept Backwards

Condition (5) is necessary for (11) to be true. It ensures that
the area surrounded by the sensor’s contour γ never shrinks
during a mission and that γ is indeed an enclosing curve for
AE.

0

w1
t̂1

t1

W
γ1

f

x(0)

x(t̂1)

p

x(t1)

M

Fig. 7. Mission during time interval [0, t1], point p is sensed for the first
time at t̂1 and cm(p) = 1.

If condition (5) is not satisfied, the inconsistency in the
equality (11) is illustrated in Figures 7,8 and 9. At the
beginning of the mission, in Figure 7, the robot moves from
its initial state x(0) to state x(t1), t1 > 0. During the interval
[0, t1], condition (5) is satisfied. Point p ∈ M is sensed for

0

w1
t̂1

t2

W

t̂2 w2

f

x(0)

x(t̂1)

x(t̂2)x(t2)

γ2 S−

p

M

Fig. 8. Condition established in Equation (5) is not satisfied for all the points
in W . At t2, cm(p) = 2.

γ S−
M

0

w1
t̂1

T

t̂2

t̂3 w3

w2

f

x(0)

x(t̂1)

x(t̂2)

x(t̂3)

x(T )

p

W

f−1(S−)
Fig. 9. The mission ends at T and the point p is sensed for the last time at
t̂3, the final coverage measure of this point is 3 although η(γ,p) = 1.

the first time at instant t̂1 ∈ [0, t1] and this occurrence is
represented in the mission’s Waterfall Space W by point w1.
The sensor’s contour associated with this first part of the
mission is the closed curve γ1 = f(∂([0, L] × [0, t1])) and
η(γ1,p) = sign(det(Jf (w1))) = 1 is indeed equal to the
coverage measure of p at t1.

The mission continues as the robot advances to state x(t2),
t2 > t1 and point p is revisited at t̂2. For the time interval
[0, t2], we have f−1(p) = {w1,w2} and γ2 = f(∂([0, L] ×
[0, t2])) represents the sensor’s contour. As illustrated in Figure
8, at t̂2, point p is swept in the opposite direction with respect
to the robot’s advancement movement. In this context, the
Jacobian of function f at w2 is negative and

η(γ2,p) =

2∑
i=1

sign(det(Jf (wi))) = 1− 1 = 0

although, according to (6), cm(p) = 2 at t2.
Exploration ends at state x(T ), T > t2 and the complete

mission is represented in Figure 9. Point p is sensed for
the third and last time at t̂3 and at the end of the mission
f−1(p) = {w1,w2,w3}. At t̂3, point p is sensed by a forward
movement of the sensor on the plane, therefore,

η(γ,p) =

3∑
i=1

sign(det(Jf (wi))) = 1− 1 + 1 = 1

but cm(p) = 3 is expected.
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γ = f(∂W )

f (S−)

x(0)
x(T )

0

T

W M

γ+ = f (∂S+)
x(0)

x(T )

0

T

S+

γ− = f (∂S−)

∂W

S−

∂S+

T
∂S−

S−

Fig. 10. Decomposition of the Waterfall Space and γ according to the
sweeping direction.

To address this problem, we can divide the Waterfall Space
W into two sets, S+ and S−,

S+ = {y ∈W |det(Jf (y)) > 0)} (12)

S− = {y ∈W |det(Jf (y)) < 0)} (13)

We define two new positively oriented contours, γ+ and γ− as
the image by f of the boundaries of these sets, as illustrated
in Figure 10,

γ+ = f(∂S+) (14)

γ− = f(∂S−) (15)

For a regular value p ∈ M we will have Ker (f − p) ⊂
S+ ∪ S−, furthermore we can say that

Ker (f − p) = Ker(f − p)|S+ ∪Ker(f − p)|S− (16)

and we can rearrange (6):

cm(p) = #Ker (f − p)|S+ +#Ker (f − p)|S− (17)

cm(p) =
∑

w∈f−1

|S+
(p)

+1 +
∑

w∈f−1

|S−
(p)

+1 (18)

Considering the definitions of sets S+ and S− on (12) and
(13), respectively,

cm(p) =
∑

w∈f−1

|S+
(p)

sign(det(Jf )(w))−
∑

w∈f−1

|S−
(p)

sign(det(Jf )(w)) (19)

Finally, considering Equations (14) and (15), from (8) and
Definition 2, we obtain

cm(p) = η(γ+,p) + η(γ−,p) (20)

for any regular point p ∈M . The extension to non-regular val-
ues p can be naturally done considering that deg(f ,W,p) is
locally constant on the connected components of M\f(∂W )
[15].

C. Dealing with Uncertainties

We now consider that the robot’s pose can be uncertain, we
keep the assumption that the sensor’s model is exact. Since
the visible set V depends on the robot’s state, uncertainty is
naturally propagated to the coverage measure.

Let x∗ be the robot’s pose representing its position and
orientation on the R2 plane during a mission. From now on, we
assume that x∗ is unknown and that instead, x∗ belong to a set
[x] ∈ P(R → R3) of all the possible functions describing the
robot’s behavior. Modeling the state of a mobile robot by a set
of possible solutions containing the ground truth is a common
approach since they are usually nonholonomic systems. These
are systems whose behavior can be modeled by differential
equations and physical constraints, implying that if bounded
uncertainties are introduced, they create a bounded disturbance
around the real solution.

p2

p1

x1 :

x2 :

Fig. 11. Point p1 is explored only if x∗ = x2 and point p2 is explored
either if x∗ = x1 or x∗ = x2.

The coverage measure cm(p) for a point p ∈ M can
take different values for distinct functions x ∈ [x]. In this
work, we propose a solution for computing the uncertain
coverage measure based on interval analysis. For example, let
us consider a set [x] = {x1,x2} with two possible solutions
as illustrated in Figure 11. The coverage measure of p1 can
either be 0 or 1. In this case, we want its coverage measure to
be represented by an interval [0, 1] containing all the possible
solutions. For point p2, its coverage measure is always equal
to 1. Therefore, we represent its coverage measure by the
singleton [1, 1].

We adopt the notation cm|x(p) for representing the coverage
measure of a point p ∈M for a given x. We are interested in
estimating [cm](p) ∈ IZ, an interval of relative integers such
that

∀x ∈ [x] , cm|x(p) ∈ [cm](p). (21)

From each x ∈ [x], we can generate a different γ, a possible
sensor’s contour for the mission. We define [γ] ∈ P(S1 →
R2) as the set of all possible γ. To simplify the definitions,
first we consider a point p ∈ M such that det(Jf (w)) > 0
for all w ∈ f−1(p). In this case, according to (11), we can
obtain the coverage measure through the computation of the
winding number of the sensor’s contour. Therefore, we want
to determine [η]([γ], .) ∈ IZ such that

∀γ ∈ [γ] , η(γ, .) ∈ [η]([γ], .). (22)

and we can define the uncertain coverage measure of p as

[cm](p) = [η]([γ],p). (23)
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A generalization of the results stated in the remaining of this
Section for all the points in the plane can be easily obtained
considering a decomposition of cycles γ ∈ [γ] in γ+ and γ−

as proposed in (20).

IV. COMPUTING THE COVERAGE MEASURE

We are interested in determining the coverage measure of
all the points inside an area of interest. Thus, we developed an
algorithm, that is presented in this Section, for computing the
extended winding number function η for a cycle γ : S1 → R2

with respect to all the points inside a subset of R2. We also
present its extension for dealing with an uncertain cycle [γ].

A. Computing the Extended Winding Number of γ

Let Wi be a winding set associated with a cycle γ, defined
for a natural number i, by definition

Wi := {p ∈ R2|η(γ,p) ≥ i} (24)

W1
W2

Fig. 12. Winding sets W1 and W2 associated with the curve γ illustrated in
Figure 5.

There are, for example, two non-empty winding sets asso-
ciated with the curve γ of Figure 5, W1 and W2 represented
in Figure 12. As demonstrated in [16], the winding number
η(γ,p) of any point p ∈ R2 \ γ can be calculated using the
winding sets of γ,

η(γ,p) =
∑
i>0

χWi
(p) (25)

where χWi
is the characteristic function for the winding set

Wi. Equations (24) and (25) are still valid if η is replaced by
its extension η.

The algorithm starts by computing all the non-empty wind-
ing sets Wi, for i ∈ N, associated with the sensor’s contour
γ, through a combinatorial approach. For that, we consider
that a self-intersection or vertex of γ is determined by two
parameters t0, t1 ∈ S1, t0 ̸= t1 and that it is a point p
such that p = γ(t0) = γ(t1). The multiplicity of such a
self-intersection is the number, finite or infinite, of distinct
t ∈ S1 such that p = γ(t) minus one. Then, we make the
following assumptions, similar to those of [17], so that the
winding number of a point can be easily obtained using (25):

• γ has a finite number of self-intersections, each one of
them with multiplicity one.

v0

v1

v2
v3

(a)

a0
a1

a2

a3

a4

a5

a6

a7

(b)

A1
A2

A3

A5

A4

A0

(c)

Fig. 13. (a): CW (γ) has four 0-cells {v0,v1,v2,v3} ; (b): CW (γ) has
eight 1-cells, connected components of γ \ {v0,v1,v2,v3}; (c): The plane
is divided into six 2-cells, five compacts (from A1 to A5) and one extending
to the infinity (A0).

• in addition, we assume the two tangent vectors to γ at
each vertex to be linearly independent.

Such a cycle divides R2\γ into a finite number of connected
open regions, one of which is not compact. Each one of these
regions can be seen as a 2 − cell of the CW-complex C(γ),
constructed from the cycle γ. To be fully formal, we would
need to use the fact that γ determines a cell decomposition
of the one-point compactification of the plane, homeomorphic
to the 2-sphere S2, Figure 13. The 0-cells of C(γ) are self-
intersections of γ, and the 1-cells are parts of the curve
separating the 2-cells, connected components of γ minus its
self-intersections.

Since all open 2-cells are homotopy equivalent to a point
within that cell and considering the degree axioms presented
in Definition 1, we can conclude that all the points within the
same open 2-cell of C(γ) have the same winding number with
respect to γ. In this context, a correct and coherent numbering
of the 2-cells is enough for determining the winding number
value of all the points in the plane.

For this purpose, we can use a combinatorial rule proposed
by Möbius in 1865 [18]. The rule says that two contiguous
regions that are separated by a 1-cell are numbered with a
value that must differ by exactly 1. The winding number
of the region on the left is greater, considering the curve’s
orientation. This method leads to a unique numbering of the
space considering that the winding number in the non-compact
region, to whom we will be referring as A0, is known and
equal to 0 for all of its points. This is true because since A0
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γ̇(t1)

γ̇(t0)
v

w + 1 w

w w − 1

(a)

γ̇(t1)

γ̇(t0)
v

w w + 1

w − 1 w

(b)

Fig. 14. Alexander numbering with w ∈ Z: (a): γ̇(t1) crosses γ̇(t0) from
right to left; (b): γ̇(t1) crosses γ̇(t0) from left to right.

is not bounded by f(∂W ), differently from the other 2-cells
of C(γ), we know that A0 ⊆ R2\f(W ). This implies, from
Definition 2, that for any p ∈ A0, η(γ,p) = 0.

As a direct application of Möbius rules, a method proposed
by Alexander [17] allows a coherent numbering of the regions
only through an analysis of the tangent vectors to the curve
on its self-intersections. Let v be a vertice of γ represented
by the pair (t0, t1). Considering the assumptions adopted for
γ, a self-intersection v will divide the plane into four regions.
There are only two rules for numbering these four regions,
according to whether γ̇(t1) goes from the right to the left or
the left to the right with respect to γ̇(t0), as illustrated in
Figure 14.

0
1 2

1

Fig. 15. Numbering of regions according to Alexander around v0.

In Figures 15,16 and 17 we consecutively apply the Alexan-
der numbering rules to the example considered previously. We
start by numbering regions around v0, Figure 15. We assume
that A0 has a winding number value of 0 and that the later
self-intersection, represented by the dashed line, crosses the
previous one from left to the right. The same is done around

0
1 2

1 0

1

Fig. 16. Numbering of regions according to Alexander around v1.

0
1 2

1 0

1

1

Fig. 17. Numbering of regions according to Alexander around v2.

vertices v1 and v2 at Figure 16 and 17, respectively, resulting
in a complete characterization of the plane in terms of winding
number values.

Once a numbering is obtained for all the regions according
to Alexander’s rules, we can construct the winding sets Wi of
γ, for i ∈ N, as the closure of the union of the regions with
a number greater than or equal to i [16]. Then, the winding
number for a point can be easily computed using (25).

B. Computing the Extended Winding Number of [γ]

If the sensor’s contour γ is uncertain, the winding sets as-
sociated with the mission will also be uncertain. An uncertain
set can be represented as a thick set, the following definition
was proposed in [19].

X
X+

X−

Fig. 18. Representation of thick sets.

Definition 4. We denote JXK ∈ IP(Rn) a thick set of Rn if
there are two subsets of Rn called the lower bound X− and
the upper bound X+ such that

JXK = [X−,X+]

= {X ∈ P(Rn) | X− ⊆ X ⊆ X+}
(26)
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A thickset partitions the environment into three zones, the clear
zone X−, the penumbra X+\X− (both illustrated in Figure 18)
and the dark zone Rn\X+.

Let Wγ
i , with i ∈ N, be a winding set associated with a

cycle γ. To the set [γ] of all the possible sensor’s contour we
associate JWiK = [W−

i ,W
+
i ], such that,

W−
i =

⋂
γ∈[γ]

Wγ
i (27)

W+
i =

⋃
γ∈[γ]

Wγ
i (28)

W−
1

W+
1 \W−

1

(a)

W−
2

W+
2 \W−

2

(b)

Fig. 19. (a):JW1K ; (b): JW2K .

In the exploration context, the clear zone of JWiK, repre-
sented by W−

i , translates as a set of points that were certainly
explored at least i times. Analogously, the dark zone R2\W+

i

is a set of points that have a coverage measure smaller than
i, independently of which of the functions in [x] is the
ground truth. The penumbra W+

i \W
−
i is a set of points whose

coverage measure is equal to i for some γ ∈ [γ].

[cm] = [1, 1]
[cm] = [0, 1]
[cm] = [1, 2]
[cm] = [0, 2]

[cm] = [2, 2]

Fig. 20. Coverage measure considering the uncertain winding sets associated
with [γ].

We redefine the characteristic function to deal with thick
sets on the plane, we have [χ] : R2 → IN0 and

[χ]JWiK(p) =


[1, 1], if p ∈ W−

i ,

[0, 1], if p ∈ W+
i \W

−
i ,

[0, 0], otherwise
(29)

Then, we have

[η]([γ],p) =
∑
i>0

χJWiK(p) (30)

In Figure 19 we have an illustration of thick sets JW1K and
JW2K for the example considered through out this paper and
in Figure 20 the resultant coverage measure considering these
sets.

This defines the notion of uncertain winding number (and
uncertain coverage measure). Under some assumptions, given
below, that are realistic for applications, we need only a
slightly generalized Alexander rule to efficiently compute the
uncertain coverage measure.

As in [20], we will suppose that [x] is given by two time-
varying sets: an outer approximation of the set of the robot’s
pose, [s](t), at time t, in the plane, and [v](t), an outer-
approximation of the set of linear velocities of the robot, at
time t, in the plane. Hence:

[s] : R → R2

[v] : R → R2

Consider the following notion of uncertain self-intersection.
These are points p in the plane such that p ∈ [s](t1)∩ [s](t2)
for some t1 < t2. The set of pairs of such times t1, t2, for a
given p, is denoted by Tx. Supposing that for all p uncertain
self-intersection, for all (t1, t2) ∈ Tx, for all v1 ∈ [v](t1), v2 ∈
[v](t2), v1 is not colinear with v2 (or v1 and v2 are transverse
to each other), we get the following uncertain Alexander rules:

C. Implementation

The method above was numerically implemented using
the Codac library [21].1 We consider that we have on the
input of the algorithm a well defined function or a tube
describing the robot’s pose x, speed ẋ and acceleration ẍ.
From these inputs, the sensor’s contour γ is obtained through a
concatenation of x = f(0, [0, T ]) with xaux1 = f([0, L], T ),
xR = f(L, [0, T ]) and xaux2 = f([0, L], 0), as illustrated in
Figure 3 and we have

γ = x ∗ xaux1 ∗ x−1
R ∗ x−1

aux2

where x−1
R (t) = xR(T −t) and x−1

aux2(t) = xaux2(T −t). We
parameterize γ with τ ∈ [0, 1] that is not a time representation.
The speed vector along γ can be computed using ẋ and ẍ.

The next step in the algorithm is to compute the set of time
pairs T that represent the self-intersections of γ.

T = {(τ1, τ2) ∈ [0, 1]2|τ1 < τ2 and γ(τ1) = γ(τ2)}

This set can be obtained with the algorithm presented in [22]
available in [21]. For the example considered throughout this

1The code is available on GitHub github.com/marialuizacvianna/extended winding
.

https://github.com/marialuizacvianna/extended_winding
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w

w − 1w

w + 1

[w − 1, w]

[w,w + 1]

[v]([t2])

[v]([t1])

[w − 1, w + 1]

(a)

w + 1

ww − 1

w

[w − 1, w]

[w,w + 1]

[v]([t2])

[v]([t1])

[w − 1, w + 1]

(b)

Fig. 21. Uncertain Alexander numbering with w ∈ Z: (a): [v](t2) comes
from the right; (b): [v](t2) comes from the left.

paper, first presented in Figure 2, we obtain the following set
of self-intersections

T = {(τ1, τ4), (τ2, τ5), (τ6, τ7), (τ3, τ8)}

where 0 ≤ τ1 < τ2 < . . . < τ8 ≤ 1. These pairs correspond
to the vertices illustrated in Figure 13: v0 = γ(τ3) = γ(τ8),
v1 = γ(τ6) = γ(τ7), v2 = γ(τ0) = γ(τ1) and v3 = γ(τ2) =
γ(τ5). Then, the set of 1-cells of γ can be defined as

E = {a0, a1, a2, a3, a4, a5, a6, a7}

where ∂ai = γ(τi+1) − γ(τi), for i = 1, . . .#E − 1 and
∂a0 = γ(τ1)− γ(τ#E).

Determining if a vector a crosses another vector b from
the right to the left can be mathematically translated by the
cross product a × b being positive. In this case, to each of
the vertices represented by a pair (τi, τj) ∈ T we associate
an update value u ∈ {−1,+1} that determines if γ̇j crosses

˙∂(Ui) from the right to the left u = −1 or the left to the right
u = +1.

We use the update value of each edge’s initial vertex and the
combinatorial method presented in this Section for defining a
winding number value for the area on its right and left sides.

Finally, the winding sets can be easily obtained knowing that
∂Wi is a concatenation of the edges in E for which the value
on the area on its left side is equal or greater than i.

We choose to represent sets using interval arithmetic and
we rely on interval analysis tools [23], such as separators and
a Set Inversion Via Interval Analysis (SIVIA) algorithm [24],
for classifying, in terms of their coverage measure, all the
points inside an area of interest. The set inversion algorithm
bisects the environment, up to a precision that is chosen by
the user, such that the plane is divided into boxes that do not
intersect γ+ and γ−. The advantage of this method is that it
is known, from the properties of the topological degree, that
all the points that belong to a set in the plane that does not
intersect the considered cycles will have the same winding
number value. Therefore, this method limits the number of
computations that have to be done to determine the winding
number for all the points inside an area. For boxes [b] ∈ IR2

for which [b] ∩ γ+ ̸= ∅ or [b] ∩ γ− ̸= ∅ is true, an uncertain
winding number value will be computed. For that, we use the
following adaptation of the characteristic function for thick
sets to deal with sets of R2 on the input: [χ] : P(R2) → IN0,

[χ]JWiK([b]) =


[1, 1], if for all p ∈ [b] , p ∈ W−

i ,

[0, 1], if ∃ p ∈ [b] , p ∈ W+
i \W

−
i ,

[0, 0], otherwise
(31)

V. EXPERIMENTS

Fig. 22. The AUV Daurade.

We apply the method presented in this paper on a dataset
acquired during a mission performed by the AUV daurade,
Figure 22, on November 2015. This robot was built by ECA
robotics and used by Direction Général de l’Armement -
Techniques Navales (DGA - TN) and by the Service Hy-
drographique et Océanogrpahique de la Marine (SHOM).
The mission took place in the Road-Sted of Brest (Britanny,
France), it consists of a 45 minutes survey path.

Daurade explores using two side-scan sonars, one that
explores its right side and the other its left side. The visible
area of both sensors can be individually modeled as a line-
sweep sensor on the plane. Assuming a configuration in which
there is no visibility gap and no overlap between the range of
visibility of the two sensors, the whole can be represented as
a line-sweep sensor.
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Fig. 23. Estimated robot’s trajectory x̃ without incertitude. The robot is
represented at its final pose at the end of the mission.
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Fig. 24. The sensor’s contour γ̃ for the mission.

The robot’s pose underwater is estimated by the integration
of data acquired by an Inertial Measurement Unit (IMU)
coupled with a Doppler Velocity Logger (DVL) and a pressure
sensor, for depth estimation. Initially, we assume that this
estimation x̃ is exact, as illustrated in Figure 23, and that the
robot maintains a constant depth during the mission, resulting
in the sensor’s contour γ̃ presented in Figure 24. Figure 25
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Fig. 25. (a): γ+; (b): γ−.

displays the separation of γ̃ into γ̃+ and γ̃−.

The characterization of the explored area is done by cal-
culating winding numbers η(γ̃+,p) and η(γ̃−,p) for all p
inside the area considered of interest. The algorithm proposed
in Section IV is used for this purpose. In Figure 26 we can see
the resultant paving. Uncertain boxes, surrounding contours
γ̃+ and γ̃− are represented in black. The uncertain winding
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[cm] =

[1, 1] [2, 2] [3, 3] [4, 4] [5, 5]

Fig. 26. Result of the SIVIA algorithm for the classification of the explored
area. Boxes in black have an uncertain coverage measure value.

[cm] = [1, 2]

[cm] = [2, 3]

[cm] = [1, 3]

Fig. 27. Coverage measure for boxes that intersect the sensor’s contour.

number value for each of these boxes can also be defined with
the proposed algorithm, in Figure 27, we give an overview of
the classification of these boxes for a part of the mission.

Then, if we take into consideration the incertitude around
sensors measurements, propagated through integration during
pose estimation, we obtain [x], Figure 28. We represent
the uncertain pose by a guaranteed envelope of the ground
truth x∗ using a box-valued function named tube on the
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Fig. 28. The inclusion function [x].
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Fig. 29. [γ].

interval analysis literature. The sonar’s contour [γ] will also
be uncertain and represented by a tube, as displayed in Figure
29.

In the considered scenario, some self-intersections of [γ]
do not respect the conditions established by our algorithm,
notably, the non colinearity condition that ensures that the
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[cm] =

[1, 2] [0, 1] [0, 2]

Fig. 30. Application of the uncertain Alexander Rule for one self-intersection
that respects the conditions established by the presented method. Boxes in
light gray are guaranteed to have been explored once and in dark gray twice.
Other boxes have an uncertain coverage measure.

environment is divided into four regions around the self-
intersection so the Alexander rules can be applied for number-
ing. As a result, the problem at hand cannot be directly solved
using the proposed method. We apply, however, our algorithm
around one uncertain self-intersection in [γ] that respects our
limitation in order to exemplify the extension of the Alexander
algorithm to uncertain curves, as it was presented in Figure
21. The result is illustrated in Figure 30. One can note that the
method presented in this paper can still be used to characterize
the whole environment in this situation. For that, the mission
must be divided into multiple missions, along the time of
exploration, that respect individually the required constraints.

VI. CONCLUSION

In conclusion, this article has extended the link between the
topological degree and the line-sweep exploration problem,
allowing for a characterization of the area explored by a
mobile robot in a two-dimensional plane. An interval analysis-
based algorithm for computing the winding number for all the
points inside a set has also been proposed, and its efficiency
and scalability make it suitable for deployment on resource-
constrained robotic platforms. A real-world experiment has
shown that the proposed algorithm consistently produces re-
liable characterizations of the explored area, but it has also
shown the limitations of the method that should be addressed
by future work. Other future research directions may involve
extending the algorithm to three-dimensional environments

and exploration sensors with a two-dimensional visible area.
Furthermore, the algorithm’s applicability in collaborative
multi-robot systems and its integration with simultaneous lo-
calization and mapping (SLAM) techniques could be explored.
For the latter, we could imagine a scenario where the coverage
measure is used to reduce the exteroceptive data that has
to be compared to find possible feature matching, therefore,
reducing the complexity of SLAM algorithms. Finally, we will
examine the link between uncertain topological degrees and
methods based on persistent homology, as in e.g. [7].
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