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dLMS, École Polytechnique, CNRS UMR7649, Institut Polytechnique de Paris, 91128 Palaiseau, France
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Abstract

We consider creases and folds in compressed hyperelastic solids from the point of view of bifurcation theory.
They refer to highly localized surface deformations that occur at compressive loads significantly below the
value of the well-known Biot instability. Much work from the literature attempts to make the case that
this phenomenon corresponds to a “local bifurcation” distinct from the Biot instability. A local bifurcation
is a path of equilibrium solutions emanating from a (bifurcation) point on the trivial solution branch that
exists in all sufficiently small neighborhoods of that bifurcation point. The inference is usually made by first
introducing a small surface imperfection; a solution curve is then obtained that is seemingly close to a perfect
bifurcation diagram. However, imperfection theory is valid only in some sufficiently small neighborhood of a
bifurcation point. Thus, in the absence of an equilibrium path connecting these solutions to the trivial one,
there is no justification for concluding that creasing and folding are local bifurcations of the perfect system.

In this work, we directly address the nucleation of these solutions in the perfect, imperfection-free case.
We demonstrate that surface instabilities in functionally graded and bilayer elastic halfspaces, corresponding
to local bifurcations from the homogeneous state, are necessarily smooth and oscillatory; creases/folds
eventually do develop along the global bifurcating solution branches, albeit “far” from the trivial solution, as
evidenced by the corresponding bifurcation diagrams. In addition, we find that their stable realization occurs
at load levels well below that of the initial surface instability. Moreover, we obtain such results for the perfect
homogeneous halfspace, by switching the continuation parameter from macroscopic lateral strain to the film-
to-substrate shear modulus ratio. When this ratio reaches unity, we obtain the desired localized deformation
solution, avoiding the need for analysis near the highly degenerate homogeneous state at the Biot instability.
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1. Introduction

The classic stability problem of the axially compressed nonlinear hyperelastic halfspace was first presented
by Biot (1963). In his linearized analysis of the homogeneous, perfect halfspace’s surface wrinkling, he
established the critical strain for the onset of this phenomenon1 with its arbitrary wavelength and eigenmode
having an exponentially decaying amplitude away from the free surface. It was subsequently established that
this phenomenon also occurs under tension on the surfaces of axially strained elastoplastic bars by Hill and
Hutchinson (1975) as well as under finite strain bending by Triantafyllidis (1980). Similar phenomena were
found to occur in the case of functionally graded materials (e.g. see Lee et al. (2008)) and in thin films on
compliant substrates (e.g. see Audoly and Arezki (2008a)), where in contrast to the perfect, homogeneous
halfspace, a finite wavelength for the eigenmode can be determined.

Of particular interest here is Biot’s instability, the nucleation and subsequent evolution of a small-
amplitude surface waviness to a highly localized deformation corresponding to folds or creases. Following
the experiments of Gent and Cho (1999) and the influential investigations of Hohlfeld and Mahadevan (2011,
2012), new life has recently been injected into this problem due to the observation — at compressive loads
significantly below the Biot instability — of highly localized deformation regions known as “creases” (i.e.
crack-like regions of surface self-contact) and “folds” (i.e. regions of surface self-contact forming a void).
In particular, Hohlfeld and Mahadevan (2011) study the bending (to break the challenging translational
symmetry of the perfect Biot problem) of a finite strip and perform finite element simulations, regularized
through the use of Hermite polynomial shape functions and the introduction of surface beam elements. They
find creased configurations with a crease depth that approaches zero as the surface beam stiffness tends to
zero. The resulting crease depth vs. compression plots show a “T-shaped” diagram which the authors term a
“nonlinear instability” in Hohlfeld and Mahadevan (2011). In Hohlfeld and Mahadevan (2012), they perform
a further analysis and present bifurcation diagrams indicating that the phenomenon is a “local bifurcation”2

occurring for loads significantly below the Biot instability. These observations have led to an impressive
amount of subsequent experimental and modeling work in the mathematical and engineering literature. In
many cases these subsequent works claim the local bifurcation nature of the creasing/folding instabilities
through the use of numerical imperfection methods. Additionally, and independently of the study of creases
as an evolution to Biot’s surface instability problem, self-folding surface deformation patterns have also been
studied. First as part of universal solutions in incompressible, finite elasticity by Singh and Pipkin (1965)
and subsequently in compressible, nonlinear elastic solids (e.g. see Silling (1991); Ciarletta (2018)).

A detailed review of the voluminous literature on this subject is beyond the scope of the present work; the
interested reader is referred to the extensive review article by Li et al. (2012). However some references are
given below in order to discuss the prevalent, imperfection-based approach in the literature for numerically
calculating creases and folds, and to contrast this approach with our imperfection-free local bifurcation and
global solution branch following methodology based on group-theoretic tools, which was introduced for this
class of problems in Pandurangi et al. (2020).

In the recent mechanics literature pertaining to the development of folds, the work on “ruga mechanics”
by Diab et al. (2013); Diab and Kim (2014); Zhao et al. (2015a, 2016) focuses on the development of folds
and creases in functionally graded and bilayer configurations. These problems admit a finite wavelength for
the Biot surface instability, which guides the selection of imperfections needed to find the creased and folded
solutions by numerical methods (FEM) Chen et al. (2012, 2014); Jin et al. (2014, 2015). The transition
from wrinkles – Biot surface instability – to creases was concurrently studied, for halfspaces as well as
bilayers, by Cao and Hutchinson (2012); Hutchinson (2013), who showed, using Koiter’s post-bifurcation
asymptotic analysis, that the wrinkled paths are unstable and strongly imperfection sensitive. Akerson
and Elliott (2021) have recently showed, using imperfection-free methods, that the stability of the initial
post-bifurcation wrinkles depends strongly on the through-thickness spatial gradient of the shear modulus

1This is related to the“complementing condition” (see Agmon et al. (1964); Simpson and Spector (1987); Negrón-Marrero
and Montes-Pizarro (2011)) used for boundary value problems with traction boundary conditions.

2A “local bifurcation” is a path of nontrivial solutions emanating from a (bifurcation) point on the trivial solution branch
that exists in all sufficiently small neighborhoods of the bifurcation point.
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µ (fiber-to-substrate stiffness ratio µf/µs for bi-layers or exponential rate constant for continuously graded
systems).

Although the main thrust of research focuses on calculating folded and creased solutions in a two-
dimensional (plane strain) context, efforts have also been directed at investigating the three-dimensional
aspects of the problem using Von-Karman plate theory combined with a linear elastic halfspace Audoly and
Arezki (2008a,b); Audoly and Azreki (2008) or fully nonlinear continua Zhao et al. (2015b); Chen et al.
(2018). An additional reason for the revival of the Biot Problem is its importance in “soft solids” and
biological problems, such as the problems of “unfolding the sulcus” Hohlfeld and Mahadevan (2011, 2012),
“elastosis in arteries” Eskandari et al. (2016), and the instabilities associated with the clogging of arteries.

It is well-known that a linearized stability analysis of the flat surface of a halfspace predicts wrinkles (see
Biot (1963)), indicating that a local bifurcation from a flat state to a creased/folded one is not possible. A
straight-forward application of the implicit function theorem (see for example page 7 of Kielhöfer (2012), for
the PDE version of this classic theorem) shows that a local bifurcation is not possible, unless the linearized
stability operator becomes singular. For the problem at hand, it is well-known that this first occurs at the
Biot load. Despite this, the methods employed in the existing literature — as in all of the above mentioned
references (excluding Akerson and Elliott (2021)) — avoid this inconvenient fact by introducing an “a
priori” imperfection biasing the system toward a desired configuration.3 However, imperfection theory is
only valid in all sufficiently small neighborhoods of a bifurcation point (e.g. Iooss and Joseph (1990)), i.e.
there is no known “global imperfect bifurcation theory” (see Marsden and Hughes (1983)). Indeed, drawing
mathematically precise conclusions from numerical global continuation in the presence of imperfections is
risky, as pointed out in Healey (1989). It is exactly this issue which we aim to eliminate from the study of
creases and folds with our present work. Accordingly, we employ the imperfection-free local bifurcation and
global solution branch following method introduced by Pandurangi et al. (2020) for the study of a beam on
a nonlinear elastic foundation.

Due to the high degree of symmetry present in perfect structures, such as the one considered here, it
is common to have multiple paths emerging from the same bifurcation point. As a consequence, even near
a bifurcation point the use of numerical “imperfection methods” for bifurcation problems is insufficient to
thoroughly discover and organize the rich solution set. Accordingly, we employ a rigorous and systematic
group-theoretic framework that enables the prediction of all generic bifurcations, each based on its geometric
symmetry group. This approach draws on “equivariant bifurcation theory” (Golubitsky et al. (1988); Chossat
and Lauterbach (2000); Ikeda and Murota (2010)) and is integrated with efficient numerical branch-following
algorithms (Keller (1987); Healey (1988); Gatermann and Hohmann (1991); Wohlever and Healey (1995);
Allgower and Georg (2003)) to create a robust, consistent methodology for the theoretical and numerical
study of highly-symmetric (imperfection-free) bifurcation problems.

In this work we address the thus far poorly understood (see Yang et al. (2021)) issue of “fold/crease
nucleation” in hyperelastic solids. We show that highly localized (creased) stable equilibrium solutions
evolve “far” from the initial smooth and oscillatory bifurcation near the flat trivial solution, as evidenced
by the corresponding bifurcation diagrams of amplitude ξ, energy change (E − E0) and axial force change
(E −E0),ε versus the applied lateral macroscopic strain ε. Furthermore, we show that isolated stable creases
(i.e., a single crease surrounded by long flat regions) evolve, along the long wavelength secondary bifurcating
paths, far from the flat trivial solution. These secondary paths bifurcate in a cascading fashion from the
short wavelength, wrinkled, primary bifurcation paths. These primary paths in turn emerge from the
system’s symmetry-breaking bifurcation points along its flat configuration path. Moreover, by switching
control parameters in a bilayer problem using the film-to-substrate stiffness ratio, we obtain isolated crease
solutions in the perfect homogeneous halfspace without ever using an imperfection.

We present the theoretical aspects of the boundary value problem in Section 2 and the numerical method
in Section 3. The perfect bifurcation diagrams and stability results for the functionally graded and bilayer
structures are given in Section 4. The constitutive law dependent evolution of the primary bifurcation
orbits into creases and folds is studied. We also show how one can obtain isolated localized deformation

3The “imperfection” can be either of geometric nature – the more frequently used method – or in the form of a lateral force,
as more recently proposed by Yang et al. (2021).
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solutions in a perfect homogeneous halfspace without using an imperfection, and thus avoiding the need for
analysis near the highly degenerate homogeneous state at the Biot instability. This is achieved by switching
control parameters in the bilayer problem – using the ratio of film-to-substrate shear moduli instead of the
lateral strain – and following the equilibrium path until the value of this ratio reaches unity. This same
multiparameter approach has been employed in nearly singular problems for phase transitions with small
interfacial energy in Healey and Miller (2007) and for wrinkling of highly stretched thin films in Healey et al.
(2013). Conclusions are presented in Section 5. A brief presentation of relevant group theory and how it
applies to the problem at hand is provided in Appendix A. Proof of local stability (polyconvexity) of the
chosen material model, and expressions for stress and moduli tensors along the principal solution are given
in Appendix B. Finally, the influence of mesh sensitivity on the bifurcated orbits – due to the presence of
infinitely short wavelength instabilities at adequately large strains – is presented in Appendix C.

2. Theory

This section presents the theoretical aspects of the model. The boundary value problem is discussed in
Subsection 2.1 and the stability of the problem’s equilibrium solutions is presented in Subsection 2.2. The
constitutive laws for the materials considered (representing rubber, polymeric foams and biological tissues)
are discussed in Subsection 2.3. The symmetry group of the problem appears in Subsection 2.4 while its
principal solution is presented in Subsection 2.5.

2.1. Boundary Value Problem

 

Figure 1: Schematics of the 2D layer model: (a) the functionally graded layer and (b) the film-substrate system.

Here, the general formulation of Akerson and Elliott (2021) is adopted and extended. The plane strain,
2D model adopted here is that of an infinite extent (along X1) hyperelastic layer, with thickness H and
X2-dependent material properties, as seen in Figure 1.

Two cases are considered: a) the layer consists of a functionally graded material, i.e. its material prop-
erties are continuous functions of X2 and b) the layer’s material properties are piecewise constant along
X2, corresponding to a thin film of thickness Hf perfectly bonded to a much thicker substrate of thick-
ness Hs � Hf . The layer thus occupies the domain Ω ≡ {(X1, X2) : X1 ∈ R, 0 ≤ X2 ≤ H} ⊂ R2

in the reference configuration. The bottom surface of the layer ∂Ω1 ≡ {(X1, X2) : X1 ∈ R, X2 = 0} is
restricted to the X2 = 0 line but allowed to freely slide along X1 (i.e. shear-free), while its top surface
∂Ω2 ≡ {(X1, X2) : X1 ∈ R, X2 = H} is traction-free.

A far-field compressive stretch of 0 < λ1 ≤ 1 is applied to the layer along the X1 direction, as seen in
Figure 1. We define ε ≡ 1− λ1 to be the loading parameter of the layer. A Lagrangian formulation of the
problem is adopted; a point at X in the undeformed (stress-free), reference configuration occupies position
x in the deformed (stressed), current configuration. The layer consists of a hyperelastic material of energy
density W (F;X2) per unit reference area, where F is the local deformation gradient. In order to make the
problem manageable – and deal with compact symmetry groups – we consider the Ld-periodic solutions,
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defined on the finite subdomain4 Ωd ≡ {(X1, X2) : −Ld/2 ≤ X1 ≤ Ld/2, 0 ≤ X2 ≤ H} ⊂ Ω, and choose
Ld/H � 1. The total potential energy (per unit reference length) of the system is hence given by5

E(u; ε) =
1

Ld

∫
Ωd

W (F;X2)dA ; F ≡ ∇x(X) =
0

F(ε) +∇u(X) ,

0

F(ε) = diag[λi(ε)] , x(X; ε) =
0

F(ε) ·X + u(X; ε) ; ∀X ∈ Ωd ,∫ Ld/2

−Ld/2
u1(X1, 0)dX1 = 0 , u2(X1, 0) = 0 ; ∀X1 ∈ [−Ld

2
,
Ld
2

] ,

u(−Ld
2
, X2) = u(

Ld
2
, X2) ; ∀X2 ∈ [0, H] .

(2.1)

The deformation is described by a uniform biaxial strain – corresponding to the principal equilibrium path,

constant deformation gradient
0

F(ε) – plus an additional displacement field u ∈ U , where U denotes the
space of admissible perturbation displacement functions.6 Some appropriate growth conditions on W as
detF→ 0 and ‖F‖ → ∞ are also tacitly assumed as to ensure a realistic energy density W (F;X2).

Pointwise equilibrium equations and natural boundary conditions are obtained by setting to zero the
first variation7 of the total potential energy functional defined in (2.1)

(E,u, δu) =
1

Ld

∫
Ωd

∂W (F;X2)

∂F
: (∇δu) dA = 0 ; ∀δu ∈ U =⇒


∇ · S = 0 ; ∀X ∈ Ωd , S ≡

∂W (F;X2)

∂F
,

S12 = 0 ; ∀X ∈ ∂Ωd1 , Si2 = 0 ; ∀X ∈ ∂Ωd2 ,

(2.2)

where S denotes the first Piola-Kirchhoff stress tensor. We seek the equilibrium solutions for the layer
structure as a function of the load parameter (imposed lateral compressive strain) ε.

Of interest here is also the work-conjugate quantity of the load parameter ε, which is shown to be the
total lateral force applied at any cross-section X1 = const. of the structure. From the energy and the
kinematic definitions in (2.1), one can show using integration by parts8 that E,ε equals the axial (lateral)
force of the structure, i.e. the layer thickness integral of first Piola-Kirchhoff stress S11, which – due to the
absence of shear stresses at the boundaries ∂Ωd1 and ∂Ωd2 – is independent of the X1 coordinate

E,ε =
d

dε

{
1

Ld

∫
Ωd

[W (
0

F(ε) +∇u(X))] dA

}
= −

∫ H

0

[S11(X1, X2)] dX2 = −
∫ H

0

[S11(0, X2)] dX2 . (2.3)

The nonlinear boundary value problem defined by (2.2) admits a large symmetry group resulting in a
complex structure with an infinite number of equilibrium paths. Equilibrium paths related by symmetry can
be grouped into “orbits.” Accordingly, it is more appropriate, for the problem at hand, to discuss “orbits of
equilibrium solutions” than it is to speak of a single solution. However, for convenience of exposition, the two

terms are used interchangeably. From the “principal solution”
0
u(X; ε) = 0, corresponding to the constant

deformation gradient
0

F(ε) (but no additional displacement, see (2.1)), an infinity of “primary bifurcated

4Analogous definitions hold for the corresponding bottom ∂Ωd1 and top ∂Ωd2 surfaces of the finite domain Ωd.
5The X2-dependent isotropic material properties adopted here give a homogeneous strain principal solution with transverse

principal stretch ratio λ2(ε). For more general orthotropic, graded materials with arbitrary X2-dependent properties, λ2(X2; ε).
6The space U of admissible fields u consists of all continuous vector fields u(X) satisfying the zero vertical displacement at

the bottom of the layer and periodicity boundary conditions in (2.1). Additionally, the integral constraint on u1 excludes rigid
body motion along the X1 direction.

7By (E,u, δu) we denote the scalar result of linear operator E,u – first functional derivative of E with respect to u – operating
on an arbitrary admissible (test) function δu ∈ U .

8Using the principle of virtual work where the kinematically admissible displacement field is the actual principal solution.
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paths” (more precisely continuous orbits) emerge. From each one of these, “secondary bifurcated paths” with
different periods also emerge. Additionally, “tertiary bifurcated paths” emerge from the secondary ones and
so on. Although the symmetry group of each orbit is reduced at each bifurcation, enough symmetries remain
to allow further bifurcations. The goal is to follow each one of these orbits, away from the bifurcation point
of their origin and study their stability. The numerical solution of the boundary value problem given by
(2.2) is presented in Section 4.

2.2. Stability of Equilibria

The problem at hand is conservative, with energy given by (2.1). To determine the stability of any

equilibrium solution
0

F(ε) ·X + u(X; ε) of (2.2), one may apply the principle of minimum potential energy
and check if it is a local energy minimizer, i.e. check the positive definiteness of the self-adjoint bilinear
operator E,uu, evaluated at the investigated solution9, by finding its eigenvalues β

((E,uu,∆u), δu) = β〈∆u, δu〉 ; ∀δu ∈ U , E,uu ≡ E,uu(
0

F(ε) ·X + u(X; ε); ε) , (2.4)

where ∆u is the corresponding eigenmode and 〈· , ·〉 denotes an inner product in U . A stable solution
corresponds to a positive minimum eigenvalue10 β. For the stability of periodic solutions of period L
(where L < Ld) one can take advantage of the Bloch-wave representation theorem, according to which any
eigenmode ∆u of the stability operator E,uu in (2.4) admits the following representation

∆u(X) = exp(i2πkX1/L) p(X) , (2.5)

where i =
√
−1 is the imaginary unit, p(X) is L-periodic in the X1 direction and11 k ∈ [0, 1) is the

wavenumber. Thus, the Bloch-wave representation reduces the eigenvalue problem (2.4) to a set of smaller
dimensional ones (one such problem for each value of the wavenumber). By scanning all admissible values
of k, one can find βmin(k) for each fixed value of k.

For a well-posed problem, the neighborhood of the stress-free (unloaded) configuration near ε = 0 is
stable, i.e. βmin(k; ε) ≥ 0 ; ∀k ∈ [0, 1), 0 ≤ ε � 1. As the applied compressive strain ε increases, stability
of the uniform strain (principal) solution will be lost at the first bifurcation point encountered along the
principal loading path at some εc, as elaborated in Subsection 4.1. The emerging primary bifurcation orbit
will be found and followed until secondary bifurcations appear and so on.

2.3. Material Selection

We consider two types of material models: a weakly compressible Neo-Hookean material model, repre-
sentative of a natural rubber, and a power-law material model that can be adjusted to represent open cell
foams and soft biological tissues. For the Neo-Hookean material model we investigate two different layered
structures: (a) functionally graded and (b) thin film, using an X2-dependent shear modulus. Accordingly, for
(a) we choose an exponentially varying shear modulus while for (b) a piecewise constant. For the power-law
model we only consider the thin film case (b).

1. Neo-Hookean material model The stored energy density of the Neo-Hookean layer structure has an
energy density12

W (F;X2) = µ(X2)

[
1

2
(I1 − 2− ln I2) +

ν

1− ν
(
√
I2 − 1)2

]
, (2.6)

9By ((E,uu,∆u), δu) we denote the scalar result of the self-adjoint bilinear operator E,uu – second functional derivative of
E with respect to u – operating on admissible functions ∆u, δu ∈ U .

10We find here continuous orbits of equilibria, symmetry-related but with the same energy, implying the existence of a zero
eigenvalue of the stability operator E,uu in (2.4). Thus, all equilibria are, at best, neutrally stable. Accordingly, we ignore the
zero eigenvalue associated with an equilibrium orbit and require that all other eigenvalues be positive for stability.

11Without loss of generality, we consider Ld = qL, q ∈ N. From translational symmetry in (2.5) k ∈ Q, i.e. k = r/q; r, q ∈
N, 1 ≤ r ≤ q. For Ld −→∞, i.e. for the stability of the infinitely long layer, we can consider k ∈ R; 0 ≤ k ≤ 1.

12The logarithmic term (ln I2) in the energy density drives it to infinity when the material’s area is reduced to zero.
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where ν denotes the (2D) Poisson’s ratio in plane strain13 (where 0 ≤ ν ≤ 1), µ denotes the shear modulus
and I1 and I2 are the invariants of the right Cauchy–Green tensor C = FT ·F given by I1 = Tr(C) and I2 =
det(C). Depending on the case (functionally graded layer or a film on a substrate), the shear modulus is

µ(X2) =

 µ(X2) = µ0e
αX2 ;X2 ∈ [0, H] , α > 0 for case (a) ,

µ(X2) = µs ;X2 ∈ [0, Hs) , µ(X2) = µf ;X2 ∈ [Hs, H] for case (b) .
(2.7)

2. power-law model The power-law model has an adjustable power exponent p; it can thus model a
strain softening material (p < 1, typical of open cell foams) or a strain hardening material (p > 1, typical
of biological tissue)14. Since for p 6= 1 this model has undesirable properties (infinite stiffness for p < 1 and
zero stiffness for p > 1) in its undeformed state F = I, a Neo-Hookean response is assumed (p = 1) in the
neighborhood of small strains, i.e. for an equivalent shear strain 0 ≤ γ ≤ γy � 1. A continuous stress state
is ensured at transition, i.e. when the equivalent shear strain γ = γy. The corresponding energy density is

W (F;X2) = µ(X2)

[
c

2
(I1 − 2− ln I2)p +

ν

1− ν
(
√
I2 − 1)2

]
,

γ ≡ (I1 − 2− ln I2)1/2 ;


p = 1 , c = 1 for 0 ≤ γ ≤ γy ,

p 6= 1 , c =
1

p
(γy)2(1−p) for γ > γy .

(2.8)

For the power-law material only the thin film structure is considered and µ(X2) is given by case (b) in (2.7).
An important property of the selected constitutive law in (2.8) (of which the Neo-Hookean material is a

special case at p = 1) is its “local stability,” i.e. “rank one convexity.” It is shown in Appendix B.1 that the
stronger condition of polyconvexity applies for p > 0.5 and ν > 0.05, thus guaranteeing rank one convexity
for the values of p used in this work.

2.4. Symmetry

The symmetry group and the lattice of isotropy subgroups of this problem explaining the structure
of the bifurcated equilibrium paths are well known, e.g. see Ikeda and Murota (2010). However, for
reasons of clarity and completeness, we give here a brief presentation of the pertaining theory (Healey,
1988; Gatermann and Hohmann, 1991; Golubitsky et al., 1988; Chossat and Lauterbach, 2000; Field, 1996;
Vanderbauwhede, 1982; Sattinger, 1979; Ikeda and Murota, 2010). For the layer model at hand, there exists
a group G of transformations that leave its energy E(u; ε) – defined in (2.1) – invariant under the action of
all transformations g ∈ G. For practical purposes, we want to deal with a compact symmetry group G. To
this end a maximum period Ld of all sought equilibrium solutions must be selected. In principle, the choice
of Ld is limited only by the available computational resources. It is also desirable to choose Ld so that it
is commensurate with (i.e., an integer multiple of) the fundamental period Lc of the primary bifurcation
orbit15: Ld = Lcq and q ∈ N. Finally, it is important to point out that the selection of q > 1 facilitates the
inclusion of “period-extending” (period-doubling, -tripling, etc.) solutions.16

The symmetry group G of the Ld-periodic, layered system with energy density given by (2.1), is the
infinite, compact group G = C∞v ' O(2). The generators of this group are denoted by {σv, c(θ)}, where
σv is the reflection about the plane X1 = 0 and c(θ) is the phase shift by an angle θ ∈ [−π, π). The faithful
representation of G on the space of admissible displacement functions u(X) ∈ U are as follows

13The 2D Poisson ratio must satisfy −1/2 < ν < 1 for plane strain linear elasticity, with incompressibility corresponding to
ν = 1; however the positivity of bulk energy in (2.6) dictates positive ν values.

14The terminology strain hardening (p > 1) or strain softening (p < 1) is due to the incompressible version (ν = 1) of (2.8),
where the shear modulus µ(γ) = 2p(2p− 1)γ2(p−1) is respectively an increasing or decreasing function of the shear strain γ.

15In Subsection 4.2 it is shown how one can determine Lc for the layer structure.
16Indeed, with (as below) q = 4, the primary bifurcation branch will have period Lc. Then each secondary bifurcating branch

may be associated with one of the periods Lr = rLc with r divisor of q.
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- Reflection σv with respect to the X2 axis:

Tσv : U −→ U , Tσv

[
u1(X1, X2)
u2(X1, X2)

]
=

[
−u1(−X1, X2)
u2(−X1, X2)

]
. (2.9)

- Phase-shift c(θ) by a phase angle θ ∈ [−π, π):

Tc(θ) : U −→ U , Tc(θ)

[
u1(X1, X2)
u2(X1, X2)

]
=

u1

(
X1 +

Ldθ

2π
,X2

)
u2

(
X1 +

Ldθ

2π
,X2

)
 . (2.10)

One can easily verify that energy density given by (2.1) is invariant under any transformation of G = C∞v

E(Tgu; ε) = E(u; ε) ; ∀u ∈ U , ∀ε ∈ [0, 1) , ∀g ∈ C∞v . (2.11)

The fixed-point space SC∞v
≡ {u ∈ U : Tgu = u , ∀g ∈ C∞v} consists of fields u ∈ U that remain

unaltered under the action of the group. It can be shown that these fields are of the form u1 = 0, u2 = f(X2),
where f is an admissible, arbitrary, real-valued function. The principal solution – also termed fundamental

solution – is
0
u(X; ε) = 0 ∈ SC∞v

.
Attention is now turned to the action of symmetry group C∞v on the bifurcated solutions. It will be

shown in Section 4 that the primary bifurcation orbits have symmetry group Cqv, which is generated by
Tσv , Tc(2π/q) . These orbits can be calculated in the corresponding fixed point space SCqv . It will also be
shown that secondary bifurcation orbits emerge from the primary one, each with a (lower) symmetry group
Crv, generated by Tσv , Tc(2π/r) , where r ∈ N with 1 ≤ r ≤ (q − 1)/2 or 1 ≤ r ≤ q/2 for an odd or even
q, respectively. These orbits can be calculated in the corresponding fixed point space SCrv . All of these
bifurcations, i.e. from fundamental to primary orbit and from primary to secondary orbits are found to be
pitchfork bifurcations (i.e. symmetric). The reader is referred to Appendix A for details.

2.5. Principal Solution

The principal solution of the problem
0
u(X; ε) = 0 is the solution of (2.2) corresponding to a constant

strain field
0

F(ε) = diag[λ1(ε), λ2(ε)], due to the adopted form of the constitutive law in (2.7) and (2.8) where
only the shear modulus µ(X2) is spatially-dependent but the Poisson ratio ν is constant. The transverse
principal stretch ratio λ2(ε) is found in terms of the axial stretch ratio λ1(ε) = 1− ε from the requirement
that the transverse normal stress vanishes (S22 = 0), as dictated by equilibrium and the free surface ∂Ωd2

boundary condition in (2.2), giving the following relation between the principal stretches

pc[λ2
1 + λ2

2 − 2− 2 ln(λ1λ2)]p−1
(
λ2

2 − 1
)

+
2ν

1− ν
(
λ2

1λ
2
2 − λ1λ2

)
= 0 ; λ1 = 1− ε , λ2(ε) . (2.12)

For a fixed λ1 = 1− ε ; ε ∈ [0, 1), one can show that there will always exist at least one positive root λ2 of
(2.12), found numerically using the bisection method, as the closest to unity root of the above equation.

The resulting dimensionless axial compressive stress |S11|/µ vs. strain ε response for the Neo-Hookean
(p = 1) and power-law models (strain hardening: p > 1, and strain softening: 0.5 < p < 1) for the principal
solution are plotted in Figure 2. As discussed in (2.8), to avoid the singularity in the power-law stress-strain
response at ε = 0, is it assumed that p = 1 in a neighborhood17 0 ≤ ε ≤ εy, where we chose εy = 0.05.

17According to (2.8), εy is related to γy by (γy)2 = (λ1(εy))2 + (λ2(εy))2 − 2− 2 ln[λ1(εy)λ2(εy)].
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Figure 2: Dimensionless axial compressive stress component (1st Piola-Kirchhoff) |S11|/µ vs. its work-conjugate strain ε for
the Neo-Hookean and power-law constitutive laws used in the different layer models.

We recall here that the power-law models with p = 0.75 < 1 and p = 1.25 > 1 are selected to represent
open cell foams and biological tissue, respectively, while the Neo-Hookean case p = 1 – used here for
purposes of comparison with Akerson and Elliott (2021) – is a popular choice for polymeric materials. It
is worth noticing in Figure 2 that for a constant power-law exponent p the reduction of the Poisson ratio
ν results in a softer response, thus explaining the use in all subsequent calculations of the combination
p = 0.75, ν = 0.3333 for the softening and p = 1.25, ν = 0.8182 for the hardening materials respectively.

3. Numerical Method

As discussed in Section 2, calculations are performed on a finite domain Ωd = [−Ld/2, Ld/2] × [0, H]
with periodicity conditions on u applied at X1 = ±Ld/2, as dictated by (2.1). The domain Ωd is discretized
using a rectangular mesh with four node isoparametric quadrilaterals and a 2× 2 Gauss integration scheme.
The mesh is progressively refined from X2 = 0 to the free surface X2 = H in order to capture the expected
highly localized surface deformations. As a result of this discretization, a node with position vector Xn

carries two degrees of freedom u1(Xn), and u2(Xn). We thus obtain from (2.1) the discretized energy
E(v; ε) as a function of the discretized global displacement vector v. A typical unit cell (q = 1, Ld = Lc)
has 550 elements. For the largest domain discretized18 (q = 4, Ld = 4Lc) we have 2, 200 elements. All the
simulation codes are written using deal.ii (Alzetta et al. (2018)), a C++ finite element library.

From the group-theoretic considerations in Subsection 2.4 – recalling that q = 4 – the solutions on the
primary and the secondary bifurcation orbits have Crv symmetry where r = 1, 2, 4. Calculations are per-
formed in the corresponding fixed point spaces SCrv , respectively on domains Ω?d = [0, rLc/2]× [0, H], where
the following kinematic boundary conditions, dictated by the invariance of the solution to transformations
Tσv , Tc(2π/r) are used

u1(0, X2) = 0 , u1(rLc/2, X2) = 0 . (3.1)

Due to the symmetry restrictions (3.1), we anticipate that the deformed configuration evolves into a
highly localized surface region at X1 = 0 on at least some of the bifurcated equilibrium paths. To avoid
interpenetration of the material points, we include a repulsive self-contact force19 through an in-plane

18Additional calculations with a more refined mesh of 8, 800 elements for the largest domain were also performed, but resulted
in no appreciable change in the calculated orbits. See also Appendix C.

19Here we are interested in exploring the onset of evolution of bifurcated equilibrium paths up to the initiation of self contact.
Thus, we use a simple discrete numerical penalty model for this purpose. Of course, to study the fine details of fully evolved
creased and/or folded equilibrium configurations, a more sophisticated contact model, such as those used by Diab et al. (2013)
and co-workers, must be used.
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potential at the free surface in the finite element model. The implementation of this penalty-type method
is described as follows. From the displacement degrees of freedom, we identify usi1 the components of the
displacement in the X1-direction of the ‘i’th surface node. From (2.1), the X1 component of position of the
‘i’th surface node in the deformed configuration xsi is then given by

0 ≤ xsi1 = usi1 +Xsi
1 λ1(ε) . (3.2)

Denote by vs the vector of all20 surface degrees of freedom us1 in Ω∗d. To avoid interpenetration – which
from symmetry with respect to the X1 = 0 would imply xsi1 < 0 – we define a self-contact penalty energy
Esc as

Esc(vs; ε) =

S∑
i=1

1

2

κ

(xsi1 )2
, (3.3)

where S ∈ N is the total number of surface nodes and κ � 1 is the penalty constant; a typical value of
κ = 10−12 is used in the calculations. Note that Esc increases rapidly and blows up as a surface node
approaches the X1 = 0 axis, i.e. as xsi1 → 0+. The discretized total energy Etot(v; ε) of the system is thus
the sum of the discretized version of the energy in (2.1) plus the penalty term Esc(vs; ε),

Etot(v; ε) = E(v; ε) + Esc(vs; ε) . (3.4)

The discrete set of nonlinear equilibrium equations ∂Etot(v; ε)/∂v = 0 are solved using a standard
incremental Newton–Raphson method combined with pseudo arc-length continuation (see Keller (1987);
Allgower and Georg (2003)), where the control parameter is the applied strain ε. Adaptive step-sizes are
implemented to handle convergence during self-contact of surface nodes.

The stability of each equilibrium orbit is evaluated according to the Bloch wave method described
in Subsection 2.2. Unlike the equilibrium path calculations that are performed in the half-domains Ω∗d,
the stability calculations are based on the full domain21 Ωd using the coupling condition in (2.5) for the
X1 = ±Ld/2 boundary degrees of freedom,

v(Ld/2, X2) = exp(i2πk)v(−Ld/2, X2) ; k ∈ [0, 1) . (3.5)

In practice, to avoid using complex numbers in the numerical calculations, we use the method proposed
by Aberg and Gudmundson (1997) that separates out real and complex parts. The method leads to the
simultaneous solution of two systems of equations, one for real and another for complex parts, with a
real stiffness matrix of almost twice the size of the unconstrained stiffness matrix resulting by the FEM
discretization of E,uu. An equilibrium solution is stable if its minimum eigenvalue is βmin ≥ 0. Note that
the translational mode is included in k = 0, giving always a zero eigenvalue (see discussion in Subsection 4.2
preceding (4.5)).

4. Results

This section presents the primary and secondary bifurcation equilibrium orbits and discusses their sta-
bility for the graded and layered models considered, all with a reference configuration thickness H = 1.0.
For the functionally graded layer µ(0) = µ = 1 while for all bilayers µs = µ = 1. Consequently the energy
reported in all subsequent calculations is the dimensionless energy E/Hµ, with E defined in (2.1). Since the
numerical values of E/Hµ and E are identical, for notational simplicity the same symbol E will be used to
denote the dimensionless energy E/Hµ.

For the functionally graded Neo-Hookean structure, the shear modulus exponent in (2.7) used in the
calculations is α = 3. For the bi-layered structure – Neo-Hookean or power-law – the film-to-layer thickness

20With the exception of us1 at X1 = 0.
21To avoid introducing new notation, the solution whose stability is under investigation has period L = Ld while the

perturbations considered are defined over a much larger domain, thus explaining k ∈ [0, 1) – see footnote 11 associated to (2.5).
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ratio is Hf/H = 0.1 and the film-to-substrate stiffness ratio µf/µs = 2. For the power-law material model
with p ≥ 1 (i.e. strain hardening p = 1.25 and Neo-Hookean p = 1 cases) a Poisson’s ratio of ν = 0.8182 is
adopted while for p < 1 (i.e. strain softening case p = 0.75) we use ν = 0.3333 in view of its softer response
as seen in Figure 2.

4.1. Principal Solution and its Stability

As discussed in Section 2, the solution of the equilibrium equation (2.2) in the model’s fixed-point space is
0
u(X; ε) = 0 ∈ SC∞v (see Appendix A). To determine its stability we must find, according to Subsection 2.2,
the minimum eigenvalue βmin(ε), with respect to all functions ∆u (the unit norm requirement ‖∆u‖ = 1
replacing the inner product 〈∆u,∆u〉 in the Rayleigh quotient definition of β) according to22 (2.4)

βmin(ε) = min
‖∆u‖=1

1

Ld

∫
Ωd

[(∇∆u) :
0

L(X2; ε) : (∇∆u)] dA ; ∀∆u(X) = exp(i2πkX1/Ld) δu(X2) ,

δu(X2) : [0, H] −→ R2 , k ∈ [0, 1) ;
0

L ≡ ∂2W (F;X2)

∂F∂F

∣∣∣ 0
F(ε)

.

(4.1)

Consequently, by substituting (2.5) into E0
,uu, one obtains the minimum eigenvalue of this operator

βmin(k; ε) = min
‖∆u‖=1

Q(δu, k; ε) , k ∈ [0, 1) ; Q ≡
∫ H

0

[(∇∆u) :
0

L(X2; ε) : (∇∆u)] dX2 , (4.2)

where an overline f denotes complex conjugation of a quantity f and where Q is a quadratic function of
δu(X2; ε) ≡ (δuc(X2; ε) cos(2πkX1/Ld)+i δus(X2; ε) sin(2πkX1/Ld)) that depends also on the wavenumber

k as well as on the load parameter ε. One can easily see that the unstressed configuration ε = 0,
0

F(0) = I is
stable. Indeed the corresponding second derivative of the energy gives the elastic moduli tensor of isotropic

linear elasticity
0

L(X2; 0) = Le which is convex (positive energy) with respect to the small strain (symmetric
part of (∇δu)) and consequently from (4.2) the quadratic form Q is positive for each nontrivial admissible
field (∇δu).

Of interest is the strain εc at the onset of the first bifurcation encountered on the principal solution and
the associated eigenmode wavelength Lc, different from the arbitrarily chosen Ld. To this end we proceed
as follows: We notice that Q depends on the dimensionless wavenumber ω ≡ 2πkH/Ld (and hence the
corresponding minimum eigenvalue βmin has to be calculated23 for ω ∈ [0,∞). We thus determine from
(4.2) the minimum eigenvalue βmin(ω; ε) of the stability operator Q(δu, ω; ε) for a given pair (ω; ε). We
subsequently find εmin(ω), the lowest nontrivial ε root of βmin for each fixed ω,

βmin(ω; εmin(ω)) = 0 ; βmin(ω; ε) > 0 , 0 ≤ ε < εmin(ω) , ω ∈ R+ . (4.3)

It can be shown that, since βmin(ω; εmin(ω)) = 0, a bifurcated solution emerges from the
principal one at each εmin(ω) and that from symmetry the corresponding eigenmodes are sym-
metric, ∆us(X) = [cos(ωX1/H)δu1(X2), sin(ωX1/H)δu2(X2)]T, and asymmetric, ∆ua(X) =
[− sin(ωX1/H)δu1(X2), cos(ωX1/H)δu2(X2)]T.

Finally, the sought critical (i.e. lowest) bifurcation load εc is the infimum of εmin(ω) with respect to ω,
attained at some24 ωc, which also determines the wavelength of the corresponding eigenmode Lc

εc ≡ inf
ω∈R+

εmin(ω) = εmin(ωc) ; Lc = 2πH/ωc . (4.4)

22For the stability of the principal solution, the Ld-periodic function p(X) in (2.5) depends solely on X2, i.e. p(X) = δu(X2).
Also, here we consider the case where Ld →∞ and thus take k ∈ [0, 1). See further, Footnote 11.

23From the self-adjointness of E,uu – also easily checked from (4.1) – one deduces βmin(ω; ε) = βmin(−ω; ε).
24The use of infimum in the definition of εc is due to a possible singularity at ω −→ 0, in which case Lc −→∞.
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For the derivations leading to the analytical calculation of εmin(ω), the interested reader in referred to
Akerson and Elliott (2021). The reader is also reminded of the discussion in Subsection 2.4, that larger
domains Ωd = [−Ld/2, Ld/2] × [0, H] are also considered where Ld = qLc, q ∈ N in which case the
bifurcation of the principal solution also takes place at εc which occurs for ω = 2πqH/Ld = 2πH/Lc = ωc.
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Figure 3: Graph of εmin, the lowest strain corresponding to the first instability on the principal solution, as a function of the
dimensionless wavenumber ω for the different structures considered: in (a) functionally graded Neo-Hookean layer (α = 1, 2, 3),
and in (b) power-law bi-layer (Hf/H = 0.1, µf/µs = 2) for three different power-law exponents (p = 1.25, 1.00, 0.75) and
two different compressibilities (ν = 0.8182, 0.3333).

Figure 3 shows the dependence of εmin, the lowest strain corresponding to the first instability of
the principal solution – defined in (4.3) – as a function of the dimensionless wavenumber ω for the dif-
ferent structures considered: functionally graded Neo-Hookean in Figure 3a, and bi-layer in Figure 3b
(Hf/H = 0.1, µf/µs = 2) for three different power-law exponents (p = 1.25, 1.00, 0.75) and two different
compressibilities (ν = 0.8182, 0.3333). According to the results in Figure 3a, as the grading exponent
α increases, i.e. as the material is progressively stiffening near the free surface, the critical strain εc de-
creases. This confirms the results of Akerson and Elliott (2021). For the bi-layer structures, the results of
Figure 3b show that the critical strain εc decreases with the decreasing stiffness of the material, i.e. as its
power-law p exponent decreases. For a given power-law exponent, the critical strain is higher for the more
compressible material, as seen in Figure 3b by comparing the εmin(ω) curves for the layered structures with
p = 0.75, ν = 0.8182 and p = 0.75, ν = 0.3333.

For the functionally graded layer, the corresponding critical wavenumber ωc ≈ 2, is rather insensitive to
the grading exponent and the Poisson ratio. In contrast, for the bi-layer case the critical wavenumber ωc
shows a stronger dependence on the constitutive law, ranging approximately in the interval 6 ≤ ωc ≤ 8. The
lower value of the critical wavenumber for the graded layer – compared to the bi-layers – can be explained
by the fact that the instability phenomena are occurring within a thin zone near the free surface. Note
that in all cases examined in Figure 3, the critical strain reaches an asymptote for large values of ω, as the
corresponding instability mode is Biot’s exponentially decaying surface mode of an infinite halfspace with
the same properties as the surface (film) layer. The consequence of this observation, which explains the
mesh-dependence of the numerical results at localized deformations, is discussed in Appendix C.

4.2. Primary Bifurcation Orbit and its Stability

We focus next on the primary bifurcation orbits, i.e. the initially uniformly wrinkled periodic configuration
solutions of the layered system. These paths emerge from the lowest critical load εc, where a double, pitchfork
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bifurcation occurs. At this point a continuous orbit of bifurcated equilibrium paths can be constructed
starting from any linear combination of the eigenmodes: a∆us(X) + b∆ua(X). A representative element
of this orbit that also belongs to the fixed-point space SCrv (see Appendix A), is the Lc-periodic solution
1
u(X; ε), plotted in Figure 4, and parameterized using the bifurcation amplitude ξ, defined as the absolute
value of the X2-displacement of the free surface at X1 = 0: ξ ≡ |u2(0, H)|. The reason for this choice25 is
that the applied axial strain ε(ξ) is not a monotonic function of ξ.

Figure 4: Deformed (current) configuration (x(X; ε(ξ)) =
0
F(ε) ·X +

1
u) corresponding to the primary bifurcated equilibrium

path
1
u(X; ξ) is an lc ≡ (1 − εc)Lc-periodic function, where the bifurcation amplitude parameter ξ, is defined as the absolute

value of the X2-displacement of the free surface at X1 = 0. The unit cell solution is calculated on half of the diagonally hatched
domain and completed by symmetry over the super-cell domain in the current configuration. The Neo-Hookean bi-layer model
(µf/µs = 2, Hf/H = 0.1) result shown here is a representative of the continuous orbit of the Crv-symmetric bifurcated paths
emerging at εc given in Figure 3. The FEM mesh is indicated on one full `c period.

Taking advantage of symmetry, as discussed in Section 3, the resulting deformed configuration is obtained
by solving the equilibrium equations in (2.2) over half its unit cell domain Ω∗c = [0, Lc/2]× [0, H]. A typical
deformed configuration – here for a Neo-Hookean bi-layer model with µf/µs = 2, Hf/H = 0.1 – is plotted
in Figure 4. The unit cell solution is calculated on half of the shown meshed region and completed by
symmetry over the super-cell domain in the current configuration [(ld = λ1(ε)Ld) × (h = λ2(ε)H)], with
Ld = 4Lc; the dashed line gives the surface location of the principal solution. The same figure depicts the
typical FEM mesh used in the numerical calculations and shows the mesh refinement used near the free
surface, due to the expected localization of the deformation pattern in that region.

The primary bifurcation orbits
1
u(X; ε) emerging from the principal solution (

0
u(X; ε) = 0) for four –

one graded and three different bi-layered – of the structures studied in Figure 3 are plotted in Figure 5,
where the left and right columns show respectively results for the functionally graded and bi-layer structures.
Figures 5a, 5b show the amplitude ξ vs. strain ε, Figures 5c, 5d show energy change (E−E0) vs. strain ε, and
Figures 5e, 5f show axial force change (E −E0),ε vs. strain ε. The stability of the primary bifurcation orbits,
based on Bloch wave calculations of a Lc unit cell – as described in Subsection 2.2 – is also recorded using
solid and dot-dashed lines, respectively, for the stable and unstable parts of these orbits. The computation
along each path is terminated (indicated by a black “x” in the figures) somewhat before self contact occurs to
avoid presentation of misleading results. (Beyond these points the accuracy of the employed contact model
becomes less reliable, and there are mesh-dependence concerns since the computed creased configuration is
of the same length-scale as the FEM mesh.)

25In fact, even the employed parameterization is problematic, since it is restricted to ξ ≥ 0, and is therefore unable to
distinguish between the two “halves” of the bifurcated path.
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Figure 5: Plots showing the emergence of the primary bifurcation orbit
1
u(X; ε) from the principal solution (

0
u(X; ε) = 0) for

the different types of structures considered: graded Neo-Hookean (α = 3, left column), and bi-layered (Hf/H = 0.1, µf/µs = 2
for three different power-law models, right column). Bifurcation diagrams show: in top row (a) and (b) amplitude ξ vs. strain
ε, in middle row (c) and (d) energy change (E − E0) vs. strain ε and in bottom row (e) and (f) lateral force change (E − E0),ε
vs. its work-conjugate strain ε. Solid and dot-dashed lines correspond, respectively, to the stable and unstable parts of the
primary bifurcation orbit, based on Bloch-wave analysis of a Lc unit cell.

15



Material property grading plays an important role in the nature of the primary bifurcation orbit, as
discussed by Akerson and Elliott (2021). As seen in Figure 5a the bifurcation orbits for the graded Neo-
Hookean structure are “supercritical,” i.e. they start with an initial positive curvature at εc ≈ 0.2. According
to the general theory for elastic systems (e.g. see Triantafyllidis and Peek (1992)), the supercritical orbit
is initially stable. The bifurcation amplitude increases under increasing strain up until a maximum strain
ε ≈ 0.32 is reached. Just before the maximum strain the solution becomes unstable and, following a
maximum amplitude, experiences a sharp snap-back and quickly regains its stability.

A creased (strongly localized deformation) pattern is associated with this snap-back part of the ε(ξ)
curve and the term is used hereinafter for the part of the equilibrium orbits beyond their turning points.
Typical localized deformed configurations associated with these orbits are illustrated in Figures 11c and
12c. According to Figures 5c, 5d the primary bifurcation orbits have initially a lower energy than the
corresponding principal solution at the same applied strain ε. The applied lateral force drops, relative to the
flat configuration, when one moves away from the bifurcation point, as seen by Figures 5e, 5f. Also notice
that for a given strain ε the bifurcation amplitude of the snap-back part and the energy are higher while
the lateral force is lower than in the corresponding part of the path emerging from εc.

The initial post-bifurcation behavior for the selected material property (shear modulus) grading exponent
(α = 3) is in agreement with the asymptotic analysis in Akerson and Elliott (2021). It is noteworthy that
the functionally graded Neo-Hookean layer exhibits a primary bifurcation orbit with a maximum axial strain
significantly higher than εc. The stable, snap-back solution exists for strains lower than εc and exhibits a
localized deformation pattern, but this does not occur in a neighborhood of εc as seen from the bifurcation
diagrams of Figure 5.

For the bi-layer structure, the choice of constitutive law has a significant impact on the nature of the
primary bifurcation orbits. The strain softening bi-layer (p < 1) has a supercritical bifurcation, while
the strain hardening bi-layered structure (p = 1.25) has a subcritical orbit, i.e. the strain is reduced as
the bifurcation amplitude increases. The Neo-Hookean bi-layer (p = 1) primary bifurcation orbit emerges
as subcritical and hence unstable at the onset of bifurcation, as seen in Akerson and Elliott (2021), who
investigated a Neo-Hookean bi-layer structure as a function of the film/substrate stiffness ratio µf/µs.

With the exception of a small neighborhood near εc for the strain softening bi-layer, all bifurcated orbits
are unstable and remain so well beyond all their turning points, until the stable branch of the snap-back is
reached. Notice nevertheless the somewhat counter-intuitive result that the strain softening bi-layer exhibits
a primary bifurcation orbit with a maximum axial strain higher than εc, while its strain stiffening counterpart
has a post-bifurcated orbit with an applied strain monotonically decreasing away from εc. Once again from
Figure 5, the stable, snap-back solutions with a localized deformation pattern exist for strains lower than εc
but well away from a neighborhood of εc.
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Figure 6: Dispersion relations – minimum eigenvalue of the stability operator βmin(k) vs. wavenumber k – at different bifurca-
tion amplitudes ξ for the primary bifurcation paths of the four different structures: (a) functionally graded Neo-Hookean (α = 3),
b) bi-layer with Neo-Hookean material p = 1.00, ν = 0.8182, (c) bilayer with strain softening material p = 0.75, ν = 0.3333
and (d) bi-layer with strain hardening material p = 1.25, ν = 0.8182.

Based on the numerical procedure described in Section 3, a more detailed picture of the stability of the

primary bifurcation orbit
1
u(X; ε) is provided by a plot of the minimum eigenvalue βmin(k) as a function of

the wavenumber k; such plots are commonly referred to as a “dispersion relation.”26 Here, on a single plot,
we present multiple dispersion relations at different values of the bifurcation amplitude ξ along the primary
bifurcated equilibrium path. In Figure 6a are presented the dispersion curves for the functionally graded
Neo-Hookean (α = 3) layer and Figures 6b, 6c and 6d, respectively, show the corresponding dispersion curves
for the bi-layer with the three different power-law materials: p = 1.00, ν = 0.8182, p = 0.75, ν = 0.3333,
and p = 1.25, ν = 0.8182.

26However, this is really an abuse of the term which originates in the theory of waves and properly describes the temporal
frequency versus wavenumber curve.
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Since the stability operator E,uu is self-adjoint, the eigenvalues of the corresponding discretized Hermitian
stiffness matrix are real and symmetric with respect to k = 0, i.e. βmin(k) = βmin(−k). This property,
combined with the periodicity of the eigenvalue, i.e. βmin(k + 1) = βmin(k), following from (3.5), results in
the mirror symmetry of the graphs in Figure 6 with respect to k = 1/2. Their intersection with the βmin = 0
line indicates bifurcation points.

A curve lying entirely above the k-axis means that the orbit in question, identified by its bifurcation
amplitude, is stable. As expected from the results in Figures 5a, 5b, where the post bifurcation behavior
for the functionally graded structure and the strain softening bi-layer are supercritical, for small values of
the bifurcation amplitude ξ the corresponding dispersion curves lie entirely above the k-axis, as seen in
Figures 6a and 6c. As the bifurcation amplitude increases, the orbits in each structure become unstable and
the corresponding dispersion curves dive below the k-axis, as all orbits become unstable until a significant
crease is formed and they regain their stability.27

Finally a remark is in order about the existence of βmin(0) = 0 in the above dispersion curves. At k = 0,
as seen in the Figure 6 graphs βmin = 0 for the principal solution (ξ = 0), while β = 0 is an eigenvalue
for the primary bifurcation orbits (ξ > 0), but not necessarily the minimum one. The reason stems from
the fact that the stability operator E,uu evaluated on any solution of the equilibrium equations which is
Ld-periodic – and hence corresponding to k = 0 according to (3.5) – can be shown to have a zero eigenvalue.
Indeed differentiating the equilibrium equations for an equilibrium solution (E,u(u(X1 + c,X2); ε), δu) = 0
with respect to an arbitrary phase-shift c(θ) (see (2.10)) we obtain

d

dc
(E,u(u(X1 + c,X2); ε), δu) = 0 =⇒ ((E,uu, [

∂u

∂X1
(X1, X2; ε)]), δu) = 0 , (4.5)

indicating that zero is an eigenvalue of the stability operator E,uu with corresponding eigenmode ∂u/∂X1.

4.3. Secondary Bifurcation Orbits

We are interested next in the secondary bifurcation orbits emerging from the primary ones presented
above. Once again, due to symmetry, as discussed in Section 3 equilibrium solutions are computed on
the domain Ω∗d = [0, Ld/2] × [0, H], while the stability analysis of the resulting orbits is based on the
domain Ωd = [−Ld/2, Ld/2] × [0, H], where Ld = 4Lc. The results for all the structures analyzed – and
whose primary orbits appear in Figure 5 – are now presented in Figures 7 to 10. More specifically, the
secondary orbit graphs presented in Figure 7 show the amplitude ξ vs. strain ε, in Figure 8 the energy
change (E − E0) vs. strain ε and in Figure 9 the force change (E − E0),ε vs. amplitude ξ. All bifurcation
points are indicated by a small circle, while solid and dot-dashed lines correspond, respectively, to the
stable and unstable parts of these equilibrium paths. In Figure 10 deformed configurations are plotted at
selected points, indicated in Figures 7 to 9. Colors show the absolute value of the Lagrangian strain’s shear
component |E12|, chosen as a measure of the localized deformation in view of the absence of shear in the

principal solution (
0

F(ε) = diag[λ1(ε), λ2(ε)] =⇒
0

E12 = 0).

27Dispersion curves for adequately large amplitudes, corresponding to restabilized orbits, are not depicted in Figure 6.
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Figure 7: Amplitude ξ vs. applied strain ε graphs of the secondary bifurcation orbits for the: (a) functionally graded Neo-
Hookean layer (α = 3), (b) Neo-Hookean (p = 1.00, ν = 0.8182) bi-layer (Hf/H = 0.10, µf/µs = 2), (c) strain softening
material (p = 0.75, ν = 0.3333) bi-layer (Hf/H = 0.10, µs/µf = 2) and (d) strain hardening material (p = 1.25, ν = 0.8182)
bi-layer (Hf/H = 0.10, µs/µf = 2).

As seen from Figure 7a, the secondary bifurcation orbits for the exponentially graded material (α = 3)
emerge near ε = 0.316, just prior to the primary path reaching its turning point, a significantly higher value
than the critical strain εc = 0.205. In contrast, the secondary bifurcation orbits of the bi-layers emerge
at strains near the corresponding critical ones, as seen from Figures 7b, 7c and 7d. A common feature in
all cases is that the orbit corresponding to k = 1/4 (period-quadrupling) mode emerges first and leads to
an initially unstable secondary bifurcated orbit with C1v symmetry, followed by another initially unstable
secondary orbit with C2v symmetry corresponding to the k = 1/2 (period-doubling) mode.

Both of these secondary bifurcated orbits evolve to a solution with a highly localized deformation pattern
at the surface as the overall strain ε decreases and the bifurcation amplitude ξ keeps increasing along these
paths, until a maximum amplitude is reached. As with the primary bifurcation orbits presented in Figure 5,
the counter-intuitive decrease in the bifurcation amplitude in the secondary bifurcation orbits, is due to the
decrease in the overall lateral expansion of the layer (recall h = λ2(ε)H) caused by the decreasing strain ε.
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In all cases of Figure 7, for a given strain ε the longer wavelength orbit (k = 1/4) has initially – and until
close to its turning point – a lower amplitude ξ than its shorter wavelength counterpart (k = 1/2).
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Figure 8: Energy change E − E0 vs. applied strain ε graphs of the secondary bifurcation orbits for the: (a) functionally graded
Neo-Hookean layer (α = 3), (b) Neo-Hookean (p = 1.00, ν = 0.8182) bi-layer (Hf/H = 0.10, µf/µs = 2), (c) strain softening
material (p = 0.75, ν = 0.3333) bi-layer (Hf/H = 0.10, µs/µf = 2) and (d) strain hardening material (p = 1.25, ν = 0.8182)
bi-layer (Hf/H = 0.10, µs/µf = 2).

The energy change E − E0 vs. strain ε results are shown in Figure 8. A common feature shared by all
cases studied is that the secondary bifurcation orbit corresponding to k = 1/4 (which has a C1v symmetry)
has a lower energy than the C2v symmetry orbit corresponding to k = 1/2. As one follows these orbits away
from their emergence on the primary orbit, the applied strain ε decreases but the difference between the
energies of the principal and secondary orbits continue to increase, with the C1v symmetry orbit having the
lowest energy among all identified bifurcated solutions.
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Figure 9: Force change (E −E0),ε vs. applied strain ε graphs of the secondary bifurcation orbits for the: (a) functionally graded
Neo-Hookean layer (α = 3), (b) Neo-Hookean (p = 1.00, ν = 0.8182) bi-layer (Hf/H = 0.10, µf/µs = 2), (c) strain softening
material (p = 0.75, ν = 0.3333) bi-layer (Hf/H = 0.10, µs/µf = 2) and (d) strain hardening material (p = 1.25, ν = 0.8182)
bi-layer (Hf/H = 0.10, µs/µf = 2).

The lateral force change (E − E0),ε results are plotted in Figure 9. An analogous observation can be
made with the results of Figure 8 showing the energy difference (E − E0) versus bifurcation amplitude ξ:
the secondary bifurcation orbit corresponding to k = 1/4 (which has a C1v symmetry) has a lower lateral
force than the C2v symmetry orbit corresponding to k = 1/2. As one follows these orbits away from their
emergence on the primary orbit, the applied strain ε decreases but the difference between the lateral forces
of the principal and secondary orbits continue to increase, with the C1v symmetry orbit having the lowest
lateral force change.
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Figure 10: Deformed configuration with contours for the absolute value of the Lagrangian strain shear component |E12| of the
secondary bifurcation orbit with C1v-symmetry, corresponding to the k = 1/4 bifurcation mode for: (a) the functionally graded
layer (α = 3) at point P, (b) the Neo-Hookean (p = 1.00, ν = 0.8182) bi-layer at point Q, (c) the strain softening material
(p = 0.75, ν = 0.3333) bi-layer at point T and (d) strain hardening material (p = 1.25, ν = 0.8182) bi-layer at point U (see
Figures 7, 8 and 9, respectively).

Deformed configurations with contours for the absolute value of the Lagrangian strain shear component
|E12| are presented for selected points along the secondary bifurcation orbit with C1v-symmetry (correspond-
ing to the k = 1/4 bifurcation mode) for: (a) the functionally graded layer (α = 3) at point P, (b) the Neo-
Hookean (p = 1.00, ν = 0.8182) bi-layer at point Q, (c) the strain softening material (p = 0.75, ν = 0.3333)
bi-layer at point T and (d) stiffer material (p = 1.25, ν = 0.8182) bi-layer at point U (see Figures 7, 8, 9).
Moreover, similarly to the primary bifurcation orbits in Figure 5, the stable secondary bifurcation orbits
exhibit a localized deformation pattern and can be found at strains lower than εc. However, as seen in
Figures 7, 8, 9, this happens far from the neighborhood of εc, thus repudiating the idea that these are “local
bifurcations.”

Some interesting comparisons can be made at this point with the structural model (beam on a nonlinear
elastic foundation) of Pandurangi et al. (2020) which served as an analytically tractable alternative to the
bi-layer continuum model considered here. Although significant differences exist (linearly elastic beam for
the film, nonlinear spring model for the substrate), interesting analogies can be found with the onset of the
different bifurcation orbits as the symmetry group of the bi-layer model presented here is a proper subgroup
of the structural model’s counterpart. Moreover, in both cases highly localized stable deformations are
found far away from and well below the initial critical load. Both models share a (finite wavelength) periodic
primary bifurcation orbit, from which subsequently emerge lower symmetry orbits (secondary, tertiary, etc.).

One interesting difference is that in the structural model the softening(stiffening) foundation results in a
unstable(stable), subcritical(supercritical) bifurcation while the opposite is true for the continuum bilayer.
As in the structural model, the secondary bifurcation orbit that appears first corresponds to the longest
wavelength eigenmode. As for the structural model, for the structure with the subcritical primary orbit,
the secondary one will emerge as close to the critical load as the size q of the supercell domain considered
increases (Ld = qLc). In the neighborhood of the first primary bifurcation point our results are in agreement
with the structural model of Pandurangi et al. (2020).

More broadly, it is interesting to note that, for the current problem all the bifurcated solutions have higher
energy than the principal flat solution. Further, the paths all evolve into highly localized configurations that
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have very shallow penetration of the free surface into the depth of the strip. Accordingly, once the solution
fully localizes the equilibrium corresponds to a mostly homogeneous one with a shallow “crease” or “fold”.
The energy of such configurations will be that of the flat uniform principal solution plus a relatively small
additional energy due to the surface perturbations. As such, there is little reason to argue that the flat
principal configuration would spontaneously transition to the higher-energy shallow localized configurations
found in this work. This does not mean that the imperfection-free path-following methods used here are
not capable of discovering the deeply penetrating crease and fold configurations of interest. This issue is
explored next.

4.4. Development of Creases and Folds – Influence of Material Properties

For the constitutive parameters studied in the previous subsections, the path-following bifurcation
method – which does not use imperfections – does not lead to the deeply penetrating creases and folds
that have been of considerable interest in the literature, such as those studied by Diab et al. (2013) and
coworkers. However, here we show that the details of the evolution of a bifurcated equilibrium path emerging
from the principal (flat) configuration into a crease or fold depend strongly on the constitutive properties of
the structure (film-to-substrate stiffness ratio µf/µs and Poisson’s ratio ν). In particular, we find that deep
creases and folds are, indeed, found via imperfection-free path-following for certain material parameters.
Although the first dependence (µf/µs) is discussed in the literature, the latter (ν) has not been the object
of attention since most of the work in this area pertains to incompressible materials.

As discussed in Appendix C, for large values of the bifurcation amplitude ξ, the bifurcation orbits
and the details of the localization patterns are mesh-sensitive. Having established that for a large enough
sample (Ld = qLc, q > 1) the localized deformation with the lowest energy is obtained from the secondary
bifurcation orbit that emerges first from the primary one, in the interest of reducing computation time, we
study the constitutive influence on the development of creases and folds using the lowest size domain (one
cell, Ld = Lc, q = 1) but with the densest mesh reported in Appendix C.
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Figure 11: Influence of Poisson’s ratio ν on the evolution of the localized deformation pattern. In (a) primary bifurcation orbit,
plotted in ε vs. ξ, for a Neo-Hookean bilayer (Hf/H = 0.1, µf/µs = 2) for two different compressibility values: ν = 0.8182
(see also Figure 5b) and ν = 0.9608. In (b) the localized deformation pattern (fold) for the nearly incompressible ν = 0.9608
case plotted at point A. In (c) the localized deformation pattern for the compressible (crease) ν = 0.8182 case plotted at point
B. Deformed configurations also show contours for the absolute value of the Lagrangian strain shear component |E12|.

The influence of Poisson’s ratio ν on the evolution of the localized deformation pattern is presented in

23



Figure 11. In Figure 11a we plot28 the primary bifurcation orbit in ε vs. ξ, for a Neo-Hookean bilayer
(Hf/H = 0.1, µf/µs = 2) for two different Poisson’s ratio values: ν = 0.8182 (see also Figure 5b) and
ν = 0.9608. Notice that as incompressibility is approached, the maximum bifurcation amplitude ξ reached
before snap-back shows a significant increase. Moreover, one can also observe in Figure 11b that the localized
deformation pattern for the nearly incompressible ν = 0.9608 case, plotted at point A – maximum bifurcation
amplitude – is a small fold while in Figure 11c, the localized deformation pattern for the slightly compressible
ν = 0.8182 case, plotted at point B, corresponds to a very small crease.

The transition from crease to fold is made more clear in Figure 12 that pertains to the influence of
film-to-substrate stiffness ratio µf/µs on the evolution of the localized deformation pattern. In Figure 12a
we plot ε vs. ξ the primary bifurcation orbit for a nearly incompressible Neo-Hookean bilayer (Hf/H =
0.1, ν = 0.9608) for three different values of the stiffness ratio: µf/µs = 2 (see also Figure 11a) and
µf/µs = 5, 10. Notice that as the stiffness ratio µf/µs increases, the maximum bifurcation amplitude ξ
reached before snap-back shows a significant increase, while the critical strain εc decreases. In addition, we
observe in Figure 12b that the localized deformation pattern for the µf/µs = 10 case, plotted at maximum
bifurcation amplitude ξ and maximum applied strain ε in point C, is a very well-developed, deep fold. In
Figure 12c we also find that the localized deformation pattern for the µf/µs = 5 case, plotted again at
maximum bifurcation amplitude ξ and maximum applied strain ε in point D, is also a fold, although less
pronounced than for the µf/µs = 10 case, in agreement with existing literature (see Diab et al. (2013)).
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Figure 12: Influence of film-to-substrate stiffness ratio µf/µs on the evolution of the localized deformation pattern. In (a)
primary bifurcation orbit, plotted in ε vs. ξ, for a nearly incompressible Neo-Hookean bilayer (Hf/H = 0.1, ν = 0.9608) for
three different values of the stiffness ratio: µf/µs = 2 (see also Figure 5b) and µf/µs = 5, 10. In (b) the localized deformation
pattern (fold) for the µf/µs = 10 case plotted at point C. In (c) the localized deformation pattern (fold) for the µf/µs = 5
case plotted at point D. Deformed configurations also show contours for the absolute value of the Lagrangian strain shear
component |E12|.

We have thus established that the highly localized deformation solutions of creases and folds found in
the literature, can be obtained using the path-following bifurcation technique used here, guided by group
theory in view of the large symmetry group of the problem at hand, without the use of imperfections.

28The results in Figures 11 and 12 use solid lines for the bifurcated paths but this should not be interpreted to indicate
stability information.
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4.5. Equilibria of the Infinite Perfect Homogeneous Layer via Control Parameter Switching

Although our primary focus has been on layered and graded inhomogeneous elastic systems, under-
standing the solution set of the homogeneous problem is of equal importance in establishing the nature
(local bifurcation or not) of creasing and folding solutions in free-surface instability mechanics problems.
Researchers having only experience with relatively simple nonlinear buckling problems can easily underesti-
mate the severe difficulties involved in finding bifurcated solutions to the homogeneous Biot problem. The
Biot singularity occurs simultaneously at all wavelengths and this massive degeneracy effectively thwarts
trial-and-error (including imperfection) methods for selecting an initial guess for use in Newton-Raphson
based iterative solvers. In this subsection we employ the innovative imperfection-free systematic parameter-
switching scheme of Healey and Miller (2007) to discover solutions to the homogeneous Biot problem.

Thus far the results presented in Figures 7 to 9 were obtained by using compressive strain ε as a control
parameter while fixing the film-to-substrate shear modulus ratio (µf/µs = 2). We now proceed to discuss
the evolution of deformation of the body as the continuation parameter is switched to µf/µs with ε fixed.
By switching the control parameter to µf/µs for a fixed ε one can obtain bifurcated equilibrium orbits for
the homogeneous halfspace (µf = µs) without the need to introduce an imperfection in a structure whose
exponentially decaying bifurcation eigenmode (corresponding to Biot’s surface instability) has a vanishingly
small wavelength.

(a) (b)

Figure 13: An efficient way to obtain creased, bifurcated solutions for the homogeneous halfspace problem by switching the
control parameter of an equilibrium orbit from strain ε to shear moduli ratio µf/µs in a Neo-Hookean bi-layer. The axonometric
projections show: (a) Amplitude ξ as a function of strain ε and moduli ratio µf/µs. (b) Energy change (E − E0) as a function
of strain ε and shear moduli ratio µf/µs. Equilibrium solutions for the homogeneous Neo-Hookean halfspace are found for
µf/µs = 1. Solid and dot-dashed lines correspond, respectively, to the stable and unstable parts of these equilibrium paths,
based on Bloch-wave analysis of a q = 4, (Ld = 4Lc) supercell.

We work with the bilayer structure and a domain of length Ld = 4Lc. Bifurcation diagrams for this case
are shown in Figure 13. As before, we begin by loading a bi-layer of µf/µs = 2 with increasing strain ε on the
principal path and locate the primary bifurcation point. The segment of the primary orbit for µf/µs = 2.0
and ε as the continuation parameter is plotted in black dashed line (unstable C4v orbit, identical to the
primary path in Figure 7). On this (primary bifurcation) orbit of the bi-layer with µf/µs = 2, we switch the
continuation parameter from ε to µf/µs at point R as seen in Figure 13. The primary path where µf/µs is
the control parameter evolves along the blue curve, corresponding to a C4v orbit with a fixed ε = 0.3228.
In the neighborhood of point R the C4v orbit bifurcates into a lower symmetry C1v orbit corresponding
to k = 1/4, plotted in red dashed line (unstable). As seen in Figure 13a, the amplitude of deformation
initially increases and subsequently decreases as µf/µs −→ 1 leading to a stable solution at µf/µs = 1.0,
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i.e. for the homogeneous body. As expected, the deformed configuration at point S exhibits a localized
surface deformation. For a fixed ε = 0.3228, at a given µf/µs the energy of the system on the C4v orbit is
higher than the corresponding one for its lower symmetry bifurcated counterpart C1v as seen in Figure 13b.
With this approach, we have found without the need of introducing an imperfection, a bifurcated equilibrium
solution of the perfect homogeneous layer, whose lowest strain instability is a surface one with a vanishing
wavelength, i.e. has a critical wavenumber ωc −→∞ (see Biot (1963)).

5. Conclusion

It is well-known that a linearized stability analysis of a compressed halfspace with a flat free surface
predicts wrinkles (see Biot (1963)) and hence precludes a perfect halfspace model from locally bifurcating
from the flat state to a creased/folded one. The nucleation of this localization phenomenon is a poorly
understood (see Yang et al. (2021)) issue in hyperelastic solids. While the methods employed in the exist-
ing literature avoid this inconvenient fact by introducing an “a priori” imperfection (geometric or surface
force) which biases the system toward the desired configuration, the choice of imperfection introduces an
uncontrolled perturbation to the exploration of the transition from the flat state to localized creases and/or
folds. It is exactly this transition issue which we have eliminated in this work. Using the imperfection-free
local bifurcation and global solution branch following method introduced in Pandurangi et al. (2020), we
employ a group-theoretic approach for perfect structures.

To demonstrate the methodology, we select a stable (polyconvex) material model and consider two plane-
strain boundary value problems: a functionally graded layer whose shear modulus varies exponentially with
distance from the free surface, and a thin-film on a substrate layer. Application of the imperfection-free
local bifurcation and global solution branch following method shows that highly localized (creased) stable
equilibrium solutions evolve “far” from the initial smooth and oscillatory bifurcation near the flat trivial
solution. Furthermore, we find that isolated stable creases (i.e., a single crease surrounded by long flat
regions) evolve, along the long wavelength secondary bifurcating paths, “far” from the flat trivial solution,
as seen in the bifurcation diagrams of Figures 7, 8 and 9. These secondary paths bifurcate in a cascading
fashion from the short wavelength, wrinkled, primary bifurcation paths. These primary paths in turn emerge
from the system’s symmetry-breaking bifurcation points along its flat configuration path. These qualitative
results are robust to parameter variation in the material model ranging over strain-softening to Neo-Hookean
to strain-hardening materials.

Taking the method one step further, we employ a multiparameter approach akin to that of Healey and
Miller (2007); Healey and Sipos (2013); Healey et al. (2013), and switch continuation parameters in the
bilayer problem. Here we use the film-to-substrate shear moduli ratio for continuation to obtain isolated
crease solutions for the perfect homogeneous halfspace without using an imperfection, while avoiding analysis
near the highly degenerate homogeneous state at the Biot instability.

With the present work we eliminate the uncontrolled effects of “a-priori” imperfections on the study of
creasing and folding in compressed hyperelastic halfspaces and demonstrate that “creases and folds are not
local bifurcations” as frequently reported in the literature.

ACKNOWLEDGMENTS
All authors would acknowledge support from the École Polytechnique and its Laboratore de Mécanique
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Appendix A. Group-Theoretic Considerations

The fundamental concept used to study the bifurcated equilibrium paths and their stability in any con-
servative elastic system is the existence of a group G of transformations that leave its energy – e.g. E(u; ε)
defined in (2.1) for the problem at hand – unchanged, i.e., invariant under the action of all transforma-
tions g ∈ G. More specifically, to each element g ∈ G we associate a unitary transformation Tg (termed
“representation” of g) acting on u(X) ∈ U with image Tg[u] ∈ U that satisfies

E(Tg[u]; ε) = E(u; ε) ; ∀ε ≥ 0 , ∀u ∈ U , ∀g ∈ G , (A.1)

where ε is the scalar load parameter (assumed positive) and U the space of admissible functions u.
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It follows from (A.1) that the variation of E with respect to its argument u (first order functional
derivative E,u) possess the property of “equivariance”

(Tg[E,u(u; ε)], δu) = (E,u(Tg[u]; ε), δu) ; ∀ε ≥ 0 , ∀u, δu ∈ U , ∀g ∈ G . (A.2)

According to (2.2), the system’s equilibrium solutions u(X; ε) are found by extremizing its energy;
consequently all solutions of the system (E,u(u; ε), δu) must satisfy (A.2). It is more appropriate to talk
about “orbits” of equilibrium paths since, in view of the equivariance described in (A.2), applying to an
equilibrium solution u the transformation Tg automatically generates another equilibrium solution Tg[u].

A subset of these equilibrium solutions, termed “principal solutions” and denoted by
0
u(X; ε), are invariant

under all transformations Tg. These solutions belong to an invariant subspace of U , denoted by SG and
called the “fixed-point space” of the group G

(E,u(
0
u(X; ε); ε), δu) = 0 , ∀ε ≥ 0 ;

0
u ∈ SG := {u ∈ U | Tg[u] = u , ∀g ∈ G} . (A.3)

The benefit of finding the fixed point space of the group is that to determine the principal solution
0
u(X; ε)

one no longer needs to search in the full space U but only its subspace SG ⊂ U . This is a significant
advantage, especially in numerical calculations, since the dimension of the fixed point space is considerably
lower than the corresponding one of the full space.

To determine the stability of the principal solution, one has to check the positive definiteness of the

self-adjoint bilinear operator E0
,uu, evaluated on the principal path

0
u(X; ε), by finding its eigenvalues β(ε)

((E0
,uu,∆u), δu) = β(ε)〈∆u, δu〉 ; ∀δu ∈ U ; E0

,uu := E,uu(
0
u(X; ε); ε) , (A.4)

where ∆u is the corresponding eigenmode and 〈· , ·〉 denotes an inner product in U . A stable solution
corresponds to a positive minimum eigenvalue29 β and the Bloch-wave representation may be used, as
described in Section 2.2. For a well-posed problem, its stress-free (unloaded) configuration at ε = 0 is
stable; as the load increases stability will be lost at the first bifurcation point encountered along the loading
path at some εc.

It can be shown, e.g. see Golubitsky et al. (1988); McWeeny (2002), that the existence of the group G
implies the existence of a symmetry basis with respect to which (i) the operator E0

,uu defined in (A.4) can be

block-diagonalized and (ii) the space of admissible functions U = ⊕hµ=1V
µ can be uniquely decomposed into

a direct sum of mutually orthogonal invariant subspaces V µ (with h being the number of equivalence, or
conjugacy, classes for G). Each subspace V µ is associated with an nµ-dimensional irreducible representation
τµ of G, also termed “irrep” from which an appropriate projection operator can be constructed giving the
V µ component of any function in U . With each irrep τµ, we can associate its “kernel” Gµ ⊆ G where
Gµ = {g ∈ G | τµg = I}, with I the nµ-dimensional identity matrix.

Bifurcated equilibrium paths, termed “primary”, can emerge from the principal path at a generic µ-type
symmetry-breaking bifurcation point corresponding to irrep τµ at load εc having nµ zero eigenvalues of Ec,uu.
That is, β(εc) = 0 so that

((Ec,uu,
i
u), δu) = 0 ,

i
u ∈ Nµ , 〈

i
u,

j
u〉 = δij , i, j = 1, . . . , nµ ; ∀δu ∈ U ; Ec,uu := E,uu(

0
u(X; εc); εc) , (A.5)

where the eigenmodes
i
u span the nµ-dimensional null space Nµ ⊆ V µ. Moreover, these eigenmodes are

invariant under all transformations belonging to Gµ. Some additional conditions, termed “transversality
conditions” must also hold to ensure that εc is a bifurcation and not a limit point:

det

[
((
[
dE0
,uu/dε

]
c
,
i
u),

j
u)

]
6= 0 . (A.6)

29See Footnote 10.
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The (primary) bifurcated orbits
b
u(X; ε) emerging from

0
u(X; ε) at εc, can be computed efficiently by

using their own isotropy subgroup H ⊇ Gµ, i.e., the elements of the subgroup of G satisfying Tg[
b
u] =

b
u,

thus finding the bifurcated orbits in the corresponding fixed-point space30 SH. Along this path there may

occur (secondary) bifurcation points. In such cases, the above procedure begins once again with
b
u(X; ε) as

the new principal path from which — secondary with respect to
0
u(X; ε) — bifurcated orbits will emerge.

Group theory also allows us to determine if the corresponding bifurcation point is “transverse” (asym-
metric) or “pitchfork” (symmetric). To this end once has to first find the normalizer NG(H) of the isotropy
subgroup H, defined by NG(H) = {g ∈ G | gHg−1 = H}. A bifurcation is transverse if NG(H) = H and
pitchfork if H ⊂ NG(H).

To reiterate, the strategy followed in this work is to sequentially apply the above-described procedure to
follow the bifurcating equilibrium orbits of the system by identifying, each time, their symmetry group and
their corresponding fixed-point space. As we proceed from the principal solution to the primary bifurcations
emerging from it, then to the secondary bifurcations emerging from the primary ones, the corresponding
symmetry groups and fixed-point spaces change accordingly. Knowledge of the symmetries of a path allows
for an efficient calculation of a unique solution in its own fixed-point space. The method adopted here
follows the procedures introduced by Healey (1988); Gatermann and Hohmann (1991). Moreover, following
Gatermann and Hohmann (1991); Chossat and Lauterbach (2000); Pandurangi et al. (2020), knowledge
of the lattice of isotropy subgroups of the initial symmetry group guides the search for the bifurcated
equilibrium paths in a systematic way and explains our findings.

Appendix A.1. Principal Solution, Irreps, and Bifurcations – Group G = C∞v

As described in Subsection. 2.4, the fixed-point space of C∞v for the layered system consists of only

the trivial principal solution
0
u(X; ε) = 0. According to group theory (e.g., Ikeda and Murota (2010)) C∞v

has two 1-dimensional irreps (one being the trivial identity irrep). These provide the possibility of simple
bifurcations to paths with symmetry groups of C∞. There are also an infinity of 2-dimensional irreps,
providing the possibility of double bifurcations. These correspond to bifurcating paths with symmetry
groups Cnv, where n ∈ N, as shown in Table A.1.

nµ Irrep µ τµc(φ) τµσv Gµ Bifurc. Orbit Sym.

1 A 1 1 C∞v No Bif.
1 B 1 -1 C∞ C∞

2 En

[
cos(nφ) − sin(nφ)
sin(nφ) cos(nφ)

] [
1 0
0 −1

]
Cn Cnv

n = 1, 2, 3 · · ·

Table A.1: Table of irreps and bifurcated orbit symmetries for G = C∞v . The first column gives the dimension nµ of the
corresponding irrep; the second column gives a standard label/name for the irrep; the third and fourth columns provide
the corresponding irrep matrix for the generators τµ

c(φ)
and τµσv , respectively; the fifth column gives the kernel of τµ (i.e.,

Gµ = {g ∈ G | τµg = I}, where I is the nµ-dimensional identity matrix.); the sixth column gives the symmetry group of the
corresponding bifurcating equilibrium path(s).

The possibility of Cnv bifurcated equilibrium orbits for the C∞v group, corresponding to the two-
dimensional En irreps, comes from the fact that the system has an energy and thus its stability operator
E,uu is self-adjoint.

30Principal as well as primary bifurcated solutions belong to SH ; each bifurcated orbit can be found separately by using the
equivariant branching lemma (see Vanderbauwhede (1982)).
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Appendix A.2. Primary Bifurcation Orbit at εc, Irreps, and Bifurcations – Group G = Cqv

In Section 4.1 we find only double bifurcations at each ε (since each ε can be interpreted as the εmin of
(4.3)) with corresponding eigenmodes cos(2πX1/Lc)δu

c(X2) and sin(2πX1/Lc)δu
s(X2) — as expected from

the 2-dimensional irreps of C∞v of Table A.1. No simple bifurcations are found, in spite of the existence of
1-dimensional irreps of this group. From the infinity of primary bifurcation paths that can be constructed
at each ε, we follow next the bifurcation orbit emerging from the lowest load εc. Every linear combination
of the two eigenmodes is left invariant by the elements of the group Cq, the critical point corresponds to the
µ = Eq irrep, and according to the general theory (see Table A.1) the symmetry group of the bifurcating
orbit is Cqv. This symmetry group is finite and has the following two generators: c(2π/q) and σv. Recall
also that q ∈ N is determined by the size of the domain Ωd = [−Ld/2, Ld/2]× [0, H] considered (Ld = qLc).
Calculations for the primary bifurcation orbit of symmetry Cqv are done in the corresponding fixed point
space SCqv using the domain [0, Lc/2] × [0, H] by imposing u1(0, X2) = 0 in addition to the remaining
admissibility conditions for the displacement field.

As indicated in Table A.2, this group has four 1-dimensional irreps (one being the trivial identity irrep).
For even values of q lower symmetry (C(q/2)v) simple bifurcation orbits are possible. There are also b(q−1)/2c
2-dimensional irreps, providing the possibility of double bifurcations where the correspond to bifurcating
orbits have smaller symmetry groups Crv, where r := gcd(j, q), with j = 1, . . . , b(q − 1)/2c.

nµ Irrep µ τµc(2π/q) τµσv Gµ Bifurc. Orbit(s) Sym.

1 A1 1 1 Cqv No Bif.
1 A2 1 -1 Cq Cq
1 B1 - 1 1 C(q/2)v C(q/2)v

1 B2 - 1 -1 C(q/2)v C(q/2)v

(q: even)

2 Ej

[
cos(2πj/q) − sin(2πj/q)
sin(2πj/q) cos(2πj/q)

] [
1 0
0 −1

]
Cr Crv

1 ≤ j ≤ b(q − 1)/2c r := gcd(j, q)

Table A.2: Table of irreps and bifurcated orbit symmetries for G = Cqv . The first column gives the dimension nµ of the
corresponding irrep; the second column gives a standard label/name for the irrep; the third and fourth columns provide the
corresponding irrep matrix for the generators τµ

c(2π/q)
and τµσv , respectively; the fifth column gives the kernel of τµ (i.e.,

Gµ = {g ∈ G | τµg = I}, where I is the nµ-dimensional identity matrix.); the sixth column gives the symmetry group of the
corresponding bifurcating equilibrium path(s). The function gcd(a, b) is the greatest common divisor of a and b, while the
notation bac denotes the lowest integer closest to a.

Appendix A.3. Secondary Bifurcation Orbits and their Symmetry

In this work, to avoid lengthy numerical calculations we choose q = 4. From Table A.1 the primary
bifurcation orbit has C4v symmetry. Consequently, from Table A.2 and recalling the general form of the
eigenmode at (2.5), the secondary bifurcation orbit of the two-dimensional irrep j = 1 corresponds to
k = 1/4 (and k = 3/4 by symmetry) has C1v symmetry and is unique, although it emerges from a double
bifurcation point.31 The secondary bifurcated orbit of the one-dimensional irrep corresponds to k = 1/2
and has C2v symmetry and is again unique since it corresponds to a simple bifurcation. To decide the
nature of these orbits – transverse or pitchfork – we must find the normalizers of their symmetry groups,
C1v and C2v. For the double bifurcation points: NC4v

(C1v) = C2v ⊃ C1v and for the simple bifurcation
point: NC4v

(C2v) = C4v ⊃ C2v. Consequently, according to the general theory discussed at the first part of
Appendix A, all secondary orbits have a global pitchfork type bifurcation.

31The two eigenmodes of this point are symmetry related and hence all bifurcated paths belong to the same orbit.
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Appendix B. Material (Local) Stability and Principal Solution Analytical Calculations

To avoid distraction in the main body of this paper, a number of important calculations are presented
here; proof of the polyconvexity for the constitutive law of Subsection 2.3 in Appendix B.1, components of
the first Piola-Kirchhoff stress and tangent moduli of the principal solution in Appendix B.2.

Appendix B.1. Local Stability of the Constitutive Law

The energy density function W (F;X2) cannot be strictly convex with respect to F as it violates the
property of material frame indifference and would imply the existence of a unique minimizer of E(u) in (2.1),
thus precluding the expected non-uniqueness of equilibrium solutions due to buckling phenomena. Although
global stability is impossible due to buckling, local stability in the sense of Hadamard (see Truesdell and
Noll (1965)) makes sense since even for finite strains most elastomeric materials do not exhibit solutions
with strain discontinuity. In mathematical terms this property requires “rank one convexity” of W (F;X2)
i.e. convexity only with respect to rank one deformation gradient tensors F = a⊗n, where a,n are arbitrary
unit vectors.

Showing that a particular constitutive law is rank one convex, even in the simplest case of an isotropic
material in 2D, is an algebraically tedious exercise that is often impossible to prove analytically (see Knowles
and Sternberg (1976)). Fortunately, the stronger restriction of “polyconvexity” introduced by Ball (1976) is
easier to verify and sufficient to ensure the sought rank one convexity. In this section, we first show that
the material models (2.6) and (2.8) satisfy the conditions of polyconvexity for p > 0.5.

To prove polyconvexity for an isotropic hyperelastic material in plane strain, one has to express its stain
energy W (F) (homogeneous material considered here with no loss of generality) as a function of λ1, λ2, δ,
where λ1, λ2, are the principal stretch ratios of F and δ ≡ λ1λ2, and show convexity of this function with
respect to its three arguments considered as independent. To this end the energy density (2.8) is written as

W (F) = ψ(λ1, λ2, δ) ≡ µ
[
c

2
[f(λ1, λ2) + 2g(δ)]p +

ν

1− ν
(δ − 1)2

]
,

f(λ1, λ2) ≡ (λ1 − λ2)2 ≥ 0 ; g(δ) ≡ δ − 1− ln δ ≥ 0 ,

(B.1)

where the functions f and g are minimized respectively at λ1 = λ2 and δ = 1 making ψ = 0 the global
minimum at these values.

Following Rosakis (1997), the necessary and sufficient conditions for polyconvexity of W (F) in (B.1)
requires the following three conditions to ensure the convexity of the symmetric in λ1, λ2 function ψ(λ1, λ2, δ)

A) ψ(λ1, λ2, δ) = ψ(λ2, λ1, δ) ,

B) ψ(λ1 + β, λ2 + β, δ) ≥ ψ(λ1, λ2, δ), ∀β ≥ 0 ,

C) H =



∂2ψ

∂λ1∂λ1

∂2ψ

∂λ1∂λ2

∂2ψ

∂λ1∂δ
∂2ψ

∂λ2∂λ2

∂2ψ

∂λ2∂δ

Sym. ∂2ψ

∂δ2


=

 K −K L
K −L

Sym. M

 be positive semidefinite ,

K ≡ µcp(f + 2g)(p−2)((2p− 1)f + 2g) , L ≡ 2µcp(p− 1)(f + 2g)(p−2)
√
f

(
δ − 1

δ

)
,

M≡ µ
[
cp

(f + 2g)(p−2)

δ2

(
(2p− 2)(δ − 1)2 + (f + 2g)

)
+

2ν

1− ν

]
.

(B.2)
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As detH = 0, positive semi-definiteness relies on the non-negativity of the nontrivial first (K ≥ 0, M≥ 0)
and second (KM − L2) ≥ 0 order principal minors of H, which can be shown to hold for p ≥ 0.5 and
1 > ν > 0.05, thus establishing the sought polyconvexity and hence rank one convexity of the power-law
constitutive model.

Appendix B.2. First Piola-Kirchhoff Stress and Incremental Moduli Tensors

The nonzero components of the first Piola-Kirchhoff stress
0

Sij and the incremental moduli
0

Lijkl, based

on the energy in (2.8) and evaluated on the principal solution
0

F = diag[λ1, λ2] are given by

0

S11/µ = exp(αX2)

[
η(λ1 −

1

λ1
) +

2ν

1− ν
(λ1λ2 − 1)λ2

]
,

0

S22/µ = exp(αX2)

[
η(λ2 −

1

λ2
) +

2ν

1− ν
(λ1λ2 − 1)λ1

]
,

0

L1111/µ = exp(αX2)

[
ζ

(
λ2

1 − 1

λ1

)2

+ η

(
λ2

1 + 1

λ2
1

)
+

2ν

1− ν
λ2

2

]
,

0

L2222/µ = exp(αX2)

[
ζ

(
λ2

2 − 1

λ2

)2

+ η

(
λ2

2 + 1

λ2
2

)
+

2ν

1− ν
λ2

1

]
,

0

L1212/µ =
0

L2121/µ = η exp(αX2) ,

0

L2112/µ =
0

L1221/µ = exp(αX2)

[
η

(
1

λ1λ2

)
+

2ν

1− ν
(1− λ1λ2)

]
,

0

L1122/µ =
0

L2211/µ = exp(αX2)

[
ζ

(
λ2

1 − 1

λ1

)(
λ2

2 − 1

λ2

)
+

2ν

1− ν
(2λ1λ2 − 1)

]
.

ζ = 2p(p− 1)c(λ2
1 + λ2

2 − 2− 2 lnλ1λ2)p−2, η = pc(λ2
1 + λ2

2 − 2− 2 lnλ1λ2)p−1.

(B.3)

Note that for the Neo-Hookean material, i.e when p = 1, we have ζ = 0, η = 1. For the graded material
α > 0 , µ = µ0 while for the bilayer α = 0 with µ = µf for the film and µ = µs for the substrate.

Appendix C. Mesh-dependence of Numerical Calculations

The localized deformation patterns of creases and folds that appear in Figures 11 and 12 are mesh-
sensitive. This is because the creasing/folding behavior observed is related to the Biot halfspace instability
whose eigenmodes span all wavelengths. Consequently, equilibrium paths are sensitive to the underlying
numerical discretization.

To explore the effects of mesh dependence, we study a Neo-Hookean bi-layer with layer thickness Hf/H =
0.1, µf/µs = 2 and ν = 0.8182 using progressively refined meshes of (i) 4, (ii) 8 and (iii) 12 elements through
the film thickness. The discretized domain considered is Ωd = [−Ld/2, Ld/2]× [0, H] (q = 1) with periodic
end conditions, as to capture the primary bifurcation orbit and the corresponding secondary bifurcation
points. The primary bifurcation orbits are plotted in Figure C.1 with (i) 550 elements and 4,400 degrees of
freedom (blue curve), (ii) 2,200 elements and 17,600 degrees of freedom (red curve), and (iii) 4,950 elements
and 39,600 degrees of freedom (yellow curve). Local mesh refinement is used near the point (0, H) where
localization develops. The bifurcation point corresponding to the first secondary orbit is also calculated and
denoted by an open circle. Also note that stability results were not calculated for the finer meshes, thus the
solid lines used in Figure C.1 do not contain stability information.
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Figure C.1: Influence of mesh refinement for a Neo-Hookean bilayer with layer thickness Hf/H = 0.1, µf/µs = 2 and
ν = 0.8182 showing the ε vs. ξ the primary bifurcation orbit for progressively refined meshes using 4, 8 and 12 elements
through the thickness of the film. The bifurcation amplitude corresponding to the onset of the first secondary orbit (marked
by an open circle) is insensitive to mesh refinement.

The initial part of the primary bifurcation orbit is rather insensitive to the mesh used (results are
practically indistinguishable up to ξ ≈ 0.05 for the two finer meshes) as is the bifurcation point of the
secondary orbit C1v. As the deformation localizes, it is expected that the orbits will become more mesh-
dependent although their overall shape remains very similar: a maximum amplitude ξ is reached, followed by
a drastic snap-back under decreasing applied strain ε. Mesh dependence is also expected for the secondary
orbits, see Figure 7b, although the meshing effects on these paths were not systematically explored. The
results here indicate that our main results, presented in Section 4, are accurate and independent of the
mesh in a sizable neighborhood surrounding the initial primary bifurcation point including the period-
extending secondary bifurcations and emerging paths. However, as all bifurcating paths evolve away from
this neighborhood the results become mesh dependent.
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