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Guaranteed approximations of arbitrarily

quantified reachability problems

Eric Goubault and Sylvie Putot

LIX, Ecole Polytechnique, CNRS and IP-Paris, 91128 Palaiseau Cedex, France

Abstract. We propose an approach to compute inner and outer-approxi-
mations of the sets of values satisfying constraints expressed as arbitrar-
ily quantified formulas. Such formulas arise for instance when specifying
important problems in control such as robustness, motion planning or
controllers comparison. We propose an interval-based method which al-
lows for tractable but tight approximations. We demonstrate its appli-
cability through a series of examples and benchmarks using a prototype
implementation.
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1 Introduction

We consider the problem of computing inner and outer approximations of sets of
reachable states constrained by arbitrarily quantified formulas. Although this can
be applied to a number of computer science and verification problems, we focus
here on quantified formulas that arise in control and validation. Controlled sys-
tems are usually subject to disturbances, and are defined by the flow ϕ(t;x0, u, w)
at time t, for any initial state x0, control u and disturbance w. Robust reacha-
bility in the sense of [20] is defined as computing, for time t ∈ [0, T ], a set such
as R∀∃(ϕ)(t):

R∀∃(ϕ)(t) = {z | ∀w ∈ W, ∃x0 ∈ X0, ∃u ∈ U, z = ϕ(t;x0, u, w)}

and solves the problem of knowing whether a controller can compensate distur-
bances or change of values of parameters that are known to the controller. This
is an example of the quantified reachability problems targeted in this work.

In classical robust control, the problem can be different and consider the
existence of a controller leading to a target robustly whatever the disturbances
in a given set. In this case, we may need to relax the problem to find a non-empty
solution, for instance by some tolerance in time or space on reaching the target.
This leads to more complex quantified problems of the form, for example here
with a relaxation in time:

R∃∀∃(ϕ) = {z ∈ R
m | ∃u ∈ U, ∃x0 ∈ X0, ∀w ∈ W, ∃s ∈ [0, T ]

z = ϕ(s;x0, u, w)} (1)

http://arxiv.org/abs/2309.07662v1
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This generalization is one of the motivations of the work described hereafter, that
considers arbitrary alternations of quantifiers. We discuss in Section 1.2 other
problems in control requiring such alternations, among which motion planning
problems and problems specified by hyperproperties such as robustness or com-
parisons of controllers.

1.1 Problem statement

Let f be a function from R
p to R

m, which can be a flow function ϕ as above,
a discrete-time dynamical system etc. We suppose the p arguments of f are
partitioned into consecutive ji arguments i = 1, . . . , 2n corresponding to the

alternations of quantifiers, with p =
2n
∑

i=1

ji. This partition, identified with the

sequence (j1, . . . , j2n) is denoted by p. For simplicity’s sake, we will note xi =

(xki+1, . . . , xki+1
) where ki stands for

i−1
∑

l=1

jl, i = 1, . . . , 2n+ 1, and f(x1, x2, . . . ,

xk2n
) = f(x1, . . . ,x2n).
We consider the general quantified problems, with n alternations of quanti-

fiers ∀∃, of finding Rp(f) defined as:

Rp(f) =
{

z ∈ R
m | ∀x1 ∈ [−1, 1]j1 , ∃x2 ∈ [−1, 1]j2, . . . ,

∀x2n−1 ∈ [−1, 1]j2n−1, ∃x2n ∈ [−1, 1]j2n , z = f(x1,x2, . . . ,x2n)
}

(2)

Remark 1. Note that this formulation does not prevent us from considering a
formula starting with an existential quantifier (nor one finishing with a universal
quantifier): formally this can be done by adding a universal quantifier at the start
of the sequence of quantifiers, quantifying over a dummy variable.

When only few quantifier alternations are involved, we will use the notations
R∀(f), R∃(f), R∀∃(f), R∃∀(f) etc. instead of Rp(f), for brevity.

Remark 2. Problem (2) naturally also includes, up to reparametrization, quan-
tified problems with other boxes than [−1, 1]ji. It is also possible to consider
more general sets over which to quantify variables xi. As shown in Proposi-
tion 2, any outer-approximation (resp. inner-approximation) of the set of values
for universally quantified variables x2i−1 and inner-approximation of the set for
existentially quantified variables x2i, by boxes, provides with our method an
inner-approximation (resp. outer-approximation) of Rp(f).

Remark 3. In control applications, control u and disturbance w are generally
functions of time. We are not quantifying over functions here, which would be
a much more intricate problem to solve, but, as in e.g. [21], we are considering
that control and disturbances are discretized, hence constant, over small time
intervals: they thus are identified with a finite set of parameters, over a bounded
time horizon.

Computing reachable sets Rp(f) being intractable in general, as it includes
in particular the computation of the range of a function, we focus on computing
tight inner- and outer-approximations.
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Running example In the sequel, we will illustrate our approach on a simple Dub-
bins vehicle model described below, where function f in (4) is the flow function
ϕ of the system. In general, the flow function does not admit closed forms, but
our method will still be applicable in that context as it will only require outer-
approximations of its values and of its Jacobian. Still, when comparing with
quantifier elimination methods, we will need to give polynomial approximations
for ϕ, which will be developed in Example 3.

Example 1 (Dubbins vehicle [21]). We simplify the model from [21] to consider
only uncertainties on the x axis: ẋ = vcos(θ) + b1, ẏ = vsin(θ), θ̇ = a. We sup-
pose that the speed v is equal to 1 and we have a control period of t = 0.5. The
initial conditions are uncertain given in X0 = {(x, y, θ) | x ∈ [−0.1, 0.1], y ∈
[−0.1, 0.1], θ ∈ [−0.01, 0.01]}, the control a can take values in U = [−0.01, 0.01]
and disturbance b1 can take values in W = [−0.01, 0.01]. Both control and dis-
turbance are supposed to be constant over the control period [0, 0.5]. This could
naturally be extended for any number of control periods, with piecewise con-
stant control and disturbances. We are interested in computing approximations
of reachable sets of the form (4) where ϕ is the solution flow of the system.

1.2 Quantified reachability problems

Quantified reachability problems are central in control and hybrid systems, we
detail below a few examples.

General robust reachability A classical robust reachability problem consists in
computing the states reachable at some time T ≥ 0 for some control, indepen-
dently of disturbances which can even be adversarial with respect to the control
and initial state:

R∃∀(ϕ) = {z ∈ R
m | ∃u ∈ U, ∃x0 ∈ X0, ∀w ∈ W, z = ϕ(T ;x0, u, w)} (3)

However, requiring to reach a given target point z ∈ R∃∀(ϕ) at time T
independently of the disturbance is most often a too constrained problem. A
better quantified problem is the relaxation to whether we can reach this point
within time [0, T ] instead of at fixed time:

R∃∀∃(ϕ) = {z ∈ R
m | ∃u ∈ U, ∃x0 ∈ X0, ∀w ∈ W, ∃s ∈ [0, T ]

z = ϕ(s;x0, u, w)} (4)

Example 2 (Dubbins vehicle (continued)). We want the robust reachable set
within one time period, i.e. until time t = 0.5, with one control value a0 ap-
plied between times 0 and 0.5. This corresponds to R∃∀∃(ϕ) of Equation (4)
with sets U, X0, W defined in Example 1 and T = 0.5.

Another possible relaxation of Equation (3) is to consider the set of states
that can be reached up to δ. This corresponds to the quantified problems:

R∃∀∃(ϕ) = {z ∈ R
m | ∃u ∈ U, ∃x0 ∈ X0, ∀w ∈ W,

∃δ ∈ [−δ, δ]m, z = ϕ(T ;x0, u, w) + δ} (5)
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Time and space tolerances can also be combined. We will for instance do so on
the running example, by considering the quantified problem of Equation (17).

Finally, even more complicated quantified problems are of interest in robust
control, such as:

R∀∃∀∃(ϕ) = {z ∈ R
m | ∀x0 ∈ X0, ∃u ∈ U, ∀w ∈ W, ∃s ∈ [0, T ],

z = ϕ(s;x0, u, w) (6)

where the control u can observe and react to the initial conditions x0, but not
to the disturbance w.

Motion planning Motion planning problems are typically described by quantified
formulas, for instance when prescribing waypoints or regions along with specific
time intervals through which a controller should steer a dynamical system.

As an example, suppose we want to go through regions Sj between times
Tj−1 and Tj , for j = 1, . . . , k, and characterize the set of final states or locations
zk, this implies finding the following set R∃∀...∀∃(ϕ):

{zk ∈ R
m | ∃u1 ∈ U, ∀x0 ∈ X0, ∀w1 ∈ W, ∃t1 ∈ [0, T1], ∃z1 ∈ S1, ∃u2 ∈ U,

∀w2 ∈ W, ∃t2 ∈ [T1, T2], ∃z2 ∈ S2, . . . , ∃uk ∈ U, ∀wk ∈ W, ∃tk ∈ [Tk−1, T ],




z1
. . .
zk



 =





ϕ(t1;u1, x0, w1)
. . .

ϕ(tk − tk1
;uk, zk−1, wk)



 (7)

Temporal logic properties Temporal logics such as Metric Interval Temporal
Logic (MITL) and Signal Temporal Logic (STL) have been successful in spec-
ifying numerous properties of interest for control systems, see e.g. [11]. Such
formulas naturally produce complex quantified formulas since the semantics of
”always Φ between times a and b” (resp. ”eventually Φ between times a and
b”) in terms or ordinary first-order propositional formulas is ∀t ∈ [a, b], Φ (resp.
∃t ∈ [a, b], Φ).

It is not the subject here to discuss the class of temporal logic formulas that
we can interpret through Equation (2), but rather to exemplify the potential for
our approach. It is important though to note that not only we can interpret the
standard boolean semantics of a class of such temporal formulas, but also their
robust semantics [12]. Moreover, formulas such as Equation (2) allow for quanti-
fying over any parameters of the dynamics of a control system, hence to express
quantifications over trajectories, making it possible to compare trajectories such
as in hyperproperties, see e.g. [34]. For instance, if we consider the behavioural
robustness of a system, which specifies that small differences in system inputs
result in small differences in system outputs, this can be measured by different
quantified expressions such as:

R∃∀∃∀∃(ϕ) = {z | ∃x0 ∈ X0, ∃δ ∈ [−ǫ, ǫ]i,

∀u ∈ U, ∃u′ ∈ U, ∀w ∈ W, ∃t ∈ [T1, T2], z = ‖ϕ(t;x0, u, w)−ϕ(t;x0+δ, u′, w)‖}
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which measures the distance between two trajectories of the same system when
starting with close enough initial conditions, under any disturbance but taken
equal for the two trajectories.

1.3 Related work

Set-based methods for reachability analysis Our approach is related to outer-
approximations of non-linear continuous and controlled systems: outer-approxi-
mations of the reachable set of such systems is a particular case of our ap-
proach and we rely on such outer-approximations to compute outer- and inner-
approximations of quantified problems. Many methods for outer-approximating
reachable sets for continuous systems have been developed. For linear systems,
direct set-based methods have been designed for estimating the exponential of a
matrix, or of Peano-Baker series for uncertain systems [3], using support func-
tions, [23], zonotopes [15], ellipsoids [27], for efficient representations of sets
of states. For non-linear continuous systems, similar set-based techniques have
been applied using polytopes [35] or generalized polytopes such as polynomial
zonotopes [2]. Authors have also been considering a variety of linearization, hy-
bridization or polynomialization techniques such as in e.g. [2,4]. Instead of di-
rectly propagating tractable sets through the dynamics, Taylor methods [30]
have been applied extensively by a number of authors, e.g. [7], for computing
polynomial approximations of solutions of ODEs (flowpipes), whose image can
then be approximated using any of the tractable set representation we men-
tionned above. Another approach for reachability is through Hamilton-Jacobi
techniques, see e.g. [5], that express functions whose zero sub-level set give the
reachable sets as solutions to a Hamilton-Jacobi PDE.

There are far less methods for inner-approximating images of functions or
sets of reachable states. Interval-based methods, relying on space discretiza-
tion, have been used for inner-approximating the image of functions [17]. They
were also used to outer and inner approximate solutions of differential systems
with uncertain initial conditions [31]. An interesting recent work [26] calculates
the inner-approximation by scaling down an outer-approximation, until a suit-
able criterion (involving the boundary of the reachable set of states) is met. A
similar criterion is used in [40], with polytopic approximations. An important
body of the inner-approximation literature uses either Hamilton-Jacobi methods
methods see [32] and [29] or set-based approximate backwards reachability, i.e.
through the inverted dynamics see e.g. [8] and [40].

Our approach is directly linked to previous work on modal intervals and
mean-value theorems [16,19] but extends it considerably as we are not bound
to consider only ∀∃ statements. It also includes the approximations of robust
reachable sets with time-varying inputs and disturbances as defined in [20,21,22].

Quantifier elimination Many verification and synthesis problems in computer
science and control theory can be represented by the first order formula

Φ(p1, . . . , pm) ≡ Q1x1, . . . Qnxn, P (p1, . . . , pm, x1, . . . , xn) (8)
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where Qi ∈ {∀, ∃} are either universal or existential quantifiers, p1, . . . , pm are
free variables and P is a quantifier-free formula constructed by conjunction,
disjunction and negation of atomic formulas of the form f op 0 where op ∈ {=
, 6=, <,≤} is a relational operator and f is a polynomial.

The first quantifier elimination algorithm is due to Tarski [39] for the first
order theory of real numbers. Because of its high computational complexity, this
algorithm is not used in practice. The first practical algorithm is due to Collins
[9], and is based on cylindrical algebraic decomposition. Still, applications of this
algorithm are limited because its complexity is doubly exponential in n+m.

The applications of quantifier elimination to control design [1] are numerous:
output feedback stabilization, simultaneous stabilization, robust stabilization,
frequency domain multiobjective design. In [1], they are mostly exemplified on
linear systems. The work of [1] has been extended to non-linear systems in e.g.
[25], including also some trajectory tracking properties. Reachability is not in
general solvable by algebraic methods. The reason is that the solution set of a
system of differential equations is not algebraic in general. However, [25] consid-
ers a more restricted form of reachability, along prescribed types of trajectories,
that can be investigated using semi-algebraic tools. Further generalizations are
exemplified in [38], with controller synthesis, stability, and collision avoidance
problems. Quantifier elimination techniques have also been applied to model
predictive control, see e.g. [37]. Finally, application of quantifier elimination to
robot motion planning, similar to the one considered in Section 1.2, has been
considered in e.g. [28], for instance for the classical piano mover’s problem [36].

Our quantified problem of Equation (2) is an instance of general quantifier
elimination, although we do not impose that functions f we consider are poly-
nomial. We compare our method with quantifier elimination techniques in the
sequel, although our method is specifically designed to give tight inner and outer
approximations in a fast manner whereas quantifier elimination aims at finding
exact solution sets along with algebraic conditions under which they exist, at the
expense of time complexity. As quantifier elimination needs to consider polyno-
mials, we compare our method with quantifier elimination on approximations of
the flow function ϕ given by e.g. Taylor expansions [33], see Example 3.

Satisfiability modulo theory (SMT) Some SMT solvers interpret quantified for-
mulas over theories. Still, it has long been known that there is no sound and
complete procedure already for first-order logic formulas of linear arithmetic
with uninterpreted function symbols [14], meaning that the corresponding SMT
solvers generally rely on heuristics to deal with quantifiers. The closer SMT
solver to our approach is dReal/dReach [13] which has support for some quan-
tified SMT modulo the theory of real numbers and modulo ODEs. Such SMT
solvers do not synthetize the set of states that verifies some quantified formula
as we do, but can be used for checking this set is correct, up to some ”resolu-
tion”. The time complexity of such methods is also much higher that what we
are proposing, and dReal/dReach is limited to the exists-forall fragment.
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Example 3 (Dubbins vehicle (continued)). We want to compute the robust reach-
able set of Example 2 using quantifier elimination. As we do not have the exact
flow ϕ(t;x0, u, w), we use approximations by Taylor expansions, see e.g. [21]
where a similar example was discussed. With the initial conditions and param-
eters values of Example 1, we get the following Taylor expansion in time with
zonotopic coefficients (which gives some Taylor model of the solution flow):

P (t) : x = 0.1ǫ1+(1+0.01ǫ2)t+1.31 10−7ǫ3t
2 ∧y = 0.1ǫ4+(0.01ǫ6+0.01ǫ7t)t

+ (0.005ǫ5)t
2 ∧ θ(t) = 0.01ǫ6 + 0.01ǫ7t (9)

with ǫi ∈ [−1, 1] for i = 1, . . . , 7. and x0 = 0.1ǫ1, b1 = 0.01ǫ2, y0 = 0.1ǫ4,
a = 0.01ǫ7 and θ0 = 0.01ǫ6. These were obtained by a linearization of the
cosinus and sinus and simple estimates of remainders, which could be improved
but were kept simple for the sake of readability.

We interpret the R∃∀∃(ϕ) formula of Equation (4) by quantifying over the
symbolic variables ǫ1 to ǫ7. We have a correspondence between initial states and
inputs of the problem and the ǫi, except for ǫ3 and ǫ5 that abstract the remainder
term of the Taylor approximation of the solution. Hence an over-approximation
of R∃∀∃(ϕ) can be obtained by quantifier elimination on the formula:

∃ǫ7 ∈ [−1, 1], ∃ǫ1 ∈ [−1, 1], ∃ǫ4 ∈ [−1, 1], ∃ǫ6 ∈ [−1, 1],

∀ǫ2 ∈ [−1, 1], ∃ǫ3 ∈ [−1, 1], ∃ǫ5 ∈ [−1, 1], ∃t ∈ [0, 0.5], P (t)

where P (t) is defined by Equation (9) and all symbols are existentially quantified
except ǫ2 which corresponds to the disturbance b1. There are numerous software
implementing some form or another of quantifier elimination, e.g. QEPCAD [6],
REDUCE RedLog package [10], and Mathematica [24]. We use in the sequel
Mathematica and its operation Reduce. We refer the reader to the appendix,
Section A, where all queries in Mathematica are provided. Using Mathematica
for the problem above times out, but when we make independent queries on x, y
and θ, we get x ∈ [−0.1, 0.595], y ∈ [−0.10875, 0.10875] and θ ∈ [−0.015, 0.015],
with a warning about potential inexact coefficients, respectively in about 25, 12
and 0.05 seconds on a MacBook Pro 2.3GHz Intel Core i9 8 cores with 16GB of
memory. This gives a correct outer approximation of R∃∀∃(ϕ).

Similarly, for inner-approximation we eliminate the quantifiers in:

∃ǫ7 ∈ [−1, 1], ∃ǫ1 ∈ [−1, 1], ∃ǫ4 ∈ [−1, 1], ∃ǫ6 ∈ [−1, 1],

∀ǫ2 ∈ [−1, 1], ∀ǫ3 ∈ [−1, 1], ∀ǫ5 ∈ [−1, 1], ∃t ∈ [0, 0.5], P (t)

where the uncertainties ǫ3 and ǫ5 are now quantified universally, reflecting the
fact that inner-approximation corresponds to making no hypothesis on the values
of these variables corresponding to approximation errors, apart from knowing
bounds. The elimination times out for the full problem and returns the same
bounds as before up to 10−5, when solving the problem separately on each
variable x, y and θ, in respectively 2.2, 17.1 and 0.06 seconds. However, contrarily
to the over-approximation, these independent queries do not allow us to conclude
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about an actual inner-approximation for R∃∀∃(ϕ), as the existentially quantified
variables may be assigned different values in the 3 independent queries.

1.4 Contributions

We extend the approach of [20], which is restricted to solving problems of the
form R∃(f) or R∀∃(f), to deal with arbitrary quantified formulas of the form of
Rp(f) of Equation (2). These include the generalized robust reachability prob-
lems discussed in Section 1.2. The problem of finding the exact set Rp(f) admits
closed formulas for a scalar-valued affine function f , as described in Section 2.1,
culminating in Proposition 1. By local linearization techniques, akin to the ones
used in [20], we get explicit formulas for inner and outer-approximations of gen-
eral non-linear scalar-valued functions in Section 2.2, Theorem 1.

We consider the general vector-valued case in Section 3 and Theorem 2.
The difficulty lies, as for the ∀∃ case of [20], in the computation of inner-
approximations. The solution proposed is to interpret slightly relaxed quanti-
fied problems, one dimension at a time, that, altogether, give guaranteed inner-
approximations of Rp(f), extending the method of [20]. The combinatorics of
variables, quantifiers and components of f make the intuition of the indices used
in Theorem 2 difficult to fully apprehend: we thus begin Section 3 by an example.

The general form of quantified problems we are considering here makes solu-
tions that we propose difficult to assess and compare: we are not aware of any
existing tool solving similar problems, at the exception of quantifier elimination
algorithms, discussed in Section 1.3. We also develop a sampling method, see
Remark 4, for checking the tightness of our results.

Finally, we report on our implementation of this method in Julia in Sec-
tion 4. Benchmarks show that this method is tractable, with experiments up to
thousands of variables solved in a matter of tens of seconds.

2 Approximations of arbitrary quantified formulas in the

case of scalar-valued functions

We first focus in Section 2.1 on the computation of Rp(f) where f is an affine
function from R

p to R. In this case, we derive exact bounds. We then rely on
this result to carry on with the general case in Section 2.2, using a mean-value
theorem.

2.1 Exact bounds for scalar affine functions

We consider affine functions, i.e. functions of the form f(x1, . . . , xq) = δ0 +
∑q

i=1 δixi. For these functions, we consider the general quantified problem de-
fined, for Qj = ∀ or ∃, as:

Sq(δ0;Q1, δ1; . . . ;Qq, δq) = {z ∈ R | Q1x1 ∈ [−1, 1],

Q2x2 ∈ [−1, 1], . . . , Qqxq ∈ [−1, 1], z = f(x1, x2, . . . , xq)}
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We first see that we have:

Lemma 1.

Sq(δ0;Q1, δ1; . . . ;Qq, δq) =










⋂

x1∈[−1,1]

Sq−1(δ0 + δ1x1;Q2, δ2; . . . ;Qq, δq) if Q1 = ∀

⋃

x1∈[−1,1]

Sq−1(δ0 + δ1x1;Q2, δ2; . . . ;Qq, δq) if Q1 = ∃
(10)

The proof is given in Section B.

Remark 4. The first consequence of Lemma 1 is that it gives a way to probe
quantified formulas of the form of Equation (2), by sampling, as follows. For each
quantifier i, in the order of encounter, join samples or ranges for ∃xi, intersect
them for ∀xi. For example, for the alternation ∃x1, ∀x2, ∃x3, we compute

[min
xi

max
x2

min
x3

f(x1, x2, x3),max
xi

min
x2

max
x3

f(x1, x2, x3)]

This gives an estimation of the robust range of the function, which is in the
general case neither an inner-approximation nor an outer-approximation, as
this sampling approach performs inner-approximation with respect to existential
quantification and outer-approximation with respect to universal quantification.
Note that in some particular cases (e.g. affine) we can design an exact method
based on these and on unions and intersections of particular polyhedra.

Using Lemma 1, we see that S2(δ0; ∀, δ1; ∃, δ2) is empty when the impact on
f of the existentially quantified variable is not of large enough magnitude to
counteract the effect of the universally quantified variable. The formula given
below expresses such conditions for Rp(f) to be non-empty, by imposing a bound
on the ℓ1 norm of the universally quantified variables, by a suitable combination
of the ℓ1 norms, noted ||x||, of other variables, in particular the existentially
quantified ones.

Proposition 1. Let f be an affine function defined by:

f(x1,x2, . . . ,x2n) = δ0 + 〈∆1,x1〉+ 〈∆2,x2〉+ . . .+ 〈∆2n,x2n〉

with ∆i = (δki+1, . . . , δki+1
) ∈ R

ji , i = 1, . . . , 2n, where ki =
i−1
∑

l=1

jl, and 〈., .〉

denotes the scalar product. Consider Rp(f) for the partition p = (j1, . . . , j2n) of
p, as in Equation (2), then we have:

Rp(f) = δ0 +

[

n
∑

k=1

(||∆2k−1|| − ||∆2k||) ,
n
∑

k=1

(||∆2k|| − ||∆2k−1||)

]

if ||∆2l−1|| ≤ ||∆2l|| +
n
∑

k=l+1

(||∆2k|| − ||∆2k−1||) for l = 1, . . . , n, otherwise

Rp(f) = ∅



10 Eric Goubault and Sylvie Putot

The proof is given in Appendix C.

Remark 5. In the sequel, when applying Proposition 1, we will use notations ∆x

with x such as control a, disturbance b1, angle θ instead of using for indices a
potentially less understandable numbering.

2.2 Inner and outer-approximations for non-linear scalar-valued

functions

We are now in a position to give inner and outer approximations of Rp(f) for
general scalar-valued f(x1,x2, . . . ,x2n) from R

p to R. The principle is to care-
fully linearize f , so that inner and outer-approximations of Rp(f) are given
by inner and outer-approximations of a similar quantified problem on its lin-
earization, this is Proposition 2. Combining this with e.g. simple mean-value
approximations mentioned in Remark 6, we obtain Theorem 1. After exemplify-
ing these formulas on toy examples, we apply it, twice, to the Dubbins vehicle
model of Example 1. We first use the Taylor approximation of its dynamics,
Example 4. We then show that we do not need to compute such approximations
and that our approach can also compute direct inner and outer-approximations
of Rp(f) where f is the solution of a differential equation, Example 5.

As before, for a given function f : R
p → R, we denote by p = (j1, . . . , j2n) a

partition of the p arguments of f and kl =
l−1
∑

i=1

ji, for l = 1, . . . , 2n+ 1. We sup-

pose we have p intervals A1, . . . , Ap and we write Ai = (Aki+1, . . . , Aki+1
), i =

1, . . . , 2n the corresponding boxes in R
ji . We will use the notation:

C(A1, . . . ,A2n) = {z | ∀α1 ∈ A1, ∃α2 ∈ A2, . . . ,

∀α2n−1 ∈ A2n−1, ∃α2n ∈ A2n, z =

2n
∑

j=1

αj}.

Proposition 2. Given function f : R
p → R and partition p as above, define

the following families of functions

hx1,...,xj−1(xj) = f(x1, . . . , xj−1, xj , 0, . . . , 0)− f(x1, . . . , xj−1, 0, . . . , 0)

for j = 1, . . . , p, and suppose we have the following inner and outer-approxima-
tions of their images, independently of x1, . . . , xj−1, denoted by range(.): Ij ⊆

range(hx1,...,xj−1) ⊆ Oj for j = 1, . . . , p. Then, writing Ii =
ki+1

Π
j=ki+1

[Ij , Ij ],

Oi =
ki+1

Π
j=ki+1

[Oj , Oj ], i = 1, . . . , 2n, we have:

f(0, . . . , 0) + C(O1, I2, . . . ,O2n−1, I2n) ⊆ Rp(f)

⊆ f(0, . . . , 0) + C(I1,O2, . . . , I2n−1,O2n) (11)
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Proof. The proof is based on the fact that f is the sum of all the hi, i = 1, . . . , 2n,
and of f(0, . . . , 0), and is proven by induction on the number of quantifier alter-
nations, see Section E.

Remark 6. We do have such approximants of the range as necessary for Propo-
sition 2, thanks to a generalized mean-value theorem [16,21]. If we have, for all
i = 1, . . . , 2n and all j = ki + 1, . . . , ki+1, ∇j = [∇j ,∇j ] such that:

{∣

∣

∣

∣

∂f

∂xj

(x1, . . . ,xi, 0, . . . , 0)

∣

∣

∣

∣

| xl ∈ [−1, 1]jl , l = 1, . . . , i

}

⊆ ∇j

then we can use, for all j = 1, . . . , 2n: Ii = ∇j [−1, 1], and Oj = ∇j [−1, 1]. We
can naturally also use other approximation methods.

We now deduce inner and outer-approximations of Rp(f):

Theorem 1. With the hypotheses of Proposition 2 on sets Ij and Oj , and de-
noting

∑

A, for A any vector of reals, the sum of all its components, we have:

f(0, . . . , 0) +

[

n
∑

k=1

∑

(

O2k−1 + I2k

)

,

n
∑

k=1

∑

(

I2k +O2k−1

)

]

⊆ Rp(f)

if
∑

O2l−1 −
∑

O2l−1 ≤
n
∑

k=l

∑
(

I2k − I2k

)

−
n
∑

k=l+1

∑
(

O2k−1 −O2k−1

)

for l =

1, . . . , n, otherwise the inner-approximation is empty, and:

Rp(f) ⊆ f(0, . . . , 0) +

[

n
∑

k=1

∑

(

I2k−1 +O2k

)

,

n
∑

k=1

∑

(

O2k + I2k−1

)

]

if
∑

I2l−1 −
∑

I2l−1 ≤
n
∑

k=l

∑
(

O2k −O2k

)

−
n
∑

k=l+1

∑
(

I2k−1 − I2k−1

)

for l =

1, . . . , n, otherwise the outer-approximation is empty.

Proof. The proof uses Proposition 1 on C(O1, I2, . . . ,O2n−1, I2n) and C(I1,O2,
. . . , I2n−1,O2n), after rescaling of the interval Oi and Ij to [−1, 1], and Propo-
sition 2. It is detailed in Section F.

In Example 4, we now apply Theorem 1 to the x component of the Dubbins
vehicle as expressed in Example 3, ignoring any constraint on y and θ.

Example 4 (Dubbins vehicle (continued)). We recall that:

x(t) = 0.1ǫ1 + (1 + 0.01ǫ2)t+ (1.31 10−7ǫ3)t
2

The ∇k, outer-approximations of the absolute value of the partial derivatives of
Remark 6, ∂x

∂ǫk
and ∂x

∂t
evaluated between times t = 0 and t = 0.5, are: ∇ǫ1 = 0.1,

∇ǫ2 = [0, 0.005], ∇ǫ3 = [0, 3.275 10−8], ∇t = [0.989999869, 1.010000131]. We
thus have Iǫ1 = Oǫ1 = [−0.1, 0.1], Iǫ2 = 0, Oǫ2 = [−0.005, 0.005], and Iǫ3 = 0,



12 Eric Goubault and Sylvie Putot

Oǫ3 = [−3.275 10−8, 3.275 10−8] by a direct application of Remark 6. Note that
for computing It and Ot, we use the generalized mean-value theorem of [16]
again, but in a slightly different way than in Remark 6, since the point at which
we can evaluate the corresponding function is t = 0, which is the lower bound of
the extent of the values of t ([0, 5]) and not its center as for other variables. In
that case we can compute the tighter bounds: It = ∇t[0, 0.5] = [0, 0.4949999345]
and Ot = ∇t[0, 0.5] = [0, 0.5050000655].

The quantified formula of Example 2 has only one ∀, ∃ alternation, the condi-
tion of Theorem 1 will involve Oǫ2 +Oǫ3 = [−0.005, 0.005]+ [−3.275 10−8, 3.275
10−8] and It = [0, 0.4949999345]. We see that indeed, (Oǫ2 − Oǫ3

) + (Oǫ3 −

Oǫ2
) = 0.010000066≤ It − It = 0.4949999345, hence we can compute an inner-

approximation for the x component of ϕ. Its lower bound is:

xc +Iǫ1 +Oǫ2 +Oǫ3 +It
= 0 −0.1 +0.005 +3.275 10−8 +0 = −0.095

and its upper bound:

xc +Iǫ1 +Oǫ2
+Oǫ3

+It
= 0 +0.1 −0.005 −3.275 10−8 +0.4949999345 = 0.59.

Similarly, we compute an outer-approximation and find the following bounds for
R∃∀∃(ϕx): [−0.095, 0.590] ⊆ R∃∀∃(ϕ) ⊆ [−0.1, 0.605], to be compared with the
solution from Mathematica quantifier elimination −0.1 ≤ x ≤ 0.595. Sampling
also yields estimate [−0.1, 0.595].

In the former example, and in general for continuous-time controlled systems
defined by a flow function ϕ(t;x0, u, w) solution of an initial value problem, we do
not need as with quantifier elimination techniques to first compute polynomial
approximations. We only need to compute outer approximations of the flow for
one initial condition (”central trajectory”) and of the Jacobian of the flow for
the set of initial conditions, as exemplified below.

Example 5 (Dubbins vehicle (continued)). We consider again the Dubbins ve-
hicle, but defined as the direct solution of the ODEs of Example 1. We first
compute an outer-approximation of a ”central trajectory” (xc, yc, θc), i.e. of the
trajectory starting at x = 0, y = 0, θ = 0, b1 = 0 and a = 0. This gives xc = t,
yc = 0 and θc = 0.

We note that ∂x
∂t

= cos(θ) + b1 ∈ [0.989999965, 1.01] thus, using notations
from Remark 6, we have the inner and outer-approximations of the effect of
variable t on the value of x, Ix,t = [0, 0.494999982], Ox,t = [0, 0.505], and sim-
ilarly for the other variables: Iy,t = 0, Oy,t = [−sin(0.015)/2, sin(0.015)/2] =
[−1.309 10−4, 1.309 10−4] and Iθ,t = 0, Oθ,t = [−0.005, 0.005].

The Jacobian of ϕ with respect to x0, y0, θ0, b1 and a, Ji,x0
= ∂ϕi

∂t
, Ji,y0

=
∂ϕi

∂t
, Ji,θ0 = ∂ϕi

∂t
, Ji,b1 = ∂ϕi

∂t
and Ji,a = ∂ϕi

∂t
, for i = x, y, θ respectively, satisfies

a variational equation [20], solved in appendix, Section I. By Remark 6, this
gives the following inner and outer approximations for all parameters x0, y0, θ0,
a and b1, and all components x, y and θ of ϕ:
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– Ix,a = 0, Ox,a = [−6.545 10−7, 6.545 10−7], Ix,x0
= Ox,x0

= [−0.1, 0.1],
Ix,θ0 = 0, Ox,θ0 = [−1.309 10−6, 1.309 10−6], Ix,b1 = 0, Ox,b1 = [−0.005, 0.0
05],

– Iy,a = 0, Oy,a = [−0, 0025, 0.0025], Iy,y0
= Oy,y0

= [−0.1, 0.1], Iy,θ0 = 0,
Oy,θ0 = [−0, 005, 0.005],

– Iθ,θ0 = Oθ,θ0 = [−0.01, 0.01], Iθ,a = 0, Oθ,a = [0, 0.005],

We now compute the set R∃∀∃ consisting of z such that:

∃a ∈ [−0.01, 0.01], ∃x0 ∈ [−0.1, 0.1], ∃y0 ∈ [−0.1, 0.1],

∃θ0 ∈ [−0.01, 0.01], ∀b1 ∈ [−0.01, 0.01], ∃t ∈ [0, 0.5], z = ϕ(t;x0, y0, θ0, a, b1)

Applying Theorem 1 we find first an inner-approximation for x (again, ig-
noring any condition on y and θ) of ϕ. Its lower bound is:

xc +Ix,a +Ix,x0
+Ix,y0

+Ix,θ0 +Ox,b1 +Ix,t
= 0 −0 −0.1 +0 −0 +0.005 +0

which is equal to -0.095, and its upper bound:

xc +Ix,a +Ix,x0
+Ix,y0

+Ix,θ0 +Ox,b1
+Ix,t

0 +0 +0.1 +0 +0 −0.005 +0.494999982

which is equal to 0.589999982. Therefore the inner-approximation for x is equal
to [−0.095, 0.589999982], given that the conditions for the inner-approximation
to be non-void are met. Similarly, we compute an outer-approximation for the
x component of ϕ and find [−0.1000019635, 0.6050019635].

The approximations for the y and θ components of ϕ are computed similarly,
see Appendix, Section J for detailed computation. We obtain for y the inner-
approximation [−0.1, 0.1] and over-approximation [0.1076309, 0.1076309], and
for θ the inner-approximation [−0.01, 0.01] and over-approximation [−0.02, 0.02].

All these results are very close the the ones obtained in Section 1.3 with
quantifier elimination1, but are obtained here with a much smaller complexity.

3 Approximations in the case of vector-valued functions

Outer-approximations in the general case when f goes from R
p to R

m for any
strictly positive value of m are directly obtained by the Cartesian product of the
ranges obtained separately by the method of Section 2.2 on each component of
f . The case of inner-approximations is more involved, since a Cartesian product
of inner-approximations is not in general an inner-approximation.

In this section, we generalize the method of [21] to the case of arbitrary
quantified formulas. We begin by a simple example, before stating the result for
the general case in Theorem 2.

1 Note though that the linearization we used for simplifying formulas given to a quanti-
fier elimination tool are slightly over-approximated (especially in the y component).
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Example 6. Suppose we want to inner approximate the following set R∀∃∀∃(f)
for a function f with two components f1 and f2:

R∀∃∀∃(f) = {z | ∀x1, ∃x2, ∃x3, ∀x4, ∃x5, ∃x6, z = f(x)}.

The main idea is that we can rely on the conjunction of quantified formulas for
each component if no variable is existentially quantified for several components.
We thus transform if necessary the quantified formula by strengthening them for
that objective, which is sound with respect to computing inner-approximations.
For example here, we can interpret, for all z1 and z2:

∀x1, ∀x2, ∃x3, ∀x4, ∀x5, ∃x6, z1 = f1(x1, x2, x3, x4, x5, x6) (12)

∀x1, ∀x3, ∃x2, ∀x4, ∀x6, ∃x5, z2 = f2(x1, x2, x3, x4, x5, x6) (13)

Then we get Skolem functions: x3(z1, x1, x2) and x6(z1, x1, x2, x3, x4, x5) from
Equation (12), such that z1 = f1(x1, x2, x3(z1, x1, x2), x4, x5, x6(z1, x1, x2, x3,
x4, x5)) and x2(z2, x1, x3) and x5(z2, x1, x2, x3, x4, x6) from (13), such that z2 =
f2(x1, x2(z2, x1, x3), x3, x4, x5(z2, x1, x2, x3, x4, x6), x6). Supposing that f1 and
f2 are elementary functions, these Skolem functions can be chosen to be contin-
uous [16,18]. Consider now functions gz1,z2 : R6 → R

6 defined by

g(x1, x2, x3, x4, x5, x6) = (x1, x2(z2, x1, x3), x3(z1, x1, x2), x4,

x5(z2, x1, x2, x3, x4, x6), x6(z1, x1, x2, x3, x4, x5))

for all (z1, z2) ∈ z1 × z2. This is a continuous function as composition of contin-
uous functions, from x = x1 × x2 × . . .× x6 to itself.

By Brouwer’s fixpoint theorem, we have fixpoints x∞
3 (z1, z2, x1), x

∞
6 (z1, z2,

x1, x4), x
∞
2 (z1, z2, x1) and x∞

5 (z1, z2, x1, x4), for all values of z1, z2, x1, x4 (x1 and
x4 being the existentially quantified input variables of Equation (6)), such that
x∞
3 (z1, z2, x1) = x3(z1, x1, x

∞
2 (z1, z2, x1)), x

∞
6 (z1, z2, x1, x4) = x6(z1, x1, x

∞
2 (z1,

z2, x1), x
∞
3 (z1, z2, x1), x4, x

∞
5 (z1, z2, x1, x4)), x

∞
2 (z1, z2, x1) = x2(z2, x1, x

∞
3 (z1,

z2, x1)) and x∞
5 (z1, z2, x1, x4) = x5(z2, x1, x

∞
2 (z1, z2, x1, x4), x

∞
3 (z1, z2, x1, x4),

x4, x
∞
6 (z1, z2, x1, x4)). This implies that for all (z1, z2) ∈ z and for all x1, x4:

z1 = f1(x1, x
∞
2 (z1, z2, x1), x

∞
3 (z1, x1, x4), x4, x

∞
5 (z1, z2, x1, x4), x

∞
6 (z1, z2, x1, x4))

z2 = f2(x1, x
∞
2 (z1, z2, x1), x

∞
3 (z1, z2, x1), x4, x

∞
5 (z1, z2, x1, x4), x

∞
6 (z1, z2, x1, x4))

allowing to deduce an inner-approximation of R∀∃∀∃(f) since:

∀z, ∀x1, ∀x4, ∃x2 = x∞
2 (z1, z2, x1), ∃x3 = x∞

3 (z1, z2, x1),

∃x5 = x∞
5 (z1, z2, x1, x4), ∃x6 = x∞

6 (z1, z2, x1, x4), z = f(x1, x2, x3, x4, x5, x6)

is equivalent to: ∀z, ∀x1, ∃x2 = x∞
2 (z1, z2, x1), ∃x3 = x∞

3 (z1, z2, x1), ∀x4,
∃x5 = x∞

5 (z1, z2, x1, x4), ∃x6 = x∞
6 (z1, z2, x1, x4), z = f(x1, x2, x3, x4, x5, x6).

In Theorem 2, we formalize this for any number of quantifier alternations
and dimension for z. The principle is similar to the approach used in [21] for the
joint range in the case of ∀∃ formulas.
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As previously, we are going to solve the quantified problem Rp(f) where sets
J i
A = {k2i−1 + 1, . . . k2i} and J i

E = {k2i + 1, . . . , k2i+1} for i = 1, . . . , n define
the n sequences of indices of variables that are universally quantified (J i

A) and
existentially quantified (J i

E).
The principle is to choose for each existentially quantified variable xj a unique

component of f (among the m ones) that will be used with an existential quan-
tifier as one of the m scalar quantified problems to solve. In the m−1 remaining
quantified problem, xj will be universally quantified. This choice is described by
the functions πi in Theorem 2. There are n such functions, one for each existen-
tial block appearing in the quantified problem Rp(f). This is Theorem 3 of [21]
generalized to arbitrary alternation of quantifiers ∀∃.

Theorem 2. Let f : R
u → R

m be an elementary function and πi : {k2i +
1, . . . , k2i+1} → {1, . . . ,m} for i = 1, . . . , n. Let us note, for all i ∈ {1, . . . n},
j ∈ {1, . . . ,m} J i

E,zj
= {l ∈ {k2i+1, . . . , k2i+1}, πi(l) = j} and J i

A,zj
= {k2i−1+

1, . . . , k2i}\JE,zi. Consider the following m quantified problems, j ∈ {1, . . . ,m}:

∀zj ∈ zj , (∀xl ∈ [−1, 1])l∈J1
A,zj

, (∃xl ∈ [−1, 1])l∈J1
E,zj

, . . .

(∀xl ∈ [−1, 1])l∈Jn
A,zj

, (∃xj ∈ [−1, 1])l∈Jn
E,zj

, zi = fi(x1, . . . , xk2n
)

Then z = z1 ×z2 × . . .×zn, if non-empty, is an inner-approximation of Rp(f)
defined in Equation (2).

The proof is a generalization of the example given in the beginning of this section,
and is detailed in Section K.

Remark 7. It is possible to include skewed boxes that can be much tighter than
boxes as in Theorem 2, using similar ideas as in [22]. There are also simple heuris-
tics to be used that allows us not to go through the combinatorics of potential
choices, for getting the best possible inner-approximation. The sensitivity of the
output to variables is computed as part of our algorithm and the best choices of
quantifiers are the ones which quantify universally the variables for which there
is lower sensitivity, and which quantify existentially the variables for which there
is higher sensitivity, giving higher contributions to the inner-approximations.

Example 7. Consider the function f = (f1, f2) : R
4 → R

2:

f1(x1, x2, x3, x4) = 2 + 2x1 + x2 + 3x3 + x4

f2(x1, x2, x3, x4) = −1− x1 − x2 + x3 + 5x4

We want to find the disturbance set

R∃∀∃(f) = {z ∈ R
2|∃x1 ∈ [−1, 1], ∀x2 ∈ [−1, 1], ∃x3 ∈ [−1, 1],

∃x4 ∈ [−1, 1], z = f(x1, x2, x3, x4)} (14)

An outer-approximation for R∃∀∃(f) is found to be [−3, 7]× [−7, 5], using a
the 1D computation of the previous section, one component at a time.
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Now, there are several possible quantified formulas giving a 2D inner-approxi-
mation. One of them is,

∃x1 , ∀x2, ∀x4, ∃x3 , z1 = f1(x1, x2, x3, x4) (15)

∀x1, ∀x2, ∀x3, ∃x4 , z2 = f2(x1, x2, x3, x4) (16)

The conditions of Proposition 1 for obtaining a non-empty inner-approximation
are met and we get for Equation (26):

[ zc1 −||∆x1
||+||∆x2,x4

|| −||∆x3
||, zc1 +||∆x1

|| −||∆x2,x4
||+||∆x3

||]
= [ 2 −2 +1 + 1 −3, 2 +2 −1− 1 +3]

which is equal to [−1, 5], and for Equation (27):

z1

z2

z0

z1

z2

z3

z4

z5

z6

z7

z8

z9

z10

z11

z12

z13

z14

z15

[ zc2 +||∆x1,x2,x4
|| −||∆x3

||, zc1 −||∆x1,x2,x4
||+||∆x3

||]
= [−1 +1 + 1 + 1 −5, −1 −1− 1− 1 +5]

which is equal to [−3, 1]. Hence [−1, 5]× [−3, 1] is in
the set R∃∀∃(f).

These inner and outer-approximations, together
with the exact robust joint range, are depicted in the
figure on the right-hand side: we represented some
particular points of the image by z1 to z13; the in-
ner and outer boxes represent the inner and outer-
approximations [−1, 5]× [−3, 1] and [−3, 7]× [−7, 5];
finally the polyhedron lying in between is the exact
robust image. Other possibilities are discussed in Appendix L.

Example 8 (Generalized robust reachability for the Dubbins vehicle). We consider
the following problem, which is a slight space relaxation of the original problem
solved in 1D in Example 5:

R∃∀∃(ϕ) = {(x, y, θ) | ∃a ∈ [−0.01, 0.01], ∃x0 ∈ [−0.1, 0.1], ∃y0 ∈ [−0.1, 0.1],

∃θ0 ∈ [−0.01, 0.01], ∀b1 ∈ [−0.01, 0.01], ∃t ∈ [0, 0.5], ∃δ2 ∈ [−1.31e−4, 1.31e−4],

∃δ3 ∈ [−0.005, 0.005], (x, y, θ) = ϕ(t;x0, y0, θ0, a, b1) + (0, δ2, δ3)} (17)

where ϕ is the flow map for the Dubbins vehicle of Example 1. This means we
want to characterize precisely which abscissa x can be reached for some control
a, whatever the disturbance b1. We allow here a relaxation in space and will
determine an inner-approximation of the sets of ordinate y and angle θ which
can be reached with control a whatever disturbance b1, up to a small tolerance
of 1.309 10−4 for the ordinate and 0.005 for θ.

The outer-approximation for R∃∀∃(ϕ) is easy to find from the outer-approxi-
mations of each component of ϕ we already computed in Example 5. We just
need to add the extra contributions of δ2 to y and δ3 to θ, giving

R∃∀∃(ϕ) ⊆ [−0.10000196, 0.60500196]×[0.1077618, 0.1077618]×[−0.025, 0.025]



Arbitrary quantified reachability problems 17

In order to find an inner-approximation of R∃∀∃(ϕ), we interpretet the fol-
lowing quantified formulas (with the same interval bounds as in Equation (17)
for the inputs):

∀a, ∀y0, ∀θ0, ∃x0 , ∀b1, ∀δ2, ∀δ3, ∃t , x = ϕx(t;x0, y0, θ0, a, b1)

∀a, ∀x0, ∀θ0, ∃y0 , ∀b1, ∀δ3, ∀t, ∃δ2 , y = ϕy(t;x0, y0, θ0, a, b1) + δ2

∀x0, ∀y0, ∃θ0, ∃a , ∀b1, ∀δ2, ∀t, ∃δ3 , θ = ϕθ(t;x0, y0, θ0, a, b1) + δ3 and find

[−0.0949993455, 0.5899993275]× [−0.0925, 0.0925] × [−0.01, 0.01] ⊆ R∃∀∃(ϕ).
Note that we were not able to obtain an estimate of the solution of this joint

quantified problem (translated using the linearisation for ϕ of Example 3) with
Mathematica, it resulted in a timeout.

4 Implementation and benchmarks

We implemented the method, including the non-linear case of Theorem 1 and the
vector-valued case of Theorem 2 in Julia, using packages LazySets for manip-
ulating boxes (Hyperrectangles) and Symbolics for automatic differentiation.

Table 1. Benchmark for quantified reachability problems

Benchmark # vars dim # alternations non-linear time (s) inner/sample outer/sample

Ex11 3 1 2 X 0.29 0.33 2.12

Ex4 4 1 2 X 0.32 1 1.03

Ex7 4 2 2 0.21 (0.78,0.40) (1.30,1.21)

Linear-2 4 1 2 0.43 1 1

Linear-5 10 1 5 0.4 1 1

Linear-10 20 1 10 0.41 1 1

Linear-25 50 1 25 0.47 1 1

Linear-50 100 1 50 0.58 1 1

Linear-100 200 1 100 0.91 1 1

Linear-500 1000 1 500 8.1 1 1

Linear-1000 2000 1 1000 28.25 1 1

Motion-2 7 1 3 X 0.62 – –

Motion-5 14 1 6 X 0.76 – –

Motion-10 24 1 11 X 1.06 – –

Motion-25 54 1 26 X 9.4 – –

Motion-50 104 1 51 X 148.68 – –

We ran benchmarks reported in Table 1 on a Macbook Pro 2.3GHz Intel
core i9 with 8 cores, measuring timings using the Benchmark Julia package.
The colums # vars, dim, # alternations, non-linear, time, inner/sample, out-
er/sample denote, respectively, for each benchmark, the number of quantified
variables, the dimension of the image of the function considered, the number
of alternations ∀/∃, whether the function considered is non-linear or not, the
time the analyzer took to compute both the inner and the outer-approximation
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of the quantified reachability problem, the estimated ratio of the width of the
inner-approximation, then the outer-approximation, for each component of the
function, with respect to the estimate using sampling2.

In this table, Exk correspond to Example k of this paper, Linear-k are random
linear functions on 2k variables, quantified as ∀, ∃ k times, and Motion-2 to 50
are several instances of a motion planning problem of the same type as the
one of Equation 7. Motion-k consists of the x component of the same perturbed
Dubbins vehicle as modeled in Example 1, see Appendix M, with k control steps,
generating 3+2k variables and k+1 quantifier alternations. These variables are
the k (angular) controls ai, the k perturbations bi and the two initial conditions
on x and θ. The function, from R

4+2k to R, that expresses the dynamics at the
kth control step is a sum of 2k sine functions evaluated on sums of 1 to k + 1
variables, plus a sum of k + 1 variables.

The theoretical complexity of our method, both for inner and for outer-
approximation, for a n dimensional vector-valued quantified problem on p quan-
tified variables, is of the order of n times the complexity of a 1D quantified
problem on p quantified variables. Each of these 1D problems has a cost of the
order of p times the cost of the evaluation of the function on a (center) point plus
the cost of evaluation of its Jacobian on an interval. In the Linear-k problem,
the cost of evaluation of the function on a point is of the order of k, and for the
Jacobian, apart from the cost of the automatic differentiation, it is of the order of
k again. The resolution time can slightly decrease for higher-dimensional prob-
lems, which is due to the fact that some of these random problems are found to
have empty quantified reachable sets already with few quantifiers. In the Motion-
k problem, which has always a non-empty quantified reachable set, the cost of
evaluation of the function on a point is of the order of k2, and for the Jacobian,
it is of the order of k3 without the cost of the automatic differentiation.

5 Conclusion

In this article, we designed a method for inner and outer-approximating gen-
eral problems, which is essentially an order 0 method, generalizing mean-value
theorems. In future work, we are planning on describing higher order methods,
generalizing again the higher order methods of [22]. We will also consider pre-
conditioning and quadrature formulas for general quantified formulas.

Finally, we intend to generalize this work to other kinds of quantified prob-
lems where the objective is to find a set R such that the quantified predicate
is f(x1,x2, . . . ,x2n) ∈ R, and not an equality predicate as in this work. This
should be most useful for finding generalized invariant sets, in addition to gen-
eralized reachable sets.

2 Sampling is too slow and imprecise when the number of variables grows, hence we
could not use it in the case of Motion-k, k > 2. For Motion-2, it terminates but with
at most 30 samples per dimension, and in dimension 7, this is not representative. In
the case of Linear-k, the estimate is always one since our method is exact in 1D, for
linear functions.



Arbitrary quantified reachability problems 19

References

1. Chaouki Abdallah, Peter Dorato, and Wei Yang. Applications of quantifier elimi-
nation theory to control system design. 02 1970.

2. M. Althoff. Reachability analysis of nonlinear systems using conservative poly-
nomialization and non-convex sets. In HSCC, pages 173–182. ACM publishers,
2013.

3. M. Althoff, C. Le Guernic, and B. H. Krogh. Reachable set computation for uncer-
tain time-varying linear systems. In International Conference on Hybrid Systems:
Computation and Control, pages 93—-102, 2011.

4. M. Althoff, O. Stursberg, and M. Buss. Reachability analysis of nonlinear systems
with uncertain parameters using conservative linearization. In Proceedings of CDC,
pages 4042–4048, 2008.

5. S. Bansal, M. Chen, S. L. Herbert, and C. J. Tomlin. Hamilton-jacobi reachability:
A brief overview and recent advances. In CDC, 2017.

6. Christopher W. Brown. Qepcad b: A program for computing with semi-algebraic
sets using cads. SIGSAM Bull., 37(4):97–108, dec 2003.
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A Mathematica expressions used in the Examples

The quantified problem for calculating the outer-approximation of Example 3 is
expressed in Mathematica as:

Reduce [∃{ǫ7, ǫ1, ǫ4, ǫ6}, ǫ7 ≥ −1 ∧ ǫ7 ≤ 1 ∧ ǫ1 ≥ −1

∧ ǫ1 ≤ 1 ∧ ǫ4 ≥ −1 ∧ ǫ4 ≤ 1 ∧ ǫ6 ≥ −1 ∧ ǫ6 ≤ 1,

∀ǫ2, ǫ2 ≥ −1 ∧ ǫ2 ≤ 1

∃{t, ǫ3, ǫ5}, t ≥ 0 ∧ t ≤ 0.5 ∧ ǫ3 ≥ −1 ∧ ǫ3 ≤ 1 ∧ ǫ5 ≥ −1 ∧ ǫ5 ≤ 1
(

x = 0.1ǫ1 + (1 + 0.01ǫ2)t+ 1.31 10−7ǫ3t
2

∧ y = 0.1ǫ4 + (0.01ǫ6 + 0.01ǫ7t)t+ 0.05ǫ5t
2

∧ theta = 0.01ǫ6 + 0.01ǫ7t) , {y, z, u},R]

For the outer-approximations of each component of ϕ, we have the following
Mathematica problems, for ϕx first:

Timing[Reduce[Exists[{e7, e1, e4, e6}, (e7>= −1)&&(e7 <= 1)

&&(e1 >= −1)&&(e1 <= 1)&&(e4 >= −1)&&(e4 <= 1)

&&(e6 >= −1)&&(e6 <= 1), ForAll[e2, (e2 >= −1)&&(e2 <= 1),

Exists[{t, e3, e5}, (t >= 0)&&(t <= 0.5)

&&(e3 >= −1)&&(e3 <= 1)&&(e5 >= −1)&&(e5 <= 1),

x == 0.1e1 + t+ 0.01e2t+ 0.000000131e3t2]]], {x}, Reals]]

Then for ϕy :

Timing[Reduce[Exists[{e7, e1, e4, e6}, (e7>= −1)&&(e7 <= 1)

&&(e1 >= −1)&&(e1 <= 1)&&(e4 >= −1)&&(e4 <= 1)

&&(e6 >= −1)&&(e6 <= 1), ForAll[e2, (e2 >= −1)&&(e2 <= 1),

Exists[{t, e3, e5}, (t >= 0)&&(t <= 0.5)

&&(e3 >= −1)&&(e3 <= 1)&&(e5 >= −1)&&(e5 <= 1),

y == 0.1e4 + (0.01e6 + 0.01e7t)t+ (0.005e5)t2]]], {y}, Reals]]

And finally for ϕθ:

T iming[Reduce[Exists[{e7, e1, e4, e6}, (e7>= −1)&&(e7 <= 1)

&&(e1 >= −1)&&(e1 <= 1)&&(e4 >= −1)&&(e4 <= 1)

&&(e6 >= −1)&&(e6 <= 1), ForAll[e2, (e2 >= −1)&&(e2 <= 1),

Exists[{t, e3, e5}, (t >= 0)&&(t <= 0.5)

&&(e3 >= −1)&&(e3 <= 1)&&(e5 >= −1)&&(e5 <= 1),

theta == 0.01e6 + 0.01e7t]]], {theta}, Reals]]
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For the inner-approximations of all components of ϕ, first for ϕx, we have:

T iming[Reduce[Exists[{e7, e1, e4, e6}, (e7>= −1)&&(e7 <= 1)

&&(e1 >= −1)&&(e1 <= 1)&&(e4 >= −1)&&(e4 <= 1)

&&(e6 >= −1)&&(e6 <= 1), ForAll[{e2, e3, e5},

(e2 >= −1)&&(e2 <= 1)&&(e3 >= −1)&&(e3 <= 1)

&&(e5 >= −1)&&(e5 <= 1), Exists[{t}, (t >= 0)&&(t <= 0.5),

x == 0.1e1 + t+ 0.01e2t+ 0.000000131e3t2]]], {x}, Reals]]

Then for ϕy :

T iming[Reduce[Exists[{e7, e1, e4, e6}, (e7>= −1)

&&(e7 <= 1)&&(e1 >= −1)&&(e1 <= 1)&&(e4 >= −1)&&(e4 <= 1)

&&(e6 >= −1)&&(e6 <= 1), ForAll[{e2, e3, e5},

(e2 >= −1)&&(e2 <= 1)&&(e3 >= −1)&&(e3 <= 1)

&&(e5 >= −1)&&(e5 <= 1), Exists[{t}, (t >= 0)&&(t <= 0.5),

y == 0.1e4 + (0.01e6 + 0.01e7t)t+ (0.005e5)t2]]], {y}, Reals]]

And finally for ϕθ:

T iming[Reduce[Exists[{e7, e1, e4, e6}, (e7>= −1)&&(e7 <= 1)

&&(e1 >= −1)&&(e1 <= 1)&&(e4 >= −1)&&(e4 <= 1)

&&(e6 >= −1)&&(e6 <= 1), ForAll[{e2, e3, e5},

(e2 >= −1)&&(e2 <= 1)&&(e3 >= −1)&&(e3 <= 1)

&&(e5 >= −1)&&(e5 <= 1), Exists[{t}, (t >= 0)&&(t <= 0.5),

theta == 0.01e6 + 0.01e7t]]], {theta}, Reals]]

B Proof of Lemma 1

We distinguish two cases:

– If Q1 = ∀, then z ∈ Sn(δ0;Q1, δ1; . . . ;Qn, δn) iff ∀x1 ∈ [−1, 1], Q2x2 ∈
[−1, 1], . . . , Qnxn ∈ [−1, 1], z = f(x1, x2, . . . , xn). This is equivalent to, for
all x1 ∈ [−1, 1]: Q2x2 ∈ [−1, 1], . . . , Qnxn ∈ [−1, 1], z = (δ0 + δ1x1) +
k
∑

i=2

δixi, hence z ∈ Sn−1(δ0 + δ1x1;Q2, δ2; . . . ;Qn, δn). Therefore, this is

equivalent to

z ∈
⋂

x1∈[−1,1]

Sn−1(δ0 + δ1x1;Q2, δ2; . . . ;Qn, δn)
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– If Q1 = ∃, then z ∈ Sn(δ0;Q1, δ1; . . . ;Qn, δn) iff ∃x1 ∈ [−1, 1], Q2x2 ∈
[−1, 1], . . . , Qnxn ∈ [−1, 1], z = f(x1, x2, . . . , xn). This is equivalent to, for
some x1 ∈ [−1, 1]: Q2x2 ∈ [−1, 1], . . . , Qnxn ∈ [−1, 1], z = (δ0 + δ1x1) +
k
∑

i=2

δixi, hence z ∈ Sn−1(δ0 + δ1x1;Q2, δ2; . . . ;Qn, δn) for some x1 ∈ [−1, 1].

Therefore, this is equivalent to

z ∈
⋃

x1∈[−1,1]

Sn−1(δ0 + δ1x1;Q2, δ2; . . . ;Qn, δn)

C Proof of Proposition 1

Note first that

Rp(f) = Sp(δ0; ∀, δk1+1; . . . ; ∀, δk2
; ∃, δk2+1; . . . ;

∃, δk3
; . . . ; ∀, δk2n−1+1; . . . ; ∀, δk2n

; ∃, δk2n+1; . . . ; ∃, δk2n+1
) (18)

where ki =
i−1
∑

l=1

jl for all i = 1, . . . , 2n+ 1.

We use the notation ∆i to improve readability of formula (18), that we
rewrite: Rp(f) = Sp(δ0; ∀, ∆1; ∃, ∆2; . . . ; ∀, ∆2n−1; ∃, ∆2n).

The proof uses the induction relation (10) on Sn. Let us call P2n the property

we wish to prove on Rp(f) for any partition p = (j1, . . . , j2n) of p =
2n
∑

i=1

ji. For all

partitions p′ = (j′1, . . . , j
′
2n−1) of p

′ =
2n−1
∑

i=1

j′i and associated functions f ′ : R
p′

→

R
m with f ′(x1,x2, . . . ,x2n−1) = δ′0+〈∆′

1,x1〉+〈∆′
2,x2〉+ . . .+〈∆′

2n−1,x2n−1〉,
we define:

Tp′(f ′) = Sp′(δ′0; ∃, ∆
′
1; ∀, ∆

′
2; ∃∆

′
3; . . . ; . . . ; ∀, ∆

′
2n−2; ∃, ∆

′
2n−1) (19)

and we will prove the following property Q2n−1:

Tp′(f ′) =

[

δ′0 +

n−1
∑

k=1

(||∆′
2k|| − ||∆′

2k−1||)− ||∆′||2n−1 ,

δ′0 +

n−1
∑

k=1

(||∆′
2k−1|| − ||∆′

2k||) + ||∆′||2n−1

]

if ||∆′
2l|| ≤ ||∆′

2l+1||+
n−1
∑

k=l+1

(||∆′
2k+1|| − ||∆′

2k||) for l = 1, . . . , n−1, otherwise

Tp′(f) = ∅.
We first have the base case P0 and Q−1, which are both equal to [δ0, δ0].
We now suppose Q2n−1 and P2n and prove Q2n+1 and P2n+2. Consider first

the case of Q2n+1 and, for a function f ′ : R
p′

→ R
m, f ′(x1, . . . ,x2n+1) =
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δ′0 +
2n+1
∑

i=1

〈∆′
i,xi〉 with a partition p′ = (j′1, . . . , j

′
2n+1) of the arguments of f ′,

consider the set:

Tp′(f ′) = Sp′(δ′0; ∃, ∆
′
1; ∀, ∆

′
2; ∃, ∆

′
3; . . . ; ∀, ∆

′
2n; ∃, ∆

′
2n+1).

By the universal quantifier case of Lemma 1 applied j1 times, this is equal to:

⋃

x1∈[−1,1]j1

Sp′′(δ′0 + 〈∆′
1,x1〉; ∀, ∆

′
2; ∃, ∆

′
3; . . . ; ∀, ∆

′
2n; ∃, ∆

′
2n+1)

where Sp′′(. . .) = Rp′′(f ′′) with partition p′′ = (j′2, . . . , j
′
2n+1), p

′′ =
2n+1
∑

i=2

j′i, and

f ′′(x2, . . . ,x2n+1) = f ′(x1,x2, . . . ,x2n+1).
Then by the induction hypothesis P2n applied to partition p′′, each Sp′′(. . .)

is equal to:

δ′0 + 〈∆′
1,x1〉+

[

n
∑

k=1

(||∆2k−1|| − ||∆2k||) ,
n
∑

k=1

(||∆2k|| − ||∆2k−1||)

]

if ||∆2l−1|| ≤ ||∆2l||+
n
∑

k=l+1

(||∆2k|| − ||∆2k−1||) for l = 1, . . . , n, with∆i = ∆′
i+1,

i = 1, . . . , 2n, otherwise is equal to the empty set. Substituting ∆i by ∆′
i+1, we

obtain for each Sp′′(. . .):

δ′0 + 〈∆′
1, x1〉+

[

n
∑

k=1

(||∆′
2k|| − ||∆′

2k+1||) ,
n
∑

k=1

(||∆′
2k+1|| − ||∆′

2k||)

]

if ||∆′
2l|| ≤ ||∆′

2l+1||+
n
∑

k=l+1

(||∆′
2k+1|| − ||∆′

2k||) for l = 1, . . . , n, otherwise it

is empty. Finally,

δ′0 − ||∆′
1|| ≤ δ′0 + 〈∆′

1,x1〉 ≤ δ′0 + ||∆′
1||

each bound being reached by some x1. Hence,

Tp′(f ′) =

[

δ′0 − ||∆′
1||+

n
∑

k=1

(||∆′
2k|| − ||∆′

2k+1||) ,

δ′0 + ||∆′
1||+

n
∑

k=1

(||∆′
2k+1|| − ||∆′

2k||)

]

if ||∆′
2l|| ≤ ||∆′

2l+1|| +
n
∑

k=l+1

(||∆′
2k+1|| − ||∆′

2k||) for l = 1, . . . , n, otherwise

Tp′(f ′) = ∅. This is precisely Q2n+1 since −||∆′
1||+

n
∑

k=1

(||∆′
2k|| − ||∆′

2k+1||) =
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n
∑

k=1

(||∆′
2k|| − ||∆′

2k−1||) − ||∆′||2n+1 and ||∆′
1|| +

n
∑

k=1

(||∆′
2k+1|| − ||∆′

2k||) =

n
∑

k=1

(||∆′
2k−1|| − ||∆′

2k||) + ||∆′||2n+1.

The case of P2n+2 is similar, using Lemma 1 and property Q2n+1: suppose
again that the induction hypothesis holds, i.e. we suppose P2n and Q2n−1, and
we prove Q2n+1 and P2n+2. We proved Q2n+1 and we now examine the case of
P2n+2 and consider the following set, starting with a function f : R

p → R
m,

f(x1, . . . ,x2n+2) = δ0 +
2n+2
∑

i=1

〈∆i,xi〉 with a partition p = (j1, . . . , j2n+2) of the

p =
2n+2
∑

i=1

ji arguments of f :

Rp(f) = Sp(δ0; ∀, ∆1; ∃, ∆2; . . . ; ∀, ∆2n+1; ∃, ∆2n+2) (20)

By the existential quantifier case of Lemma 1 applied j1 times, this is equal to

(we set p′ =
2n+2
∑

i=2

ji):

⋂

x1∈[−1,1]j1

Sp′(δ0 + 〈∆1,x1〉; ∃, ∆2; ∀, ∆3; . . . ; ∀, ∆2n+1; ∃, ∆2n+2) (21)

As Sp′(δ0+ 〈∆1,x1〉; ∃, ∆2; ∀, ∆3; . . . ; ∀, ∆2n+1; ∃, ∆2n+2) is equal to Tp′(f ′),
by Equation (19), with f ′(x2, . . . ,x2n+2) = f(x1,x2, . . . ,x2n+2) and p′ =

(j2, . . . , j2n+2) is a partition of p′ =
2n+2
∑

i=2

ji, by the induction hypothesis Q2n+1

applied to partition p′, each Sp′(δ0+〈∆1,x1〉; ∃, ∆2; ∀, ∆3; . . . ; ∀, ∆2n+1; ∃, ∆2n+2)
is equal to:

[

δ0 + 〈∆1,x1〉+
n
∑

k=1

(||∆′
2k|| − ||∆′

2k−1||)− ||∆′||2n+1 ,

δ0 + 〈∆1,x1〉+
n
∑

k=1

(||∆′
2k−1|| − ||∆′

2k||) + ||∆′||2n+1

]

if ||∆′
2l|| ≤ ||∆′

2l+1||+
n−1
∑

k=l+1

(||∆′
2k+1|| − ||∆′

2k||) for l = 1, . . . , n−1 (otherwise,

is equal to the empty set), with ∆′
i = ∆i+1, for all i = 1, . . . , 2n + 1, ∆′

1 = ∆1

and δ′0 = δ0.
Replacing ∆′

i by ∆i+1, ∆
′
1 by ∆1 and δ′0 by δ0, we obtain the value:

[

δ0 + 〈∆1,x1〉+
n
∑

k=1

(||∆2k+1|| − ||∆2k||)− ||∆||2n+2 ,

δ0 + 〈∆1,x1〉+
n
∑

k=1

(||∆2k|| − ||∆2k+1||) + ||∆||2n+2

]

(22)
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if ||∆2l+1|| ≤ ||∆2l+2||+
n−1
∑

k=l+1

(||∆2k+2|| − ||∆2k+1||) for l = 1, . . . , n− 1, other-

wise is empty.
Now,

δ0 − ||∆1|| ≤ δ0 + 〈∆1,x1〉 ≤ δ0 + ||∆1||

each bound being reached by some x1, and the intersection of the intervals of
Equation (22), where x1 varies over [−1, 1]j1 is Rp(f) by Equation (21):

Rp(f) =

[

δ0 + ||∆1||+
n
∑

k=1

(||∆2k+1|| − ||∆2k||)− ||∆||2n+2 ,

δ0 − ||∆1||+
n
∑

k=1

(||∆2k|| − ||∆2k+1||) + ||∆||2n+2

]

when ||∆2l+1|| ≤ ||∆2l+2|| +
n−1
∑

k=l+1

(||∆2k+2|| − ||∆2k+1||) for l = 1, . . . , n − 1,

which is exactly P2n+2 since:

δ0 + ||∆1||+
n
∑

k=1

(||∆2k+1|| − ||∆2k||)− ||∆||2n+2 = δ0 +

n+1
∑

k=1

(||∆2k−1|| − ||∆2k||)

and,

δ0 − ||∆1||+
n
∑

k=1

(||∆2k|| − ||∆2k+1||) + ||∆||2n+2 =

n+1
∑

k=1

(||∆2k|| − ||∆2k−1||)

Finally, note, that Rp(f) is not empty if and only if ||∆2l+1|| ≤ ||∆2l+2|| +
n−1
∑

k=l+1

(||∆2k+2|| − ||∆2k+1||) for l = 1, . . . , n − 1 as before, which is equivalent

to: ||∆2l−1|| ≤ ||∆2l||+
n
∑

k=l

(||∆2k+2|| − ||∆2k+1||) for l = 2, . . . , n− 1 and if the

radius of Rp(f) is positive i.e.

||∆1|| ≤
n
∑

k=1

(||∆2k|| − ||∆2k+1||) + ||∆||2n+2

which is equivalent to:

||∆1|| ≤ ||∆2||+
n
∑

k=1

(||∆2k+2|| − ||∆2k+1||)

which is ||∆2l−1|| ≤ ||∆2l|| +
n
∑

k=l

(||∆2k+2|| − ||∆2k+1||) for l = 1. Overall, the

non-vacuity condition for Rp(f) amounts to:

||∆2l−1|| ≤ ||∆2l||+
n
∑

k=l

(||∆2k+2|| − ||∆2k+1||)
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for l = 1, . . . , n.

D Difference between ∀, ∃ and ∃, ∀ in the linear case

Example 9 (Difference between ∀, ∃ and ∃, ∀). Consider, for a function f from
R

2 to R the sets R∀∃(f) = {z | ∀x2, ∃x1, z = f(x1, x2)} and R∃∀(f) =
{z | ∃x1, ∀x2, z = f(x1, x2)}. In any case, R∃∀(f) ⊆ R∀∃(f). We consider
the affine function f(x1, x2) = a+ bx1 + cx2. It is easy to see that

– R∃∀(f) = ∅ if c 6= 0, since z ∈ R∃∀(f) implies ∃x1 such that e.g. for x2 = 0,
f(x1, 0) = z, and for e.g. x2 = 1, f(x1, 1) = z. Hence a+bx1 = z = a+c+bx1

implying c = 0. Conversely, if c = 0, R∃∀(f) = [a− |b|, a+ |b|],

– R∀∃(f) = [a+ |c| − |b|, a− |c|+ |b|] if |c| ≤ |b|, otherwise it is empty.

Hence in the linear case, either c 6= 0 and R∃∀(f) = ∅ 6= R∀∃(f) or R∃∀(f) =
R∀∃(f).

E Proof of Proposition 2

Note first that, trivially,

f(x1, . . . , xp) = f(0, . . . , 0) +

p
∑

j=1

hx1,...,xj−1(xj)

Consider now z ∈ C(O1, I2, . . . , 02n−1, I2n). Take any x1 in [−1, 1]j1 . As
O1 is an outer-approximation of range(h) × . . . × range(hx1,...,xk2 ), h(x1) =
k2

Π
j=1

hx1,...,xj−1(x1) ∈ O1, and there exists α2 ∈ I2, such that ∀α3 ∈ O3, . . . ,

∃α2n ∈ I2n with z = h(x1) + α2 + . . .+ α2n.

But each component of I2 is an inner-approximation of range of hxk2+1,...,xj−1

for some j ∈ [k2 + 1, . . . , k3 − 1], so there exists x2 ∈ [−1, 1]j2 such that α2 is

the image of x2 by hx1 =
k3−1

Π
j=k2+1

hxk2+1,...,xj . Therefore we have so far ∀x1, ∃x2

such that ∀α3 ∈ O3, . . . , ∃α2n ∈ I2n with z = h(x1)+hx1(x2)+α3+ . . .+α2n.

We carry on inductively to find that z ∈ C(O1, I2, . . . , 02n−1, I2n) is such that
∀x1, ∃x2, . . ., ∃x2n, z = h(x1)+. . .+hx1,...,x2n−1(x2n), i.e. z = f(x1, . . . ,x2n)−
f(0, . . . , 0). Thus z + f(0, . . . , 0) ∈ Rp(f).

The case of outer-approximations of Rp(f) is similar.
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F Proof of Theorem 1

Writing Al = [Al, Al] for l = 1, . . . , p, and Ai = (Aki+1, . . . , Aki+1
), for i =

1, . . . , 2n, we have

C(A1, . . . ,A2n) = Sp





p
∑

j=1

Aj +Aj

2
; ∀,

A1 −A1

2
;

∃,
A2 −A2

2
; . . . ; ∃,

A2n −A2n

2

)

where the arithmetic operations on vectors Aj are taken componentwise. Thus,

by Equation (18), C(A1, . . . ,A2n) = Rp(f) with f(x1, . . . ,x2n) =
p
∑

j=1

Aj+Aj

2 +

〈

A1−A1

2 ,x1

〉

+ . . .

〈

A2n−A2n

2 ,x2n

〉

.

Therefore, by Proposition 1, C(O1, I2, . . . ,O2n−1, I2n) is equal to:

n
∑

l=1





k2l
∑

j=k2l−1+1

Oj +Oj

2
+

k2l+1
∑

j=k2l+1

Ij + Ij
2



+

1

2

[

n
∑

k=1

(

||O2k−1 −O2k−1|| − ||I2k − I2k||
)

,

n
∑

k=1

(

||I2k − I2k|| − ||O2k−1 −O2k−1||
)

]

(23)

if ||O2l−1−O2l−1|| ≤ ||I2l−I2l||+
n
∑

k=l+1

(

||I2k − I2k|| − ||O2k−1 −O2k−1||
)

for

l = 1, . . . , n, otherwise, is empty. This is equivalent to
∑

O2l−1 −
∑

O2l−1 ≤
n
∑

k=l

∑
(

I2k − I2k

)

−
n
∑

k=l+1

∑
(

O2k−1 −O2k−1

)

for l = 1, . . . , n.

The left bound of the interval in Equation (23) above is equal to:

n
∑

l=1





k2l
∑

j=k2l−1+1

Oj +Oj

2
+

k2l+1
∑

j=k2l+1

Ij + Ij
2



+

1

2

n
∑

k=1

(

||O2k−1 −O2k−1|| − ||I2k − I2k||
)
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which is equal to:

n
∑

l=1





k2l
∑

j=k2l−1+1

Oj +Oj

2
+

k2l+1
∑

j=k2l+1

Ij + Ij
2



+

n
∑

l=1





k2l
∑

j=k2l−1+1

1

2
||Oj −Oj || −

k2l+1
∑

j=k2l+1

1

2
||Ij − Ij ||





=

n
∑

l=1





k2l
∑

j=k2l−1+1

(

Oj +Oj

2
+

1

2
||Oj −Oj ||

)

+

k2l+1
∑

j=k2l+1

(

Ij + Ij
2

−
1

2
||Ij − Ij ||

)





but:
Oj+Oj

2 + 1
2 ||Oj −Oj|| = Oj

Ij+Ij

2 − 1
2 ||Ij − Ij|| = Ij

Therefore, the left bound of the interval of Equation (23) is:

n
∑

l=1





k2l
∑

j=k2l−1+1

Oj +

k2l+1
∑

j=k2l+1

Ij



 =

n
∑

l=1

(

∑

O2l−1 +
∑

I2l

)

The right bound of the interval of Equation (23) is treated similarly, and we
find:

n
∑

l=1





k2l
∑

j=k2l−1+1

Oj +

k2l+1
∑

j=k2l+1

Ij



 =

n
∑

l=1

(

∑

O2l−1 +
∑

I2l

)

Similarly, C(O1, I2, . . . ,O2n−1, I2n) is found, by echanging the roles of Ok with
Ik, to be equal to:

[

n
∑

l=1

(

∑

I2l−1 +
∑

O2l

)

,

n
∑

l=1

(

∑

I2l−1 +
∑

O2l

)

]

This, combined with (11) of Proposition 2 yields the result.

G Difference between ∀, ∃ and ∃, ∀ in the non-linear

case

Example 10 (Difference between ∀, ∃ and ∃, ∀). Consider as in Example 9, for a
function f from R

2 to R the sets R∀∃(f) = {z | ∀x2, ∃x1, z = f(x1, x2)} and
R∃∀(f) = {z | ∃x1, ∀x2, z = f(x1, x2)}. In any case, R∃∀(f) ⊆ R∀∃(f).
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For non-linear f , the only difference with the linear case is that there may
be isolated values for x1 such that f(x1, x2) does not depend on x2, which gives
a finite set of isolated points for R∃∀(f), while R∀∃(f) can be a strict superset
of R∃∀(f).

Take f(x1, x2) = (x2
1 − 1)x2 + x1 for x1 ∈ [−1, 1] and x2 ∈ [−1, 1]. For

x1 = 1 and x1 = −1, f(x1, x2) = x1, hence 1 and -1 belong to R∃∀(f), and
R∃∀(f) = {−1, 1}. A study of f reveals that R∀∃(f) = [−1, 1], which is a strict
superset of R∃∀(f) = {−1, 1}.

Indeed, a careful study of f reveals that:

– for x2 ∈
[

− 1
2 ,

1
2

]

, f(x1, x2) is monotonic, and has exact range [f(−1, x2) =

−1, f(1, x2) = 1]; when x2 ∈
[

1
2 ,∞

[

,

– f(x1, x2) has exact range
[

− 1+4x2
2

4x2
, 1
]

, with − 1+4x2
2

4x2
having itself exact range

[

− 5
4 ,−1

]

(f(., x2) is decreasing from -1 to − 1
2x2

with value − 1+4x2
2

4x2
and then

increasing to 1),

– f(x1, x2) has exact range
[

−1,−
1+4x2

2

4x2

]

when x2 ∈
]

−∞,− 1
2

]

(f(., x2) is

increasing from -1 to − 1
2x2

with value − 1+4x2
2

4x2
which can range from 1 to 5

4 ,
and decreasing up to 1).

Thus the intersection of the ranges of f(., x2) for all x2 is exactly [−1, 1], and by
Lemma 1, we conclude that R∀∃(f) = [−1, 1].

H Example 11

Example 11. Consider function g : R
3 → R given by

g(x1, x2, x3) =
x2
1

4
+ (x2 + 1)(x3 + 2) + (x3 + 3)2.

On [−1, 1]3, ∇1 = | ∂g
∂x1

| = |x1

2 | ∈
[

0, 12
]

, ∇2 = | ∂g
∂x2

| = |x3 + 2| ∈ [1, 3], ∇3 =

| ∂g
∂x3

| = |x2 + 1 + 2(x3 + 3)| ∈ [4, 10], and c = g(0, 0, 0) = 11. Therefore, we can
compute the outer and inner approximations Oi and Ii, i = 1, 2, 3, of Remark 6:
O1 =

[

− 1
2 ,

1
2

]

, I1 = 0, O2 = [−3, 3], I2 = [−1, 1] and O3 = [−10, 10], I3 = [−4, 4].
We can deduce an outer-approximation of the disturbance set:

{z | ∃x1 ∈ [−1, 1], ∀x2 ∈ [−1, 1], ∃x3 ∈ [−1, 1], z = g(x1, x2, x3)}

Let us first note that in order to apply Theorem 1 with n = 2, we must introduce
a dummy universally quantified first variable, which means that all indices above
should be added 1. Then, by a ”direct” (adding 1 to variables indices) application
of Theorem 1:

[ c +O1 +I2 +O3, c +O1 +I2 +O3 ]
= [ 11 − 1

2 +1 −10, 11 + 1
2 −1 +10 ] = [1.5, 20.5]

In comparison, the sampling based estimation is [6.25, 16.25].
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Now, as I3 + O2 = 1 ≥ I3 + O2 = −1, we get by Theorem 1 an inner
approximation of the disturbance set for g:

[ c +I1 +O2 +I3, c +I1 +O2 +I3 ]
= [ 11 0 +3 −4, 11 +0 −3 +4 ] = [10, 12]

I Calculation of the Jacobian for Example 5

The Jacobian of ϕ with respect to x0, y0, θ0, b1 and a, Ji,x0
= ∂ϕi

∂t
, Ji,y0

= ∂ϕi

∂t
,

Ji,θ0 = ∂ϕi

∂t
, Ji,b1 = ∂ϕi

∂t
and Ji,a = ∂ϕi

∂t
, for i = x, y, θ respectively, satisfies the

following variational equation [20]:

J̇x,x0
= −sin(θ)Jθ,x0

J̇x,y0
= −sin(θ)Jθ,y0

J̇x,θ0 = −sin(θ)Jθ,θ0

J̇x,b1 = −sin(θ)Jθ,b1 + 1

J̇x,a = −sin(θ)Jθ,a

J̇y,x0
= cos(θ)Jθ,x0

J̇y,y0
= cos(θ)Jθ,y0

J̇y,θ0 = cos(θ)Jθ,θ0

J̇y,b1 = cos(θ)Jθ,b1

J̇y,a = cos(θ)Jθ,a

J̇θ,x0
= 0

J̇θ,y0
= 0

J̇θ,θ0 = 0

J̇θ,b1 = 0

J̇θ,a = 1

with initial conditions Ji,x0
= δi,x, Ji,y0

= δi,y, Ji,θ0 = δi,θ where δ is the
Kronecker symbol. Therefore, the only non-null entries of the Jacobian of ϕ are:
Jx,x0

= 1, Jx,b1 = t, Jy,y0
= 1, Jθ,θ0 = 1, Jθ,a = t, and also Jx,θ0 , Jx,a, Jy,θ0 and

Jy,a are given by the ODEs:

J̇x,θ0 = −sin(θ) with J̇x,θ0 = 0 at time 0

J̇x,a = −sin(θ)t with J̇x,a = 0 at time 0

J̇y,θ0 = cos(θ) with J̇y,θ0 = 0 at time 0

J̇y,a = cos(θ)t with J̇y,a = 0 at time 0

In order to find an over-approximation of these entries of the Jacobian, we use
here a simple mean-value theorem, given that θ(t) ∈ [−0.015, 0.015] for t ∈
[0, 0.15]:

Jx,θ0 = −sin([−0.015, 0.015])t
∈ [−1.309 10−4, 1.309 10−4]

Jx,a = −[0, 0.5]sin([−0.015, 0.015])t
∈ [−6.545 10−5, 6.545 10−5]

Jy,θ0 = cos([−0.015, 0.015])t
∈ [0, 0.5]

Jy,a = [0, 0.5]cos([−0.015, 0.015])t
∈ [0, 0.25]

By Remark 6, this gives the following inner and outer approximations for all
parameters x0, y0, θ0, a and b1, and all components x, y and θ of ϕ:
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– Ix,a = 0, Ox,a = [−6.545 10−7, 6.545 10−7], Ix,x0
= Ox,x0

= [−0.1, 0.1],
Ix,θ0 = 0,Ox,θ0 = [−1.309 10−6, 1.309 10−6], Ix,b1 = 0,Ox,b1 = [−0.005, 0.005],

– Iy,a = 0, Oy,a = [−0, 0025, 0.0025], Iy,y0
= Oy,y0

= [−0.1, 0.1], Iy,θ0 = 0,
Oy,θ0 = [−0, 005, 0.005],

– Iθ,θ0 = Oθ,θ0 = [−0.01, 0.01], Iθ,a = 0, Oθ,a = [0, 0.005],

We note also that ∂x
∂t

= cos(θ)+b1 ∈ [0.989999965, 1.01] thus Ix,t = [0, 0.49499
9982],Ox,t = [0, 0.505], similarly, Iy,t = 0,Oy,t = [−sin(0.015)/2, sin(0.015)/2] =
[−1.309 10−4, 1.309 10−4] and Iθ,t = 0, Oθ,t = [−0.005, 0.005].

J Computation of components y and θ for Example 5

Inner-approximation for the y component of ϕ is computed similarly as for x,
its lower bound is:

yc +Iy,a +Iy,x0
+Iy,y0

+Iy,θ0 +Oy,b1 +Iy,t
= 0 +0 +0 −0.1 +0 +0 +0

which is equal to -0.1, and its upper bound:

yc +Iy,a +Iy,x0
+Iy,y0

+Iy,θ0 +Oy,b1
+Iy,t

= 0 +0 +0 +0.1 +0 +0 +0

which is equal to 0.1. Therefore the inner-approximation for y is equal to [−0.1, 0.1].
Outer-approximation for the y component of ϕ has as lower bound:

yc +Oy,a +Oy,x0
+Oy,y0

+Oy,θ0
+Iy,b1 +Oy,t

= 0 −0, 0025 −0 −0.1 −0, 005 +0 −1.309 10−4

which is equal to 0.1076309, and its upper bound:

yc +Oy,a +Oy,x0
+Oy,y0

+Oy,θ0 +Iy,b1 +Oy,t

= 0 +0.0025 +0 +0.1 +0, 005 −0 +1.309 10−4

which is equal to 0.1076309. Therefore the outer-approximation for y is equal to
[0.1076309, 0.1076309].

Inner-approximation for the θ component of ϕ is computed similarly, its lower
bound is:

θc +Iθ,a +Iθ,x0
+Iθ,y0

+Iθ,θ0 +Oθ,b1 +Iθ,t
= 0 +0 +0 +0 −0.01 +0 +0

which is equal to -0.01, and its upper bound:

θc +Iθ,a +Iθ,x0
+Iθ,y0

+Iθ,θ0 +Oθ,b1
+Iθ,t

= 0 +0 +0 +0 +0.01 +0 +0

which is equal to 0.01. Therefore the inner-approximation for θ is equal to
[−0.01, 0.01].
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Outer-approximation for the θ component of ϕ has as lower bound:

θc +Oθ,a +Oθ,x0
+Oθ,y0

+Oθ,θ0
+Iθ,b1 +Oθ,t

= 0 +0 +0 +0 −0.01 +0 −0.005

which is equal to -0.02, and its upper bound:

θc +Oθ,a +Oθ,x0
+Oθ,y0

+Oθ,θ0 +Iθ,b1 +Oθ,t

= 0 +0.005 +0 +0 +0.01 +0 +0.005

which is equal to 0.02. Therefore the outer-approximation for θ is equal to
[−0.02, 0.02].

K Proof of Theorem 2

The principle is the same as in the case of one alternation of, for all and there
exists quantifiers, treated in [21].

For each i ∈ {1, . . . , n}, function πi associates to each xj for j ∈ {k2i +
1, . . . , k2i+1} the index l ∈ {1, . . . ,m} of the unique output component of the
function in which it will be existentially quantified.

First suppose πi are jointly surjective (i.e. the union of their image is {1, . . . ,
m}). For each of the m quantified problems for zj o Theorem 2, for all i =
1, . . . , n, and for all lij ∈ J i

E,zj
we can associate the continuous selection

glij

(

zj, (xp)p∈{1,...,k2i−1}∪Ji
A,zj

)

by [19], since f is elementary. For a given (z1, . . . , zm) ∈ z, let us define the
continuous map g that associates to each (x1, . . . , xu) ∈ x,

(

(gl1j )j∈{1,...,m}, . . . , (glnj )j∈{1,...,m}

)

which can be completed adding identities on the components which are not
defined, to be in value in in x ⊆ R

m. By Brouwer fixed point theorem, ∀z ∈ z,
there is a fixed point xz ∈ x of g, which thus satisfies z = f(xz) as the πis are
jointly surjective. We observe that the fixed point obtained does depend on the
quantified variables, in the same order than in the original quantified problem
Rp(f).

Finally, if the πis are not jointly surjective, there exist zi in which no input
variable is existentially quantified. The corresponding under-approximation will
be empty or reduced to a point and the previous proof still holds on the other
components.

L Example 7 detailed

There are several possible quantified formulas giving a 2D inner-approximation
for Example 7.
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One of them is, for all z1 and z2:

∃x1 , ∀x2, ∀x3, ∃x4 , z1 = f1(x1, x2, x3, x4) (24)

∀x1, ∀x2, ∀x4, ∃x3 , z2 = f2(x1, x2, x3, x4) (25)

where we indicated above the existential quantifiers for each group ∀∃ within a
framed box. By Theorem 1, we get an empty set for z1 as defined by Equation
(24), since the constraints of Proposition 1 are not satisfied: the contribution
of the existentially quantified x4 is [−1, 1] whereas the universally quantified x2

and x3 account for [−4, 4], which thus cannot be fully compensated.
Similarly Equation (25) yields an empty inner-approximation since it does

not satisfy the constraints of Proposition 1, the contribution of x3 being too
small to counteract the contribution of x1, x2 and x4.

Another possibility is to interpret the following quantified formulas, for all
z1 and z2:

∃x1 , ∀x2, ∀x4, ∃x3 , z1 = f1(x1, x2, x3, x4) (26)

∀x1, ∀x2, ∀x3, ∃x4 , z2 = f2(x1, x2, x3, x4) (27)

This time, the conditions of Proposition 1 for obtaining a non-empty inner-
approximation are met and we get for Equation (26):

[ zc1 −||∆x1
||+||∆x2,x4

|| −||∆x3
||, zc1 +||∆x1

|| −||∆x2,x4
||+||∆x3

||]
= [ 2 −2 +1 + 1 −3, 2 +2 −1− 1 +3]

which is equal to [−1, 5], and for Equation (27):

[ zc2 +||∆x1,x2,x4
|| −||∆x3

||, zc1 −||∆x1,x2,x4
||+||∆x3

||]
= [−1 +1 + 1 + 1 −5, −1 −1− 1− 1 +5]

which is equal to [−3, 1]. Hence [−1, 5]× [−3, 1] is in the set R∃∀∃(f).
Finally, there are two other possibilities for finding joint inner-approximations

of R∃∀∃(f) of Equation (14):

∀x1, ∀x2, ∀x3, ∃x4 , z1 = f1(x1, x2, x3, x4) (28)

∃x1 , ∀x2, ∀x4, ∃x3 , z2 = f2(x1, x2, x3, x4) (29)

For the same reason as for Equations (24) and (25), Equations (28) and
(29) yield empty inner-approximations since the contribution to it of the last
existentially quantified variables is the same in both cases (e.g. [-1,1] for x4 in
Equations (24) and (28)), and is not big enough to compensate for the next
universally quantified variables (e.g. [3,-3] for variable x3 in Equations (24) and
(28)). Similarly for the last choice:

∀x1, ∀x2, ∀x4, ∃x3 , z1 = f1(x1, x2, x3, x4) (30)

∃x1 , ∀x2, ∀x3, ∃x4 , z2 = f2(x1, x2, x3, x4) (31)
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for which the Equation (30) gives an empty set, and Equation (31) gives [−1−
1 + 1 + 1− 5.− 1 + 1− 1− 1 + 5] which is equal to [−3, 3]. Overall, this choice
of alternation of quantifiers allowed by Theorem 2 gives an empty joint inner-
approximation for the quantified problem R∃∀∃(f) of Equation (14).

M Example Motion-n

We consider the Dubbins vehicle of Example 4, and compute the x component
at time nT , xn, with T = 0.5s, given a piecewise constant control ai on each of
the control periods [(i− 1)T, iT ], which is given by the following function below,
after integration of the dynamics:

xn = x0 +
n
∑

k=1

1

ak

(

sin

(

θ0 + T
n
∑

l=1

al

)

− sin

(

θ0 + T
n−1
∑

l=1

al

))

+ T
n
∑

k=1

bk

and we consider the following motion planning problem (up to a small relaxation
δ):

∃x0, ∃θ0, ∃a1, ∀b1, . . . , ∃an, ∀bn, ∃δ, x = xn(x0, θ0, a1, b1, . . . , an, bn) + δ
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