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ABSTRACT

The development of flexible optoelectronic devices has led to the appearance of new applications,
ranging from wearable displays to medical implants. Hence, strategies have been developed to make
flexible every component of the devices, including the light-emitting part. One such approach relies
on the use of micro- or nano-light emitting diodes (LEDs) for their reduced footprint, allowing them
to be easily separated from their substrate and embedded in a flexible matrix. In this review, the
authors provide a comparison between the different geometries obtained by the growth of lll-nitride
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structures for the fabrication of flexible devices. The processes used for their fabrication are then
presented in detail. Last, an overview of the state of the art regarding flexible nanowire-based LED is
provided, as well as some perspectives regarding their improvement.

1. Introduction

Flexible light sources and displays are emerging tech-
nologies poised for substantial market growth. Their
applications range from curvilinear extended light
sources, sometimes undergoing shape transformations,
integrated into architectural design, to exploratory uses
in biomedicine, especially for biosensors and micro-
sized surgery robots, offering an advantage with their
ability to conform to curvilinear surfaces. Compared
to their traditional rigid counterparts, flexible displays
and light sources stand out for their lightweight nature
and increased resistance to shock hazards. While organic
light-emitting diodes have made significant strides,
demonstrating their suitability for mechanically flexible
devices, issues like thermal instability, limited lifetime,
and differential aging persist. In the last decade, many
studies have described a variety of methods for the fab-
rication of flexible devices based on different inorganic
materials including III-nitride semiconductors. Indeed,
while III-nitrides are difficult to process into a flexi-
ble device due to their wurtzite crystalline structure,
they have a high-power output [1], high efficiency [2],
as well as resilience to thermal [3] and chemical [4]
damages. Advanced strategies have been elaborated to
fabricate flexible devices from these materials, both in

the fabrication process and in the choice of the struc-
tures themselves as will be presented in this study. First,
the authors aim to show why the downscaling of the
structures toward micro- and nano-LED-based devices
is an inherent advantage to the properties of the device.
Second, the methods used to produce flexible devices
made from different geometries are presented. Last, some
insights are given into the perspectives of nanowire-
based flexible emitters.

2. From planar flexible device toward
MLED-based flexible device

2.1. Planar devices and issues

The mechanical properties of III-nitrides are not suitable
for their use in flexible devices. Indeed, GaN is a stiff
material, with a Young’s modulus and yield strength of
295 and 15 GPa respectively [5] which results in plastic
deformation for biaxial deformations larger than 5%. [5]
More precisely, the bending stiffness [6] can be described
with the following formula (in the case of a homogeneous
thin film) [7]:

S=E-£/12 (1)
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with S the bending stiffness, E the young modulus of the
thin film and t its thickness. As can be seen, the bending
stiffness is a cubic function of the layer thickness. Hence,
reducing the active layer thickness can greatly reduce
the occurrence of plastic deformation and failure in the
material. For example, Yoo et al. [8] demonstrated that
relatively large (100 x 100 um?) mini-LEDs can be bent
without damage. They performed a fatigue test consisting
in 2000 bending cycles to a curvature radius of approx.
3.5mm. The device did not suffer from any significant
change of properties after the fatigue test as illustrated by
highly reproducible current-voltage characteristics.

2.2. Advantages of uLEDs

Asad et al. [9] found that using smaller LEDs reduces
the strain in the material for a similar bending radius
(Figure 1) and concluded that an LED with a foot-
print smaller than 20 um would experience a negligible
strain for a 15 mm radius of curvature in their system
(Figure 1(d-f)). In the case of uLEDs, the footprint of
the structure can be reduced down to the pm scale [10].
Hence, considering that the aimed radius of curvature
is usually of the order of several mm, the size reduc-
tion makes it possible to moderate or even completely
avoid plastic deformation of the uLED material due to
bending.

Apart from high tolerance to bending, pLEDs have
numerous advantages, namely, they greatly increase the
resolution of a display [11], they can be addressed indi-
vidually [12] and have been demonstrated to be a viable
option for monolithic RGB displays [13]. Thanks to these
favorable properties, research on uLEDs and their appli-
cation in rigid and flexible displays are constantly grow-
ing [14-16]. The reduced footprint of uLEDs facilitates
their separation from the substrate enabling in some
cases the use of a Mechanical Lift-Off transfer, which
is not available with planar devices, that mostly rely on
Laser Lift-Off or Chemical Lift-Off strategies. In the next
section, the solutions available for the lift-off and sub-
sequent transfer of nitride heterostructures will be pre-
sented. A summary of these methods along with their
advantages and drawbacks are presented in Tables 1 and
2, respectively, for transfer and growth strategies.

3. Strategies for flexible device fabrication

The main approach for the fabrication of flexible
devices relies on two steps: (i) the sample is encap-
sulated/bonded to a flexible material, and (ii) the het-
erostructure/polymer composite is separated from its
substrate. The metal contacts that are used for the elec-
trical injection of the device may be deposited before
or after these two steps depending on what is the most

30um

20

N

10 um

- QWs

Tensile

o

5um
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Figure 1. The simulated strain gradient for different sizes uLED on PI/Cu substrate with concave-down (Tensile stress) and concave-up
(Compressive stress) bending radius of 15 mm; (a) 50 um, (b) 40 um, (c) 30 um, (d) 20 um, (e) 10 um, and (f) 5 um. The place of the quantum

wells (QWs) is shown by a dashed line. (From ref. [9]).
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Table 1. Summary of transfer methods, and assessment of their advantages and drawbacks.

Transfer Method Advantage Drawback
LLO « Works independently of the geometry used + Requires an expensive setup
« Reproducible « Requires specific sbstrates
CLo « Inexpensive « Requires an appropriate choice of substrate/etchant
+ Reproducible + May induce pollution/contamination of the sample
Tape bonding / Scalpel assisted peel-off « Inexpensive « Requires strategies to reduce substrate/sample

Transfer printing « Reproducible (fully automated)

« Adresses single LEDs

adhesion
+ Reproducibility issues
- Difficult to automate
+ Requires an expensive setup
« Limits the minimal required size of LED

Table 2. Summary of the growth methods, and assessment of
their advantages and drawbacks for flexible device fabrication.

Growth Method Advantage Drawback

Covalent epitaxy on a
rigid substrate

+ Mature technology « High sample/substrate
adhesion
« Growth defects due to

lattice mismatch in

+ Wide choice of
geometries and

processes covalent epitaxy
Van Der Waals/remote - Low sample/substrate -« Challenging growth
epitaxy adhesion - Technology is not mature

« Strain relaxation at
the interface

+ Doesn't require
transfer

« Limits the available
geometries for growth
(growth on unusual
substrates).

Epitaxy on flexible
metal foil

convenient in regard to the structure and separation tech-
nique used. The challenging part of this process is the
separation of the heterostructure from the rigid crys-
talline substrate. In other semiconductors such as ZnO,
this issue has been solved by using non-epitaxial low-
temperature processes such as electrochemical depo-
sition [17], which allows the direct deposition of the
structures on flexible materials such as conductive poly-
mer [18]. In the case of nitrides, the commonly used
growth techniques are high-temperature epitaxial pro-
cesses [19,20], which greatly limit the substrates that can
be used for the growth. Hence, while not being the only
solution, a major part of the flexible LED fabrication pro-
cesses uses a transfer method. In the next paragraphs, we
provide a list of strategies used to either facilitate or even
to avoid the transfer step.

3.1. Laser lift-off

Laser Lift-Off (LLO) is a process that separates two mate-
rials by irradiating their interface with a laser [21]. This is
done by choosing a specific wavelength for which one of
the materials is highly transparent, and the other is highly
absorbent. The laser beam goes through the transparent
material and is absorbed at the interface, where it ablates
the material. This process can be done on GaN grown on
Sapphire since both materials have a large bandgap differ-
ence: 3.47 and 9.9 eV for GaN and Sapphire, respectively.

Usually, the LLO is done using pulsed KrF lasers, with a
wavelength of 248 nm and pulse durations of the order
of the ns [21] or lower [22]. While the LLO was orig-
inally developed for planar structures [23-29] in order
to break the high density of strong bonds between thin
films and their substrates, it has also been used for uLED-
based devices. [9,22,30,31] Still there are some draw-
backs to this process (Table 1), namely, it is time- and
energy-consuming and requires a specific apparatus that
is expensive, and not versatile since it depends on the tar-
geted material. However, because this method allows to
process full-scale wafers and is reproducible, it appears
to be a promising method for industrial-scale produc-
tion. An example of device transfer on a flexible substrate
using LLO is described in Figure 2. In this example, the
samples are first adhered to a carrier substrate (Figure
2(a)), and subsequently separated from their growth sub-
strate through LLO (Figure 2(b)). The obtained struc-
tures (Figure 2(c)) are subsequently contacted (Figure
2(d)) and transferred on a flexible substrate on which
they can be operated (Figure 2(e-f)).

3.2. Chemical lift-off (CLO)

Chemical lift-off, as its name suggests, relies on the
growth of GaN on a sacrificial material, which can be
removed by wet etching. Some of the reports presented
later on van der Waals growth on 2D materials also use
this method, as the growth on a 2D material on SiO,
allows to easily remove the sample from the substrate
by buffered oxide etch [32,33]. A similar method can
be applied to structures that are grown directly on Sil-
icon substrates by wet etching [8,34]. Another possible
method is to use a strongly doped n-GaN layer that
can be electrochemically etched in acidic environments,
which has already been used for the fabrication of flexible
LEDs [35]. CLO is easy to implement, and relies on inex-
pensive products, but may introduce contaminants and
damages to the heterostructure (Table 1). It also imposes
limitations on the choice of the growth substrate, which
should contain the sacrificial layer. However, as already
said for the LLO method, this process holds promise for
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Figure 2. Example of an LED transfer using LLO. (a) The sample is bonded to a carrier substrate covered with an adhesive layer (a), the
LLO is done to separate the Sapphire substrate. (c) The adhesive is dry etched, and a Cr/Cu/Au p-contact is deposited (d). The sample is
then bonded to its final substrate by flip-chip bonding to an Au/Sn pad array, and the temporary carrier substrate is removed (f) (from

Ref. [9]).

large-scale production, as it allows to process full wafers
but does not require expensive apparatus to do so. An
example of nanowire-based LED transfer using CLO is
provided in Figure 3. In this example, the authors grew
nitride nanowire LEDs on a graphene/SiO,/Si substrate
(Figure 3(a)), and subsequently encapsulated and con-
tacted the nanowires. The flexible device is separated
from its substrate by removing the SiO; in a buffered
oxide etch bath. The membrane is then contacted on
its n-side for operation. SEM pictures and device under
operation can be seen in Figure 3(b,c).

3.3. Mechanical lift-off

Mechanical lift-off refers to any strategy that uses
mechanical means to transfer the devices. It is not feasible
to directly mechanically transfer an epitaxial planar het-
erostructure due to the strong bonding with the substrate.
However, mechanical lift-off can be done if the adhesion
of the heterostructure has been reduced, which can be
achieved in several ways. One way to do so is to avoid
classical covalent epitaxy, by growing on either an amor-
phous or a 2D material [36-40], but this is done at the cost
of a significantly more complex growth process, as will
be discussed in further detail in a following paragraph.
The second option is to grow micro/nanostructured
materials, with a small footprint and hence adhesion to
the substrate [41]. Moreover, in the case of micro- or
nano-wires, their high aspect ratio allows a torque to be
applied at their base which facilitates further the lift-oft

[42-44]. Last, some studies report on the weakening of
the GaN/substrate interface by the creation of voids [45].

There are several ways to mechanically separate the
heterostructure from the sample. One possibility is to
use a tape bonding process [36-40,45], which is mostly
used in cases where the adhesion with the substrate was
greatly reduced either through nanovoid formation or
through growth on a 2D material. In this case, the het-
erostructure can be bonded by a tape, which can be
removed from the substrate along with the heterostruc-
ture and released with heat [37,38], as shown in Figure
4(a), or with a mechanical force [36,39,40,45]. In a sec-
ond method applied to nanowires embedded in a poly-
mer matrix, a microscalpel blade is inserted between
the polymer membrane and the substrate, which helps
to break the nanowires at their bases and separates the
membrane from the substrate [42,43], as presented in
Figure 4(b). Both methods are cost-effective; however,
they can create damage in the sample (Table 1). More-
over, they are usually done manually and are difficult to
automate (except for Refs [37,38], which uses thermal
release to separate the tape from the substrate). Hence,
despite their promises for cheap processing, these meth-
ods still require some improvement in reproducible, as
well as automation, to be suitable for industrial produc-
tion. However, in the case of uLEDs, this last issue of
lack of automation is addressed by the elastomer transfer-
printing method. In this method, a stamp is used to pick
up large areas of the array and transfer them to a flexi-
ble substrate (Figure 4(c)). In some cases, the release to
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Figure 3. (a) example of a CLO transfer process, (b) corresponding SEM image of the sample, and (c) flexible LED under operation (from

Ref. [32]).

the receiver substrate is laser-assisted [46]. This process
can also be used to individually select and pick uLEDs,
which allows to discard those who are dysfunctional
[12]. Because this process can be automated, it addresses
reproducibility issues (Table 1) and is already appropriate
for the industrial processing of flexible LEDs. Additional
methods are being developed as an alternative to stamp-
ing and include methods such as the electrostatic transfer
[47,48] of the heterostructures.

3.4. Van Der Waals / remote epitaxy

Van Der Waals (VAW) / Remote Epitaxy are two pro-
cesses in which the growth is done on a 2D material,
e.g. like graphene [32,33,36-38] or h-BN [39,40]. Indeed,
these materials lack dangling bonds, and contrary to stan-
dard substrates with sp®> hybridization are not able to
form any covalent bonds with the deposited material
(Figure 5(a)). The growth results in an epitaxial material
with a very low adhesion to its substrate, which facili-
tates the lift-off. The growth of a 2D material can occur
through Van der Waals epitaxy, or through remote epi-
taxy. In the first case, the epitaxy occurs through weak
Van der Waals bonding between the 2D material and the
nitride layer, allowing for example to grow heterostruc-
tures on graphene transferred to amorphous materials
such as SiO,. In this case, there is no covalent bonding

between the growing material and its substrate and the
growth is driven by Van der Waals interactions originat-
ing from the dipole interactions between atoms. Van der
Waals epitaxy does not require the use of additional crys-
talline structures beneath the 2D materials. For example,
it allows for the selective area growth of GaN nanowires
on patterned graphene on SiO,/Si [49], showing that
graphene imposes a crystallographic orientation to the
GaN nanowires and yielding a good selectivity between
the graphene and SiO;. In the second case, the remote
epitaxy is driven by the penetration of the polarization
fields [50] of a crystalline material located beneath the
2D layer (such as for example SiC [51]) through the
2D material [52,53]. Hence, in this case, there is still an
epitaxial relationship between the crystalline substrate
underneath and the deposited material. This is the case
in Ref. [54], in which the authors show the epitaxial rela-
tionship between GaN nanostructures on graphene and
the underlying epitaxial SiC. In both cases, the growth
occurs via low-energy bonds (instead of the covalent
bonds present in classical epitaxy) owing to the small sur-
face energy of the 2D materials. This leads to the growth
of fully relaxed structures, that can easily be moved on
their substrate or separated altogether, allowing for a wide
range of transfer methods. This behaviour also means
that the surface is antisurfactant, which complicates the
material synthesis, and often promotes the growth of 3D
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Figure 4. Methods for MLO lift off: (a) tape bonding MLO [37], (b) microscalpel peel off [42], (c) transfer printing for uLEDs [12].

structures within defects in the 2D layer instead of pla-
nar layers (Table 2). Although challenging, specifically
for chemical vapor deposition processes [51], it is pos-
sible to grow a crystalline material on a 2D material,
which demonstrated low adhesion to their surfaces. This
method can be used [32,33,36-40] in combination with
either CLO or MLO, as previously discussed (see Figure 3
and Figure 4(a)). Figure 5(b) and (c) schematically illus-
trate the nanowire growth on a graphene layer and the
structural image of the interface. These wires were suc-
cessfully processed into flexible LEDs which can stand a
strong bending as shown in Figure 5(d). One additional
advantage of the 2D materials is their potential use as a
flexible electrode [29,55].

3.5. Growth on a metal foil

The use of flexible metallic foils for the epitaxy of
GaN heterostructures has already been demonstrated in
molecular beam epitaxy. In this method, the goal is to
completely remove the transfer step. This process has
been reported on Ta [56], Ti [56,57], Hf [58] and Mo
[59] foils and leads to either nanorod structures, as seen
in Figure 6(a), or to planar films [58,60]. The main

advantage is that the method does not require extensive
processes to transfer the heterostructure to a flexible car-
rier (Table 2). For example, Ref. [57] demonstrates the
fabrication of a nanowire-based LED made by direct
growth on Ta foils (Figure 6(a,b)), followed by a sim-
ple metal deposition for p-contact. Although the authors
report contact issues leading to leakage and a decrease in
intensity compared to the reference sample, the flexible
device exhibits electroluminescence (Figure 6 (c)). This
demonstration opens the way to the fabrication of flexi-
ble LEDs through a roll-to-roll process [60], which would
be very efficient in the context of industrial production.

4. Advantages and drawbacks of
nanowire-based flexible light emitters

Above we discussed the advantages of pULEDs over
large-area planar LEDs for flexible device processing.
Among the presented strategies, the nanowire geometry
presents a few advantages for the fabrication of flexible
devices [31-33,37,42-44,56,57,59,61]. First, the footprint
of nanowires is reduced compared to classical uLED,
ranging from a few pums [32,37,42,43,61] down to several
hundreds of nanometres [31,33]. As stated previously,
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Figure 6. GaN nanowires grown on a flexible Ti substrate (from Ref. [56]). (a) Sample under bending, (b) high magnification SEM picture
of the GaN nanowire array and (c) electroluminescence spectra of the device (I-V curves are shown in the inset for the flexible LED and

for the reference sample on a Si substrate).

they can better withstand bending and can be more eas-
ily removed mechanically from the substrate. They have
a high aspect ratio (with the height ranging from approx.
1 um [31] to 100 um), therefore in core/shell structures
emitting from the sidewalls the total active area for opti-
mized nanowire density can exceed the one of a planar
device [41]. In addition, the In incorporation of nitride
nanowires shows a strong dependence on the wire diam-
eter [62], which makes possible the monolithic integra-
tion of full-color LEDs on a single chip [63]. Nanowire
elaboration methods and their applications to emissive
displays are reviewed in Refs [64,65].

To the best of our knowledge, the first reported growth
of nanowire-based flexible devices using nitrides was
published by Lee et al. [33], in which the authors used
ZnO nanowires covered with an active shell made with
InGaN/GaN. The structure was grown on graphene over
Si0,/Si0O and encapsulated in a polyimide matrix before
being transferred by CLO. Since then, other reports
have been published using different substrates (Sap-
phire [31,42,43,61], metal foil [56,57,59], 2D materi-
als [32,33,37], etc.) and various transfer methods (LLO
[31], CLO [32,33], MLO, assisted [37] or not [42,43,61]).
Despite not being the primary concern here, it is worth
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noting that the devices made of encapsulated nanowires
also can present some amount of stretchability [61].

A variety of nitride nanowire-based devices have
been demonstrated, with different emissive properties. By
using the tunability of the InGaN quantum well compo-
sition it is possible to obtain not only the standard blue
but also the green emission from m-plane sidewalls of
the nanostructures [66], as seen in Figure 7(a). Another
method that has been used to tune the nanowire emis-
sion relies on the injection in different nanowire regions.
Indeed, the emissive properties of various families of
planes are different. In N-polar GaN nanowires, the semi-
polar r plane features a red-shifted InGaN emission, due
to a higher In incorporation [42]. As a result, it is possible
to modify the dominant emission by changing the oper-
ating voltage of the device, and selectively emit from the
low energy c-plane InGaN QWs [42,67], as can be seen
on the electroluminescence spectra in Figure 7(b).

The emission colour can also be modified by down-
conversion using phosphors, which can be incorporated
either as an additional layer on top of the device or
in the encapsulating media itself. This approach allows
to obtain white flexible NW-based LEDs [43] with the
use of Y3Al5015:Ce** nanophosphors as presented in

F)l Green wire-LED

(4 White wire-LED

Figure 7(c). By using mixtures of phosphors of vari-
ous compositions, it is also possible to tune more finely
the emission color to obtain a variety of white tones
[68]. Another strategy to modify the emission of flexible
nanowire LEDs is to use structures with dual emissions
containing QWs of different composition, as presented
in Ref. [69]. This allows in particular to get a mono-
lithic white emission without requiring to use down-
conversion by phosphors or other luminophores.

Despite the clear advantages of nanowire structures
when it comes to the elaboration of flexible devices, their
use is associated with some drawbacks. Due to the poly-
mer encapsulation, flexible nanowire-based devices can
be prone to overheating [70]. However, the Joule self-
heating can be mitigated by using a dedicated heatsink,
thus the device degradation can be avoided [70].

The biggest issue faced by nanowire devices is the
light intensity inhomogeneity [32,33,37,42,43], as seen
for example in Figure 8. The device is observed under
an optical microscope without (Figure 8(b)) and with
(Figure 8(c)) electrical injection. By superimposing both
pictures (Figure 8(d)), one can notice that a significant
number of nanowires are not producing electrolumines-
cence, which results in inhomogeneities at macro-scale,
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Figure 7. Demonstration of blue, green and white flexible LEDs based on core-shell nitride nanowires with and w/o positive/negative
curvature and their corresponding emission spectra (from Refs [42,43]).
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Figure 8. (a) operating nanowire-based flexible device. Sample (b) under an optical microscope, (c) under a microscope under injection,

(d) combined picture of (a) and (b) (from Ref [37]).

as seen in Figure 8(a). This typically manifests as (i)
an inhomogeneous intensity, leading to a spotty emis-
sion of the sample, and (ii) an inhomogeneous wave-
length, which leads to parasitic contributions in the emis-
sion spectrum. The origin of these problems resides to
a large extent in the use of a self-assembled nanowire
growth [31-33,37,42-44,56,57,59,61]. Indeed, this pro-
cess typically results in inhomogeneous geometries of
the nanowires, leading to different lengths. Consequently,
some of the nanowires are not long enough to extend
through the membrane and be electrically injected [37].
Furthermore, due to different diameters and aspect
ratios, the nanowires present different sidewall/top sur-
face ratio and the In incorporation may also depend on
the nanowire diameter leading to inhomogeneous over-
all emissions. Therefore, while the self-assembled process
is advantageous for the proof-of-concept demonstration,
the further optimization of flexible nanowire-based LEDs
requires to use selective-area grown (SAG) nanowires.
Flexible LEDs following SAG approach were successfully
reported showing a good spectral stability under bending
[31]. However, while SAG holds a great promise regard-
ing the fabrication of nanowire-based flexible devices,
it comes at the price of a significantly more complex
and expensive process. Still this approach appears to be
the only way to address issues linked with homogene-
ity and electrical injection faced by nanowire devices and
despite the additional costs, the results presented by Ale-
dia company in Ref. [71], demonstrate the usability of
SAG nanowire structures for industrial devices such mid-
size displays. Hence, the use of such structures should
lead to a significant improvement of the properties of
flexible light emitters, and their adoption in flexible dis-

plays.

5. Conclusions

In this paper, we have reviewed the present status of flex-
ible LEDs based on inorganic micro- and nanostructures
with a special focus on the fabrication methods. A variety

of different approaches to produce flexible light-emitting
devices have been reviewed, which include novel growth
strategies using 2D materials, a specific design of the
geometry of the structures and the choice of the dedicated
transfer method. Regarding flexible devices elaborated
from conventional thin films, pLEDs are shown to exhibit
inherent advantages. Their geometry allows reducing the
strain experienced by the active material during bending,
making them appropriate candidates for the elaboration
of flexible displays. The nanowire approach comes with
promises of even higher device flexibility due to their
tiny footprint which also facilitates their transfer, as well
as of a strong luminance due to their extended area of
emission. The flexibility of the nanowire LEDs can poten-
tially be pushed to its extremes for emergence of new light
sources allowing for twisting, stretching and folding. This
extraordinary flexibility opens avenues for innovative
applications, including wearable monitors, skin-applied
medical devices, implantable light sources, and more.
However, current nanowire devices suffer from homo-
geneity issues due to the growth process, and further
work is required to obtain a nanowire-based fabrication
process suitable for industrial production.
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