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Quadratic relations between Bessel moments
Javier Fresán, Claude Sabbah and Jeng-Daw Yu

Motivated by the computation of some Feynman amplitudes, Broadhurst and Roberts recently conjectured
and checked numerically to high precision a set of remarkable quadratic relations between the Bessel
moments ∫

∞

0
I0(t)i K0(t)k−i t2 j−1dt (i, j = 1, . . . , ⌊(k − 1)/2⌋),

where k ⩾ 1 is a fixed integer and I0 and K0 denote the modified Bessel functions. We interpret these
integrals and variants thereof as coefficients of the period pairing between middle de Rham cohomology
and twisted homology of symmetric powers of the Kloosterman connection. Building on the general
framework developed by Fresan, Sabbah and Yu (2020), this enables us to prove quadratic relations of the
form suggested by Broadhurst and Roberts, which conjecturally comprise all algebraic relations between
these numbers. We also make Deligne’s conjecture explicit, thus explaining many evaluations of critical
values of L-functions of symmetric power moments of Kloosterman sums in terms of determinants of
Bessel moments.
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1. Introduction

Let I0(t) and K0(t) denote the modified Bessel functions of order zero, which are solutions to the ordinary
differential equation ((t∂t)

2
− t2)u = 0. Since this equation has an irregular singularity at infinity, it does
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not come from geometry in the usual sense of encoding how periods vary in a family of algebraic varieties.
However, certain integrals of monomials in I0(t) and K0(t) called Bessel moments are themselves periods,
as shown for example by the identity (see [Vanhove 2014, (8.11)])∫

∞

0
I0(t)K0(t)ℓ+1t dt =

1
2ℓ

∫
xi⩾0

1(
1 +

∑ℓ
i=1 xi

)(
1 +

∑ℓ
i=1 1/xi

)
− 1

ℓ∏
i=1

dxi

xi
.

In a series of papers and conference talks Broadhurst and Roberts [Broadhurst 2016; 2017a; 2017b;
2018; Broadhurst and Roberts 2019; Roberts 2017] put forward a program to understand the motivic
origin of the Bessel moments ∫

∞

0
I0(t)a K0(t)btc dt. (1.1)

An important insight of theirs was to look at counterparts of these integrals over finite fields, pursuing the
analogy between the Bessel differential equation and the Kloosterman ℓ-adic sheaf. Roughly speaking,
I0(t) and K0(t) correspond to the eigenvalues of Frobenius, and out of them one forms the k-th symmetric
power moments of Kloosterman sums. The generating series of these moments over finite extensions of
Fp is a polynomial with integer coefficients. After removing some trivial factors and handling primes
of bad reduction, a global L-function Lk(s) is built with the reciprocals of these polynomials as local
factors. Back at the beginning, Broadhurst, partly in joint work with Mellit [Broadhurst and Mellit 2016]
and Roberts, Bloch, Kerr and Vanhove [Bloch et al. 2015], and Y. Zhou [2018a] proved or numerically
checked in many cases that the critical values of these L-functions agree up to rational factors and powers
of π with certain determinants of the Bessel moments (1.1).

For technical reasons, we shall make the change of variables z = t2/4 and consider the associated
rank-two vector bundle with connection on Gm, which is called the Kloosterman connection and denoted
by Kl2. Motives associated with symmetric powers of the Kloosterman connection were introduced
in [Fresán et al. 2022]. Namely, for each integer k ⩾ 1, we constructed a motive Mk over the rational
numbers, which is pure of weight k +1, has rank k ′

= ⌊(k −1)/2⌋ (resp. k ′
−1) if k is not a multiple of 4

(resp. if k is a multiple of 4), and is endowed with a self-duality pairing

Mk ⊗ Mk → Q(−k − 1) (1.2)

that is symplectic if k is even and orthogonal if k is odd. By design, the L-function of this motive
coincides with the above L-function Lk(s). The main result of that paper was the computation of the
Hodge numbers of Mk , which led to a proof that Lk(s) extends meromorphically to the complex plane
and satisfies the expected functional equation.

In this paper, we investigate the period realizations of the motives Mk . By design, the de Rham
realization of Mk is isomorphic to the middle de Rham cohomology of the k-th symmetric power
Symk Kl2, which is defined as the image

H1
dR,mid(Gm,Symk Kl2)= im[H1

dR,c(Gm,Symk Kl2)→ H1
dR(Gm,Symk Kl2)]
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of compactly supported de Rham cohomology under the natural map to usual de Rham cohomology, and
comes with a perfect intersection pairing Smid

k realizing (1.2). Extending a computation from [Fresán et al.
2022, Proposition 4.14], we exhibit a basis of middle de Rham cohomology in Section 3, which is natural
in that it is adapted to the Hodge filtration, and we present an explicit formula to compute the matrix of
Smid

k on this basis. If k is not a multiple of 4, the basis is simply given by the classes ωi = [zivk
0 dz/z] for

1 ⩽ i ⩽ k ′, where v0 is a specific section of Kl2.
Besides, we shall prove that the dual of the Betti realization of Mk is isomorphic to the middle twisted

homology of Symk Kl2, which is defined as the image

Hmid
1 (Gm,Symk Kl2)= im[Hrd

1 (Gm,Symk Kl2)→ Hmod
1 (Gm,Symk Kl2)]

of rapid decay homology under the natural map to moderate growth homology. Elements of these
homology groups are represented by linear combinations of twisted chains c ⊗ e, where c is a path and e
is a horizontal section of Symk Kl2 that decays rapidly (resp. has moderate growth) on a neighborhood of
the support of c. These conditions ensure that de Rham (resp. compactly supported de Rham) cohomology
classes can be integrated along them, thus giving rise to a period pairing

Pmid
k : Hmid

1 (Gm,Symk Kl2)⊗ H1
dR,mid(Gm,Symk Kl2)→ C.

This middle homology comes with a natural Q-structure and, likewise to middle de Rham cohomology, a
perfect intersection pairing Bmid

k realizing the transpose of (1.2). By analyzing the asymptotic behaviors
of products of modified Bessel functions, we exhibit in Section 4 rapid decay homology classes αi for
0 ⩽ i ⩽ k ′ whose images in middle homology are nonzero for i ⩾ 1.

Relying on the general results from the companion paper [Fresán et al. 2023], in particular the
compatibility of the Betti and de Rham intersection pairings with the period pairing, we prove the
following theorem. For simplicity, we only state it here when k is not a multiple of 4, postponing the full
statements to Proposition 4.6, Theorems 3.17, 4.7, and 5.3, and Corollary 5.7.

Theorem 1.3. Assume k is not a multiple of 4:

(1) With respect to the basis {ωi }1⩽i⩽k′ , the matrix of the de Rham intersection pairing Smid
k is a lower-

right triangular matrix with coefficients in Q and (i, j) antidiagonal entries
( − 2)k

′ k ′
!

k!!
if k is odd,

(−1)k
′
+1

2k′

( j −i)
·
(k−1)!!
(k ′+1)!

if k is even.

(2) The middle homology classes {αi }1⩽i⩽k′ form a basis and the matrix of the Betti intersection pairing
Bmid

k on this basis is given by

Bmid
k =

(
(−1)k−i (k − i)!(k − j)!

k!

Bk−i− j+1

(k − i − j + 1)!

)
1⩽i, j⩽k′

,

where Bn denotes the n-th Bernoulli number.
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(3) With respect to the bases {αi }1⩽i⩽k′ and {ω j }1⩽ j⩽k′ , the matrix of the period pairing Pmid
k consists of

the Bessel moments

Pmid
k =

(
(−1)k−i 2k+1−2 j (π i)i

∫
∞

0
I0(t)i K0(t)k−i t2 j−1 dt

)
1⩽i, j⩽k′

.

(4) The following quadratic relations hold:

Pmid
k · (Smid

k )−1
·

tPmid
k = (−2π i)k+1Bmid

k .

Quadratic relations of the shape PBR
k ·DBR

k ·
tPBR

k = BBR
k were conjectured by Broadhurst and Roberts

[2018]. As we explain in Section 5.3, their matrices PBR
k and BBR

k coincide with ours up to different
normalizations, but we were unfortunately unable to prove that, again up to normalization, the inverse of
Smid

k satisfies the recursive formulas defining their matrix DBR
k . Nevertheless, we checked numerically that

both matrices agree for k ⩽ 22, which is the limit for reasonable computation time with Maple.
Grothendieck’s period conjecture predicts that the transcendence degree of the field of periods of Mk

agrees with the dimension of its motivic Galois group. Since the Betti intersection pairing is motivic, this
is a subgroup of the general orthogonal group GOk′ if k is odd and of the general symplectic group GSpk′

(resp. GSpk′−1) if k is even and not a multiple of 4 (resp. if k is a multiple of 4). Broadhurst and Roberts
conjecture that this inclusion is an equality, which would mean that for fixed k the quadratic relations
from Theorem 1.3 conjecturally exhaust all algebraic relations between the Bessel moments.

Finally, in Section 8 we make Deligne’s conjecture explicit for the critical values of Lk(s) by identifying
the periods that are expected to agree with them up to a rational factor with some determinants of Bessel
moments already considered by Broadhurst and Roberts. Prior to that, we identify in Section 7 the period
structure of the motive Mk with the period structure attached to the middle cohomology of Symk Kl2 by
means of Theorem 1.3. For that purpose, the appendix develops the necessary tools in a general setting of
exponential mixed Hodge structures, complementing thereby the appendix of [Fresán et al. 2022].

Notation 1.4. We refer the reader to [Fresán et al. 2023] for the general setting of de Rham cohomology
and twisted homology of vector bundles with connection, as well as the intersection forms and period
pairings on these spaces. Throughout this article, we use the following notation and conventions:

• Given an integer k ⩾ 1, we set

k ′
= ⌊(k − 1/2)⌋ (i.e., k = 2k ′

+ 1 for odd k and k = 2(k ′
+ 1) for even k).

• Since the case where k is a multiple of 4 plays a special role throughout, we use the simplified common
notation

[[1, k ′
]] =

{
{1, . . . , k ′

} if 4∤k,
{1, . . . , k ′

} \ {k/4} if 4 | k,

so that

#[[1, k ′
]] =

{
k ′ if 4∤k,
k ′

− 1 if 4 | k.
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We will consider square matrices indexed by i, j ∈ [[1, k ′
]] that, when k is a multiple of 4, are obtained

from a k ′
× k ′ matrix by deleting the row and column of index k/4.

• For integers m ⩽ 0, the factorial m! and double factorial m!! are given the value 1.

• For each integer n ⩾ 0, we denote by Bn the n-th Bernoulli number, i.e., the n-th coefficient of the
power series expansion

x
ex − 1

=

∞∑
n=0

Bn
xn

n!
.

• The base torus is denoted by Gm,z , and is regarded as included in the affine line with coordinate z. The
coordinate 1/z is denoted by w. We also consider the degree two morphism ρ2 : Gm,t → Gm,z which, at
the ring level, is defined by z 7→ t2/4.

2. Pairings on the Kl2 connection and its moments

In this section, we explain the algebraic duality pairing on Symk Kl2 that gives rise to the de Rham
intersection pairing. On the other hand, we endow the associated local system of flat sections Symk Kl∇2
with a Q-structure and a topological duality pairing that will give rise to the Betti intersection pairing.

2.1. The Kl2 connection. We first recall the definition of the Kl2 connection, referring the reader to
[Fresán et al. 2022, Section 4.1] for more details. We denote by Gm,x (resp. Gm,z) the torus Gm over the
complex numbers with coordinate x (resp. z), and we define f : Gm,x ×Gm,z → A1 as f (x, z)= x + z/x .

Let π : Gm,x × Gm,z → Gm,z denote the projection to the second factor and E f the rank-one vector
bundle with connection (OGm,x×Gm,z , d+ d f ) on Gm,x × Gm,z . We define Kl2 as the pushforward (in the
sense of D-modules) H 1π+E f : this is a free OGm-module of finite rank endowed with a connection
having a regular singularity at the origin and an irregular one at infinity. Since the varieties we work
with are all affine, it will be convenient to identify coherent sheaves with their global sections. To the
sheaf H 1π+E f is then associated the module H1 π+E f of global sections. Fixing the generator dx/x of
relative differentials and denoting by ∂x the partial derivative with respect to the variable x , we then have

Kl2 = H1 π+E f
= coker[C[x, x−1, z, z−1

]
x∂x+(x−z/x)

−−−−−−−→ C[x, x−1, z, z−1
]].

It follows that Kl2 is the free C[z, z−1
]-module generated by the class v0 of dx/x and the class v1 of dx .

The connection ∇ on Kl2 satisfies

z∇∂z (v0, v1)= (v0, v1) ·

(
0 z
1 0

)
,

so that v0 is a solution to the differential equation ((z∂z)
2
− z)v = 0.

Let j : Gm,x ↪→ P1 denote the inclusion. We write j† for the adjoint by duality of the pushforward j+,
and similarly for π . The same argument as in [Malgrange 1991, Appendix 2, Proposition (1.7) page 217]
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shows that the natural map ( j × Id)† E f
→ ( j × Id)+E f is an isomorphism. Projecting to Gm,z , we

deduce that

H1 π† E f
→ H1 π+E f (2.1)

is an isomorphism as well. Let us make this explicit. We set x ′
= 1/x . By an argument similar to that

of [Fresán et al. 2023, Corollary 3.5], we can represent an element of H1 π† E f as a pair (ψ̂, η dx/x)=

(ψ̂,−η dx ′/x ′), where

• η ∈ C[x, x−1, z, z−1
],

• ψ̂ = (ψ̂0, ψ̂∞), with

ψ̂0 ∈ C[z, z−1
][[x]][x−1

] and ψ̂∞ ∈ C[z, z−1
][[x ′

]][x ′−1
],

are such that the following holds:

(x∂x + (x − z/x))ψ̂0 = ι̂0η, (x ′∂x ′ + (zx ′
− 1/x ′))ψ̂∞ = −ι∞̂η. (2.2)

Here, ι̂0 : C[x, x−1, z, z−1
] ↪→ C[z, z−1

][[x]][x−1
] denotes the natural inclusion, and similarly for ι∞̂.

On these representatives, the natural morphism (2.1) is given by (ψ̂, η dx/x) 7→ η dx/x . Checking that
(2.1) is an isomorphism amounts to checking that, for any η as above, there exists a unique ψ̂ such
that the (2.2) hold. Setting ψ̂0 =

∑
n⩾n0

ψ0,n(z)xn and ψ̂∞ =
∑

n⩾n∞
ψ∞,n(z)x ′n , ι̂0η =

∑
n η0,nxn ,

ι∞̂η =
∑

n η∞,nx ′n , we determine ψ0,n(z) and ψ∞,n(z) inductively by

ψ0,n+1 = z−1(kψ0,n +ψ0,n−1 − η0,n), ψ∞,n+1 = nψ∞,n + zψ∞,n−1 + η∞,n, (2.3)

thus showing explicitly that (2.1) is an isomorphism.

Example 2.4. The element of H1 π† E f corresponding to v0 (resp. v1) is (ϕ̂, dx/x) (resp. (ψ̂, dx)), where
the elements ϕ̂ and ψ̂ determined by (2.3) satisfy (note that η = 1 resp. η = x = 1/x ′)

ϕ0,⩽0 = 0,
ϕ0,1 = −z−1,

ϕ∞,⩽0 = 0,
ϕ∞,1 = 1,


ψ0,⩽1 = 0,
ψ∞,<0 = 0,
ψ∞,0 = 1,
ψ∞,1 = 0.

2.2. Algebraic duality on Kl2 and its moments. Set

D = {0,∞} = P1
\ Gm.

Starting from the tautological pairing E f
⊗ E− f

→ (OGm,x×Gm,z , d), we deduce a natural pairing

⟨ · , · ⟩ : H1 π† E f
⊗ H1 π+E− f

→ H2 π†OGm,x×Gm,z
resD
∼

−−→ C[z±1
],

where the isomorphism resD stands for the residue along D as in [Fresán et al. 2023, Section 3.c] (see also
the proof of Lemma 2.5 below). Let ι : Gm,x ×Gm,z → Gm,x ×Gm,z denote the involution (x, z) 7→ (−x, z).



Quadratic relations between Bessel moments 547

Then ι+E− f
= E f , and this defines a canonical isomorphism µ : H1 π+E f

−→∼ H1 π+E− f since π ◦ι=π .
Let us set

(v−

0 , v
−

1 )= ι∗(v0, v1)= (dx/x,− dx),

that we consider as a basis of H1 π+E− f . Then the matrix of z∇∂z on H1 π+E− f is equal to
( 0

1
z
0

)
, and

the above isomorphism reads µ(v0, v1)= (v−

0 , v
−

1 ).

Lemma 2.5. The induced pairing

⟨ · , · ⟩alg : H1 π+E f
⊗ H1 π+E f

→ C[z±1
]

defined by ⟨ · , · ⟩alg = ⟨(2.1)−1
·, µ·⟩ satisfies

⟨v0, v0⟩alg = ⟨v1, v1⟩alg = 0, ⟨v0, v1⟩alg = −⟨v1, v0⟩alg = 1.

In other words, we get a skew-symmetric perfect pairing on Kl2:

⟨ · , · ⟩alg : (Kl2,∇)⊗ (Kl2,∇)→ (OGm, d), (2.6)

which amounts to a canonical isomorphism λalg : Kl2 → Kl∨2 with the dual connection endowed with the
dual basis (v∨

0 , v
∨

1), by setting

Kl2
λalg
−→ Kl∨2

(v0, v1) 7−→ (−v∨

1 , v
∨

0).

Proof. We compute with the notation of Example 2.4. We find, on the one hand,

⟨v0, v0⟩alg = ⟨(ϕ̂, v0), v
−

0 ⟩ = resD ϕ̂
dx
x

= ϕ0,0 −ϕ∞,0 = 0,

⟨v1, v1⟩alg = ⟨(ψ̂, v1), v
−

1 ⟩ = − resD ψ̂ dx = −ψ0,−1 +ψ∞,1 = 0,

and, on the other hand,

⟨v0, v1⟩alg = ⟨(ϕ̂, v0), v
−

1 ⟩ = − resD ϕ̂ dx = −ϕ0,−1 +ϕ∞,1 = 1,

⟨v1, v0⟩alg = ⟨(ψ̂, v1), v
−

0 ⟩ = resD ψ̂
dx
x

= ψ0,0 −ψ∞,0 = −1. □

For each k ⩾ 1, let Sk be the symmetric group acting on the tensor power Kl⊗k
2 by the natural

permutation action. Let Symk Kl2 be the symmetric power regarded as the Sk-invariant part of Kl⊗k
2 . We

consider the basis u = (ua)0⩽a⩽k of Symk Kl2 given by

ua = vk−a
0 va

1 =
1

|Sk |

∑
σ∈Sk

σ(v⊗k−a
0 ⊗ v⊗a

1 ),

in which the connection reads

z∂zua = (k − a)ua+1 + azua−1 (0 ⩽ a ⩽ k)
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with the convention uk+1 = 0. The pairing (2.6) extends to Symk Kl2, which is thus endowed with the
following (−1)k-symmetric pairing (compatible with the connection):

⟨ua, ub⟩alg =

{
(−1)a a!b!

k!
if a + b = k,

0 otherwise.
(2.7)

2.3. The Q-structure of Kl∇2 and its moments.

The Q-structure for a fixed nonzero z. We start by considering the Q-structure on the fiber of the sheaf
of analytic flat sections Kl∇2 at some z ∈ Gm,z . We consider the function fz : Gm,x → A1, defined as
fz(x)= x + z/x , where z is a fixed nonzero complex number, and E fz = (OGm,x , d+ d fz). Let P1

x be the
projective closure of Gm,x and let P̃1 be the real oriented blow-up along D ={0,∞}, which is topologically
a closed annulus. We denote by j̃ : Gan

m,x ↪→ P̃1 the inclusion of the open annulus into the closed one.
On P̃1, the de Rham complexes with rapid decay DRrd(E fz ) and with moderate growth DRmod(E fz ) have
cohomology in degree zero only (see [Fresán et al. 2023, Theorem 2.30]), and the natural morphism
DRrd(E fz ) → DRmod(E fz ) is a quasiisomorphism. Indeed, the function e− fz on Gan

m,x has moderate
growth near a point of the boundary ∂P̃1 if and only if it has rapid decay there. Above x = 0, this amounts
to arg x ∈ arg z + (−π/2, π/2) mod 2π . Above x = ∞, this amounts to arg x ∈ (−π/2, π/2) mod 2π .
We denote by P̃1

rd the open set which is the union of Gan
m,x and these two boundary open intervals, so that

we have natural open inclusions

Gan
m,x

az↪−→ P̃1
rd

bz↪−→ P̃1.

Then multiplication by e− fz yields an isomorphism of sheaves of C-vector spaces

bz,!az,∗CGan
m,x

−→∼ H 0 DRrd(E fz )= H 0 DRmod(E fz ). (2.8)

Definition 2.9. The Q-subsheaf H 0 DRrd(E fz )Q ⊂ H 0 DRrd(E fz ) is the image of bz,!az,∗QGan
m,x

under
the above isomorphism.

The Betti Q-structure on H1
dR(Gm,x , E fz ) (see [Fresán et al. 2023, Section 2.d]) is defined by means of

(2.8) as

H1
dR(Gm,x , E fz )Q = H1(P̃1, bz,!az,∗QGan

m,x
)= H1

c(P̃
1
rd, az,∗QGan

m,x
).

We denote by (recall that z ̸= 0 is fixed):

• cx
0 the unit circle in Gan

m,x starting at 1 and oriented counterclockwise.

• cx
z a smooth oriented path in Gan

m,x starting in a direction arg x contained in arg z + (−π/2, π/2)
mod 2π at x = 0, intersecting cx

0 transversally only once, so that the local intersection number
(Kronecker index) (cx

z , cx
0) is equal to one, and abutting to x = ∞ in a direction of arg x contained in

(−π/2, π/2) mod 2π . The precise choice of cx
z will be made later. We also consider the path c−x

z

obtained from cx
z by applying the involution ι : x 7→ −x .
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These paths define twisted cycles αx
z = −cx

z ⊗ e− fz and βx
z = cx

0 ⊗ e− fz in rapid decay homology
Hrd

1 (Gm,x , E fz ) (see e.g., [Fresán et al. 2023, Section 2.d]). Similarly, we set

(αx
z )

∨
= −c−x

z ⊗ e fz and (βx
z )

∨
= −cx

0 ⊗ e fz ,

which define twisted cycles in Hrd
1 (Gm,x , E− fz ). As for the de Rham cohomology, the involution ι induces

an isomorphism Hrd
1 (Gm,x , E fz )→ Hrd

1 (Gm,x , E− fz ) sending a rapid decay chain s 7→ a(s)⊗ e− fz to the
rapid decay chain s 7→ −a(s)⊗ e fz , and thus inducing the corresponding Betti intersection pairing

Hrd
1 (Gm,x , E fz )⊗ Hrd

1 (Gm,x , E fz )−→∼ Hrd
1 (Gm,x , E fz )⊗ Hrd

1 (Gm,x , E− fz )→ H0(Gm,x ,C)= C.

This pairing is easily computed and has matrix
( 0

1
1
0

)
, thus showing that (αx

z , β
x
z ) is a Q-basis of

Hrd
1 (Gm,x , E fz )Q.
For applying [Fresán et al. 2023, Proposition 2.23], we use the topological duality pairing ⟨ · , · ⟩top

on Hrd
1 (Gm,x , E fz ), which preserves the Q-structure since it is induced by Poincaré–Verdier duality. The

following relation holds; see [loc. cit., (3.10)]:

⟨ · , · ⟩top = 2π i⟨ · , · ⟩alg.

We let
(
v

∨,top
i =

1
2π iv

∨

i

)
denote the dual basis of (vi ) with respect to ⟨ · , · ⟩top.

Proposition 2.10. The Q-vector space H1
dR(Gm,x , E fz )Q is the Q-span of

e0 =

(
1

2π i

∫
cx

0

e− fz dx
)

· v0 −

(
1

2π i

∫
cx

0

e− fz
dx
x

)
· v1 and

e1 = −

(
1

2π i

∫
cx

z

e− fz dx
)

· v0 +

(
1

2π i

∫
cx

z

e− fz
dx
x

)
· v1.

Proof. From [loc. cit., Proposition 2.23], we deduce that H1
dR(Gm,x , E fz )Q is the Q-span of

Prd,mod
1 (βx

z ,v
∨,top
0 )v0+Prd,mod

1 (βx
z ,v

∨,top
1 )v1 and Prd,mod

1 (αx
z ,v

∨,top
0 )v0+Prd,mod

1 (αx
z ,v

∨,top
1 )v1, (2.11)

where Prd,mod
1 : Hrd

1 (Gm,x , E fz )⊗ H1
dR(Gm,x , E fz )→ C denotes the period pairing from [loc. cit., Sec-

tion 2.d]. We conclude with the identification

v
∨,top
0 =

1
2π i

v1 =
1

2π i
[dx] and v

∨,top
1 = −

1
2π i

v0 = −
1

2π i
[dx/x].

For example, the integral 1
2π i

∫
cx

0
e− fz dx is identified with the period

Prd,mod
1 (βx

z , v
∨,top
0 ). □
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The Q-structure on Kl∇2 . We first recall some basic properties of the modified Bessel functions of order
zero

I0(t)=
1

2π i

∮
exp

(
−

t
2

(
y +

1
y

))dy
y
,

K0(t)=
1
2

∫
∞

0
exp

(
−

t
2

(
y +

1
y

))dy
y

(|arg t |< π/2),
(2.12)

which are annihilated by the modified Bessel operator (t∂t)
2
− t2. The function I0(t) is entire and satisfies

I0(t)= I0(−t). The function K0(t) extends analytically to a multivalued function on C× satisfying the
rule K0(eπ it)= K0(t)−π iI0(t).

We have the following estimates as t → 0 in any bounded ramified sector, by taking the real determi-
nation of log(t/2) when t ∈ R>0

I0(t)= 1 + O(t2), K0(t)= −(γ + log(t/2))+ O(t2 log t),

where γ = 0.5772 . . . is the Euler constant. As a consequence, in such sectors,

I0(t)i K0(t)k−i
= (−1)k−i (γ + log(t/2))k−i

+ O(t2 logk−i t). (2.13)

On the other hand, we have the asymptotic expansions at infinity (see [Watson 1944, Section 7.23])

I0(t)∼ et 1
√

2π t

∞∑
n=0

((2n − 1)!!)2

23nn!

1
tn , |arg t |< π/2

K0(t)∼ e−t
√
π

2t

∞∑
n=0

(−1)n
((2n − 1)!!)2

23nn!

1
tn , |arg t |< 3π/2

I0(t)K0(t)∼
1
2t

∞∑
n=0

((2n − 1)!!)3

23nn!

1
t2n .

(2.14)

The latter is the unique formal solution in 1/t of the second symmetric power (t∂t)
3
− 4t2(t∂t)− 4t2 of

the modified Bessel operator up to a scalar. Let us also note that these asymptotic expansions can be
differentiated termwise. The Wronskian is given by I0(t)K ′

0(t)− I ′

0(t)K0(t)= −1/t .
We now assume that z varies in C \ R⩽0 and we choose a square root t/2 of z satisfying Re(t) > 0,

that is, arg t ∈ (−π/2, π/2) mod 2π . Due to formulas (2.11), since the integration paths can be made
to vary in a locally constant way, we conclude that e0, e1 are sections of Kl∇2 on this domain, and their
coefficients on the basis v0, v1 are holomorphic there. We will express them in terms of the modified
Bessel functions. We set x = (t/2)y. On the one hand, we have

1
2π i

∫
cx

0

e− fz dx
x

=
1

2π i

∫
(t/2)cy

0

exp
(
−

t
2

(
y +

1
y

))dy
y

=
1

2π i

∫
cy

0

exp
(
−

t
2

(
y +

1
y

))dy
y

= I0(t).
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On the other hand, we now regard y as varying in R>0 and set cx
z = (t/2)R>0, so that, for x ∈ cx

z , both
arg(z/x) and arg(x) belong to (−π/2, π/2) mod 2π . Then, similarly,

1
2π i

∫
cx

z

e− fz dx
x

=
1

2π i

∫
R>0

exp
(
−

t
2

(
y +

1
y

))dy
y

=
1
π i

K0(t).

By flatness of e0, e1, we obtain therefore

e0 = (t/2)I ′

0(t)v0 − I0(t)v1 and e1 =
1
π i
(−(t/2)K ′

0(t)v0 + K0(t)v1). (2.15)

The pairing ⟨ · , · ⟩top = 2π i⟨ · , · ⟩alg being flat, it induces a nondegenerate pairing on the constant sheaf
Kl∇2 |C\R⩽0 and we have there

⟨e0, e1⟩top = 2π i
(
(t/2)I ′

0(t) ·
1
π i

K0(t)− I0(t) · (t/2)
1
π i

K ′

0(t)
)

= t (I ′

0(t)K0(t)− I0(t)K ′

0(t))= 1,

according to the Wronskian relation. The other pairings are deduced from this one by skew-symmetry.
We also obtain

v0 = (2K0(t)e0 + 2π iI0(t)e1), v1 = t (K ′

0(t)e0 +π iI ′

0(t)e1). (2.16)

In order to cross the cut z ∈ R<0, we note that the coefficients of e0, regarded as functions of z ∈ C, are
entire, while those of e1 are multivalued holomorphic, and the monodromy operator T defined by analytic
continuation along the path θ 7→ eθ z (θ ∈ [0, 2π i]) acts on e1 as T (e1) = e1 + e0. This shows that the
Q-structure of Kl∇2 |C\R⩽0 extends to a Q-structure of Kl∇2 , which will be denoted by (Kl∇2 )Q. Moreover,

⟨ · , · ⟩top : (Kl∇2 )Q ⊗ (Kl∇2 )Q → Q

is a nondegenerate skew-symmetric pairing, and the multivalued flat sections e0 and e1 satisfy ⟨e0, e1⟩top =1.

The Q-structure on Symk Kl2. We naturally endow Symk Kl2 with the pairing

⟨ · , · ⟩top = (2π i)k⟨ · , · ⟩alg

and the Q-structure (Symk Kl2)∇Q = Symk((Kl∇2 )Q). The monomial sections

ek−a
0 ea

1 =
1

|Sk |

∑
σ∈Sk

σ(e⊗k−a
0 ⊗ e⊗a

1 ) (0 ⩽ a ⩽ k) (2.17)

form a basis of multivalued flat sections of the subsheaf (Symk Kl2)∇Q of (Kl⊗k
2 )∇

Q
and satisfy

⟨ek−a
0 ea

1, ek−b
0 eb

1⟩top =

{
(−1)a a!b!

k!
if a + b = k,

0 otherwise.
(2.18)

Lemma 2.19. The coefficients of the flat sections ek−a
0 ea

1 on the meromorphic basis (ub)b of Symk Kl2
have moderate growth at the origin. Moreover, they have moderate growth (resp. rapid decay) in a small
sector centered at infinity and containing R>0 if and only if a ⩽ k/2 (resp. a < k/2).
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Proof. Since I ′

0(t) (resp. K ′

0(t)) has an asymptotic expansion similar to that of I0(t) (resp. K0(t)) at the
origin and at infinity in the specified domains, the first statement follows from (2.15) and the definition
(2.12) of I0 and K0. Besides, the asymptotic expansion of I0 and K0 at infinity (2.14) implies the second
statement by calculating the power of et in the products of I0 and K0. □

3. de Rham pairing for Symk Kl2

The main result of this section is the computation of the matrices of the de Rham pairings

H1
dR,c(Gm,Symk Kl2)⊗ H1

dR(Gm,Symk Kl2)
S

−→ C

H1
dR,mid(Gm,Symk Kl2)⊗ H1

dR,mid(Gm,Symk Kl2)
Smid
−→ C

(3.1)

with respect to suitable bases, taking into account the self-duality pairing induced by (2.7). Since the latter
is (−1)k-symmetric, (3.1) is (−1)k+1-symmetric. We first make clear the bases in which we compute the
matrices.

3.1. Bases of the de Rham cohomology. Let

ι̂0 : Symk Kl2 → (Symk Kl2)̂0 and ι∞̂ : Symk Kl2 → (Symk Kl2)∞̂

denote the formalization of Symk Kl2 at zero and infinity respectively, and ∇̂ the induced connection. We
can represent elements of H1

dR,c(Gm,Symk Kl2) as pairs (m̂, η) as (see [Fresán et al. 2023, Corollary 3.5])

• m̂ = (m̂0, m̂∞) is a pair of formal germs in (Symk Kl2)̂0 ⊕ (Symk Kl2)∞̂,

• η belongs to 0(Gm, �
1
Gm

⊗ Symk Kl2),

such that, denoting by η̂ = (ι̂0η, ι∞̂η) the formal germ of η in

[�1
P1 ,̂0 ⊗ (Symk Kl2)̂0] ⊕ [�1

P1,∞̂
⊗ (Symk Kl2)∞̂],

m̂ and η are related by ∇̂m̂ = η̂.
We can regard H1

dR,mid(Gm,Symk Kl2) as the image of the natural morphism

H1
dR,c(Gm,Symk Kl2)→ H1

dR(Gm,Symk Kl2)

sending a pair (m̂, η) to η. Recall that H1
dR,mid(Gm,Symk Kl2) has dimension k ′ if k is not a multiple

of 4, and k ′
− 1 otherwise; see [Fresán et al. 2022, Proposition 4.12]. According to [Fresán et al. 2023,

Remark 3.6], there exists a basis of H1
dR,c(Gm,Symk Kl2) consisting of

• pairs (m̂i , 0)i where (m̂i )i is a basis of ker ∇̂ in (Symk Kl2)̂0 ⊕ (Symk Kl2)∞̂, and

• a set of pairs (m̂ j , η j ) j , of cardinality dim H1
dR,mid(Gm,Symk Kl2), related as above such that (η j ) j

are linearly independent in H1
dR(Gm,Symk Kl2).
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Furthermore, such a family (η j ) j is a basis of H1
dR,mid(Gm,Symk Kl2).

We set (recall that u0 = vk
0)

ωi = [zi u0 dz/z] ∈ H1
dR(Gm,Symk Kl2), 0 ⩽ i ⩽ k ′. (3.2)

It was proved in [Fresán et al. 2022, Proposition 4.14] that

Bk = {ωi | 0 ⩽ i ⩽ k ′
}

is a basis of H1
dR(Gm,Symk Kl2). This property also follows from the combination of Lemma 3.3,

Proposition 3.8, and Theorem 3.17 below (see Remark 3.22).
We first determine which linear combinations of elements of Bk belong to H1

dR,mid(Gm,Symk Kl2).
For each i = 0, . . . , k ′, we look for the existence of

m̂i = (m̂i,0, m̂i,∞) ∈ (Symk Kl2)̂0 ⊕ (Symk Kl2)∞̂

such that ∇̂m̂i = (ι̂0(ωi ), ι∞̂(ωi )).

Lemma 3.3 (solutions at z = 0). (1) The subspace ker ∇̂ ⊂ (Symk Kl2)̂0 has dimension one and a basis
is given by m̂0,0 = ek

0.

(2) There exists m̂i,0 if and only if i ⩾ 1 and, in such case, there exists a unique m̂i,0 belonging to
zC[[z]] · u.

In fact, for any j ⩾ 1, there exists a unique m̂ j,0 ∈ zC[[z]] · u with ∇̂m̂ j,0 = ι̂0(z
j u0 dz/z).

Proof. Set (V,∇) = (Symk Kl2,∇). We first claim that C[[z]] · u is equal to V̂0,0 (the 0-th step of the
formal Kashiwara–Malgrange filtration at the origin, similar to that considered in the proof of [Fresán
et al. 2023, Proposition 3.2]). Indeed, it is standard to show that there exists a formal (in fact convergent)
base change P(z)= Id +z P1 + · · · such that the matrix of ∇̂ in the basis u′

= u · P(z) is constant and
equal to a lower standard Jordan block with eigenvalue 0. It follows that u′ is a C[[z]]-basis of V̂0,0, and
the claim follows, as well as the first point of the lemma.

Let us consider the second point. Setting V̂0,−1 = zV̂0,0, we have recalled in [loc. cit.] that z∂z : V̂0,−1 →

V̂0,−1 is bijective. The “if” part and its supplement follow. It remains to check that ι̂0(u0 dz/z) does not
belong to the image of ∇̂. It amounts to the same to replace u0 with u′

0 defined above, and since u′

0 is the
primitive vector of the matrix of ∇̂, the assertion follows. □

We now look for the solutions of ∇̂m̂i,∞ = ι∞̂(ωi ) for i = 1, . . . , k ′. For this purpose, we introduce
the constants γk,i as follows. Let us assume that 4 | k. Recall that we have set w = 1/z on Gm. Write the
asymptotic expansion as

2k(I0(t)K0(t))k/2 ∼ wk/4
∞∑
j=0

γk,k/4+ jw
j , (3.4)

so that we can define γk,i by the residue

γk,i = resw=0
2k(I0(t)K0(t))k/2

wi+1 . (3.5)
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We have γk,i = 0 if i < k/4, γk,k/4 = 1, and γk,i > 0 for all i ∈ k/4 + N∗, e.g.,

γk,1+k/4 =
k
26 , γk,2+k/4 =

k(k + 52)
213 , γk,3+k/4 =

k(k2
+ 156k + 13184)

219 · 3
, . . . (3.6)

For what follows, it will be convenient to set

γk,i = 0 (i ∈ k/4 + Z) if 4∤k. (3.7)

Proposition 3.8 (solutions at z = ∞). Let us fix i ∈ {1, . . . , k ′
}:

(1) For 4∤k, the equation ∇̂m̂i,∞ = ι∞̂(ωi ) has a unique solution.

(2) For 4 | k and i ̸= k/4, the equation

∇̂m̂i,∞ = ι∞̂(ωi − γk,iωk/4)

has a solution (in fact a one-dimensional affine space of solutions) where γk,i is given by (3.5).
Moreover, the subspace ker ∇̂ ⊂ (Symk Kl2)∞̂ is generated by the formal expansion m̂k/4,∞ of
2k(π i)k/2(e0e1)

k/2.

In fact, for any j ⩾ 1, there exists m̂ j,∞ satisfying ∇̂m̂ j,∞ = ι∞̂(z j
− γk, j zk/4)u0 dz/z.

The second assertion of 3.8(2) is easy to check from the formal structure at infinity of Symk Kl2; see
[Fresán et al. 2022, Proposition 4.6(3)]. We set

m̂0 = (m̂0,0, 0) (i.e., m̂0,∞ = 0) for all k,

m̂k/4 = (0, m̂k/4,∞) (i.e., m̂k/4,0 = 0) if 4 | k,

and (see Notation 1.4)

ω′

i =

{
0 if i = 0 and i = k/4,
ωi − γk,iωk/4 if i ∈ [[1, k ′

]],
(3.9)

so that ω′

i = ωi if 4∤k and 1 ⩽ i ⩽ k ′, or if 4 | k and 1 ⩽ i < k/4. Once we know that Bk is a basis
of H1

dR(Gm,Symk Kl2), using the convention (3.7) we derive the following from [Fresán et al. 2023,
Remark 3.6(4)]:

Corollary 3.10. The following set of k ′
+ 1 elements

Bk,c = (m̂i , ω
′

i )0⩽i⩽k′ =

{
{(m̂0, 0), (m̂1, ω1), . . . , (m̂k′, ωk′) if 4 ∤k,
{(m̂0, 0), (m̂1, ω

′

1), . . . , (m̂k/4, 0), . . . , (m̂k′, ω′

k′) if 4 | k,

is a basis of H1
dR,c(Gm,Symk Kl2).

Let us consider the subset Bk,mid of the k ′ (resp. (k ′
−1)) dimensional subspace H1

dR,mid(Gm,Symk Kl2)
of H1

dR(Gm,Symk Kl2) if 4∤k (resp. if 4 | k):

Bk,mid =

{
{ωi | i ∈ [[1, k ′

]]} if 4∤k,
{ω′

i | i ∈ [[1, k ′
]]} if 4 | k.

Corollary 3.11. The set Bk,mid is a basis of H1
dR,mid(Gm,Symk Kl2).
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Remark 3.12. Part of this result can also be proved as a consequence of [Fresán et al. 2022, Proposi-
tion 4.21(2) and Theorem 1.8]. However, the present proof does not rely on Hodge theory.

Proof of Proposition 3.8. Recall that e0, e1 are defined by (2.15) and ωi by (3.2). Let us set ē1 = π ie1.
Then v0 = 2(K0e0 + I0ē1) and

ωi = −

k∑
a=0

(k
a

)2k I a
0 K k−a

0

wi ek−a
0 ēa

1
dw
w
.

We have to examine if there exist ξi,a in some extension of C((w)) such that

w∂wξi,a = −w−i (2k I a
0 K k−a

0 ) and
k∑

a=0

(k
a

)
ξi,aek−a

0 ēa
1 ∈ (Symk Kl2)∞̂ if 4∤k,

and a similar property in the case 4 | k. Then one takes

m̂i,∞ =

k∑
a=0

(k
a

)
ξi,aek−a

0 ēa
1 .

We write
2k I a

0 K k−a
0

wi ∼

{√
π

k−2ae−2(k−2a)/
√
wwk/4−i

· Fa a ̸= k/2,

wk/4−i
(∑

∞

n=0
((2n−1)!!)3

25nn!
wn
)k/2

a = k/2,

with Fa ∈ 1 +
√
wQ[[

√
w]]. When a ̸= k/2 there exists a unique ξi,a with the expansion

ξi,a ∼

√
π

k−2a

(k − 2a)
e−2(k−2a)/

√
wwk/4−i+1/2

· Gi,a (3.13)

for some Gi,a ∈ −1 +
√
wQ[[

√
w]]. Moreover, when expressed as a combination of monomials vk−b

0 vb
1 ,

such ξi,aek−a
0 ēa

1 has no exponential factor and, if σ denotes the action w1/4
7→ iw1/4 so that C((w)) =

C((w1/4))σ , one has σ(ξi,aek−a
0 ēa

1)= ξi,k−aea
0 ēk−a

1 . When 4 | (k + 2) and a = k/2, the exponents of w in
the expansion of 2kw−i−1 I a

0 K k−a
0 are in 1

2 + Z and one takes ξi,k/2 satisfying

ξi,k/2 ∼
wk/4−i

(k/4 − i)
· Gi

with Gi ∈ −1+wQ[[w]]. Then the factor ξi,k/2(e0ē1)
k/2 has no exponential part in its expression in terms

of v0, v1 and is invariant under σ . Finally, when 4 | k, k ⩾ 8 and a = k/2, the residue

γk,i = resw=0
2k I k/2

0 K k/2
0

wi+1 ,

vanishes if and only if i < k/4. Therefore, for i ⩾ k/4 there exists ξi,k/2 ∈ Q((w)) such that

w∂wξi,k/2 = −(w−i
− γk,iw

−k/4)(I0K0)
k/2 dw.

In this case, ξi,k/2(e0ē1)
k/2 has no exponential factor in combinations of v0, v1 and is invariant under σ .

The proof is complete. □
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Remark 3.14. In the case where 4 ∤k, the m̂i,∞ are uniquely determined since there is no horizontal
formal section at z = ∞. When 4 | k, the m̂i,∞ are unique up to adding a multiple of the formal horizontal
section m̂k/4,∞ defined in Proposition 3.8(2). To normalize the choice, we take the series ξi,k/2 above to
have no constant term. This normalization then fixes the computations of periods below.

3.2. Computation of the de Rham pairing. We aim at computing the matrix Smid
k of the pairing

H1
dR,mid(Gm,Symk Kl2)⊗ H1

dR,mid(Gm,Symk Kl2)→ C

induced by the self-duality pairing (2.7), with respect to the basis Bk,mid. By [Fresán et al. 2023,
Proposition 3.12], the matrix Smid

k is equal to the sum of the matrices having (i, j) entries respectively:

• If 4∤k and i, j = 1, . . . , k ′,

resz=0⟨m̂i,0, z j u0 dz/z⟩alg and − resw=0⟨m̂i,∞, w
− j u0 dw/w⟩alg.

• A similar formula following Proposition 3.8(2) if 4 | k.

For i ∈ {1, . . . , k ′
} we set

m̂i,∞ =

k∑
a=0

µa,i (w)ua, µa,i (w)=

∑
ℓ≫−∞

µa,i,ℓw
ℓ.

We can already note that, according to Lemma 3.3, ⟨m̂i,0, z j u0 dz/z⟩alg has no residue (and a similar
assertion if 4 | k) so Smid

k is determined by the residues at infinity. It follows from (2.7) that, if 4∤k,
we have

Smid
k;i, j = (−1)k+1µk,i, j , i, j = 1, . . . , k ′. (3.15)

If 4 | k, Smid
k is the (k ′

− 1)× (k ′
− 1)-matrix given by the formula

Smid
k;i, j = (−1)k+1

{
µk,i, j if i or j < k/4,
(µk,i, j − γk, jµk,i,k/4) if i and j > k/4,

i, j ∈ [[1, k ′
]]. (3.16)

In other words, in the matrix given by (3.15) we delete the row i = k/4 and the column j = k/4 and we
add to it the matrix having entry (i, j) equal to (−1)kγk, jµk,i,k/4 for i, j > k/4. According to [Fresán
et al. 2023, Corollary 3.14] and (2.7), the matrix Smid

k is (−1)k+1-symmetric.

Theorem 3.17. The matrix Smid
k is lower-right triangular (i.e., the entries (i, j) are zero if i + j ⩽ k ′) and

the antidiagonal entry on the i-th row is equal to( − 2)k
′ k ′

!

k!!
if k is odd,

(−1)k
′
+1

2k′

(k ′+1−2i)
·
(k−1)!!
(k ′+1)!

if k is even.
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Proof. We keep notation from the proof of Proposition 3.8. For odd k, the entries of Smid
k are

resw=0⟨m̂i,∞, ω j ⟩alg = −

k∑
a,b=0

(k
a

)(k
b

)
resw=0

〈
ξi,aek−a

0 ēa
1,

2k I b
0 K k−b

0

w j+1 ek−b
0 ēb

1 dw
〉

alg

= −
1
2k

k∑
a,b=0

(k
a

)(k
b

)
resw=0

〈
ξi,aek−a

0 ea
1,

2k I b
0 K k−b

0

w j+1 ek−b
0 eb

1 dw
〉

top

= −
1
2k

k∑
a=0

(−1)a
(k

a

)
resw=0

(
ξi,a

2k I k−a
0 K a

0

w j+1 dw
)

= −
1
2k

k∑
a=0

(−1)a
(k

a

)
k − 2a

resw=0(w
k′

−i− j Fk−aGi,a dw)

where Fk−a,−Gi,a ∈ 1 +
√
wQ[[

√
w]]. Clearly, the last residue vanishes if i + j ⩽ k ′. If i + j = k ′

+ 1,
we find

resw=0⟨m̂i,∞, ω j ⟩ = 2−k
k∑

a=0

(−1)a
(k

a

)
k − 2a

.

We conclude the case where k is odd with the next lemma.

Lemma 3.18. For any k ⩾ 1, we have

∑
0⩽a⩽k
a ̸=k/2

(−1)a
(k

a

)
k − 2a

=

{
2k(−2)k

′ k ′
!

k!!
if k is odd,

0 if k is even.

Proof. If k is even, replacing a with k − a in the sum shows that the sum is equal to its opposite, and
hence vanishes. We thus assume that k is odd and set

fk(x)=

k∑
a=0

(k
a

) xk−2a

k − 2a
.

Then fk(x)=
∫ x

1 (x + 1/x)k dx/x . Besides, one has

fk(x)=

∫ log x

0
(et

+ e−t)k dt = 2k
∫ log x

0
coshk t dt (x = et)

= 2k
[

sinh t coshk−1 t
k

∣∣∣∣
t=log x

+
k − 1

k

∫ log x

0
coshk−2 t dt

]
=

1
k

(
x −

1
x

)(
x +

1
x

)k−1

+ 4
k − 1

k
fk−2(x).

By evaluating fk(i) inductively, one obtains the desired equality. □
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Assume 4 | (k + 2), so that k/2 = k ′
+ 1 is odd. Then the entries of Smid

k are

resw=0⟨m̂i,∞,ω j ⟩

= −
1
2k

[ ∑
a ̸=k/2

(−1)a
(k

a

)
resw=0

(
ξi,a

2k I k−a
0 K a

0

w j+1 dw
)

−

( k
k/2

)
resw=0

(
ξi,k/2

2k(I0K0)
k/2

w j+1 dw
)]

= −
1
2k

[ ∑
a ̸=k/2

(−1)a
(k

a

)
(k−2a)

resw=0(w
k′

−i− j+1/2 Fk−aGi,a dw)−
2
( k

k/2

)
(k ′+1−2i)

resw=0(w
k′

−i− j FGi dw)
]
,

where

F(w)=

( ∞∑
n=0

((2n − 1)!!)3

25nn!
wn
)k/2

.

Again, the residue is zero if i + j ⩽ k ′. On the other hand, if i + j = k ′
+ 1, the first term in the above

expression is zero, according to the lemma above, and since F(0)= 1 and Gi (0)= −1, we have

resw=0⟨m̂i,∞, ω j ⟩ = −

( k
k/2

)
[2k−1(k ′

+ 1 − 2i)]−1.

The computation in the case where 4 | k is similar. □

Example 3.19 (k = 5). We have k ′
= 2 and

Smid
5 =

(
0 8/15

8/15 µ5,2,2

)
.

From the proof of the theorem above, one has

µ5,2,2 =
−1
25

5∑
a=0

(−1)a
(5

a

)
5 − 2a

resw=0

(
F5−aG2,a

dw
w2

)
.

A direct computation yields

−

5∑
a=0

(−1)a
(5

a

)
5 − 2a

F5−aG2,a ∼
256
15

+
29

· 13
33 · 55w mod w2Q[[w]].

Therefore,

Smid
5 =

(
0 8/15

8/15 24
· 13/33

· 53

)
.

Example 3.20 (k = 6). We have k ′
= 2 and i = 1, 2. Due to skew-symmetry, the antidiagonal entries are

enough to determine Smid
6 . Theorem 3.17 gives

Smid
6 =

(
0 −5/8

5/8 0

)
.

Corollary 3.21. The ordered basis Bk,mid of H1
dR,mid(Gm,Symk Kl2) is adapted to the Hodge filtration.
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Proof. For odd k, [Fresán et al. 2022, Proposition 4.21(2) and Theorem 1.8(1)] imply the claim. For
even k, [loc. cit.] only gives compatibility for half of the basis Bk,mid. However, since the Poincaré pairing
respects the Hodge filtration, compatibility holds for the whole Bk,mid by the above theorem. □

Remark 3.22 (the matrix Sk). The matrix of the pairing

Sk : H1
dR,c(Gm,Symk Kl2)⊗ H1

dR(Gm,Symk Kl2)→ C

in the basis Bk,c ⊗ Bk is obtained with similar residue formulas as for Smid
k , due to [Fresán et al. 2023,

Proposition 3.12]:

(1) If 4∤k,

Sk;i, j =

{
Smid

k;i, j if 1 ⩽ i, j ⩽ k ′,

0 if i = 0 and j = 1, . . . , k ′.

On the other hand, we have Sk;0,0 = resz=0⟨ek
0, u0 dz/z⟩alg = 1. Last, for i ⩾ 1, we use the expressions

(2.15) and obtain

Sk;i,0 = resw=0

〈
m̂i,∞, u0

dz
z

〉
alg

=

k∑
a=0

(k
a

)
resw=0

〈
ξi,aek−a

0 ēa
1, u0

dz
z

〉
alg

=

k∑
a=0

(k
a

)
resw=0

〈
ξi,a

[
t
2

I ′

0v0 − I0v1

]k−a[
−

t
2

K ′

0v0 + K0v1

]a

, u0
dz
z

〉
alg

=

k∑
a=0

(−1)a
(k

a

)
resw=0 ξi,a I k−a

0 K a
0

dz
z
.

Since

ξi,a I k−a
0 K a

0 ∼

{
1

2k(k−2a)w
(k+1)/2−i Gi,a a ̸= k/2,

1
2k(k/4−i)w

k/2−i Gi a = k/2

with Gi,a,Gi ∈ Q[[
√
w]], we conclude that Sk;i,0 = 0. In other words, Sk takes the form(

1 0
0 Smid

k

)
.

In particular, we get

det Sk = det Smid
k =

{
(−1)k

′(k′
+1)/2(2k′

k ′
!/k!!)k

′

if k is odd,
((k − 1)!!)k

′

/[(2k′

(k ′
+ 1)!)k

′

((k ′
− 1)!!)2] if 4 | (k + 2).

(2) If 4 | k, the matrix Sk is obtained from the matrix
( 1

0
0

Smid
k

)
by adding a row i = k/4 and a column

j = k/4 that we compute now. For the row i = k/4, we note that

⟨m̂k/4,∞, v
k
0⟩alg = 2k(I0K0)

k/2
= wk/4

∑
j⩾0

γk,k/4+ jw
j ,
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so that

Sk;k/4,k/4+ j =

{
0 if j < 0,
−γk,k/4+ j if j ⩾ 0.

For the column j = k/4, we compute as above that Sk;0,k/4 = 0 and, for i ⩾ 1 and ̸= k/4,

Sk;i,k/4 = resz=∞⟨m̂i,∞, ωk/4⟩alg.

In particular, by setting k ′′
= ⌊(k − 1/4)⌋ and recalling γk,k/4 = 1, we get

det Sk = − det Smid
k = −[2−k′

−1(k − 1)!!((k ′
+ 1)!)−1

]
k′

−1(k ′′
!)−2. (3.23)

4. Betti intersection pairing for Symk Kl2

In this section, we exhibit natural bases of the rapid decay, the moderate growth, and the middle homology
spaces denoted respectively by

Hrd
1 (Gm,Symk Kl2), Hmod

1 (Gm,Symk Kl2), and Hmid
1 (Gm,Symk Kl2).

We then compute the Betti pairing Bk as introduced in [Fresán et al. 2023, Section 2.d]. Bear in mind
that the notation there keeps track of the degree of the homology spaces; as this degree is always equal
to 1 here, we omit it, but we remember the exponent k of the symmetric power. We keep the setting of
Section 2.3. While we used ⟨ · , · ⟩alg on Symk Kl2 to compute the de Rham intersection matrix Sk , we will
use the topological pairing ⟨ · , · ⟩top on Symk Kl∇2 to compute the Betti pairing Bk , which is thus defined
over Q.

We consider the following C∞ chains on P1
z diffeomorphic to their images:

R+ = [0,∞], oriented from 0 to +∞,

c0 = unit circle, starting at 1 and oriented counterclockwise,

c+ = [1,∞], oriented from +1 to +∞.

According to Lemma 2.19, the ⌊k/2⌋ + 1 twisted chains

β j = R+ ⊗ e j
0ek− j

1 , 0 ⩽ j ⩽ ⌊k/2⌋,

have moderate growth and define ⌊k/2⌋ + 1 elements of Hmod
1 (Gm,Symk Kl2), still denoted by β j .

Besides, the twisted chain α0 = c0 ⊗ ek
0 is a twisted cycle with compact support, and hence has rapid

decay, since e0 is invariant by monodromy. We obtain other twisted chains with compact support as
follows. For each integer n ⩾ 1, let us set

Cn(a)=
(−1)a−1

na

(n
a

)
, 1 ⩽ a ⩽ n.
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Lemma 4.1. Let n ⩾ 1 be an integer:

(1) The sequence (Cn(a))a is the unique solution to the linear relations

n∑
a=1

Cn(a)a =
1
n

and
n∑

a=1

Cn(a)ar
= 0 if 2 ⩽ r ⩽ n.

(2) The sequence (Cn(a))a is the unique solution to the linear relations

n∑
a=1

Cn(a)an+1
= (−1)n−1(n − 1)! and

n∑
a=1

Cn(a)ar
= 0 if 2 ⩽ r ⩽ n.

Proof. Direct simplification of Cramer’s rule in solving the systems of linear equations. □

Lemma 4.2. For integers n ⩾ 1 and r ⩾ 0, one has

n+r∑
a=1

Cn+r (a)
a∑

b=1

bn
=


(−1)n
n+r Bn if r ⩾ 1,

(−1)n
n Bn + (−1)n−1 (n−1)!

n+1 if r = 0.

Proof. Replacing
∑a

b=1 bn with Bernoulli’s formula

a∑
b=1

bn
=

1
n + 1

n∑
ℓ=0

(−1)ℓ
(n+1
ℓ

)
Bℓan+1−ℓ, (4.3)

we can rewrite the left-hand side as

n+r∑
a=1

Cn+r (a)
a∑

b=1

bn
=

1
n + 1

n∑
ℓ=0

(−1)ℓ
(n+1
ℓ

)
Bℓ

n+r∑
a=1

Cn+r (a)an+1−ℓ.

Then Lemma 4.1(1) gives the assertion for r ⩾ 1 and, for r = 0, we use Lemma 4.1(2) instead. □

Since T ae1 = e1 +ae0 for all a ⩾ 1, it follows from Lemma 4.1(1) that, for each 1 ⩽ i ⩽ k, the twisted
chain with compact support

k−i+1∑
a=1

Ck−i+1(a)ca
0 ⊗ ei−1

0 ek−i+1
1

has boundary {1}⊗ ei
0ek−i

1 . As a consequence, the following (k ′
+ 1) twisted chains are twisted cycles,

whose classes are elements in Hrd
1 (Gm,Symk Kl2):{

α0 = c0 ⊗ ek
0

αi = −
(−1)k−i (k−i)!

k−i+2 α0 + c+ ⊗ ei
0ek−i

1 +
∑k−i+1

a=1 Ck−i+1(a)ca
0 ⊗ ei−1

0 ek−i+1
1 (1 ⩽ i ⩽ k ′).

(4.4)

The natural map

Hrd
1 (Gm,Symk Kl2)→ Hmod

1 (Gm,Symk Kl2)
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is given on these twisted cycles by

αi 7→

{
0 if i = 0,
βi if 1 ⩽ i ⩽ k ′

(4.5)

by shrinking the circle c0 and extending the half-line c+.

Proposition 4.6. If 0 ⩽ j ⩽ ⌊k/2⌋, we have Bk(α0, β j )= −δ0, j and, if 1 ⩽ i ⩽ k ′,

Bk(αi , β j )= (−1)k−i (k − i)!(k − j)!
k!

Bk−i− j+1

(k − i − j + 1)!
.

With a small abuse of notation, we also denote by Bk the matrix (Bk;i, j )1⩽i, j,⩽k′ with

Bk;i, j = Bk(αi , β j ).

Proof. For the first assertion, since the intersection index (c0,R+) is equal to −1, we have by (2.18)

Bk(α0, β j )=

{
−⟨ek

0, e j
0ek− j

1 ⟩top = 0 if j ̸= 0,
−⟨ek

0, ek
1⟩top = −1 if j = 0.

Let us compute Bk(αi , β j ) if 1 ⩽ i ⩽ k ′ and 0 ⩽ j ⩽ ⌊k/2⌋. Fix some θo ∈ (0, π) and let xo = exp(iθo).
To achieve the computation, we move the ray c+ by adding the scalar (xo − 1) and let the circle c0 start
at xo. Then the component ca

0 ⊗ ei−1
0 ek−i+1

1 in the deformed αi meets β j physically a times at the same
point 1 ∈ C× with intersection index −1. At the b-th intersection (1 ⩽ b ⩽ a), the factor ei−1

0 ek−i+1
1

becomes ei−1
0 (e1 + be0)

k−i+1 and (2.18) gives

⟨ei−1
0 (e1 + be0)

k−i+1, e j
0ek− j

1 ⟩top = (−1) j
(k− j +1

j

)(k
j

)−1
bk−i− j+1.

For j ⩾ 1, since Bk(α0, β j ) = 0, we obtain, by adding these contributions and taking into account the
intersection indices,

Bk(αi , β j )= (−1) j+1
(k−i +1

j

)(k
j

)−1 k−i+1∑
a=1

Ck−i+1(a)
a∑

b=1

bk−i− j+1.

The asserted equality follows by applying Lemma 4.2 with r ⩾ 1.
If j = 0, then Bk(αi , β j ) writes

(−1)k−i (k − i)!
k − i + 2

−

k−i+1∑
a=1

Ck−i+1(a)
a∑

b=1

bk−i+1
= (−1)k−i Bk−i+1

k − i + 1
,

after Lemma 4.2 with r = 0. □

Theorem 4.7. (1) The family (αi )0⩽i⩽k′ is a basis of Hrd
1 (Gm,Symk Kl2).

(2) The family (β j ) with 0⩽ j ⩽ k ′ (resp. with 0⩽ j ⩽ k ′
+1 and j ̸=1) is a basis of Hmod

1 (Gm,Symk Kl2)
if 4∤k (resp. if 4 | k).

(3) The family (β j ) with 1⩽ j ⩽ k ′ (resp. with 2⩽ j ⩽ k ′) is a basis of Hmid
1 (Gm,Symk Kl2) if 4∤k (resp.

if 4 | k).
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Notation 4.8. If 4 | k, we shift the indices of the bases α and β as follows:

for i ∈ [[1, k ′
]], α′

i =

{
αi+1 if i < k/4,
αi if i > k/4,

and similarly for β ′. We set Bmid
k = (Bmid

k;i, j )i, j∈[[1,k′]] with

Bmid
k;i, j =

{
Bk(αi , β j ) if 4∤k,
Bk(α

′

i , β
′

j ) if 4 | k.

In particular, Bmid
k = Bk if 4∤k. Theorem 4.7(3) implies that Bmid

k is an invertible matrix.

Theorem 4.7 is a straightforward consequence of Propositions 4.6 and 4.9 below.

Proposition 4.9. (1) Let Bk denote the matrix of size k ′ having entries Bk(αi , β j ) with

• 1 ⩽ i, j ⩽ k ′ if 4 ∤k,
• 1 ⩽ i ⩽ k ′ and 2 ⩽ j ⩽ k/2 if 4 | k.

Then

det Bk =


[
k!
∏k′

a=1
(k

a

)]−1 if k is odd,[
k!(k ′

+ 1)
∏k′

a=1
(k

a

)]−1 if 4 | (k + 2),[
k!
∏k′

a=2
(k

a

)]−1 if 4 | k.

(2) If 4 | k, let B ′

k denote the matrix of size k ′
− 1 having entries Bk(αi , β j ) with 2 ⩽ i, j ⩽ k ′. Then

det B ′

k =

[
k
4
(k ′

!)2
k′∏

a=2

(k
a

)]−1

.

(Note that Bmid
k = Bk if 4∤k and Bmid

k = B ′

k if 4 | k).

Some determinants of Bernoulli numbers. We will make use of the following lemma:

Lemma 4.10. The following identities hold:

det
(

Bi+ j

(i + j)!

)
1⩽i, j⩽n

=
(−1)n(n−1)/2(2n + 1)!!

2n(n+1)[3!!5!! · · · (2n + 1)!!]2 . (4.11)

det
(

Bi+ j+1

(i + j + 1)!

)
1⩽i, j⩽n

=

{
(−1)n/2

2n(n+2)[3!!5!! · · · (2n+1)!!]2 if n is even,

0 if n is odd.
(4.12)

Proof. We follow the principle in [Krattenthaler 2005, Section 5.4]. Recall that, for each n ⩾ 0, the
Lommel polynomials hn,ν(x) satisfy

Jν+n(z)= hn,ν(z−1)Jν(z)− hn−1,ν+1(z−1)Jν−1(z),

where Jν(z) is the Bessel function of the first kind of order ν. Let

fn(x)=
1

(2n + 1)!!
hn,1/2(x) ∈ Q[x] (n ⩾ 0).
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The following hold:

• fn(x) is monic of degree n with f0(x)= 1, f1(x)= x , and { fn(x)} satisfies the recursive relation

fn+1(x)= x fn(x)− bn fn−1(x), bn =
1

(2n + 1)(2n + 3)
, n ⩾ 1.

• { fn(x)} forms an orthogonal family with respect to the linear functional

L( f (x))=

∞∑
m=1

1
(mπ)2

( f (1/mπ)+ f (−1/mπ)).

For the above; see [Koelink and Van Assche 1995, Section 1]. We have the moments µr = L(xr ) of the
linear functional

µr =
1

πr+2

∞∑
m=1

1
mr+2 +

1
(−m)r+2 =

(−1)r/22r+2Br+2

(r + 2)!
⩾ 0, r ⩾ 0

(in particular, µ0 =
1
3 ). With these data and by applying [Krattenthaler 2005, Theorem 29], one readily

obtains

det(µi+ j )0⩽i, j⩽n−1=
(2n+1)!!

[3!!5!! · · ·(2n+1)!!]2 , det(µi+ j+1)0⩽i, j⩽n−1=

{
(−1)n/2

[3!!5!! · · ·(2n+1)!!]2 if n is even,

0 if n is odd.

The asserted formulas follow immediately by a simple matrix manipulation. □

Remark 4.13. Let

2n =

(
B2a+2b−2

(2a + 2b − 2)!

)
1⩽a,b⩽n

, 2′

n =

(
B2a+2b

(2a + 2b)!

)
1⩽a,b⩽n

.

By rearranging columns and rows, one has(
Bi+ j

(i + j)!

)
1⩽i, j⩽n

∼

{
2n/2 ⊕2′

n/2 if n is even,
2n+1/2 ⊕2′

(n−1/2) if n is odd,(
Bi+ j+1

(i + j + 1)!

)
1⩽i, j⩽n

∼

{(
0

2′

n/2

2′

n/2
0

)
if n is even,

singular if n is odd.

Therefore, (4.11) inductively implies the equalities

det2n =
1

22n23!!5!! · · · (4n − 1)!!
, det2′

n =
(−1)n

22n(n+1)3!!5!! · · · (4n + 1)!!

and (4.12) is a consequence of (4.11). The evaluation of a variant of det2n is also considered in [Zhang
and Chen 2014, Corollary 2], although their formula does not seem to be correct. Both this approach and
that of [loc. cit.] use the orthogonal family of Lommel polynomials.
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Proof of Proposition 4.9. Let 1n = (δn+1(i + j))1⩽i, j⩽n . For integers m, n with m ⩾ n ⩾ 0, let

D±

m,n = diag((±1)mm!, (±1)m−1(m − 1)!, . . . , (±1)nn!).

(1) For k odd, we have

Bk =
1
k!

D−

k−1,k′+11k′

(
Bi+ j

(i + j)!

)
1⩽i, j⩽k′

1k′ D+

k−1,k′+1

and by (4.11), one obtains

det Bk =
k!!

2k′(k′+1)(k!)k
′

k′∏
a=1

[
(k ′

+ a)!
(2a + 1)!!

]2

=

[
k!

k′∏
a=1

(k
a

)]−1

.

For 4 | (k + 2), we have

Bk =
1
k!

D−

k−1,k′+21k′

(
Bi+ j+1

(i + j + 1)!

)
1⩽i, j⩽k′

1k′ D+

k−1,k′+2

and

det Bk =
1

2k′(k′+2)(k!)k
′

k′∏
a=1

[
(k ′

+ 1 + a)!
(2a + 1)!!

]2

=

[
k!(k ′

+ 1)
k′∏

a=2

(k
a

)]−1

by (4.12).
For 4 | k, we have

Bk =
1
k!

D−

k−2,k′+11k′

(
Bi+ j

(i + j)!

)
1⩽i, j⩽k′

1k′ D+

k−1,k′+2

and

det Bk =
(k − 1)!(k − 1)!!

2k′(k′+1)(k!)k
′

(k ′ + 1)!

k′∏
a=1

[
(k ′

+ a)!
(2a + 1)!!

]2

=

[
k!

k′∏
a=2

(k
a

)]−1

.

(2) We have

B ′

k =
1
k!

D−

k−2,k′+21k′−1

(
Bi+ j+1

(i + j + 1)!

)
1⩽i, j⩽k′−1

1k′−1 D+

k−2,k′+2,

and

det B ′

k =
1

2k′2−1(k!)k
′−1

k′
−1∏

a=1

[
(k ′

+ 1 + a)!
(2a + 1)!!

]2

=

[
k
4
(k ′

!)2
k′∏

a=2

(k
a

)]−1

. □

5. Quadratic relations between periods and Bessel moments

In this section, we express the period pairing between rapid decay homology and de Rham cohomology
of Symk Kl2 in terms of Bessel moments and we obtain quadratic relations between them by specializing
to our setting the general results from [Fresán et al. 2023].
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5.1. Quadratic relations between periods. We use the topological pairing ⟨ · , · ⟩top on Kl2, which is
compatible with the Q-structure of Kl∇2 from Section 2.3. Recall that the induced pairing ⟨ · , · ⟩top on
Symk Kl2 is (−1)k-symmetric. The period pairing Prd,mod

1 was defined in [Fresán et al. 2023], where the
index 1 referred to the degree of rapid decay homology and moderate growth de Rham cohomology. Here
we denote it by Prd,mod

k , in order to emphasize that we are dealing with the k-th symmetric power and since
there are no other nontrivial (co)homological degrees at play. Recall the de Rham cohomology classes ωi

from (3.2) and the rapid decay cycles αi from (4.4). Since (αi )0⩽i⩽k′ is a basis of Hrd
1 (Gm,Symk Kl2) by

Theorem 4.7(1) and (ωi )0⩽i⩽k′ is a basis of H1
dR(Gm,Symk Kl2) by [Fresán et al. 2022, Proposition 4.14],

we deduce from the perfectness of the pairing Prd,mod
k (see [Fresán et al. 2023, Corollary 2.11]) that the

(k ′
+ 1)× (k ′

+ 1) period matrix (Prd,mod
k;i, j )0⩽i, j⩽k′ defined by

Prd,mod
k;i, j = Prd,mod

k (αi , ω j )

is invertible. Thanks to the identity (2.16) relating v0 to e0 and the change of variables t = 2
√

z, the first
row of this matrix reads

Prd,mod
k (α0, ω j )=

∫
c0

⟨ek
0, v

k
0⟩topz j dz

z
=

∫
c0

(2π i)k I0(2
√

z)kz j dz
z

= (2π i)k+1δ0, j , (5.1)

from which we immediately derive:

Proposition 5.2. The k ′
× k ′ period matrix Pk = (Prd,mod

k;i, j )1⩽i, j⩽k′ is invertible. □

The pure part of the pairing Prd,mod
k arises from the pairing between middle homology and middle

de Rham cohomology. According to (4.5) and Theorem 4.7(3), the elements (αi )i∈[[1,k′]] map to a basis
of Hmid

1 (Gm,Symk Kl2) whenever 4∤k. If 4 | k, we instead consider the images of the shifted elements
(α′

i )i∈[[1,k′]], as introduced in Notation 4.8. Regarding H1
dR,mid(Gm,Symk Kl2), Corollary 3.11 gives the

basis (ωi )i∈[[1,k′]] (resp. (ω′

i )i∈[[1,k′]]) if 4∤k (resp. if 4 | k), where ω′

i is modified as in (3.9). With this
notation, the middle period matrix is defined as follows:

Pmid
k = (Pmid

k;i, j )i, j∈[[1,k′]] =

{
(Prd,mod

k (αi , ω j ))i, j∈[[1,k′]] if 4∤k,
(Prd,mod

k (α′

i , ω
′

j ))i, j∈[[1,k′]] if 4 | k.

In particular, Pmid
k = Pk if 4∤k.

Recall the matrices Smid
k from Section 3.2 and Bmid

k from Notation 4.8. In the current setting, the general
method to express middle quadratic relations explained in [Fresán et al. 2023, Section 3.f], namely (3.21)
therein yields the following result:

Theorem 5.3 (middle quadratic relations for Symk Kl2). The middle periods of Symk Kl2 satisfy the
following quadratic relations:

(−2π i)k+1Bmid
k = Pmid

k · (Smid
k )−1

·
tPmid

k .

In particular, the matrix Pmid
k is invertible. □
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5.2. Bessel moments as periods. We consider the power moments of the modified Bessel functions I0

and K0 defined by

BMk(i, j)= (−1)k−i 2k− j (π i)i
∫

∞

0
I0(t)i K0(t)k−i t j dt,

where the indices i and j are subject to the constraints

0 ⩽ i ⩽ k ′ and j ⩾ 0 or, if k is even, i =
k
2 and 0 ⩽ j ⩽ k ′

− 1.

For this range of indices, it results from the asymptotic expansion at infinity (2.14) that the improper
integral BMk(i, j) converges. In what follows, such moments will occur only for odd j .

Proposition 5.4. For all 1 ⩽ i, j ⩽ k ′, the following equality holds:

Prd,mod
k;i, j = BMk(i, 2 j − 1).

Proof. In view of the definition (4.4) of the twisted cycles αi , we need to compute the integrals along ca
0

of ⟨ea−1
0 ek−a+1

1 , vk
0⟩topz j dz/z for a = 1, . . . , k − i +1 and the integral along c+ of ⟨ei

0ek−i
1 , vk

0⟩topz j dz/z.
Let us first remark that, for ε ∈ (0, 1], we can replace c0 and c+ with the scalings c0,ε and c+,ε by ε

defined with the base point ε instead of 1, leading to a twisted cycle αi,ε equivalent to αi (1 ⩽ i ⩽ k ′). We
will show

lim
ε→0

∫
ca

0,ε

⟨ea−1
0 ek−a+1

1 , vk
0⟩topz j dz

z
= 0, a = 1, . . . , k − i + 1, (5.5)

lim
ε→0

∫
c+,ε

⟨ei
0ek−i

1 , vk
0⟩topz j dz

z
= BMk(i, 2 j − 1) for 1 ⩽ i, j ⩽ k ′. (5.6)

We first show that the limits (5.5) are zero. According to (2.18), we only need to compute the coefficient
of vk

0 in ek−a+1
0 ea−1

1 , which is equal to I a−1
0 K k−a+1

0 up to a constant (see (2.16)). It remains to check that∫ aπ i

arg t=0
I0(t)a−1K0(t)k−a+1t2 j−1 dt → 0 when |t | = 2

√
ε and ε→ 0.

We can use the estimate (2.13) to compute the integral, and the assumption j ⩾ 1 implies that the absolute
value of the integral tends to zero with ε.

For (5.6), recall that the coefficient of vk
0 in ek−i

0 ei
1 is equal to 2k(π i)i

(k
i

)
I i
0 K k−i

0 , and thus (see (2.18))

⟨ei
0ek−i

1 , vk
0⟩top = (−1)k−i

(k
i

)−1
2k(π i)i

(k
i

)
I i
0 K k−i

0 = (−1)k−i 2k(π i)i I i
0 K k−i

0 .

The assertion (5.6) then follows from the relation z j dz/z = 2−2 j+1t2 j−1 dt . □

Corollary 5.7. The matrix Pmid
k satisfies, for i, j ∈ [[1, k ′

]],

Pmid
k;i, j =


BMk(i, 2 j − 1) if 4∤k,
BMk(i + 1, 2 j − 1)− γk, j BMk(i + 1, k ′) if 4 | k and i < k/4,
BMk(i, 2 j − 1)− γk, j BMk(i, k ′) if 4 | k and i > k/4.
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Example 5.8. Consider the case k =8. Taking the determinant of the quadratic relations from Theorem 5.3
and using the computation (3.23) and Proposition 4.9(2) yield

(detPmid
8 )2 = (2π i)18 detBmid

8 det Smid
8 =

−52π18

2432 .

On the other hand, by Corollary 5.7 and the equalities γ8,1 = 0 and γ8,3 =
1
8 from (3.6), we explicitly have

Pmid
8 =

(
(π i)2

−(π i)3

)
A
(

27

22

)
,

with

A =

∫
∞

0

(
I0(t)2K0(t)6t 2I0(t)2K0(t)6t5

− I0(t)2K0(t)6t3

I0(t)3K0(t)5t 2I0(t)3K0(t)5t5
− I0(t)3K0(t)5t3

)
dt.

One can check numerically that det A is positive, and hence det A = 5π4/(211
· 3). Using the linear

relations BMc
8(1, r)+ BMc

8(3, r)= 0 from Corollary 6.12 below for r = 1, 5, this verifies the numerical
evaluation made in [Broadhurst and Roberts 2018, (2.5)].

5.3. Relation to the conjecture of Broadhurst and Roberts. Broadhurst and Roberts [2018, Section 5]
use different normalizations to state their conjectural quadratic relations. Instead of the above matrices
Bk and Pk , they consider matrices that we shall denote by BBR

k and PBR
k (the notation BN and FN is used

in [loc. cit.], the index k being occupied by what is k ′ here). To compare their matrices with ours, we
introduce auxiliary square matrices

Uk′ = antidiag(1, . . . , 1), Rk′ = antidiag(i, i2, . . . , ik
′

), Tk′ = diag(−4, (−4)2, . . . , (−4)k
′

)

of size k ′, where the antidiagonal entries are listed down from the top corner. By Propositions 4.6 and 5.4,
the matrices BBR

k and PBR
k relate to ours as

Uk′BBR
k Uk′ =

k!

2k+1 (i
(k+i+ j−1)

·Bk;i, j )1⩽i, j⩽k′ and Uk′PBR
k =

1
(−2

√
π)k+1 · ((−4) j iiPrd,mod

k;i, j )1⩽i, j⩽k′,

whence the identities

BBR
k = −

i(k+1)k!

2k+1
tRk′ ·Bk ·Rk′ and PBR

k =
1

(−2
√
π)k+1

tRk′ ·Pk ·Tk′ . (5.9)

Besides, Broadhurst and Roberts [2018, page 7] define matrices DBR
k = (DBR

k;i, j )1⩽i, j⩽k′ with rational
coefficients and conjecture that, for all integers k ⩾ 1, the quadratic relation

PBR
k ·DBR

k ·
tPBR

k = BBR
k .

holds. In the direction of this conjecture, we obtain:

Corollary 5.10. If 4∤k, then the matrix Dk defined as

Dk = (−1)kk!(Tk′ · Smid
k ·Tk′)−1
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satisfies

PBR
k ·Dk ·

tPBR
k = BBR

k .

Proof. Under the assumption on k, we have Pk = Pmid
k and Bk = Bmid

k . The statement then follows from
the quadratic relations of Theorem 5.3 and the equalities (5.9). □

If 4 | k, we set

B′BR
k = −

i−(k+1)k!

2k+1 R′

k′ ·Bmid
k ·R′

k′ and P′BR
k =

1
(−2

√
π)k+1R

′

k′ ·Pmid
k ·T′

k′,

where we denote by R′

k′ (resp. T′

k′) the matrix obtained from Rk′ (resp. Tk′) by deleting the row and
the column of index k/4, that we consider as indexed by [[1, k ′

]]
2. We define the matrix D′

k indexed by
[[1, k ′

]]
2 so that it satisfies the relation (see (3.16))

D′

k = (−1)kk!(T′

k′ · Smid
k ·T′

k′)
−1.

Corollary 5.11. If 4 | k, then the matrix D′

k satisfies

P′BR
k ·D′

k ·
tP′BR

k = B′BR
k .

Remark 5.12. Numerical computations show that, for all integers k ⩽ 22 that are not multiples of 4, the
equality Dk =DBR

k holds. On the other hand, for k = 8, 12, 16, 20, the matrix D′

k coincides with the matrix
D′BR

k obtained from DBR
k by deleting the row and the column of index k/4. These computations also seem

to suggest that k!(Smid
k )−1 has integral coefficients. Is it true for all k?

6. The full period matrices

In Theorem 5.3, we emphasized quadratic relations for the middle periods to make the link with the
conjecture of Broadhurst and Roberts. However, quadratic relations hold between the rapid-decay versus
moderate periods

Prd,mod
k : Hrd

1 (Gm,Symk Kl2)⊗ H1
dR(Gm,Symk Kl2)→ C

and the moderate versus rapid-decay periods

Pmod,rd
k : Hmod

1 (Gm,Symk Kl2)⊗ H1
dR,c(Gm,Symk Kl2)→ C.

Namely, it follows from [Fresán et al. 2023, Remark 2.15] that

(−2π i)k+1Brd,mod
k = Prd,mod

k · (Sk)
−1

·
tPmod,rd

k ,

where Brd,mod
k and Sk stand for the complete Betti and de Rham intersection pairings. In this section, we

consider the bases Bk,c,Bk and (αi )i , (βi )i as defined in Section 3.1 and Theorem 4.7, and we compute
the entries of the matrices of Prd,mod

k and Pmod,rd
k which do not appear in Pmid

k .
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6.1. The complete period matrix Prd,mod. In order to finish the computation of the complete period
matrix (Prd,mod

k;i, j )0⩽i, j⩽k′ , we are left, according to (5.1) and Proposition 5.4, with computing the terms
Prd,mod

k;i,0 for i = 1, . . . , k ′. In such a range, we consider regularized Bessel moments defined as follows,
according to the expansions (2.13) and (2.14).

Definition 6.1 (regularized Bessel moments). For all i such that 0 ⩽ i ⩽ k ′, the functions

Gk,i (ε)=

∫
∞

ε

I0(t)i K0(t)k−i dt
t

+
(−1)k−i

k − i + 1
(γ + log(ε/2))k−i+1

are holomorphic on small sectors containing ε ∈ R>0 and have finite limit as ε→ 0+. The regularized
Bessel moments are defined as

BMreg
k (i,−1)= (−1)k−i 2k+1(π i)i lim

ε→0+

Gk,i (ε).

Proposition 6.2. We have

Prd,mod
k (αi , ω0)= BMreg

k (i,−1), for 1 ⩽ i ⩽ k ′.

Proof. We argue as for (5.5) and (5.6). If 1 ⩽ i ⩽ k ′, let

P′

k(αi , ω0)= Prd,mod
k

(
αi +

(−1)k−i (k − i)!
k − i + 2

α0, ω0

)
,

so that

Prd,mod
k (αi , ω0)= P′

k(αi , ω0)−
(−1)k−i (k − i)!

k − i + 2
Prd,mod(α0, ω0). (6.3)

On the one hand, by scaling the chains c+ and c0 by ε ∈ R>0 and letting ε′
= 2

√
ε, we find

P′

k(αi , ω0)=

∫
c+,ε

⟨ei
0ek−i

1 , vk
0⟩top

dz
z

+

k−i+1∑
a=1

Ck−i+1(a)
∫

ca
0,ε

⟨ei−1
0 ek−i+1

1 , vk
0⟩top

dz
z

= (−1)k−i 2k(π i)i
∫

∞

ε

I0(2
√

z))i K0(2
√

z)k−i dz
z

+ (−1)k−i+12k(π i)i−1
k−i+1∑

a=1

Ck−i+1(a)
∫

ca
0,ε

I0(2
√

z))i−1K0(2
√

z)k−i+1 dz
z

= (−1)k−i 2k+1(π i)i
∫

∞

ε′
I0(t)i K0(t)k−i dt

t

+ (−1)k−i+12k+1(π i)i−1
k−i+1∑

a=1

Ck−i+1(a)
∫

ca/2
0,ε′

I0(t)i−1K0(t)k−i+1 dt
t

= (−1)k−i 2k+1(π i)i
∫

∞

ε′
I0(t)i K0(t)k−i dt

t

+ 2k+1(π i)i−1
k−i+1∑

a=1

Ck−i+1(a)
∫

ca/2
0,ε′

[(γ + log(t/2))k−i+1
+ O(t2 logk−i+1 t)]

dt
t
.
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Lemma 4.1 yields

k−i+1∑
a=1

Ck−i+1(a)
∫

ca/2
0,ε′

(
γ + log(t/2)

)k−i+1 dt
t

=
1

k − i + 2

k−i+1∑
a=1

Ck−i+1(a)[(γ + log(ε′/2)+π ia)k−i+2
− (γ + log(ε′/2))k−i+2

]

=
π i

k − i + 1
(γ + log(ε′/2))k−i+1

+
(−1)k−i (k − i)!

k − i + 2
(π i)k−i+2.

Letting ε→ 0+, one obtains

P′

k(αi , ω0)= BMreg
k (i,−1)+

(−1)k−i (k − i)!
k − i + 2

(2π i)k+1.

On the other hand, Prd,mod
k (α0, ω0)= (2π i)k+1 as computed in (5.1), and (6.3) gives the desired formula.

□

6.2. The complete period matrix P
mod,rd
k . The period matrix Pmod,rd

k is defined by

Pmod,rd
k;i, j = Pmod,rd

k (βi , (m̂ j , ω
′

j )),

0 ⩽ i, j ⩽ k ′ if 4∤k,{
0 ⩽ i ⩽ k/2, i ̸= 1
0 ⩽ j ⩽ k ′

if 4 | k,

(see the notation of (3.9) for ω′

j ) and is nondegenerate (argument similar to that for Prd,mod
k ). According

to [Fresán et al. 2023, Section 3.f], its middle part is equal to Pmid
k already computed:

• If 4∤k, we are left with computing Pmod,rd
k;i, j for i, j ∈ [0, k ′

] and i or j = 0.

• If 4 | k, we are left with computing Pmod,rd
k;i, j with{

i = 0, 2, . . . , k/2, j = 0, k/4,
i = 0, k/2, j = 1, . . . , k ′, j ̸= k/4.

Definition 6.4 (regularized Bessel moments, continued). If 4 | k and k/4< j ⩽k ′, the function ε 7→ Hk, j (ε)

defined by (see (3.5))

Hk, j (ε)=

∫ 1/ε

0
(I0(t)K0(t))k/2

(
t2 j

−
γk, j

2k/2−2 j tk/2
)

dt
t

−
1

2k−2 j+1

j∑
n=1

γk, j−n

n(4ε2)n

is holomorphic near R>0 with finite limit when ε→ 0+. We set

BMreg
k (k/2, 2 j − 1)= 2k−2 j+1(π i)k/2 lim

ε→0+

Hk, j (ε).

Proposition 6.5. (1) If 4∤k, we have:

(a) Pmod,rd
k;i,0 = (−1)kδi,0, i = 0, . . . , k ′.

(b) Pmod,rd
k;0, j = BMk(0, 2 j − 1), j = 1, . . . , k ′.
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(2) If 4 | k, we have:

(a) Pmod,rd
k;i,0 = δi,0, i = 0, . . . , k/2.

(b) Pmod,rd
k;i,k/4 = −(2π i)k/22k/2

( k
k/2

)−1
δi,k/2, i = 0, . . . , k/2.

(c) Pmod,rd
k;0, j = BMk(0, 2 j − 1)− γk, j BMk(0, k ′), j = 1, . . . , k ′, j ̸= k/4.

(d) Pmod,rd
k;k/2, j =

{
BMk(k/2, 2 j − 1) 1 ⩽ j < k/4,
BMreg

k (k/2, 2 j − 1) k/4< j ⩽ k ′.

Proof. For (a) and (a), we note that

Pmod,rd
k (βi , (m̂0, 0))= ⟨ei

0ek−i
1 , ek

0⟩top = (−1)kδi,0.

Similarly, for (b) (see Proposition 3.8 and [Fresán et al. 2023, Proposition 3.18]),

Pmod,rd
k (βi , (m̂k/4, 0))= −⟨ei

0ek−i
1 , 2k(π i)k/2(e0e1)

k/2
⟩top = −2k(π i)k/2

( k
k/2

)−1
δi,k/2.

For the rest, since the coefficients of the cycle βi in terms of {ua}, have logarithmic growth at 0, and m̂ j,0

is holomorphic and vanishes (Lemma 3.3), the contribution limz→0⟨ei
0ek−i

1 , m̂ j,0⟩top(z) of ⟨βi , m̂ j,0⟩top in
[Fresán et al. 2023, Proposition 3.18] in the period pairing is zero. For i ̸= k/2 or i = k/2, 1 ⩽ j < k/4,
the coefficient (−1)k−i (π i)iξ j,i of ⟨βi , m̂ j,∞⟩top (see (3.13)) is holomorphic near R>0 and vanishes at ∞,
so the contribution of m̂ j,∞ is zero too. In this case, one therefore has

Pmod,rd
k (βi , (m̂ j , ω

′

j )top)=

∫
R+

⟨ei
0ek−i

1 , ω′

j ⟩top = BMk(i, 2 j − 1)− γk, j BMk(i, k ′)

as in the proof of Proposition 5.4. This completes the cases (b), (c) and the first part of (d).
It remains to check the second part of (d), with k/4< j ⩽ k ′. Let

ξ = (−4π iI0K0)
k/2z j−1 dz and η = (−4π iI0K0)

k/2zk/4−1 dz.

We have

⟨(e0e1)
k/2, ω′

j ⟩top = ⟨(e0e1)
k/2, (ω j + resz=∞(ω j )ωk/4)⟩top = ξ + resz=∞(ξ)η.

Note that m̂ j,∞ is defined so that d⟨(e0e1)
k/2, m̂ j,∞⟩top = ξ + resz=∞(ξ)η and ⟨(e0e1)

k/2, m̂ j,∞⟩top has no
constant term in the fractional Laurent series expansion in 1/z. We then obtain

Pmod,rd
k (αk/2, (m̂ j , ω

′

j ))= lim
τ→∞

∫ τ

0
ξ+ resz=∞(ξ)η−⟨(e0e1)

k/2, m̂ j,∞⟩top(τ )= BMreg
k (k/2, 2 j −1). □

Example 6.6. Respectively for k = 3, 4, the complete quadratic relations lead to the equalities of the
regularized Bessel moments

lim
ε→0+

∫
∞

ε

I0(t)K0(t)2
dt
t

+
1
3(γ + log ε/2)3 =

3
2

∫
∞

0
K0(t)3t dt ·

∫
∞

0
I0(t)K0(t)2t dt,

lim
ε→0+

∫
∞

ε

I0(t)K0(t)3
dt
t

−
1
4(γ + log ε/2)4 =

π4

120
.
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Remark 6.7 (determinant of Pk). A formula for the determinant of the matrix Pk in Proposition 5.2, which
implies in particular its nonvanishing, was conjectured by Broadhurst and Mellit [2016] and Broadhurst
[2016, Conjecture 4 and 7] and proved by Zhou [2018b]. Since det Sk is computed in Remark 3.22
and the determinant of the Betti intersection matrix is computed in Proposition 4.9 in order to prove its
nonvanishing, the quadratic relations also lead to a computation of detPk up to sign.

Remark 6.8 (dimension of the linear span of Bessel moments). Zhou [2019b, Theorem 1.2], shows
that, for each i such that 1 ⩽ i ⩽ k ′ (resp. for i = 0), the Q-vector space Ei spanned by the Bessel
moments BMk(i, 2 j − 1) for all j ⩾ 1 has dimension at most k ′ (resp. at most k ′

+ 1). From the point
of view of the present paper, the upper bound dimQ Ei ⩽ k ′ when 1 ⩽ i ⩽ k ′ is a direct consequence
of the fact that the BMk(i, 2 j − 1) result from pairing the fixed rapid decay cycle αi with the de Rham
cohomology classes ω j = [z j u0 dz/z]. Provided j ⩾ 1 and k is not a multiple of 4, all these ω j lie in
the middle de Rham cohomology H1

dR,mid(Gm,Symk Kl2), which has dimension k ′. If k is a multiple
of 4, the periods Pmid

k (αi , ·) are generated by BMk(i, 2 j − 1) − γk, j BMk(i, k ′) for j ∈ [1, k ′
], with

γk,k/4 = 1. For each j ⩾ 1, the class (z j
−γk, j zk/4)u0 dz/z lies in H1

dR,mid(Gm,Symk Kl2) and has period
BMk(i, 2 j − 1)− γk, j BMk(i, k ′) when paired with αi . Therefore, dimQ Ei ⩽ k ′ holds. In the case i = 0,
the periods Pmod,rd

k (α0, ·) are generated by

1 and BMk(0, 2 j − 1)− γk, j BMk(0, k ′) (1 ⩽ j ⩽ k ′).

Again, for each j ⩾ 1, there exists m̂ j such that the class

(m̂ j , (z j
− γk, j zk/4)u0 dz/z)

lies in H1
dR,c(Gm,Symk Kl2) and has period

BMk(0, 2 j − 1)− γk, j BMk(0, k ′)

when paired with α0. Hence, dimQ E0 ⩽ k ′
+ 1, as this is the dimension of de Rham cohomology with

compact support.

6.3. Linear relations. When k is even, there is a unique nontrivial linear relation among the k ′
+ 2

classes (β j )0⩽ j⩽k/2 in Hmod
1 (Gm,Symk Kl2). We determine explicitly the moderate 2-chain that yields

this relation.

Lemma 6.9. For two integers n, r with 0 ⩽ r ⩽ 2n,

min{n,2n−r}∑
i=0

(−1)i
(n

i

)(2n−i
r

)
=

{
0 if 0 ⩽ r ⩽ n − 1,( n

r−n

)
if n ⩽ r ⩽ 2n.

Proof. We provide two approaches; the second one has been provided by Hao-Yun Yao of NTU.
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Let ar be the sum in the left hand side. Then the polynomial f (x)=
∑2n

r=0 ar xr is the coefficient of
yn in the expansion of

g(x, y)= (y − 1)n
n∑

r=0

(x + 1)2n−r yr
= (x + 1)n(y − 1)n

n∑
j=0

(x + 1)n− j y j .

Thus one obtains

f (x)= (x + 1)n((x + 1)− 1)n = xn(x + 1)n

and the assertion follows.
Alternatively, let S be the set of subsets of {1, 2, . . . , 2n} consisting of r elements and define T =

{A ∈ S | {1, 2, . . . , n}⊂ A}. Members of T are obtained by choosing (r −n) elements from {n+1, . . . , 2n}

so that the cardinality |T | equals 0 if 0 ⩽ r < n or
( n

r−n

)
if n ⩽ r ⩽ 2n. Let Sc = {A ∈ S | c ̸∈ A}. One has

S = T ⊔ (S1 ∪ · · · ∪ Sn) and |Sc1 ∩ · · · ∩ Sci | =
(2n−i

r

)
for 1 ⩽ c1 < · · ·< ci ⩽ 2n. The inclusion-exclusion

principle then gives the formula. □

Proposition 6.10. Let P̃1 be the real oriented blow-up of P1 along {0,∞} as in Section 2.3, and consider
the simplicial 2-chain

ρ : {(x, y) ∈ R2
| 0 ⩽ x, y, x + y ⩽ 1} → P̃1, ρ(x, y)= tan

π(x + y)
2

exp(4i tan−1(y/x)),

which covers P̃1 once. If k is even, the singular chain

1= ρ⊗

k/2∑
i=0

(−1)i
(k/2

i

)
ei

0ek−i
1

is of moderate growth, and the relation

⌊(k−2)/4⌋∑
i=0

( k/2
2i +1

)
β2i+1 = 0

holds in Hmod
1 (Gm,Symk Kl2).

Proof. It follows as direct consequences of the monodromy relation and Lemma 6.9, which also imply
that

−1
2 ∂1=

⌊(k−2)/4⌋∑
i=0

( k/2
2i +1

)
β2i+1. □

If 4 | (k +2), choosing the principal determination of w1/2 near R>0, we write, in a way similar to (3.4),
the asymptotic expansion

2k(I0(t)K0(t))k/2 ∼ wk/4
∞∑

n=0

γ ′

k,n+k/4w
n.
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As in Definition 6.4, one checks that, for j ∈ [(k + 2)/4, k ′
], the difference

Hk, j (ε)=

∫ 1/ε

0
(I0(t)K0(t))k/2t2 j dt

t
−

1
2k−2 j+1ε

j∑
n=0

γ ′

k, j−n−1/2

(2n + 1)(4ε2)n

is holomorphic near R>0 with finite limit as ε→ 0. Set

BMreg
k (k/2, 2 j − 1)= −2k−2 j+1(π i)k/2 lim

σ→0+

Hk, j (σ ).

In this case, one has

Pmod,rd
k (βk/2, (m̂ j , ω

′

j ))=


0 if j = 0,
BMk(k/2, 2 j − 1) if 1 ⩽ j ⩽ (k − 2)/4,
BMreg

k (k/2, 2 j − 1) if (k + 2)/4 ⩽ j ⩽ k ′

as in Proposition 6.5(2). To unify the situations, we introduce the compactly supported version of the
Bessel moments.

Definition 6.11. Assume k is even. We set

BMc
k(i, 2 j − 1)=


BMreg

k (k/2, 2 j − 1) if
{

i = k/2,
⌊k/4⌋ + 1 ⩽ j ⩽ k ′,

BMk(i, 2 j − 1)− γk, j BMk(i, k ′) if 4 | k, 0 ⩽ i ⩽ k ′,

BMk(i, 2 j − 1) otherwise.

Corollary 6.12 (sum rule identities). Assume k is even and set k ′′
= ⌊(k − 1/4)⌋. The linear relations

among Bessel moments
k′′∑

i=0

( k/2
2i +1

)
BMc

k(2i + 1, 2 j − 1)= 0 (6.13)

hold for all j such that {
1 ⩽ j ⩽ 2k ′′ if 4 | (k + 2),
1 ⩽ j ⩽ 2k ′′

+ 1, j ̸= k/4 if 4 | k.

Remark 6.14. For j ∈ [1, k ′′
], these sum rule identities were proved by Zhou by analytic means; see

[Zhou 2019a, (1.3)] for 4 | (k + 2) and [loc. cit., (1.5)] for 4 | k, where the second argument of the Bessel
moments is also allowed to be even. Our proof, closer to the spirit of the Kontsevich–Zagier period
conjecture, produces the relation (6.13) simply from the Stokes formula.

7. Comparison of period structures

In [Fresán et al. 2022], we have introduced the Nori motives Mk defined over Q, whose definition we
recall in Section 7.1, and we have explained how the Hodge filtration of their Hodge realization can be
computed in terms of symmetric powers of the Kloosterman connection on Gm and their irregular Hodge
filtration. We aim at making Deligne’s conjecture on critical values explicit for them in Section 8. In this
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section as a preparation, we focus on the comparisons of various Q-structures. For that purpose, we only
retain from each Nori motive Mk

• its period realization (over Spec Q, see Section A4), that is, the Q-vector spaces (Mk)dR (de Rham
realization) and (Mk)B (Betti realization), together with the comparison isomorphism comp : C ⊗Q

(Mk)B ≃ C ⊗Q (Mk)dR, and

• the action F∞ on (Mk)B induced by geometric complex conjugation.

On the other hand, the computations of the previous sections lead us to define a (transposed) period
structure (over Spec Q) as follows:

• The de Rham Q-vector space H1
dR,mid(Gm,Symk Kl2)Q is the Q-vector space generated by the family

Bk,mid of Corollary 3.11.

• The (dual) Betti Q-vector space Hmid
1 (Gm,Symk Kl2)Q is the Q-vector space generated by the family

(β j ) of twisted cycles of Theorem 4.7(3).

• The period pairing is the pairing Pmid
k .

There is an obvious notion of morphism of period structures.

Theorem 7.1. The period structure ((Mk)dR, (Mk)B, comp) of the motive Mk is isomorphic to the trans-
pose of (H1

dR,mid(Gm,Symk Kl2)Q,Hmid
1 (Gm,Symk Kl2)Q,Pmid

k ).

Furthermore, we will give an explicit description under this correspondence of the action F∞ on
Hmid

1 (Gm,Symk Kl2)Q.
We proceed in two steps. Firstly in Section 7.1, in an analogous way to the method used in [Fresán

et al. 2022], we realize the mixed Hodge structure corresponding to Mk together with its associated period
structure as the exponential mixed Hodge structure and the associated period structure attached to a
function on a smooth variety equipped with the action of a finite group. We also analyze the automorphism
of the Betti fiber of this exponential mixed Hodge structure induced by the complex conjugation on
the variety underlying Mk . In particular, we avoid computing periods directly on the variety underlying
the motive Mk . The tools for this part are developed in the appendix in which the period realization of
exponential mixed Hodge structures is investigated, extending the focus on the de Rham realization in the
appendix of [loc. cit.]. Then in Section 7.2, we compare these objects to those of the previous sections by
making explicit differential forms of higher degree and higher dimensional twisted cycles that correspond
to the bases obtained for Symk Kl2 there. The period matrix computed in Proposition 5.4 is thus a period
matrix for Mk , and the action of the conjugation is explicit since the Bessel moments we consider are
either real or purely imaginary.

7.1. The motives Mk. Let y = (y1, . . . , yk) be the Cartesian coordinates of the torus Gk
m defined over Q.

Upon Gk
m, consider the action of Sk ×µ2 where the symmetric group Sk acts by permuting the variables

y and the group µ2 = {±1} acts as yi 7→ ±yi . Denote by gk : Gk
m → A1 the regular function given by the
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Laurent polynomial

gk(y1, . . . , yk)=

k∑
i=1

(
yi +

1
yi

)
and let K0 = (gk) be the associated closed subvariety of Gk

m. Then K0 is invariant under the action of
Sk ×µ2 and hence the latter acts on various cohomology spaces, or on the (Nori) motives Hk−1(K0) and
Hk−1

c (K0) of degree k −1 of K0. Let sgn : Sk ×µ2 → Q× be the product of the sign character on Sk and
the trivial one on µ2. We define the pure motive Mk of weight k + 1 over Q by taking the sgn-isotypic
part

Mk = grW
k+1[H

k−1
c (K0)(−1)]Sk×µ2,sgn,

where W indicates the weight filtration; see [Fresán et al. 2022, (3.1)]. The Betti realization (Mk)B and the
de Rham realization (Mk)dR of Mk are the Q-vector spaces of dimension ⌊(k − 1/2)⌋ − δ4Z(k) obtained
by replacing Hc by the corresponding cohomology functors (with compact support).

Let K be the complex variety defined by the base change of K0 to C. It is shown in [loc. cit.] that the
base change

C ⊗ (Mk)dR = grW
k+1[H

k−1
dR,c(K )(−1)]Sk×µ2,sgn

of the de Rham realization (Mk)dR is identified with H1
dR,mid(Gm,Symk Kl2) discussed in the previous

sections.

The pair (U, f̃k). We consider the torus U0 = Gm,t × Gk
m over Q with its C-extension U , endowed with

• the action of Sk permuting the coordinates on Gk
m,

• the action of µ2 sending (t, y) to ±(t, y),

• the involution ι sending t to t and yi to −yi for each i ,

• the antilinear involution conj on the analytic manifold U (C) induced by the conjugation of coordinates,
which commutes with all the above actions.

Let f̃k : U0 = Gm,t ×Gk
m → A1 denote the Laurent polynomial (t/2) ·gk , where gk is defined above. Then

f̃k is left invariant by the action of Sk , µ2 and conj, and satisfies ι∗ f̃k = − f̃k .
Conjugation acts on �p(U ) by changing a p-form ω(t, y) to ω(t̄, ȳ). Therefore, conj∗(d f̃k) = d f̃k

and conj∗ induces an involution on Hk+1
dR,c(U, f̃k), Hk+1

dR (U, f̃k) and Hk+1
dR,mid(U, f̃k) which commutes with

the action induced by Sk ×µ2 and ι∗.
According to [Fresán et al. 2022, Theorem 3.8], the associated mixed Hodge structure (Mk)H is

identified with the exponential mixed Hodge structure Hk+1
mid (U, f̃k)

Sk×µ2,sgn. In particular, they have
isomorphic period realizations; see the Appendix.

The de Rham realization (Mk)dR. The pair (U, f̃k), together with the action of Sk ×µ2, is the C-extension
of the pair (U0, f̃k) defined over Q. As explained in Section A4, the de Rham cohomologies Hk+1

dR,?(U, f̃k)

(? =∅, c,mid) are also endowed with the Q-structure Hk+1
dR,?(U0, f̃k), and therefore so are the sgn-isotypic

components Hk+1
dR,?(U, f̃k)

Sk×µ2,sgn with the Q-structure Hk+1
dR,?(U0, f̃k)

Sk×µ2,sgn.
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Lemma 7.2. The isomorphism grW
k+1 Hk−1

dR,c(K )(−1)Sk×µ2,sgn
≃ Hk+1

dR,mid(U, f̃k)
Sk×µ2,sgn of [Fresán et al.

2022, Theorem 3.8] identifies the Q-vector spaces (Mk)dR and Hk+1
dR,mid(U0, f̃k)

Sk×µ2,sgn.

Proof. We start from Example A.28, on noting that f̃k = tgk . We thus obtain isomorphisms (setting
Z0 = A1

t × K0)

Hk+1
dR,c(Z0)

Sk×µ2,sgn
≃ Hk+1

dR,c(A
1
t × Gk

m/Q, f̃k)
Sk×µ2,sgn

≃ Hk+1
dR,c(U0, f̃k)

Sk×µ2,sgn,

where the second isomorphism is obtained as in the proof of [Fresán et al. 2022, Theorem 3.8]. After
extension of scalars from Q to C, these isomorphisms become the de Rham part of the isomorphisms
considered in the proof of [loc. cit.]. Since the left-hand sides are defined from Nori motives, the weight
filtration is defined on them. We note that (Mk)dR ≃ Hk+1

dR,c(Z0)
Sk×µ2,sgn/Wk Hk+1

dR,c(Z0)
Sk×µ2,sgn because

this holds after extension of scalars. Furthermore, the composition

Hk+1
dR,c(Z0)

Sk×µ2,sgn
−→∼ Hk+1

dR,c(U0, f̃k)
Sk×µ2,sgn

→ Hk+1
dR (U0, f̃k)

Sk×µ2,sgn

whose image is Hk+1
dR,mid(U0, f̃k)

Sk×µ2,sgn by definition, has kernel equal to Wk Hk+1
dR,c(Z0)

Sk×µ2,sgn, because
this holds after extension of scalars. This proves the lemma. □

The Betti realization (Mk)B. We use the notation and apply the results of Section A3, more specifically
Formulas (A.19), (A.20) and (A.21), to the pair (U, f̃k). Since f̃k is invariant under the action of Sk ×µ2

on U , as well as under the action of complex conjugation conj : U (C)→ U (C), the families of supports
8rd and 8mod are also invariant under these actions. There is thus a natural action of Sk × µ2 on
Hk+1

c (Ũrd(D),Q) and Hk+1
c (Ũmod(D),Q). We thus have

(Mk)B ≃ Hk+1
B,mid(U, f̃k)

Sk×µ2,sgn

= im[Hk+1
B,c (U, f̃k)

Sk×µ2,sgn
→ Hk+1

B (U, f̃k)
Sk×µ2,sgn

]

≃ im[Hk+1
c (Ũrd(D),Q)Sk×µ2,sgn

→ Hk+1
c (Ũmod(D),Q)Sk×µ2,sgn

]. (7.3)

Lemma 7.4. Under the identification (7.3), the action of the conjugation on (Mk)B coincides with that on
Hk+1

B,mid(U, f̃k)
Sk×µ2,sgn.

Proof. We start from the identification of Example A.31. Since the action of Sk × µ2 on A1
t × Gk

m

commutes with conj, we obtain an identification

(Mk)B ≃ Hk+1
B,mid(A

1
t × Gk

m, f̃k)
Sk×µ2,sgn

compatible with conj∗. Since the isomorphism (see [Fresán et al. 2022, Proof of Theorem 3.8])

Hk+1
B,mid(A

1
t × Gk

m, f̃k)
Sk×µ2,sgn

≃ Hk+1
B,mid(U, f̃k)

Sk×µ2,sgn

is clearly compatible with conj∗ the desired result follows. □

The Betti realization is also given by (see (A.22))

(Mk)B ≃ im[Hrd
k+1(U, f̃k)

Sk×µ2,sgn
→ Hmod

k+1(U, f̃k)
Sk×µ2,sgn

]
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and carries the involution F∞ = conj∗. Indeed, the expression (A.24) makes explicit the interpretation of
the elements of Hrd

k+1(U, f̃k) in terms of twisted cycles. It is moreover clear that, in this expression, the
closed subspace ∂rd,RU of U (C), upon which exp(− f̃k) is sufficiently small, is invariant under both the
action of Sk ×µ2 and the complex conjugation on U (C), which thus provides the action of Sk ×µ2 and
F∞ on Hrd

k+1(U, f̃k).

Self-duality and period pairing. The involution ι yields the identifications

µ : Hk+1
? (U, f̃k)−→∼ Hk+1

? (U,− f̃k), ? = ∅, c,

compatible with the action of Sk ×µ2, and leads to the self-duality up to a Tate twist by Q(k + 1) of the
mixed Hodge structure (Mk)H ≃ Hk+1

mid (U, f̃k)
Sk×µ2,sgn.

The nondegenerate period pairing

Prd,mod
: Hrd

k+1(U, f̃k)
Sk×µ2,sgn

⊗ Hk+1
dR (U, f̃k)

Sk×µ2,sgn
→ C,

is computed as follows. Given a twisted cycle

α ∈ Hrd
k+1(U, f̃k)

Sk×µ2,sgn
= Hk+1(Ũrd, ∂Ũrd,Q)Sk×µ2,sgn,

we choose for each large enough R > 0 a representative αR ∈ Hk+1(U, ∂rd,RU,Q) sgn-invariant under
Sk ×µ2. We also represent a de Rham class in the space Hk+1

dR (U, f̃k)
Sk×µ2,sgn by a top differential form

ω on U which is sgn-invariant under Sk ×µ2. Then

Prd,mod(α, [ω])= lim
R→∞

∫
αR

e− f̃k ι∗ω.

7.2. Proof of Theorem 7.1. The goal of this section is to identify the period structure

(Hk+1
dR,mid(U0, f̃k)

Sk×µ2,sgn,Hk+1
B,mid(U, f̃k)

Sk×µ2,sgn, comp)

as defined from Sections A2 and A3 with the transpose of

(H1
dR,mid(Gm,Symk Kl2)Q,Hmid

1 (Gm,Symk Kl2)Q,Pmid
k ),

ending thereby the proof of Theorem 7.1, and to make explicit the action of F∞ on Hmid
1 (Gm,Symk Kl2)Q.

Summary of the proof.

Step 1 We consider the family (w j )0⩽ j⩽k′ in Hk+1
dR (U0, f̃k)

Sk×µ2,sgn as defined in [Fresán et al. 2022,
proof of Proposition 4.21], which has been shown to form a Q-basis of this space.

Step 2 We construct a family of rapid decay cycles (τi ) in Hrd
k+1(U, f̃k)

Sk×µ2,sgn such that the matrix
(Prd,mod(τi , w j ))0⩽i, j⩽k′ is equal to (Prd,mod

k;i, j )0⩽i, j⩽k′ obtained from Propositions 5.4 and 6.2. Since
this matrix is nondegenerate and (w j ) is a basis of Hk+1

dR (U, f̃k)
Sk×µ2,sgn, we conclude that (τi ) is

a basis of Hk+1
rd (U, f̃k)

Sk×µ2,sgn.
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Step 3 According to Remark A.25, the period realization of Hk+1(U0, f̃k)
Sk×µ2,sgn is isomorphic to

(Q · (w j ),Q · (τi ), (P
rd,mod
i, j )0⩽i, j⩽k′),

hence to

(Q · (ω j ),Q · (αi ), (P
rd,mod
k;i, j )0⩽i, j⩽k′),

that is,

(H1
dR(Gm,Symk Kl2)Q,Hrd

1 (Gm,Symk Kl2)Q,P
rd,mod
k ).

Step 4 Owing to the duality argument explained in [Fresán et al. 2023, Lemma 2.27], the same property
holds for the period realization of Hk+1

c (U0, f̃k)
Sk×µ2,sgn and

(H1
dR,c(Gm,Symk Kl2)Q,Hmod

1 (Gm,Symk Kl2)Q,P
mod,rd
k ).

Step 5 That the same property holds true for the period realization of Hk+1
mid (U0, f̃k)

Sk×µ2,sgn and

(H1
dR,mid(Gm,Symk Kl2)Q,Hmid

1 (Gm,Symk Kl2)Q,Pmid
k )

needs a supplementary argument when k ≡ 0 mod 4.

Step 6 Lastly, that conjugation is compatible with these identifications amounts to checking whether the
entries of the period matrix are real or purely imaginary.

A basis of Hk+1
dR (U0, f̃k)

Sk×µ2,sgn. Let us consider the class [ω̃ j ] of

ω̃ j = 21−2 j t2 j−1 dt ∧
dy1

y1
∧ · · · ∧

dyk

yk

in Hk+1
dR (U0, f̃k) and set

w j =
1

2k!

∑
σ∈Sk×µ2

sgn(σ ) · σ([ω̃ j ]) ∈ Hk+1
dR (U0, f̃k)

Sk×µ2,sgn. (7.5)

Through the isomorphism (see [Fresán et al. 2022, Proposition 2.13])

H1
dR(Gm,Symk Kl2)≃ Hk+1

dR (U, f̃k)
Sk×µ2,sgn,

each class [z jvk
0 dz/z] in the basis Bk corresponds to the class w j ; see [loc. cit., proof of Proposition 4.21].

As a consequence, (w j )0⩽ j⩽k′ forms a basis of Hk+1
dR (U0, f̃k)

Sk×µ2,sgn satisfying ι∗w j = w j .

A family of rapid decay cycles. For each i such that 0 ⩽ i ⩽ k ′, we define rapid decay cycles α̃i as follows.
First, let α̃0 be the bounded cycle

α̃0 =

k∏
p=0

cp,
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s0 = 0
s0 = ε

s0 = 1/4

s0 = 1/2 s0 = 1

Figure 1. The path sp 7→ yp(s0, sp) for s0 fixed and r ⩽ p ⩽ k.

where c0 is the circle |t | = 1 and cp is the circle |yp| = 1 for p = 1, . . . , k, both oriented counterclockwise.
For the remaining unbounded cycles, we start with the chain

α̃′

i = [1,+∞)×

( i∏
p=1

cp

)
× (R>0)

k−i

on U (C), where [1,+∞) is relative to the variable t and the open octant (R>0)
k−i is relative to the

variables yp for p = i + 1, . . . , k. The orientation is the natural one on each half-line, and given by the
order of the variables for α̃′

i . Since Re(yp + 1/yp)⩾ −2 on cp and ⩾ 2 on R>0, by noting that k − i > i
for 1 ⩽ i ⩽ k ′, one sees that e− f̃k has rapid decay along α̃′

i . The rapid decay chain α̃′

i has boundary

∂α̃′

i = −{1} ×

( i∏
p=1

cp

)
× (R>0)

k−i ,

and hence is not a cycle. To kill the boundary, we mimic the construction of the cycles αi from
(4.4) by introducing, for each r such that 1 ⩽ r ⩽ k ′, the chain γ̃r defined as the image of the map
[0, 1]

r
× (0, 1)k−r+1

→ U (C) given by

(s0, . . . , sk) 7→



t = e2π is0,

yp = e2π isp 1 ⩽ p ⩽ r − 1,

yp =


e2π is0 · 4sp 0< sp ⩽ 1/4,
e2π is0(2−4sp) 1/4 ⩽ sp ⩽ 3/4,
e−2π is0

(
1 + tan π

2 (4sp − 3)
)

3/4 ⩽ sp < 1,
r ⩽ p ⩽ k.

(See Figure 1.) The chain γ̃r decays rapidly for e− f̃k with boundary

∂γ̃r = {1} ×

( r−1∏
p=1

cp

)
×

k∏
p=r

(R>0 − 2cp)− {1} ×

( r−1∏
p=1

cp

)
× (R>0)

k−r .
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For each integer m ⩾ 1, there is a unique sequence (θm(r))0⩽r⩽m−1 of rational numbers satisfying the
identity

m−1∑
r=0

θm(r)ar
[(a + b)m−r

− bm−r
] = abm−1 (7.6)

in the polynomial ring Q[a, b]. Explicitly, the first two values are θm(0)= 1/m and θm(1)= −1/2 and
the recursion

ℓ−1∑
r=0

(m−r
m−ℓ

)
θm(r)= 0 (7.7)

holds if 1< ℓ < m. Set

θ̃m =

m−1∑
r=0

θm(r)
m − r + 1

.

For each i such that 1 ⩽ i ⩽ k ′, let

α̃i = −(−2)k−i θ̃k−i+1α̃0 +
1

(k − i + 1)!

∑
σ∈Sk−i+1

σ

(
α̃′

i +

k∑
r=i

(−2)r−i−1θk−i+1(r − i)γ̃r

)
,

where the symmetric group S j acts by permuting the last j components. We compute the boundary of
the terms involving γ̃r . Since the average over the group action makes the positions of circles and lines
from ∂γ̃r equidistributed in the last k − i +1 components, for each fixed j such that 1 ⩽ j ⩽ k − i and any
σ ∈ Sk−i+1, the coefficient in the boundary of the term σ

(
{1} ×

∏i+ j−1
p=1 cp ×

∏k
p=i+ j R>0

)
, resulting

from γ̃r for i ⩽ r ⩽ i + j − 1, is equal to

i+ j−1∑
r=i

(−2)r−i−1θk−i+1(r − i)
(k+1−r

i + j −r

)
(−2)i+ j−r

= (−2) j−1
j−1∑
ℓ=0

θk−i+1(ℓ)
(k−i +1−ℓ

j −ℓ

)
=

{
1 if j = 1,
0 if 1< j < k − i + 1,

where the last equality follows from (7.7). One concludes that the α̃i define rapid decay cycles.

Remark 7.8. In fact, θm(r) =
(m

r

)
Br/m if 0 ⩽ r < m, and θ̃m = −Bm/m for all m ⩾ 1. To see this,

plugging a = 1 into (7.6) and summing the resulting equations for b = 1, . . . , n, one obtains

m−1∑
ℓ=0

nm−ℓ

ℓ∑
r=0

(m−r
m−ℓ

)
θm(r)=

n∑
b=1

bm−1,

and hence by Bernoulli’s formula (4.3),

ℓ∑
r=0

(m−r
m−ℓ

)
θm(r)=

(−1)ℓ

m

(m
ℓ

)
Bℓ, 0 ⩽ ℓ < m.
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Using (7.7) and the equalities θm(0)=B0/m, θm(1)=B1 and B2p+1 = 0 for p ⩾ 1, we obtain the identity
for θm(r). Therefore,

θ̃m =
1
m

m−1∑
r=0

1
m − r + 1

(m
r

)
Br =

1
m(m + 1)

m−1∑
r=0

(m+1
r

)
Br ,

and the identity for θ̃m follows from the recursive relation
∑m

r=0
(m+1

r

)
Br = 0 for all m ⩾ 1.

Lemma 7.9. For any positive integer m, the following identity holds in Q[a, b]:

m−1∑
r=0

θm(r)
m − r + 1

ar−1
[(a + b)m−r+1

− bm−r+1
] = θ̃mam

+
bm

m
. (7.10)

Proof. Integrating equation (7.6) with respect to b from 0 to b yields the formula. □

Proposition 7.11. The period pairing

Prd,mod
: Hrd

k+1(U, f̃k)⊗ Hk+1
dR (U, f̃k)→ C

is given on the rapid decay cycles α̃i and the differential forms ω̃ j by

Prd,mod(α̃i , ω̃ j )=


2(2π i)k+1δ0, j if i = 0,
( − 1)k−i BMreg

k (i,−1) if j = 0 and 1 ⩽ i ⩽ k ′,

( − 1)k−i BMk(i, 2 j − 1) if 1 ⩽ i, j ⩽ k ′.

Proof. It is clear that Prd,mod(α̃0, ω̃ j )= 2(2π i)k+1δ0, j .
For the rest, as in the proof of Proposition 6.2, for ε ∈ R>0, we let α̃′

i,ε = εα̃′

i and γ̃r,ε = εγ̃r be the
scalings of α̃′

i and γ̃r , which are homologous to α̃′

i and γ̃r , respectively. Consider the case j = 0. By
the limiting behavior (2.13) and Definition 6.1 of the regularized Bessel moments, we have the limiting
behaviors∫

α̃′

i,ε

e− f̃k ω̃0 = 2k+1(π i)i
∫

∞

ε

I0(t)i K0(t)k−i dt
t

∼ε→0+ (−1)k−i BMreg
k (i,−1)+

(−1)k−i+12k+1(π i)i

k − i + 1
(γ + log(ε/2))k−i+1,∫

γ̃r,ε

e− f̃k ω̃0 = 2k+1(π i)r−1
∫

|t |=ε
I0(t)r−1K0(t)k−r+1 dt

t

∼ε→0+

(−1)k−r+12k+1(π i)r−1

k − r + 2
· [(2π i+ γ + log(ε/2))k−r+2

− (γ + log(ε/2))k−r+2
].

Substituting m = k − i + 1, a = 2π i, and b = γ + log ε/2 into the identity (7.10), one obtains

k∑
r=i

(−2)r−i−1θk−i+1(r − i)
∫
γ̃r,ε

e− f̃k ω̃0

∼ε→0+ −(−2)k−i+1(2π i)k+1θ̃k−i+1 +
(−1)k−i 2k+1(π i)i

k − i + 1
(γ + log(ε/2))k−i+1.
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Letting ε→ 0+ leads to Prd,mod(α̃i , ω̃0)= (−1)k−i BMreg
k (i,−1).

Finally, if 1 ⩽ i, j ⩽ k ′, it is straightforward to verify that

lim
ε→0+

∫
α̃′

i,ε

e− f̃k ω̃ j = (−1)k−i BMk(i, 2 j − 1) and lim
ε→0+

∫
γ̃i,ε

e− f̃k ω̃ j = 0

(similar to the proof of Proposition 5.4), and the remaining case follows. □

Starting from the α̃i , we obtain the following cycles in Hrd
k+1(U, f̃k)

Sk×µ2,sgn:

τ0 =
1
k!

∑
σ∈Sk×µ2

sgn(σ ) · σ(α̃0), τi =
(−1)k−i

2k!

∑
σ∈Sk×µ2

sgn(σ ) · σ(α̃i ) (1 ⩽ i ⩽ k ′).

For each i such that 1 ⩽ i ⩽ k ′, let 0i denote the image of τi in Hmod
k+1(U, f̃k)

Sk×µ2,sgn.

Corollary 7.12. (1) The family (τi )0⩽i⩽k′ forms a basis of Hrd
k+1(U, f̃k)

Sk×µ2,sgn.

(2) The period realizations

• of H1
c(Gm,Symk Kl2) and of Hk+1

c (U0, f̃k)
Sk×µ2,sgn,

• as well as those of H1(Gm,Symk Kl2) and Hk+1(U0, f̃k)
Sk×µ2,sgn,

are isomorphic.

(3) If k is not a multiple of 4, the family (0i )1⩽i⩽k′ forms a basis of (Mk)B. If k is a multiple of 4, the
Q-linear relation

⌊(k−2)/4⌋∑
i=0

( k/2
2i +1

)
02i+1 = 0

holds and (0i )2⩽i⩽k′ forms a basis of (Mk)B. In particular, the period realization of the motive Mk

is isomorphic to

(H1
dR,mid(Gm,Symk Kl2)Q,Hmid

1 (Gm,Symk Kl2)Q,Pmid
k ).

(4) The involution F∞ acts as F∞(0i )= (−1)i0i for all i such that 1 ⩽ i ⩽ k ′.

Proof. For each i such that 0 ⩽ i ⩽ k ′, equation (5.1), Propositions 5.4, 6.2 and 7.11 yield the equality of
periods Prd,mod(τi , w j )= Prd,mod

k (αi , ω j ) for all j such that 0 ⩽ j ⩽ k ′ (with w j defined by (7.5)), from
which (1) follows, as indicated in Step 2 of the summary. The proof of (2) has been explained in Step 3
and Step 4 of the summary.

In view of Theorem 4.7(3) and Proposition 6.10, to prove (3), it suffices to show that Pmid(0i , w j )=

Pmid
k (βi , ω j ) for all i, j such that 1 ⩽ i, j ⩽ k ′. Since 0i and βi are the images of the rapid decay

cycles τi and αi respectively and the pairing Pmid
k is induced by Prd,mod, this amounts to Prd,mod(τi , w j )=

Prd,mod
k (αi , ω j ), which we just checked.
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Finally, the statement about F∞ follows from the fact that the period pairing Prd,mod is compatible with
complex conjugation in that (recall that ι∗w j = w j and conj∗w j = w j ),

Prd,mod(conj∗ τi , w j )=

∫
F∞τi

e− f̃kw j =

∫
conj∗ τi

conj∗(e− f̃kw j )= Prd,mod(τi , w j ) for all i, j,

along with the equality Prd,mod(τi , w j )= (−1)iPrd,mod(τi , w j ) if 1 ⩽ i, j ⩽ k ′, since BMk(i, 2 j − 1) is
real for even i and purely imaginary for odd i . □

8. L-functions of Kloosterman sums and Bessel moments

In this section, we make precise the statement of Deligne’s conjecture for the motive Mk . Being a
classical motive, Mk has an associated L-function L(Mk, s), which is identified in [Fresán et al. 2022,
Theorems 5.8 and 5.17] with the L-function Lk(s) of symmetric power moments of Kloosterman sums,
and its Betti realization (Mk)B carries a pure Hodge structure of weight k + 1. The factor at infinity was
computed in [loc. cit., Corollary 5.30]:

L∞(Mk, s)= π−ms/2
m∏

j=1

0

(
s − j

2

)
, (8.1)

where m = k ′ if k is not a multiple of 4 and m = k ′
−1 otherwise. This also follows from Corollary 7.12(4):

indeed, according to [loc. cit., Theorem 1.8], the only nontrivial Hodge numbers of Mk are

h p,q
=

{
1 for p = 2, . . . , k − 1 if k is odd
1 for min{p, q} = 2, . . . , 2⌊(k − 1/4)⌋ if k is even.

The ordered basis Bk,mid is adapted to the Hodge filtration by Corollary 3.21, and F∞ acts as −1 on
H p,p for k ≡ 3 mod 4, which is what we need for the conclusion.

By [loc. cit., Theorems 1.2 and 1.3], the L-function L(Mk, s) extends meromorphically to the complex
plane and the completed L-function

3(Mk, s)= L(Mk, s)L∞(Mk, s)

satisfies a functional equation relating its values at s and k + 2 − s. The critical integers are the integral
values of s at which neither L∞(Mk, s) nor L∞(Mk, k + 2 − s) has a pole and the critical values are the
values of L(Mk, s) at critical integers.

Deligne’s conjecture [1979, Section 1] predicts that critical values agree, up to a rational factor, with
the determinants of certain minors of the period matrix, which are defined as follows. Let a be an integer,
and let Mk(a)+B and Mk(a)−B denote respectively the invariants and antiinvariants of F∞ acting on Mk(a)B.
As F∞ exchanges the subspaces H p−a,q−a and Hq−a,p−a in the Hodge decomposition and acts as −1 on
H p−a,p−a , the eigenspaces for F∞ have dimensions either

∑
p>q h p−a,q−a or

∑
p⩾q h p−a,q−a , and there

exists unique steps F± Mk(a)dR of the Hodge filtration with dim F± Mk(a)dR = dim Mk(a)±B . If n is a
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k rank critical integers n cn

3 1
2 − 2a 1
2a + 3 π2a D3,odd

4r + 1 2r
2r + 1 π−r(r+1)Dk,odd

2r + 2 π−r(r−1)Dk,even

2r + 1 π−r(r+1)Dk,even

4r + 2 2r 2r + 2 π−r(r+1)Dk,odd

2r + 3 π−r(r−1)Dk,even

4r + 3 2r + 1
2r + 2 π−r(r+1)Dk,even

2r + 3 π−r(r+1)Dk,odd

2r + 1 π−r(r+3)D′

k,even
2r + 2 π−r(r+3)D′

k,odd
4r + 4 2r 2r + 3 π−r(r+1)D′

k,even
2r + 4 π−r(r+1)D′

k,odd
2r + 5 π−r(r−1)D′

k,even

Table 1. Critical integers n and values of cn (r ⩾ 1).

critical integer, Deligne defines

cn = det(Pmid
k (σi , νi )) ∈ C×/Q×

where σi runs through any basis of the Q-linear dual of Mk(k + 1 − n)+B and νi runs through any basis of
F+ Mk(k + 1 − n)dR, see the paragraph before [Deligne 1979, Conjecture 1.8] taking the duality of pure
Hodge structures (Mk)

∨

H
∼= (Mk)H(k +1) from [Fresán et al. 2022, (3.4)] into account. He then conjectures

that L(Mk, n) is a rational multiple of cn .

Notation 8.2. For each k ⩾ 3, the determinants of Bessel moments Dk,odd and Dk,even are defined by the
following formulas:

Dk,odd = det
(∫

∞

0
I0(t)2i−1K0(t)k+1−2i t2 j−1 dt

)
1⩽i, j⩽⌊(k+1/4)⌋

.

Dk,even = det
(∫

∞

0
I0(t)2i K0(t)k−2i t2 j−1 dt

)
1⩽i, j⩽⌊k/4⌋

.

(8.3)

In other words, Dk,odd, resp. Dk,even, is obtained by extracting from Pmid
k the entries that belong to odd,

resp. even, lines and to the first ⌊(k + 1/4)⌋, resp. ⌊k/4⌋, columns. If k is a multiple of 4, we let D′

k,odd

and D′

k,even be the determinants of the same matrices except that we remove the last row and column, i.e.,
those indexed by i = j = k/4.

Theorem 8.4. For k = 3 or k ⩾ 5, the critical integers n for L(Mk, s) and the corresponding values cn

are given by Table 1.
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Proof. The case k = 3 is exceptional in that there exist infinitely many critical integers, namely all even
integers ⩽ 2 and all odd integers ⩾ 3. For each k ⩾ 5, a straightforward computation using (8.1) yields the
list of critical integers. To compute cn , we first exhibit a basis of the Q-linear dual of Mk(a)+B by means
of Corollary 7.12. If k is not a multiple of 4, a basis is given by {(2π i)−a02i }1⩽i⩽⌊k′/2⌋ if a is even and
by {(2π i)−a02i−1}1⩽i⩽⌊(k′+1/2)⌋ if a is odd. If k is a multiple of 4, say k = 4r + 4, then the Q-linear dual
of Mk(a)+B has basis {(2π i)−a02i }1⩽i⩽r if a is even and {(2π i)−a02i+1}1⩽i⩽r if a is odd, which shows
that Mk(a)+B always has dimension r .

Let us treat the case k = 4r +3 in detail. For n = 2r +2, the eigenspace Mk(2r +2)+B has dimension r ,
and hence F+ Mk(2r + 2)dR is spanned by {w j }1⩽ j⩽r . Therefore, c2r+2 is the determinant of the matrix
with entries

(2π i)−(2r+2)Prd,mod(02i , w j )∼Q× π2(i−r−1)
∫

∞

0
I0(t)2i K0(t)k−2i t2 j−1 dt,

from which we get c2r+2 = π−r(r+1)Dk,even. For n = 2r + 3, the eigenspace Mk(2r + 1)+B has dimension
r + 1, and hence F+ Mk(2r + 1)dR is spanned by {w j }1⩽ j⩽r+1. With respect to these bases, the matrix
defining c2r+3 has entries

(2π i)−(2r+1)Prd,mod(02i−1, w j )∼Q× π2(i−r−1)
∫

∞

0
I0(t)2i−1K0(t)k+1−2i t2 j−1 dt,

which gives c2r+3 = π−r(r+1)Dk,odd. The cases k = 4r + 1 and k = 4r + 2 are completely parallel.
For k = 4r + 4 and any critical value n, the eigenspace Mk(4r + 5 − n)+B has dimension r , and hence

F+ Mk(4r + 5 − n)dR is spanned by {w j }1⩽ j⩽r (note that r < k/4, so that we do not need to modify
the ω). If n is odd, cn is the determinant of the matrix with entries

(2π i)−(4r+5−n)Prd,mod(02i , w j )∼Q× π2i+n−4r−5
∫

∞

0
I0(t)2i K0(t)k−2i t2 j−1 dt,

thus yielding

c2r+1 = π−r(r+3)D′

k,even, c2r+3 = π−r(r+1)D′

k,even, and c2r+5 = π−r(r−1)D′

k,even.

If n is even, the matrix has entries

(2π i)−(4r+5−n)Prd,mod(02i+1, w j ).

Thanks to the linear relation from Corollary 7.12(3), the determinant of this matrix agrees up to a rational
number with that of

π2i+n−4r−6
∫

∞

0
I0(t)2i−1K0(t)k+1−2i t2 j−1 dt,

which gives the remaining values

c2r+2 = π−r(r+3)D′

k,odd and c2r+4 = π−r(r+1)D′

k,odd. □
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Remark 8.5. Besides the case k = 3, in which L3(s) = L(χ3, s − 2) is a shifted Dirichlet L-function,
Deligne’s conjecture holds for k = 5, 6, 8. In all three cases, Lk(s) is the L-function of a modular form
evaluated at s − 2 (see [Fresán et al. 2022, Table 1]) and the matrices in (8.3) have size one. The critical
values have been expressed in terms of Bessel moments in [Bloch et al. 2015; Zhou 2018a; 2019b],
thus confirming the conjecture. The first case where a true determinant is expected to occur is L7(5),
which is a critical value of the L-function of the symmetric square of a modular form. Other numerical
confirmations of Deligne’s conjecture for k ⩽ 24 appear in [Broadhurst and Roberts 2019].

Remark 8.6. Broadhurst and Roberts conjecture that, for k ⩾ 12 a multiple of 4, the L-function L(Mk, s)
always vanishes at the central point s =

1
2(k+2), even when the expected sign of the functional equation (see

[Fresán et al. 2022, below Theorem 1.3]) is positive. According to Beilinson’s conjecture, this vanishing
should be explained by the existence of certain nontrivial extension of Mk by Q(−k/2). It seems possible
to construct such an extension by considering the quotient of the cohomology with compact support of
Symk Kl2 by its weight zero piece and to relate its nonsplitting to the shape of the full period matrix Pmod,rd

k

from Section 6, Indeed, suppose 4 | k. The Nori motive M̃k = (Hk−1
c (K0)/W0)

Sk×µ2,sgn(−1), where W0

denotes the weight zero part, is an extension of Mk by a rank-one motive E of weight k. It has been
shown in the proof of [loc. cit., Theorem 5.17] (see especially the discussion of the terms (E1,k−2

∞
)

G,χ
Fp

and
ker(β)G,χ/W0) that as a representation of Gal(Qp/Qp), the ℓ-adic étale realization of E is isomorphic to
Qℓ(−k/2) for all primes p ⩾ 3 and ℓ ̸= p. Since the Frobenius elements of characteristic p ⩾ 3 are dense
in Gal(Q/Q), one obtains an isomorphism E ≃ Q(−k/2). From the viewpoint of the period realization,
the nonsplitting of the extension M̃k amounts to the claim that the entries of the last row of the period
matrix Pmod,rd

k span a Q-space of dimension at least two in C by Proposition 6.5(2). Concretely, the latter
holds if and only if the moments BMk(k/2, 2 j − 1) and BMreg

k (k/2, k ′
+ 2 j), for 1 ⩽ j < k/4, are not all

in (2π i)k/2Q (rational multiples of the entry Pmod,rd
k;k/2,k/4). Such nonsplitting has been verified numerically

for the period matrix Pk of M̃∨

k(−k − 1) by Broadhurst and Roberts; see [Roberts 2017, Section 2].

Appendix: Period realization of an exponential mixed Hodge structure

by Claude Sabbah

This appendix can be regarded as a complement, with respect to period structures, to the appendix in
[Fresán et al. 2022]. We consider the abelian category Per of period structures, whose objects consist
of pairs (V C, VQ) consisting of a finite dimensional C-vector space V C, a finite dimensional Q-vector
space VQ, together with an isomorphism

comp : C ⊗Q VQ −→∼ V C

and whose morphisms are the natural ones. There is a natural forgetful functor Per : MHS → Per from
the category of Q-mixed Hodge structures to that of period structures.



Quadratic relations between Bessel moments 589

A1. The fiber period realization of an exponential mixed Hodge structure. Let X be a complex smooth
quasiprojective variety and let N H be an object of the abelian category MHM(X) of Q-mixed Hodge
modules on X . It consists of a triple ((N , F • N ), (FQ,W•FQ), compX ), where

• (N , F • N ) is a holonomic DX -module endowed with a coherent filtration,

• (FQ,W•FQ) is a Q-perverse sheaf on X an endowed with an increasing filtration by Q-perverse
subsheaves,

• and the comparison isomorphism compX is an isomorphism C ⊗Q FQ −→∼
pDR N , where pDR N is

the shifted de Rham complex DR N [dim X ].

These data are subject to various compatibility relations that we do not make explicit here, referring to
[Saito 1990; 2017] for details. From the mixed Hodge module N H we only retain the triple Per(N H) :=

(N ,FQ, compX ) by forgetting the Hodge and weight filtrations.
For example, let us consider the pure Hodge module pQH

X , with underlying DX -module equal to OX

and underlying perverse sheaf pQX = QX [dim X ]. The comparison isomorphism is induced by the
isomorphism CX = H 0 DR OX −→∼ DR OX .

Let A1
θ be the affine line with coordinate θ . The Q-linear neutral Tannakian category EMHS (exponential

mixed Hodge structures), as defined in [Kontsevich and Soibelman 2011, Section 4], is the full subcategory
of MHM(A1

θ ) consisting of objects N H whose underlying perverse sheaf has vanishing global cohomology,
with tensor structure given by the additive convolution ⋆. Denoting by j : Gm → A1 the inclusion, one
defines a projector

5 : MHM(A1)→ EMHS, N H
7→ N H ⋆ H j!pQH

Gm
,

consisting in neglecting constant mixed Hodge modules on A1.
For an object N H in EMHS, its de Rham fiber is the C-vector space defined as

H1
dR(A

1
θ , N ⊗ Eθ )= H0 aA1

θ ,+
(N ⊗ Eθ ),

where Eθ is the connection (OA1
θ
, d+ dθ) and aA1

θ
denote the structure morphism of A1

θ . This vector space
is endowed with a filtration, called the irregular Hodge filtration; see [Fresán et al. 2022, Section A.3].

In order to define the Betti fiber functor, we consider the real oriented blowing-up ϖ : P̃1
→ P1 of P1

at ∞ and the open subset P̃1
mod = A1 an

∪ ∂modP̃1 in the neighborhood of which e−θ has moderate growth,
equivalently rapid decay, i.e., defined by Re(θ) > 0. Let us denote the open inclusions A1 an ↪→ P̃1

mod and
P̃1

mod ↪→ P̃1 respectively by α and β. The Betti fiber of N H is defined as

H0(P̃1, β! Rα∗FQ)= H0
c(P̃

1
mod, Rα∗FQ).

Let us notice that these definitions can be extended to all objects N H of MHM(A1
θ ) and then the

corresponding vector spaces only depend on 5(N H) since Hr
dR(A

1
θ , Eθ )= 0 for all r .

In order to define the comparison isomorphism, we first recall that the de Rham fiber H1
dR(A

1
θ , N ⊗ Eθ )

can be computed as the hypercohomology of the moderate de Rham complex DRmod(N ⊗ Eθ ) on P̃1,
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that is there exists a canonical functorial isomorphism (see e.g., [Fresán et al. 2023, Section 2.e])

H1
dR(A

1
θ , N ⊗ Eθ )≃ H0(P̃1, pDRmod(N ⊗ Eθ )). (A.1)

Furthermore:

Lemma A.2. There exists a unique isomorphism

β! Rα∗ DRan(N )≃ DRmod(N ⊗ Eθ )

extending the identity on the analytic complex line A1 an.

Proof. Indeed, let us recall (see [loc. cit.]) that DRmod(N ⊗ Eθ ) has cohomology in degree zero only.
Then one can easily show that its H 0 is zero on the complement of P̃1

mod, so that the natural morphism

β!β
−1 DRmod(N ⊗ Eθ )→ DRmod(N ⊗ Eθ )

is an isomorphism. One then shows in the same way that

β−1 DRmod(N ⊗ Eθ )= Rα∗α
−1β−1 DRmod(N ⊗ Eθ ).

Uniqueness follows from the adjunction formulas [Kashiwara and Schapira 1990, (2.3.6) and (3.0.1)]. □

On the other hand, termwise multiplication by e−θ induces an isomorphism

pDRan(N )−→∼
pDRan(N ⊗ Eθ ).

As a consequence, there exists a unique isomorphism

compP̃1 : β! Rα∗FC →
pDRmod(N ⊗ Eθ )

extending e−θ
◦ compA1 an . This morphism is thus functorial with respect to N H.

Definition A.3 (fiber period structure FPer(N H)). Let N H
= (N ,FQ, compA1 an) be an object of EMHS:

(1) The fiber comparison isomorphism

comp : C ⊗ H0(P̃1, β! Rα∗FQ)→ H1
dR(A

1
θ , N ⊗ Eθ )

is the composition of H0(P̃1, compP̃1) with that given by (A.1).

(2) The fiber period structure FPer(N H) of an exponential mixed Hodge structure N H is the following
object of the category Per:

FPer(N H)= (H1
dR(A

1
θ , N ⊗ Eθ ),H0(P̃1, β! Rα∗FQ), comp).

In the following, we also regard FPer as a functor defined on MHM(A1
θ ) by factorizing through EMHS

by 5. The following lemma is then obvious.

Lemma A.4. The assignment FPer defines an exact functor MHM(A1
θ )→ Per factoring through 5, and

there is an isomorphism of functors to the category Per:

FPer(N H)≃
(
H0(P̃1, β! Rα∗

pDRan(N ⊗ Eθ )),H0(P̃1, β! Rα∗FQ),H0(P̃1, β! Rα∗(e−θ
◦ compA1 an))

)
.
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On the other hand, let i0 : {0} ↪→ A1 be the closed embedding. The abelian category MHS=MHM({0})

of mixed Hodge structures is identified with a full subcategory of MHM(A1) and of EMHS via the
pushforward Hi0! of mixed Hodge modules and the composition 5 ◦ Hi0!, respectively.

Proposition A.5. There is a commutative diagram of functors:

MHS

Per

��

5◦Hi0!
// EMHS

FPer

yy

Per

Proof. This follows from the tautological identification for a vector space V over either Q or C

H0
c(P̃

1
mod, Rα∗ Ri0!V )= V,

which commutes with change of base field. □

A2. Computation of the fiber comparison isomorphism for a Gauss–Manin exponential mixed Hodge
structure. Let f : X → A1

θ be a projective morphism from a smooth quasiprojective variety X to the
affine line A1

θ . We denote the pushforward functor Db(MHM(X))→ Db(MHM(A1
θ )) by H f∗; see [Saito

1990, Theorem 4.3]. For each object N H of MHM(X) and each integer r , we consider the mixed Hodge
module H r

H f∗N H that we simply denote by H f r
∗

N H. We will compute its fiber period structure by means
of cohomology on a suitable real blow-up space.

For that purpose, consider a smooth projective compactification f̄ : X → P1 of X and f giving rise to
a commutative diagram

X

f
��

� � j
// X

f̄
��

A1
θ
� � // P1

such that the pole divisor P = f̄ −1(∞) is a strict normal crossing divisor in X . We denote by ϖ :

X̃(P) → X the real-oriented blowing-up of X along the irreducible components of P . Then f̄ lifts
as a real-analytic morphism f̃ : X̃(P) → P̃1. In this section, we set X̃ = X̃(P). We define the open
subset ∂mod X̃ of ∂ X̃ =ϖ−1(P) as consisting of points of ϖ−1(P) in the neighborhood of which e− f

has moderate growth — equivalently, rapid decay — so that ∂mod X̃ = f̃ −1(∂modP̃1). The subset

X̃mod := X ∪ ∂mod X̃ = f̃ −1(P̃1
mod)

is open in X̃ . We also denote by α, β the respective open inclusions

X α
↪−→ X̃mod

β
↪−→ X̃ .
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As in Section 2.1, we set E f
= (OX , d+ d f ) and, for a DX -module N regarded as an OX -module with

flat connection ∇, we set N ⊗ E f
= (N ,∇ + d f ). To a mixed Hodge module N H on X we associate a

period structure in Per as follows. The vector spaces are (the perverse convention is used here)

pHr
dR(X, N ⊗ E f ) := Hr (X, pDRX (N ⊗ E f )),

pHr
B(X,FQ ⊗ E f ) := Hr (X̃ , β! Rα∗FQ)= Hr

c(X̃mod, Rα∗FQ).

In order to make the comparison isomorphism explicit, we need the following proposition. We note
that termwise multiplication by the holomorphic function e− f induces an isomorphism pDRan

X N −→∼

pDRan
X (N ⊗ E f ). On the other hand, we endow X̃ with the sheaf A mod

X̃
of holomorphic functions on X

having moderate growth along ∂ X̃ . Then any DX -module M has a (shifted) moderate de Rham complex
pDRmod

X̃
M on X̃ ; see e.g., [Fresán et al. 2023, Section 2.e]. We also denote by j : X → X̃ the inclusion.

Proposition A.6. For a regular holonomic DX -module N , the following two natural morphisms

β!β
−1pDRmod

X̃ j+(N ⊗ E f )→
pDRmod

X̃ j+(N ⊗ E f ),

β−1pDRmod
X̃ j+(N ⊗ E f )→ Rα∗α

−1β−1pDRmod
X̃ j+(N ⊗ E f )

are quasiisomorphisms.

Sketch of proof. A similar result is proved in [Sabbah 1996] (proof of Theorem 5.1) but the definition of
the sheaf of functions with moderate growth used there is more restrictive than the one needed for our
purposes. Instead, one uses computations similar to those of [Hien 2007, Proposition 3.3] (see also [Hien
2009, Proposition 1]) together with [Mochizuki 2014, Corollary 4.7.3]. □

We conclude that there is a natural isomorphism

β! Rα∗
pDRan

X (N ⊗ E f )−→∼
pDRmod

X̃ j+(N ⊗ E f ) (A.7)

in the derived category Db(CX ), which is functorial with respect to N . Moreover, by the arguments of
adjunction already used in the proof of Lemma A.2, this is the unique isomorphism extending the identity
on X .

Corollary A.8. For a mixed Hodge module N H
∈ MHM(X) there exists a unique isomorphism

compX̃ : β! Rα∗FC →
pDRmod

X̃ j+(N ⊗ E f )

which extends e− f
◦ compX : FC →

pDRan
X (N ⊗ E f ). We have

compX̃ = (A.7) ◦β! Rα∗(e− f
◦ compX ).

This morphism is functorial on MHM(X). □

In a way similar to (A.1), one shows that, for any r , there exists a canonical isomorphism

canr : Hr (X̃ , pDRmod
X̃ j+(N ⊗ E f ))≃ Hr (X , pDRX j+(N ⊗ E f ))

= Hr (X, pDRX (N ⊗ E f ))=:
pHr

dR(X, N ⊗ E f ).
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Definition A.9. Let N H be an object of MHM(X). For each r (the perverse convention is used here), the
fiber period structure FPerr (N H

⊗ E f ) is defined as

FPerr (N H
⊗ E f )= (pHr

dR(X, N ⊗ E f ),Hr
B(X,FQ ⊗ E f ), canr ◦

pHr (X̃ , compX̃ )).

Lemma A.10 (expression of FPerr (N H
⊗ E f ) on the real blow-up). For each r , there is an isomorphism

in Per:

FPerr (N H
⊗E f )≃

(
Hr (X̃ , β! Rα∗

pDRan
X j+(N⊗E f )v),Hr (X̃ , β! Rα∗FQ),Hr (X̃ , β! Rα∗(e− f

◦compX ))
)
.

Proof. The isomorphism is the identity on the middle term and the isomorphism on the left term is given
by canr ◦ Hr (X̃ , (A.7)). □

We then deduce that the fiber period structure FPerr (N H
⊗ E f ) is isomorphic to that attached to the

exponential mixed Hodge structure 5(H f r
∗

N H):

Proposition A.11. For each r , there is a functorial isomorphism of fiber period structures:

FPer(H f r
∗

N H)≃ FPerr (N H
⊗ E f ).

Proof. By definition, the comparison isomorphism compA1
θ

for H f j
∗ N H is obtained by taking the j-th

perverse cohomology of the composed isomorphism

R f∗FC
R f∗ compX

−−−−−−−→ R f∗pDRan N −→∼
pDRan f+N ,

where the second morphism is the standard functorial isomorphism from D-module theory. We also have
a commutative diagram:

R f∗pDRan N

R f∗e− f

��

// pDRan f+N

e−θ

��

R f∗pDRan(N ⊗ E f ) // pDRan(( f+N )⊗ Eθ )

We now take the models of Lemmas A.4 and A.10 and the desired isomorphism is obtained (after applying
R0(P̃1, · ) and taking cohomology) from the canonical isomorphism of functors

R f̃∗ ◦β! Rα∗ ≃ β! Rα∗ R f∗

from Db(CX ) to Db(CP̃1), that we recall now. We consider the two commutative squares:

X �
� α

//

f
��

X̃mod
� � β

//

f̃mod
��

X̃

f̃
��

A1
θ
� � α

// P̃1
mod
� � β

// P̃1

Since f̃ is proper, we have a canonical isomorphism of functors R f̃∗ ◦β! ≃ β! ◦ R f̃mod ∗, and on the other
hand we have R f̃mod ∗ ◦ Rα∗ ≃ Rα∗ ◦ R f̃∗. □



594 Appendix by Claude Sabbah

A3. Fiber period realization of a pair (U, f ).

Application of the results of Section A2. Let U be a smooth complex quasiprojective variety of dimension d
and let f : U → A1

θ be a regular function. Starting with the mixed Hodge module pQH
U , we aim at giving

a formula for the fiber period structure of the exponential mixed Hodge structures associated with the
pushforward mixed Hodge modules H f r

∗
pQH

U and H f r
!

pQU (r ∈ Z). For that purpose, it is convenient to
choose a partial completion κ : U ↪→ X of U as a smooth quasiprojective variety X so that H = X \U is
a strict normal crossing divisor and that f extends as a projective morphism f : X → A1

θ . The result will
be independent of such a choice. The commutative diagram used in Section A2 is thus completed on the
left as follows:

U

f
��

� � κ // X

f
��

� � j
// X

f̄
��

A1
θ A1

θ
� � // P1

We consider the objects N H of MHM(X) defined as N H
= Hκ∗

pQH
U or N H

= Hκ!
pQH

U . Correspondingly,
we write N ⊗ E f as E f (∗H) or E f (!H) and we have FQ = Rκ∗

pQU or Rκ!
pQU . In this way, we are in

the setting of Section A2.
We denote respectively by Hr (U, f ) and Hr

c(U, f ) the exponential mixed Hodge structure5(H f r−d
∗

pQH
U )

and 5(H f r−d
!

pQH
U ), and

Hr
mid(U, f )= im[Hr

c(U, f )→ Hr (U, f )]. (A.12)

We denote respectively the associated de Rham fibers by Hr
dR(U, f ) and Hr

dR,c(U, f ), and the Betti fibers
by Hr

B(U, f ) and Hr
B,c(U, f ). We then have

Hr
dR(U, f )≃ Hr (X,DR(E f (∗H))), Hr

dR,c(U, f )≃ Hr (X,DR(E f (!H))).

Keeping the notation of Section A2 for α, β (and emphasizing now the divisor P), we have by
Proposition A.11

Hr
B(U, f )= Hr (X̃(P), β! Rα∗ Rκ∗QU ), Hr

B,c(U, f )= Hr (X̃(P), β! Rα∗ Rκ!QU ).

We set Ũmod(P)= X̃mod(P) \ϖ−1(H) and we denote by 8 the family of closed subsets of Ũmod(P)
whose closure in X̃ is contained in the open subset X̃mod(P).

Proposition A.13. We have

Hr
B(U, f )≃ Hr

8(Ũmod(P),Q) and Hr
B,c(U, f )≃ Hr

c(Ũmod(P),Q),

and the natural morphism Hr
B,c(U, f )→ Hr

B(U, f ) is induced by the inclusion of the families of supports.

Remark A.14. Setting Ũ (P)= X̃(P) \ϖ−1(H) and denoting by ∂exp X̃(P), respectively ∂expŨ (P), the
closed subset complement to X̃mod(P) in X̃(P), respectively to Ũmod(P) in Ũ (P), the spaces Hr

B(U, f )
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and Hr
B,c(U, f ) also read in terms of relative cohomology

Hr
B(U, f )≃ Hr (Ũ (P), ∂expŨ (P),Q), Hr

B,c(U, f )≃ Hr (X̃(P), ∂exp X̃(P)∪ϖ−1(H),Q),

and the natural morphism between both is induced by the inclusion of pairs (Ũ (P), ∂expŨ (P)) ↪→
(X̃(P), ∂exp X̃(P)), so that Hr

B,mid(U, f ) is the corresponding image, according to (A.12).

Proof of Proposition A.13. In the proof, we simply set X̃ = X̃(P). With the notation above, we consider
the commutative diagram

U �
� αU

//
� _

κ

��

Ũmod
� � βU

//
� _

κ̃ ′

��

Ũ� _
κ̃
��

∂expŨ? _
γU

oo

� _

��

X �
� α

// X̃mod
� � β

// X̃ ∂exp X̃? _
γ

oo

where the first line is obtained from the second one by deleting ϖ−1(H).
For the identification of Hr

B(U, f ), we need the next lemma.

Lemma A.15. For ⋆= ∗ or ⋆= !, there is an isomorphism in Db(X̃ ,Q)

Rκ̃⋆βU ! RαU∗QU ≃ β! Rα∗ Rκ⋆QU .

Proof. We can replace Rα∗ Rκ⋆ with Rκ̃ ′
⋆RαU∗. Furthermore, a local computation shows that

RαU∗QU = QŨmod
= β−1

U QŨ and (RβU ◦ RαU )∗QU = QŨ .

We are thus reduced to finding an isomorphism Rκ̃⋆βU !QŨmod
≃ β! Rκ̃ ′

⋆QŨmod
. Let us first construct a

morphism. There is a natural morphism

Rκ̃⋆βU !QŨmod
→ Rκ̃⋆RβU∗QŨmod

≃ Rβ∗ Rκ̃ ′

⋆QŨmod

and this morphism can be lifted as a morphism to β! Rκ̃ ′
⋆QŨmod

if and only if its restriction by γ is zero.
Clearly, γ−1 Rκ̃⋆βU !QŨmod

is zero on ∂expŨ and we need to check that the same property holds true on
ϖ−1(H)∩ ∂exp X̃ . The question reduces to a local computation in the neighborhood of each point of
P ∩ H in X . We thus work in an adapted coordinate neighborhood 1d of such a point. We can write
1d

=1ℓ ×1d−ℓ, with P ∩1d
= P ′

×1d−ℓ defined by the vanishing of the product of coordinates in
1ℓ and H ∩1d

=1ℓ× H ′′ defined by the vanishing of the product of some coordinates in 1d−ℓ. In this
model, the real blowing-up ϖ : 1̃ℓ×1d−ℓ

→1ℓ×1d−ℓ is induced by the real blowing-up of 1ℓ along
its coordinates hyperplanes. In restriction to this chart we have U =1ℓ × (1d−ℓ

\ H ′′) and

X̃mod = (1̃ℓ)mod ×1d−ℓ, Ũmod = (1̃ℓ)mod × (1d−ℓ
\ H ′′),

∂exp X̃ = ∂exp(1̃
ℓ)×1d−ℓ, ∂expŨ = ∂exp(1̃

ℓ)× (1d−ℓ
\ H ′′).

(A.16)

The assertion is then clear since the morphisms βU and κ̃ act on disjoint sets of variables. With the same
local computation, one checks that the morphism thus obtained is an isomorphism. □
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We can now conclude the proof for Hr
B(U, f ). From the previous lemma with ⋆= ∗ we deduce

Hr (X̃ , β! Rα∗ Rκ∗QU )≃ Hr (X̃ , Rκ̃∗βU ! RαU∗QU )= Hr (Ũ , βU !QŨmod
),

and the assertion is then clear. On the other hand, the distinguished triangle in Db(Ũ ,Q)

βU !β
−1
U QŨ → QŨ → RγU∗γ

−1
U QŨ

+1
−→

gives the expression of Hr
B(U, f ) in terms of relative cohomology as asserted in Remark A.14.

For Hr
B,c(U, f ), the previous lemma with ⋆= ! gives similarly

Hr (X̃ , β! Rα∗κ!QU )≃ Hr (X̃ , (κ̃ ◦βU )! RαU∗QU )= Hr
c(Ũmod,Q). □

Remark A.17. Let Z ⊂ U be a divisor on which f vanishes, let aZ denote the structure morphism, let
iZ :Z ↪→ U denote the closed inclusion and jZ :U \ Z ↪→ U the complementary open inclusion. We set
pQH

Z = Ha∗

Z QH
Spec C

[dim Z ], so that there is an isomorphism

Hi∗

Z
pQH

U = H 0
Hi∗

Z
pQH

U ≃
pQH

Z

and an exact sequence

0 → HiZ∗
pQH

Z → H jZ !H j∗

Z
pQH

U →
pQH

U → 0,

giving rise to an exact sequence in EMHS, see [Fresán et al. 2022, (A.21)],

· · · → Hr−1
c (Z)→ Hr

c(U \ Z , f )→ Hr
c(U, f )→ Hr

c(Z)→ · · · .

If Hr
c(U \Z , f )=0 for each r , the exponential mixed Hodge structure Hr

c(U, f ) is isomorphic to the mixed
Hodge structure Hr

c(Z) and, correspondingly, the fiber period structure FPer(Hr
c(U, f )) is isomorphic

to Per(Hr
c(Z)). We will make explicit this exact sequence for the Betti fibers. Since f̄ : X → P1 is a

morphism, we have Z ∩ P = ∅. We have a distinguished triangle

β! Rα∗ RiZ∗QZ → β! Rα∗ jZ !QU\Z → β! Rα∗QU
+1
−→

and since the closure of Z in X̃(P) does not intersect ∂ X̃(P), we find

β! Rα∗ RiZ∗QZ = β! Rα! RiZ∗QZ and β! Rα∗ jZ !QU\Z = βZ !QŨmod(P)\Z ,

where βZ is the inclusion Ũmod(P) \ Z ↪→ X̃(P). The Betti exact sequence reduces then to

· · · → Hr−1
c (Z ,Q)→ Hr

c(Ũmod(P) \ Z ,Q)→ Hr
c(Ũmod(P),Q)→ Hr

c(Z ,Q)→ · · · . (A.18)

Computation with the total real blow-up. In order to use results of [Fresán et al. 2023], we consider the
real blowing-up π : X̃(D)→ X of the irreducible components of D = P ∪ H in X . There is a natural
morphism ϖ̃ : X̃(D)→ X̃(P), so that π =ϖ ◦ ϖ̃ . In a local chart where formulas (A.16) hold, ϖ̃ is the
blowing-up map of the components of H ′′ in 1d−ℓ:

X̃(D)= 1̃ℓ × 1̃d−ℓ
→ 1̃ℓ ×1d−ℓ

= X̃(P).
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We consider the open subsets Ũmod(D)= U ∪ ∂mod X̃(D) and Ũrd(D)= U ∪ ∂rd X̃(D), where:

• ∂mod X̃(D) is the open subset of π−1(D) in the neighborhood of which e− f has moderate growth
(it contains π−1(D \ P)).

• ∂rd X̃(D) is the open subset of π−1(P) in the neighborhood of which e− f has moderate growth,
equivalently, rapid decay.

In the local chart as above, these sets read

Ũmod(D)= (1̃ℓ)mod × 1̃d−ℓ, Ũrd(D)= (1̃ℓ)mod × (1d−ℓ
\ H ′′).

For the sake of simplicity, we denote by QŨmod(D) the sheaf on X̃(D) which is the extension by zero of
the constant sheaf on Ũmod(D) with stalk Q (notation of [Kashiwara and Schapira 1990]), and similarly
with rd. From the previous identifications with now α : X ↪→ X̃mod(D) and β : X̃mod(D) ↪→ X̃(D), we
obtain

Rϖ̃∗QŨmod(D) = β! Rα∗ Rκ∗QU , Rϖ̃∗QŨrd(D) = QŨmod(P)

(in fact ϖ̃ : Ũrd(D)→ Ũmod(P) is an isomorphism). Therefore,

Hr
B(U, f )≃ Hr

c(Ũmod(D),Q) and Hr
B,c(U, f )≃ Hr

c(Ũrd(D),Q). (A.19)

Let 8rd (resp. 8mod) denote the family of closed subsets F of U whose (compact) closure F in X̃(D)
is contained in Ũrd(D) (resp. Ũmod(D)). A closed set F of U belongs to 8rd (resp. 8mod) if and only if
|exp(− f )||F tends to zero faster than any positive power of dist(x, xo) (resp. is bounded by some negative
power of dist(x, xo)) when x ∈ F tends to some xo ∈ D. Then the right-hand sides in (A.19) read

Hr
c(Ũmod(D),Q)= Hr

8mod
(U,Q), Hr

c(Ũrd(D),Q)= Hr
8rd
(U,Q), (A.20)

and, by considering the natural morphism induced by the inclusion of family of supports, we have

Hr
B,mid(U, f )= im[Hr

8rd
(U,Q)→ Hr

8mod
(U,Q)]. (A.21)

Rapid decay and moderate growth homology spaces for the pair (U, f ). If 1 denotes the generator of
E f

= (OU , d+ d f ), then exp(− f ) · 1 is an analytic flat section of E f . The moderate growth and the
rapid decay homology spaces of the pair (U, f ), as defined in [Fresán et al. 2023], are the homology of
the chain complexes consisting of singular chains in X̃(D) with boundary in ∂ X̃(D) twisted by the flat
section exp(− f ) · 1, whose support is contained in Ũmod(D) and Ũrd(D), respectively. The flat section
being fixed, we get identifications with relative homology spaces

Hmod
r (U, f )≃ Hr (Ũmod(D), ∂Ũmod(D),Q) and Hrd

r (U, f )≃ Hr (Ũrd(D), ∂Ũrd(D),Q). (A.22)

Notation A.23. For the sake of simplicity, we omit the flat section exp(− f ) · 1 in the notation of such
twisted chains, that we simply call respectively rapid decay and moderate chains (we will not make use
of the latter).
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We have a more explicit expression of the rapid decay homology as follows. By suitably lifting to
X̃(D) the radial vector field of length one centered at ∞ ∈ P1 so that it remains tangent to π−1(D \ P),
and by following its flow, we obtain for every large enough R > 0 a deformation retraction of the pair
(Ũrd(D), ∂RŨrd(D)) to the pair (Ũrd(D), ∂Ũrd(D)), where the thickened boundary ∂RŨrd(D) is defined
as Ũrd(D)∩ {| f | ⩾ R} ∩ {Re( f ) > 0}. Setting

∂rd,RU = U ∩ ∂RŨrd(D)= U ∩ {| f | ⩾ R} ∩ {Re( f ) > 0}, R ≫ 0,

by excision of ∂Ũrd(D), we obtain (for R ≫ 0)

Hrd
r (U, f )≃ Hr (Ũrd(D), ∂Ũrd(D),Q)≃ Hr (Ũrd(D), ∂RŨrd(D),Q)≃ Hr (U, ∂rd,RU,Q). (A.24)

Remark A.25 (period pairing and period realization). Working with the transposed period structures as
in [Fresán et al. 2023, Proposition 2.28], and considering rapid decay and moderate growth homology,
one can show that there exist isomorphisms of (the transposes of) period structures

FPer Hr (U, f )≃ (Hr
dR(U, f ),Hrd

r (U, f ),Prd,mod
r ),

FPer Hr
c(U, f )≃ (Hr

dR,c(U, f ),Hmod
r (U, f ),Pmod,rd

r ),

FPer Hr
mid(U, f )≃ (Hr

dR,mid(U, f ),Hmod
r (U, f ),Pmid

r ).

A4. Period structures over the category of varieties and morphisms defined over Q. In this section,
we denote by U0 a variety defined over Q and by U the variety defined over C after extension of scalars
from Q to C. When working over varieties and morphism defined over Q, that is, smooth separated
schemes of finite type over Q and separated morphisms (e.g., U0 is An or Gn

m and f is a polynomial or
a Laurent polynomial with rational coefficients), we are led to consider period structures over Spec Q.
Such a period structure consists of a pair of finite-dimensional Q-vector spaces (V0, VQ) together with a
comparison isomorphism comp : C ⊗Q VQ ≃ C ⊗Q V0 = V C.

Q-structure on the de Rham cohomology. We fix a good compactification

j : (U0, f ) ↪→ (X0, f̄ ),

that is, such that D0 = X0 \ U0 is a divisor with strict normal crossings (i.e., such that the irreducible
components over Q are smooth and intersect transversally). We work with the corresponding category
of D-modules and functors; see, e.g., [Laumon 1983, Sections 4 and 5]. The de Rham cohomology
Hr

dR(U0, f ) is defined in a standard way as the de Rham cohomology of the DU0-module (OU0, d+ d f ),
and the de Rham cohomology with compact support Hr

dR,c(U0, f ) is the de Rham cohomology of the
DX0

-module j†(OU0, d+ d f ), with j† = D ◦ j+ ◦ D and D is the duality functor of D-modules. We
denote by (U, f ) the corresponding object obtained by extension of scalars from Q to C. We have:

Lemma A.26. Extension of scalars is compatible with taking de Rham cohomology, that is,

C ⊗Q Hr
dR(U0, f )≃ Hr

dR(U, f ), C ⊗Q Hr
dR,c(U0, f )≃ Hr

dR,c(U, f ). □
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As an immediate consequence we obtain that the same result holds for the middle de Rham cohomology
Hr

dR,mid(U0, f ).
Let us consider the setting of Remark A.17 and let us assume that the triple (U, f, Z) is defined over Q.

Let us set M = (OU0, d+ d f ). There is a natural exact sequence

0 = R00Z0 M → M → jZ0+ j+

Z0
M = M(∗Z0)→ R10Z0 M → 0

which identifies the complex R0Z0 M with (OU0(∗Z0)/OU0, d+ d f )[−1]. We note that

(OU0(∗Z0)/OU0, d+ d f )≃ (OU0(∗Z0)/OU0, d).

Indeed, this amounts to showing that the exponential function exp(± f ) is well-defined on OU0(∗Z0)/OU0 ,
and this follows from the nilpotency of multiplication by f on each local section of OU0(∗Z0)/OU0 . The
long exact sequence in de Rham cohomology thus reads

· · · → Hr
dR,Z0

(U0)→ Hr
dR(U0, f )→ Hr

dR(U0 \ Z0, f )→ Hr+1
dR,Z0

(U0)→ · · · .

Dually (in the sense of DX0
-modules, and up to changing f to − f ), we obtain the exact sequence

· · · → Hr−1
dR,c(Z0)→ Hr

dR,c(U0 \ Z0, f )→ Hr
dR,c(U0, f )→ Hr

dR,c(Z0)→ · · · .

Corollary A.27. Assume moreover that the Q-vector spaces Hr
dR(U0 \ Z0, f ) and Hr

dR,c(U0 \ Z0, f ) are
zero for all r . Then the Q-de Rham vector spaces Hr

dR(U0, f ) and Hr
dR,Z0

(U0), respectively Hr
dR,c(U0, f )

and Hr
dR,c(Z0), coincide. □

Example A.28. We consider the setting of [Fresán et al. 2022, Example A.27] where the assumptions of
Corollary A.27 hold. We thus assume that U0 = A1

t × V0 for some smooth quasiprojective variety V0 and
f = tg for some regular function g on V0. We set K0 = g−1(0) and Z0 = A1

t ×K0. Corollary A.27 gives
identifications of Q-vector spaces

Hr
dR,Z0

(U0)≃ Hr
dR(U0, f ) and Hr

dR,c(Z0)≃ Hr
dR,c(U0, f ).

Action of complex conjugation. We denote by (U R, f R) (or simply U R, f R) the real-analytic space and
map associated with (U (C), f ). Then the complex conjugation endows U R with a real analytic involution
conj which commutes with f R. Furthermore, one can find a compactification (X0, D0) defined over Q

(since resolution of singularities holds in characteristic zero) so that conj extends in a unique way as a
real analytic involution of (XR, DR). Similarly, X̃(D)R, etc. belong to the semianalytic category and conj
can then be lifted in a unique way as a semianalytic involution c̃onj of X̃(D)R that preserves ∂ X̃(D)R.
Lastly, since the moderate growth or rapid decay condition only involves Re( f R), the involution c̃onj
preserves the subsets Ũmod(D)R and Ũrd(D)R.

Corollary A.29. If (U, f ) is obtained from (U0, f ) by extension of scalars, the Q-Betti fibers Hr
B(U, f )

and Hr
B,c(U, f ) are naturally endowed with an involution conj∗, which is compatible with the natural

morphism Hr
B,c(U, f )→ Hr

B(U, f ).
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Proof. Indeed, conj∗ is induced by

c̃onj∗ : Hr
c(Ũmod(D)R,Q)→ Hr

c(Ũmod(D)R,Q) or c̃onj∗ : Hr
c(Ũrd(D)R,Q)→ Hr

c(Ũrd(D)R,Q). □

Corollary A.30. In the setting of Remark A.17, assume that (U0, f, Z0) is defined over Q. Then c̃onj∗ is
compatible with the morphisms of the Betti exact sequence (A.18). In particular, if Hr

c(U \ Z , f )= 0 for
all r , then the involutions conj∗ on Hr

B,c(U, f ) and Hr
c(Z

R,Q) coincide. □

Example A.31. Let us keep the setting of Example A.28, that is, [Fresán et al. 2022, Example A.27]. It
is proved in [loc. cit.] that, for all r ∈ Z, we have a diagram of mixed Hodge structures

Hr
c(A

1
t × V, f ) ∼

//

��

Hr−2
c (Z)(−1)

Hr (A1
t × V, f ) Hr

Z (A
1
t × V )∼

oo

(A.32)

where the vertical arrow is the natural one. Consider the case r = d , the dimension of A1
t × V . According

to [loc. cit., Proposition A.19], the upper line is mixed of weights ⩽ d and the lower line is mixed of
weights ⩾ d . Furthermore, denoting by Hd

mid(A
1
t ×V, f ) the image of the vertical arrow, we have induced

isomorphisms of pure Hodge structure:

grW
d Hd

c (A
1
t × V, f ) ∼

//

≀

��

(grW
d−2 Hd−2

c (Z))(−1)

Hd
mid(A

1
t × V, f ) ∼

// Wd Hd(A1
t × V, f ) Wd Hd

Z (A
1
t × V )∼

oo

We assume that V0, g are defined over Q, making U0, f also defined over Q, as well as K0 = g−1(0)
and Z0 = A1

t × K , so that K R and ZR are preserved by conj. It follows from Corollary A.30 that the
isomorphisms of (exponential) mixed Hodge structures (A.32) induce isomorphisms of Betti fibers which
are compatible with conj∗.

Furthermore, the weight filtration W• Hr
c(Z

R,Q) is preserved by conj∗, since it comes from a filtration
defined at the level of Nori motives; see [Huber and Müller-Stach 2017, Theorem 10.2.5]. One can argue
that the weight filtration of Hr

B,c(A
1
t × V, f ) is also preserved by conj∗ by analyzing first the behavior of

conj∗ on Rr f!pQU . Nevertheless, it is enough for our purpose to check that conj∗ induces an action on
Hr

B,mid(A
1
t × V, f ), a property that follows from interpreting the latter space as the image of the Betti

vertical arrow (A.32).
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Added in proof

Recently, Y. Zhou also obtained [2021] the existence of quadratic relations as conjectured by Broadhurst
and Roberts, with a different interpretation of the matrix Dk however. The methods are completely
different from those of the present article and rely on the previous works of the author.
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