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Abstract

We define a wide class of Markovian load balancing networks of identical single-

server infinite-buffer queues. These networks may implement classic parallel

server or work stealing load balancing policies, and may be asymmetric, for

instance due to topological constraints. The invariant laws are usually not known

even up to normalizing constant. We provide three perfect simulation algorithms

enabling Monte Carlo estimation of quantities of interest in equilibrium. The

state space is infinite, and the algorithms use a dominating process provided by

the network with uniform routing, in a coupling preserving a preorder which is

related to the increasing convex order. It constitutes an order up to permutation

of the coordinates, strictly weaker than the product order. The use of a preorder

is novel in this context. The first algorithm is in direct time and uses Palm theory

and acceptance-rejection. Its duration is finite, a.s., but has infinite expectation.

The two other algorithms use dominated coupling from the past; one achieves

coalescence by simulating the dominating process into the past until it reaches the

empty state, the other, valid for exchangeable policies, is a back-off sandwiching

method. Their durations have some exponential moments.
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1 Introduction

This paper provides perfect simulation algorithms for the invariant laws (or stationary
distributions) of Markovian queueing networks managed by load balancing policies (or
protocols, algorithms, etc.). It devises a general abstract definition of these networks,
whereas most previous works consider specific examples only.

These invariant laws are usually not known even up to normalizing constants,
which precludes the use of Gibbs samplers. The algorithms allow to draw samples
for practical purposes such as the Monte Carlo estimation of quantities of interest
in equilibrium, e.g., quality of service (QoS) indicators for performance evaluation.
They are “perfect” up to real-life constraints on computer precision, running times,
pseudo-random number generators, etc.

Each network consists of c ≥ 2 identical single-server infinite-buffer queues, and its
state is given by the queue length vector. Tasks arrive according to a Poisson process
of intensity λ > 0. Each task has an exponential service duration of parameter 1
(w.l.o.g., up to time-scale) after which it exits the system. Queueing discipline is work
conserving, thus the total service rate is equal to the number of non-empty queues
(busy servers). The initial state, arrival stream, and services are independent. The
stability condition λ < c will always be assumed to hold.

Load balancing policies observe the network state and strive to allocate tasks
to server queues so as to minimize server idleness. They may have to satisfy varied
constraints, such as partial observation, distributed functioning, and limited overhead.
Parallel queue networks allocate each task at arrival to a server queue and leave it
there until served [1, 2], but other kinds of networks may implement work stealing or
jockeying at instants of service completion [3–8].

We shall determine a wide class of load balancing networks allowing quite gen-
eral policies. These policies are possibly asymmetric in terms of the queues, for
instance they may respect a directed graph network topology, and may thus yield
non-exchangeable queue length vector processes. Most previous results are proved for
specific exchangeable networks in suitable asymptotic regimes. Many interesting net-
works are asymmetric, non-asymptotic results are often needed, and simulation studies
such as those in [9] are then quite useful. See [2, Sect. 6], [10], e.g.

We shall provide three perfect simulation algorithms. The first one is a direct-
time acceptance-rejection method based on Palm theory. Its run time is finite but has
infinite mean, and it cannot be implemented in practice. The other two use backward
couplings and have run times with some exponential moments. Backward couplings
have long been used for invariant laws [11]. Coupling From The Past (CFTP) was
devised by Propp and Wilson [12] for perfect simulation of the invariant law of a
Markov chain on a finite state space with a largest and a least element, and has been
extended for infinite state spaces into Dominated CFTP (DomCFTP) using suitable
dominating processes simulated backward and forward in time, see [13–18].

We were inspired by the use in Connor and Kendall [13] of DomCFTP for aM/G/c
[FCFS] queue, and we refer to this paper for interesting background on the topic. The
service distribution has a second moment, thus the emptying time from equilibrium has
a first moment. The arrival rate is λ, the mean service time is 1/µ, the offered traffic
is λ/µ, and the queue is stable if and only if λ/µ < c. The Kiefer-Wolfowitz workload
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vectors record the evolution of the M/G/c [FCFS] queue by a Markov chain. The
dominating process is given by a M/G/c queue with uniform routing, called random
assignment and denoted by M/G/c [RA], which can be viewed as a system of c i.i.d.
M/G/1 queues with arrival rates λ/c denoted by [M/G/1]c. The invariant law of the
M/G/1 queue can be perfectly simulated using the Pollaczek-Khintchine formula. The
workload of the M/G/1 queue does not depend on the queueing discipline, and the
dynamic reversibility of the M/G/1 [PS] queue is used to simulate the dominating
process backward in time. Much care is needed to ensure that the coupling between
M/G/c [FCFS] and [M/G/1]c is preserved when simulating forward in time.

The present paper is organized as follows. Section 2 provides examples of load
balancing networks and then provides a general definition. Section 3 constructs a
coupling in which the uniform routing (UR) network has a task backlog not less than
an arbitrary load balancing network, in a preorder related to the increasing convex
order which constitutes an order up to permutation of the coordinates strictly weaker
than the product (coordinate-wise) order. To the best of our knowledge, the use of such
a preorder is novel for perfect simulation. Section 4 explains how to manage efficiently
in code the coupled processes and defines an embedded Markov chain which has same
invariant law and is simpler to simulate. Section 5 exploits the domination by the UR
network for an acceptance-rejection method based on Palm theory, inspired by [19].
Section 6 provides the two DomCFTP methods inspired by [13]. The dominating UR
network is reversible in equilibrium and thus simulatable backward in time, and the
preservation of the coupling through the backward and forward simulations is obtained
by considering the law of an augmented Markov chain. The first method achieves
coalescence by simulating the dominating process into the past until it reaches the
empty state. The second is valid only for exchangeable networks and uses a back-off
sandwiching method which is likely to be much quicker.

2 Load balancing networks

2.1 Examples of parallel server load balancing policies

Parallel server policies allocate each task at arrival to a server queue and leave it there
until it ends its service and departs the network.

Uniform Routing (UR). At each arrival, the policy chooses a queue uniformly at
random and allocates the task to it. This blind policy is perhaps the only one for
which the invariant law is known: the c queues receive independent Poisson arrivals of
intensities λ/c and constitute a system of i.i.d. M/M/1 queues. Under the ergodicity
condition λ < c, the invariant law is γ⊗c where γ is the geometric law given by γ(n) ,
(1− (λ/c))(λ/c)n for n ∈ N0. This allows performance evaluation in equilibrium, e.g.,
the probability that a given queue contains at least n tasks and the limit proportion of
such queues when c and λ go to infinity with λ/c fixed is given by γ([n,∞)) = (λ/c)n.

Join the Shortest Queue (JSQ). At each arrival, the task is routed to one of the
queues of minimal length in the network. Here and below, ties may be broken arbi-
trarily, e.g., uniformly at random. JSQ requires high overhead in form of intensive
signaling and bookkeeping, and is practicable only in certain applications such as call
centers or parallel computing of moderate sizes. JSQ is optimal among parallel queue
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policies using only the past queue length information, see [20] and the coupling proof
in [21] inspired by previous work of S. Foss. The invariant law is unknown, even though
complex analysis provides useful transforms of these laws for c = 2, see [22, 23].

Power of d Choices (JSQ(d)). At each arrival, d ≥ 2 queues are chosen uniformly
at random, with or without replacement according to the variant chosen, and the task
is routed to one of these of minimal length. The degenerate case d = 1 corresponds
to UR and the case d = c without replacement to JSQ. JSQ(d) can be seen as a low
overhead proxy for JSQ, and has long been intensively studied.

Idle Queue First (IQF). At each arrival, the task is routed to an empty queue (i.e.,
idle server) in the network if any are present, else to a uniformly chosen queue. This
can be seen as a low overhead proxy for JSQ in which queues only need to signal their
changes of status between empty and non-empty. This policy was investigated in [24]
under the name Join Idle Queue.

Idle One First (IOF). At each arrival, the task is routed to an empty queue in the
network if any, else to a queue of length one if any, else to a uniformly chosen queue.
This can be seen as a low overhead proxy for JSQ in which queues only need to signal
their changes of status between empty, containing one task, and other. This policy
was introduced and investigated in [1] under the acronym I1F, see below.

2.2 Asymptotic performance evaluation

Asymptotic performance evaluation yields guidelines and understanding. It is usually
applied to an exchangeable network in which a reduced low-dimensional, ideally one-
dimensional, representation exists yielding a tractable limit process.

The M/M/c queue has an optimal server utilization. It is called a “centralized
system” in [1, 2] and cannot be matched by parallel server queues, but can be by a
network implementing IQF at arrivals and work stealing in which any server finishing
service of the last task in its queue simultaneously steals unattended work from another
queue if any. It is interpreted as a “Join the Shortest Workload” policy by the Kiefer-
Wolfowitz construction [13, Sect. 2]. Its invariant law is explicit up to a normalizing
constant which is known for all practical purposes from the well-tabulated Erlang C
formula. This allows for precise performance evaluation and provides a benchmark.

JSQ(d) has been investigated in the mean-field regime in which c and λ go to
infinity with λ/c and d ≥ 2 kept fixed. The equilibrium proportion of queues containing
at least n tasks converges to ((λ/c)d

n

− 1)/(d − 1) with hyper-exponential decay in
n, much faster than the exponential decay (λ/c)n for UR. See [25–28], e.g. In this
regime, the asymptotic performance of IQF is perfect since the limit proportion of
empty queues is non-zero and thus every task starts service at arrival.

Gupta and Walton [1] investigate parallel server policies in a much more heavily
loaded regime, the nondegenerate slowdown regime [29] in which λ and c go to infin-
ity with c− λ going to α > 0. They prove that the performances of JSQ and IOF are
comparable and are within 15% of the performance ofM/M/c, while the performance
of IQF is within 100% of the performance of M/M/c. In this regime, IOF is asymp-
totically optimal and better than IQF, and it is pointless to implement more subtle
policies, for instance with higher thresholds.
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The wide survey [2] studies parallel server networks in the fluid regime as well as
in the Halfin-Whitt regime in which λ and c go to infinity with 1√

c
(c − λ) going to

β > 0. In these regimes, IQF is already asymptotically optimal.

2.3 General definitions for load balancing networks

A filtered probability space (Ω,F , (Ft)t∈R+
,P) satisfying the usual assumptions is

given. It supports all random elements, all random processes are adapted, and all
Poisson process are (Ft)t∈R+

-Poisson processes. Random elements are assumed to be

independent from each other if not stated otherwise. Let N0 , {0, 1, . . .} and (ei)1≤i≤c

denote the canonical basis of Rc and Sc the permutation group of {1, . . . , c}.
We devise a workable general definition of load balancing networks, instead of

focusing on specific examples. It allows any classic load balancing policy.
Definition 1 (Load balancing network). Tasks arrive according to a (Ft)t∈R+

-Poisson
process of intensity λ > 0 on c ≥ 2 single-server infinite-buffer queues. Service duration
is exponential with parameter 1. The state of the network is described by the queue
length (vector) process with sample paths in D(R+,N

c
0) given by

X , (X(t))t∈R+
, X(t) , (X i(t))1≤i≤c ,

where X i(t) is the length of (number of tasks in) queue i at time t. The load balancing
networks under consideration respect the following rules.

1. The process (X(t))t∈R+
is (Ft)t∈R+

-Markov.
2. At each arrival, the task is routed to a queue not longer than a uniformly chosen

queue. Specifically, if t is a task arrival instant then the policy chooses j uniformly
in {1, . . . , c} and determines a queue of index i such that

X i(t−) ≤ Xj(t−) , X(t) = X(t−) + ei .

3. The queueing discipline in each queue is work conserving. Thus, the total service
intensity is equal to the number of non-empty queues and the subsequent service
completion concerns a uniformly chosen queue among these.

4. At each instant of service completion, one task may be reallocated from a queue
which just before had a length not less than the queue completing service to the
latter. Specifically, if t is a service completion instant and queue j is completing
service then the policy determines a queue of index i such that

X i(t−) ≥ Xj(t−) ≥ 1 , X(t) = X(t−)− ei .

The policy and the network are said to be exchangeable if the decision taking is
invariant in law under permutations of the queue indices. In this case, if X(0) is
exchangeable then X(t) is exchangeable, and it is so in equilibrium.

The uniform routing (UR) network, for which i = j in Rules 2 and 4, is an
exchangeable load balancing network with queue length process denoted by

Y , (Y (t))t∈R+
, Y (t) , (Y i(t))1≤i≤c .
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Poisson process splitting implies that Y , (Y (t))t∈R+
constitutes a system of c

i.i.d. M/M/1 queue processes with arrival rates λ/c and service rates 1. It is positive
recurrent if and only if λ < c and then it is reversible in equilibrium and has simulatable
invariant law γ⊗c, the c-fold product of the geometric law

γ , (γ(n))n∈N0
, γ(n) , (1 − (λ/c))(λ/c)n . (1)

Rule 2 is satisfied by all policies in Section 2.1. Rule 4 is trivially satisfied by any
parallel server policy, but allows work stealing or jockeying in which the queue of a
server completing a service may be immediately joined by a task from a longer queue,
such instantaneous jumps not being recorded explicitly by the queue length process.
The implementation of M/M/c described in Section 2.2 satisfies Definition 1.
Remark 1. The policies in Section 2.1 are exchangeable if ties are broken uniformly
at random within queues. Definition 1 allows policies which break symmetry between
queues and are not exchangeable. For instance, the network may have a directed graph
topology and the policies in Section 2.1 may be implemented on the neighborhood of
the uniformly chosen queue. See [9], [2, Sect. 6], [10], e.g.

Most if not all asymptotic results are limited to policies which are exchangeable, or
at least have an infinitely growing number of possible choices becoming exchangeable
in the limit as in [2, Sect. 6] and [10]. Non-asymptotic performance evaluation may
also be required. Simulation studies such as [9] usually rely on waiting long lengths of
time and hoping that equilibrium has been reached without theoretical guidelines.

The present paper will provide theoretical results allowing perfect simulation for
general policies. The special case of exchangeable networks will allow more efficient
codes and will be investigated specifically.

3 Preorder and coupling

3.1 Preorder and order up to permutation of coordinates

Let x , (xi)1≤i≤c in N
c
0 be a network state and n be in N0. Let

αn(x) ,
c

∑

i=1

1{xi>n} , βn(x) ,
c

∑

i=1

(xi − n)+ =
∑

k≥n

αk(x) , (2)

denote respectively the number of queues containing more than n tasks and the num-
ber of these excess tasks. The βn are natural quality of service (QoS) indicators, in
particular β0 counts the total number of customers and for the FCFS discipline βn
counts the number of tasks which have at least n tasks in front of them.
Theorem 1. A preorder 4 between network states x and y in N

c
0 is defined by

x 4 y ⇐⇒ βn(x) ≤ βn(y) , ∀n ∈ N0 .

The indifference relation ∼ defined by x ∼ y if and only if x 4 y and y 4 x satisfies

x ∼ y ⇐⇒ ∃σ ∈ Sc : (x
σ(1), . . . , xσ(c)) = (y1, . . . , yc)
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and thus 4 defines a partial order up to permutation of the coordinates. Moreover

x 4 y ⇐⇒
c

∑

i=1

f(xi) ≤
c

∑

i=1

f(yi) for any non-decreasing convex f : R+ → R .

Proof. Clearly 4 is reflexive and transitive and is thus a preorder, and x ∼ y if and
only if βn(x) = βn(y) for all n in N0. In particular

max{n ∈ N0 : βn(x) > 0} = max{n ∈ N0 : βn(y) > 0} , m, βm(x) = βm(y) ,

which imply that x and y have same number of coordinates with the same maximal
size m + 1. Inductively by considering βm−1, . . . , β0 we deduce that x and y have
same number of coordinates of every size greater than or equal to 1, and hence are
equal up to a permutation of coordinates.

For the last equivalence statement, sufficiency is a special case. To prove necessity,
we may and do assume that f(0) = 0. Then f is continuous on R and has a right-hand
derivative f ′

+ which is non-negative, non-decreasing, right-continuous, and such that
f(x) =

∫ x

0
f ′
+(y) dy, see [30, Thms 24.1–2]. Integration by parts yields that

f(x) = xf ′
+(x)−

∫

(0,x]

y df ′
+(y) = xf ′

+(0) +

∫

(0,∞)

(x− y)+ df ′
+(y) .

Thus f is in the positive cone generated by the x ∈ R+ 7→ (x− y)+ for y ≥ 0.

This preorder is related to the univariate increasing convex order [31], [32, Chap. 4].
Its quotient order by ∼ is strictly weaker than the product order up to permutations
of the coordinates, for instance (1, 1) 4 (0, 2).

3.2 Coupling a load balancing network with the UR network

We shall construct a coupling of the queue length processes X , (X1, . . . , Xc) of a
generic load balancing network and Y , (Y 1, . . . , Y c) of a UR network (Definition 1)
which preserves the preorder 4. A similar coupling is used in [9, Thm 4] and [27,
Sect. 4.1] to compare networks implementing JSQ(d) for different d ≥ 1.

The coupling will require to rearrange the coordinates of X and of Y in non-
decreasing order. Ties between queues of equal length must be broken using a Sc-
valued process (σ(t))t∈R+

with nice properties satisfying

Xσ(t)(1)(t) ≤ · · · ≤ Xσ(t)(c)(t) , (3)

and similarly for Y , with permutation process denoted by (τ(t))t∈R+
.

For the sake of simplicity, our exposition will assume that ties are broken by
ascending queue index, so that σ(t) is a deterministic function of X(t). Section 4.3 will
address some practical simulation issues. It is not efficient to sort X(t) at each update,
and σ(t) should also be stored and updated. The updates of σ(t) when ties are broken
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by ascending queue index are inefficient, and we describe there another tie-breaking
rule with efficient updates to which our exposition can readily be extended.

The coupling starts by drawing X(0) and Y (0) from a suitable joint law.
The arrivals in both networks follow the same (Ft)t∈R+

-Poisson process of inten-
sity λ marked by uniform draws in {1, . . . , c}. Let t and k be an arrival instant and
its mark. The generic policy takes as its uniformly chosen queue the k-th in the
non-decreasing ordering, of index σ(t−)(k), and determines a queue i such that

X i(t−) ≤ Xσ(t−)(k)(t−) , X(t) = X(t−) + ei .

The UR network does likewise with i = τ(t−)(k).
The potential service completions in both networks follow the same (Ft)t∈R+

-
Poisson process of intensity c marked by uniform draws in {1, . . . , c}. Let t and k be a
potential service completion instant and its mark. The generic network has a service
completion in the k-th queue in the non-decreasing ordering, of index σ(t−)(k), if and
only if it is non-empty. In this case its policy determines a queue i such that

X i(t−) ≥ Xσ(t−)(k)(t−) ≥ 1 , X(t) = X(t−)− ei .

The UR network does likewise with i = τ(t−)(k).
Theorem 2. This construction yields a coupling between the queue length process
X , (X1, . . . , Xc) of a generic load balancing network and Y , (Y 1, . . . , Y c) of the
UR network. Moreover,

X(0) 4 Y (0) =⇒ X(t) 4 Y (t) , ∀t ∈ R+ .

Proof. Classic arguments about Poisson process splitting and about uniform draws
and conditioning prove that this is indeed a coupling.

Assume that X(0) 4 Y (0). Let t be either an arrival or a potential service
completion instant. In a proof by contradiction, assume that

∀n ∈ N0 , βn(X(t−)) ≤ βn(Y (t−)) , ∃p ∈ N0 , βp(X(t)) > βp(Y (t)) . (4)

This implies that
βp(X(t−)) = βp(Y (t−)) . (5)

First case: t is an arrival instant with mark k. The generic network allocates the
task to queue i and the UR network to queue τ(t−)(k) in a way that

l , X i(t−) ≤ Xσ(t−)(k)(t−) , m , Y τ(t−)(k)(t−) . (6)

Since c−αn is the number of coordinates of size at most n, the non-decreasing orderings
imply that c− αl−1(X(t−)) < k and k ≤ c− αm(Y (t−)) and thus that

αm(Y (t−)) < αl−1(X(t−)) .
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Moreover (2), (4), (5), and (6) imply that

m+ 1 ≤ p ≤ l .

Then p ≥ 1, (2) yields that

βp−1(X(t−)) = αp−1(X(t−)) + βp(X(t−)) ,

βp−1(Y (t−)) = αp−1(Y (t−)) + βp(Y (t−)) ,

and (4) and (5) imply that

αp−1(X(t−)) ≤ αp−1(Y (t−)) .

We conclude that

αp−1(X(t−)) ≤ αp−1(Y (t−)) ≤ αm(Y (t−)) < αl−1(X(t−)) ≤ αp−1(X(t−))

which is a contradiction. Therefore, (4) is not true.
Second case: t is a potential service completion instant with mark k. The generic

network undergoes an effective service completion in the queue of index σ(t−)(k) if
and only if Xσ(t−)(k)(t−) ≥ 1. In this case let i be the index of the queue of which the
length will be reduced and else let i = σ(t−)(k). The UR network reduces by one the
length of queue τ(t−)(k) if it is not zero. In all cases

l , X i(t−) ≥ Xσ(t−)(k)(t−) , m , Y τ(t−)(k)(t−) . (7)

Since c−αn is the number of coordinates of size at most n, the non-decreasing orderings
imply that k ≤ c− αl(X(t−)) and c− αm−1(Y (t−)) < k and thus that

αl(X(t−)) < αm−1(Y (t−)) .

Moreover (2), (4), (5), and (6) imply that

l ≤ p ≤ m− 1 .

Then (2) yields that

βp(X(t−)) = αp(X(t−)) + βp+1(X(t−)) ,

βp(Y (t−)) = αp(Y (t−)) + βp+1(Y (t−)) ,

and (4) and (5) imply that

αp(Y (t−)) ≤ αp(X(t−)) .
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We conclude that

αp(Y (t−)) ≤ αp(X(t−)) ≤ αl(X(t−)) < αm−1(Y (t−)) ≤ αp(Y (t−))

which is a contradiction. Therefore, again (4) is not true.
Applying the falsity of (4) to the successive arrival and potential service completion

instants t concludes the proof.

This yields the following important stability result.
Theorem 3. Let X and Y be the coupled queue length processes of a generic load
balancing network and of a UR network. The empty state 0 is positive recurrent for X
if and only if λ < c, and then X has a unique invariant law π, else there is none. The
state (0, 0) is positive recurrent for (X,Y ) if and only if λ < c and then (X,Y ) has a
unique invariant law κ with marginals π and γ⊗c, see (1), and else there is none. If
λ < c then the two-sided stationary version (X(t), Y (t))t∈R of (X,Y ) satisfies

X(t) 4 Y (t) , ∀t ∈ R .

Proof. If λ < c then the queue length process Y of the UR network is positive recurrent
since it is irreducible and has γ⊗c as an invariant law, which is then unique. Theorem 2
yields that if (X(0), Y (0)) = (0, 0) then X(t) 4 Y (t) and in particular X(t) = 0
if Y (t) = 0. Therefore (0, 0) is positive recurrent for (X,Y ) and thus 0 is positive
recurrent for X . Since (0, 0) is reachable from all states for (X,Y ), the complement of
its recurrence class is constituted of transient states bearing mass zero for any invariant
law, and by restriction to this recurrence class (necessarily irreducible) there exists a
unique invariant law for (X,Y ). Likewise for X . By comparison with aM/M/c queue,
X is at best null recurrent if λ = c and transient if λ > c. The result on the two-
sided stationary version (X(t), Y (t))t∈R follows from Palm theory using the hitting
times of (0, 0) as regeneration times splitting the process into cycles, see [33, Sect. 8.3].
Indeed, the i.i.d. cycles start with 0 = X(0) 4 Y (0) = 0 and thus satisfy X(t) 4 Y (t)
during their lifetimes, hence the length-biased cycle straddling time 0 must also satisfy
X(t) 4 Y (t) during its lifetime.

A load balancing parallel server queueing network is irreducible: any state leads
to the empty state, and in order to attain any given state from the empty state we
may load all queues beyond the maximal length of the given state and then serve the
excess tasks. A network implementing work stealing may well not be irreducible.

In the sequel we assume that the stability condition λ < c holds true.

4 Considerations for effective simulation

4.1 Sampling from the invariant law of the UR network

The perfect simulation algorithms will require to draw repeatedly from the invariant
law γ⊗c of the queue length process Y of the uniform routing (UR) network, where γ
is the geometric law (1) under the stability condition λ < c.
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A simple option for each draw is to simulate c independent draws from γ. A
bounded time inversion method using truncated exponential random variables is given
in Devroye [34, Sect. X.2.2]. It is noted in an exercise that an accuracy problem in
computing log(1−p) could arise if the success probability p is small, and an expansion
method is proposed, but here p = 1− λ/c and we can use log(λ/c) = logλ− log c.

Another option is to first draw the total number of tasks from the negative binomial
law NB(c, 1 − λ/c) and then draw from a multinomial to attribute tasks to the c
queues. Draws from NB(c, 1− λ/c) can be performed by inverting the c.d.f., which is
a regularized incomplete beta function, or by other uniformly fast methods as in [34,
Sect. X.1.2 Example 1.5, Sect. X.4.7]. Methods for drawing from a multinomial with
mean durations which are O(c) uniformly in the total number of tasks exist, such
as [34, Sect. XI.1.4 Example 1.5].

4.2 Exchangeable load balancing policies

This subsection is devoted to exchangeable load balancing policies, see Definition 1.
A reduced representation of X = (X(t))t∈R+

and of Y = (Y (t))t∈R+
“up to instanta-

neous permutations of the coordinates” is then adequate to study the invariant law.
The exchangeability assumption is equivalent to assuming that these reduced represen-
tations are themselves Markov. An added benefit is that the preorder 4 of Theorem 1
induces an order in this context.

For x , (xi)1≤i≤c in N
c
0 let x́ , (x́i)1≤i≤c in N

c
0 be the vector of its coordinates

set in non-decreasing order and

hn(x) ,
c

∑

i=1

1{xi≤n} = c− αn(x)

be the number of its coordinates not exceeding n in N0. Setting h−1(x) = 0,

x́i = n ⇐⇒ hn−1(x) + 1 ≤ i ≤ hn(x) , hn(x) = hn(x́) . (8)

Note that x can be sorted into x́ in O(c log c) time, and that x ∼ y ⇔ x́ = ý, see
Theorem 1. Let X́(t) and Ý (t) be the non-decreasing reorderings of X(t) and Y (t).

The processes X́ , (X́(t))t∈R+
and Ý , (Ý (t))t∈R+

are reduced representations of
X and Y which are (Ft)t∈R+

-Markov and evolve as follows.

1. Let t > 0 be an arrival instant with mark k. The task is allocated according to
policy to a queue of length n ≤ X́k(t−), and the single coordinate update is

X́hn(X́(t−))(t) = X́hn(X́(t−))(t−) + 1 = n+ 1 .

2. Let t > 0 be a potential service completion instant with mark k. It is effective if
and only if X́k(t−) ≥ 1, and then a task is removed according to policy from a
queue of length n ≥ X́k(t−) ≥ 1, and the single coordinate update is

X́hn−1(X́(t−))+1(t) = X́hn−1(X́(t−))+1(t−)− 1 = n− 1 .
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The determination of the queue of length n by the policy is Markov due to exchange-
ability. For instance, JSQ(d) may choose k1 = k , k2 , . . . , kd uniformly and take
n = X́min{k1,...,kd}(t−) in 1. The special case Ý uses n = Ý k(t−) in 1 and 2.

An actual code can be managed efficiently by storing X́(t) and Ý (t) each in an
array of c cells and using (8) at each step. Indeed, hn−1(X́(t)) + 1 and hn(X́(t)) are
the indices of the first and last cells storing the value n in X́(t) and can be found in
O(log c) time by binary search of the sorted array X́(t). Usually the load balancing
policy provides an index j such that X́j(t−) = n, and the search for hn−1(X́(t)) + 1
[resp. hn(X́(t))] can be limited to the cells before [resp. after] the j-th.
Remark 2. We shall develop perfect simulation methods for π which use the coupling
(X,Y ), and actually simply (X, Ý ). The arguments are readily adapted for exchange-
able policies using (X́, Ý ), providing perfect simulation methods for the invariant law
π́ of X́. If f is symmetric then

∫

fdπ =
∫

fdπ́, e.g., the βn are of this form, else a
uniform random permutation of the coordinates of a sample from π́, independent of
the rest, yields a sample from π.

4.3 General load balancing policies

Certain load balancing policies need consider the specific indices of the queues. For
instance the network may have a directed graph structure and may implement policies
such as those in Section 2.1 only on the graph neighborhood of the uniformly chosen
queue. Then X is not exchangeable and X́ is not Markov.

Sorting X(t) at each update would take O(c log c) time. It is usually much more
efficient to store and update

X(t) , (X i(t))1≤i≤c , σ(t) , (σ(t)(i))1≤i≤c , (9)

satisfying (3), in two arrays of c cells, and use when needed that

X́ i(t) = Xσ(t)(i)(t) , 1 ≤ i ≤ c , (10)

for instance to find hn(X(t)) = hn(X́(t)) by binary search of X́(t), see Section 4.2,
which uses only the elements for comparison and takes O(log c) time.

For the sake of simplicity, the tie-breaking rule used for σ(t) in the exposition was
by ascending queue indices, in which case every update of σ(t) may require up to c
memory swaps. The following tie-breaking rule has efficient updates swapping at most
the contents of two memory cells. The results of the exposition can readily be extended
to it by considering the (Ft)t∈R+

-Markov process (X(t), σ(t))t∈R+
.

1. Let t > 0 be an arrival instant with mark k. The task is allocated to a queue of
index i = σ(t−)(j) and length n ≤ Xσ(t−)(k)(t−) and the updates are

X i(t) = X i(t−) + 1 = n+ 1 ,

σ(t)(hn(X(t−))) = σ(t−)(j) = i , σ(t)(j) = σ(t−)(hn(X(t−))) ,

i.e., hn−1(X(t−)) < j ≤ hn(X(t−)) and σ(t) is obtained from σ(t−) by swapping
the index i in cell j with the index in cell hn(X(t−)). This propagates (3).
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2. Let t > 0 be a potential service completion instant with mark k. It is effective
if and only if Xσ(t−)(k)(t−) ≥ 1, and then a task is removed from a queue of
index i = σ(t−)(j) and length n ≥ Xσ(t−)(k)(t−) ≥ 1 and the only updates are

X i(t) = X i(t−)− 1 = n− 1 ,

σ(t)(hn−1(X(t−)) + 1) = σ(t−)(j) = i , σ(t)(j) = σ(t−)(hn−1(X(t−)) + 1) .

i.e., hn−1(X(t−)) < j ≤ hn(X(t−)) and σ(t) is obtained from σ(t−) by swapping
the index i in cell j with the index in cell hn−1(X(t−)) + 1. This propagates (3).

The special case Y has j = k in 1 and 2, but we shall see that we need only simulate
Ý as in Section 4.2 in the perfect simulation algorithms.

4.4 Subordination and embedded Markov chain

Let (Tn)n≥1 denote the sequence of arrival and potential service completion instants
set in increasing order and

θn =

{

(1, k) if Tn is an arrival instant with mark k,

(−1, k) if Tn is an potential service completion instant with mark k.

Classically, (Tn, θn)n≥1 is a (Ft)t∈R+
-marked Poisson process of intensity λ + c, and

the marks θn have common law

(

c

λ+ c
δ−1 +

λ

λ+ c
δ1

)

⊗
1

c
(δ1 + · · ·+ δc) on Θ , {−1, 1} × {1, . . . , c} . (11)

The Markov process (X(t), Y (t))t∈R+
is subordinate to (Tn)n≥1, and thus has same

invariant law κ as the embedded (FTn
)n∈N0

-Markov chain (Xn, Yn)n∈N0
defined by

(X0, Y0) = (X(0), Y (0)) , (Xn, Yn) = (X(Tn), Y (Tn)) .

Simulating it avoids the simulation of exponential random variables E(λ+ c).
We wish to implement the coupling (Xn, Yn)n∈N0

using update functions and i.i.d.
random draws. For n ≥ 1, Xn is obtained from Xn−1 and θn according to the load
balancing policy in a way which may involve identically distributed random variables
independent of FTn−1

, e.g., to break ties between queues of equal length or implement
JSQ(d), and Yn is obtained from Yn−1 and θn deterministically, as in Section 3.2. We
write this

Xn = φ(Xn−1, θn, Un) , Yn = ψ(Yn−1, θn) , (12)
using deterministic update functions φ : Nc

0 × Θ × [0, 1] 7→ N
c
0 and ψ : Nc

0 × Θ 7→ N
c
0

and a (FTn
)n∈N0

-adapted sequence (Un)n≥1 of i.i.d. uniform random variables on [0, 1]
independent of (X0, Y0, Tn, θn;n ≥ 1).

If X uses an exchangeable policy as does Y , then (X́n)n∈N0
is a (FTn

)n∈N0
-Markov

chain itself, see Section 4.2, and we can write

X́n = φ́(X́n−1, θn, Un) , Ýn = ψ́(Ýn−1, θn) . (13)
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In the sequel we use (Xn, Yn)n∈N0
and (12) in three perfect simulation algorithms

for the invariant law π of the queue length process X of a load balancing network. The
invariant law κ has marginals π and γ⊗c, and (Yn)n∈N0

in equilibrium is reversible and
will be used as a simulatable dominating Markov chain in this infinite state space. We
shall see we need only simulate (Ýn)n∈N0

using (13) for our purposes.
For the sake of simplicity, the exposition breaks ties by ascending queue index.

In order to use the efficient tie-breaking rule of Section 4.3, we need only consider
(Xn, σn) = φ(Xn−1, σn−1, θn, Un), etc., where σn = σ(Tn).

Exchangeable policies require only to simulate π́ using (X́n, Ýn)n∈N0
and (13).

5 Palm theory and acceptance-rejection

A classic result in Palm theory, see [33, Chap. 8, 10], is that a stationary version on R

of a cycle-stationary process can be obtained by length-biasing the law of the cycle-
stationary process by the length of the cycle straddling the origin and then setting the
origin uniformly in the length of this cycle. The trace on R+ of the cycle straddling
the origin is called the delay.

In [33, Sect. 8.6.7] the simulation of the stationary delay is obtained by the following
acceptance-rejection method.

1. Simulate the length of a stationary delay.
2. Simulate independent copies of the cycles, until the length of a cycle exceeds the

previously simulated stationary delay length.
3. The part of this cycle from the stationary delay length onward constitutes a simu-

lation of the stationary delay. In particular, the state of this cycle at the stationary
delay length is a draw from the invariant law.

Moreover, the number of trials is finite, a.s., but has infinite expectation. This
continuous-time result can be applied to discrete time as in [33, Sect. 10.2.6].

Sigman [19] provides an interesting implementation of this result in discrete time,
and gives it a short direct proof in its Prop. 2.1. We adapt this implementation here
as a warm-up for illustrative purposes, since the infinite expectation of the number of
trials renders it unsuitable for actual Monte Carlo simulation. The situation is simpler
than for DomCFTP since the simulations are all in direct time and there is no difficulty
in preserving the coupling by using the same marks θn in (12).

The hitting times of (0, 0) by the Markov chain (Xn, Yn)n∈N0
are regeneration

instants. Theorems 2 and 3 yield that if (X0, Y0) = (0, 0) or follows the invariant law
κ then Xn 4 Yn for all n in N0. Thus in both cases these regeneration instants are
given by the hitting times of 0 of the Markov chain (Yn)n∈N0

. These are the same as
those of (Ýn)n∈N0

, and we need only simulate the latter.
Hence, the perfect simulation method first obtains the length L of a stationary

delay by simulating an instance of (Ýn)n∈N0
started at a draw from its invariant law,

obtained by sorting in non-decreasing order a draw from γ⊗c (Section 4.1). It then
determines the first cycle of length exceeding L by simulating instances of (Ýn)n∈N0

started at 0. When this is obtained, the method reuses the marks of this cycle in (12)
to simulate the coupled X0, . . . , XL, and outputs XL as a perfect draw from π.
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For exchangeable load balancing policies, the same reasoning is valid to simulate
the invariant law π́ of X́ by using (13) in place of (12); see Remark 2.

We recapitulate this in the following perfect simulation algorithm, written in math-
ematical fashion and not in pseudocode. It has infinite expected running time and is
not to be implemented in practice.

Algorithm 1 Acceptance-rejection algorithm

1: draw Y0 from γ⊗c and sort into Ý0 ⊲ see Section 4.1
2: for n = 1 to L , inf{n ≥ 1 : Ýn = 0}
3: draw Ýn using Ýn−1 ⊲ using (13) or otherwise

4: for k = 1 to K , inf{k ≥ 1 : L(k) = L}

5: set Ý
(k)
0 = 0

6: for n = 1 to L(k) , inf{n ≥ 1 : Ý
(k)
n = 0} ∧ L

7: draw θ
(k)
n from (11)

8: set Ý
(k)
n = ψ́(Ý

(k)
n−1, θ

(k)
n )

9: set X
(K)
0 = 0

10: for n = 1 to L
11: draw Un uniformly in [0, 1] ⊲ for possible random choices

12: set X
(K)
n = φ(X

(K)
n−1, θ

(K)
n , Un) ⊲ the θ

(K)
n of Loop 4

13: return X
(K)
L

Theorem 4. Let λ < c, and π be the invariant law of the queue length process X of a
load balancing network of Definition 1. Algorithm 1 uses simulatable draws, terminates
in an a.s. finite time with infinite expectation, and outputs a perfect draw from π,

i.e., P(K < ∞) = 1, E(K) = ∞, and X
(K)
L has law π. If the load balancing policy is

exchangeable, Algorithm 1 with X(K) and (12) replaced by X́(K) and (13) in Loop 10
outputs a perfect draw from the invariant law π́ of X́; see Remark 2.

Proof. The proof is given in the preceding discussion.

6 Dominated Coupling From The Past (DomCFTP)

6.1 Background

Coupling From The Past (CFTP) was introduced by Propp and Wilson [12]. It
concerns a Markov chain, on a finite state space with an order and a least and a
largest state, which can be constructed using an update function preserving this order
and an i.i.d. sequence of random variables. This seminal paper provided impressive
applications to the Ising model close to criticality and much general insight.

There is first a back-off strategy. Instances of the Markov chain are repeatedly
started from the least and the largest states further and further back in the past
before time 0. All these instances are coupled by always using the same i.i.d. random
variables driving the updates from times n− 1 to n. This is repeated until coalescence
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happens: the two instances have coalesced by time 0, i.e., they have taken the same
value and necessarily remained equal ever since. Due to the preservation of the order,
all instances of the Markov chain started arbitrarily at the corresponding time back
in the past must have coalesced, hence the common value obtained at time 0 must
coincide with the value of the Markov chain in equilibrium at time 0 and constitute a
perfect draw from the invariant law.

Dominated CFTP (DomCFTP) extends this to infinite state spaces such as N
c
0,

see [13–18]. DomCFTP simulates backward in time a dominating Markov chain in
order to obtain lower and upper bounds for the Markov chain in equilibrium, coupled
in the subsequent forward simulation together with the dominating chain.

6.2 DomCFTP at the empty state

A novelty here is the use of the preorder of Section 3.1 in the truly multi-dimensional
setting of queueing networks. The order “up to coordinate permutation” on the quo-
tient set for the indifference relation ∼ is strictly weaker than the classic product
order, and the latter is not in general preserved by the coupling of Section 3.2.

Perfect simulation methods for non-exchangeable polices are of great interest, see
Remark 1, and require the use of the preorder with its lack of anti-symmetry. If the
policy is exchangeable then we can use the reduced representation of Section 4.2 on
which the preorder induces an order; we shall see a use of this in Section 6.3.

A way to implement DomCFTP is to wait for the dominating chain simulated
backward in time to hit 0. At this random time, the chain in equilibrium must be at
state 0 (coalescence is achieved without anti-symmetry) and can be simulated forward
in time up to time 0, at which time its state constitutes a perfect draw from π.

A delicate point is that the Markov chains must be coupled together through the
backward and forward simulations by using the same driving i.i.d. random variables.
We deal with this by considering the two-sided stationary Markov chain

(Xn, Ýn, θn+1)n∈Z .

Theorem 5. The two-sided stationary Markov chain (Ýn, θn+1)n∈Z in equilibrium can
be perfectly simulated backward in time from time 0. Using reversibility, (Ýn)n∈Z

−

can

be simulated by drawing Y0 of law γ⊗c, sorting it into Ý0 , Ý ′
0 , simulating a copy

(Ý ′
n)n∈N0

of (Ýn)n∈N0
, and setting Ýn = Ý ′

−n for n ≤ 0. Moreover,

• if Ýn+1 = y + ei and Ýn = y and yi = m for y in N
c
0 and i in {1, . . . , c}, then

θn+1 = (1,K) with K uniform in {hm−1(y) + 1 , . . . , hm(y) = i} 6= ∅ ,

• if Ýn+1 = y − ei and Ýn = y and yi = m ≥ 1 for y in N
c
0 and i in {1, . . . , c}, then

θn+1 = (−1,K) with K uniform in {hm−1(y) + 1 = i , . . . , hm(y)} 6= ∅ ,

• if Ýn+1 = y and Ýn = y for y in N
c
0, then

θn+1 = (−1,K) with K uniform in {1 , . . . , h0(y)} 6= ∅ .
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Proof. The statement about reversibility is standard. The statements about uniform
laws follow from the fact that the θn have law (11) and (8) and conditioning. For
completeness, we provide a direct proof of the last case, the others being similar. If k
is in {1 , . . . , h0(y)} 6= ∅ then yk = 0 and

P(θn+1 = (−1, k) | Ýn+1 = y, Ýn = y) ,
P(Ýn = y, θn+1 = (−1, k), Ýn+1 = y)

P(Ýn = y, Ýn+1 = y)

=
P(Ýn = y, θn+1 = (−1, k))

P(Ýn = y, Ýn+1 = y)

=
P(Ýn = y)P(θn+1 = (−1, k))

P(Ýn = y)P(Ýn+1 = y | Ýn = y)

and P(θn+1 = (−1, k)) = 1
c(λ+c) and P(Ýn+1 = y | Ýn = y) = h0(y)

c(λ+c) yield that

P(θn+1 = (−1, k) | Ýn+1 = y, Ýn = y) =
1

h0(y)
.

We should consider Ýn instead of Yn for practical simulation issues even though
the τn are not needed, for instance in order to allow to determine the hm by binary
search. A possibility for simulating (Ýn)n∈N0

is to use (13) as Ý ′
n = ψ́(Ý ′

n−1, θ
′
n) for

n ≥ 1 with θ′n i.i.d. of law (11), which results in

Y0 ∼ γ⊗c , Ýn = ψ(Ýn+1, θ
′
−n) , n ≤ −1 . (14)

These θ′n are only related indirectly to the θn in Theorem 5.
The DomCFTP method uses Theorem 5. It simulates backwards in time (Ýn)n∈Z

−

until the backward stopping time

N , sup{n ≤ 0 : Ýn = 0} = sup{n ≤ 0 : Yn = 0} ≤ 0 (15)

which will be proved to be finite, a.s., Theorem 3 yields that 0 4 XN 4 YN = 0
and hence that XN = 0 (even though 4 is only a preorder). Moreover, θn+1 can be
simulated once Ýn has been simulated from Ýn+1 for n ≤ −1. Then θN+1, . . . , θ0
and (12) allow to simulate XN+1, . . . , X0, and X0 is a perfect draw from π.

This results in the following perfect simulation algorithm, written in mathematical
fashion and not in pseudocode. An actual implementation should follow Section 4.
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Algorithm 2 DomCFTP at the empty state

1: draw Y0 from γ⊗c and sort into Ý0 ⊲ see Section 4.1
2: for n = −1 down to N , sup{m ≤ 0 : Ým = 0} ⊲ not executed if Ý0 = 0
3: draw Ýn using Ýn+1 ⊲ see Theorem 5 and (14)
4: draw θn+1 using Ýn+1 and Ýn ⊲ see Theorem 5

5: set XN = 0
6: for n = N + 1 up to 0 ⊲ not executed if Ý0 = 0
7: draw Un uniformly in [0, 1] ⊲ for possible random choices
8: set Xn = φ(Xn−1, θn, Un) ⊲ the θn obtained in Loop 2

9: return X0

Theorem 6. Let λ < c, and π be the invariant law of the queue length process X of a
load balancing network of Definition 1. Algorithm 2 uses simulatable draws, terminates
after a duration which has some exponential moments, and outputs a perfect draw
from π. Specifically, there exists s > 1 such that E(s|N |) <∞, hence E(|N |) <∞, and
X0 has law π. If the load balancing policy is exchangeable, Algorithm 2 with X and
(12) replaced by X́ and (13) in Loop 6 outputs a perfect draw from the invariant law
π́ of X́; see Remark 2.

Proof. The proof follows from the preceding discussion except the statements on N .
Now, −N = |N | has same law as the hitting time of 0 by (Yn)n≥0 in equilibrium.
Classically, when c = 1 the hitting time of 0 by (Yn)n≥0 starting at 0 has some
exponential moments, and the hitting time of 0 by (Yn)n≥0 in equilibrium is a sized
biased version of it multiplied by an independent uniform random variable on [0, 1] and
thus also has some exponential moments. The conclusion follows from [35, Sect. II.1.4],
or [33, Sect. 10.7] adapted to discrete time, and induction over c ≥ 2.

Remark 3. This algorithm allows perfect simulation of the invariant laws of coupled
networks with varied load balancing policies, for instance in order to compare their
performances. The backward simulation of (Ý0, . . . , ÝN ) and of (θ0, . . . , θN+1) is per-
formed once. Then the queue length processes of these networks are simulated forward
in time from time N and state 0 up to time 0, possibly in parallel fashion.

6.3 DomCFTP with back-off and sandwiching

In practice we expect c to be at least moderately large and λ to be close to c. Then
the time |N | that (Ýn)n∈Z

−

takes to reach the empty state 0 and the duration of the
simulation procedure in Theorem 6 are likely to be quite long. It takes much shorter
times for (Ýn)n∈Z

−

to reach states in which some queues but not all are empty, which

are those such that a queue in (Xn)n∈Z
−

may finish serving a task while (Ýn)n∈Z
−

does
not change. A corresponding back-off method may achieve a considerable speed-up.

An important issue is that the preorder 4 can be used for these purposes only
if the update function φ preserves the quotient order for the indifference relation
∼ in Theorem 1. This is very close to requiring that the load balancing policy be
exchangeable; an uninteresting generalization is for instance a policy such as JSQ or
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JSQ(d) breaking ties by ascending queue index. For the sake of clarity, we henceforth
focus on exchangeable load balancing networks, see Section 4.2.

We are going to provide a DomCFTP method for the perfect simulation of the
invariant law π́ of the instantaneous non-decreasing ordering X́ of X using the Markov
chain (X́n)n∈Z

−

. It requires to choose a back-off strategy

−∞ < · · · < Mk < · · · < M1 < 0 (16)

constituted of stopping times of the dominating Markov chain (Ýn)n∈Z
−

simulated
backward in time. A classic choice is binary (or doubling) back-off, in which

Mk = 2Mk−1 = 2k−1M1 , k ≥ 2 .

It has some empirical and theoretical backing, see [12, Sect. 5.2]. Usually M1 is deter-
ministic but could well be random, such as the first backward time a queue empties
for the dominating Markov chain.

Recall that Y0 can be drawn from γ⊗c, see Section 4.1, and rearranged into Ý0. If
Y0 = 0 then coalescence has been achieved at time 0 , M0 and the procedure stops,
else we recursively back-off as follows. Recall Theorem 5.

For k ≥ 1, if coalescence has not been achieved yet after simulating forward from
time Mk−1, after which

Ý0, Ý−1, θ0, . . . , ÝMk−1
, θMk−1+1, UMk−1+1, . . . , U0

have been determined, then Mk is determined by simulating backward in time

ÝMk−1−1, θMk−1
, . . . , ÝMk

, θMk+1 .

Then we construct forward in times, drawing UMk+1, . . . , UMk−1
and reusing

UMk−1+1, . . . , U0,

X̌Mk
= 0 , X̌Mk+1 = φ́(X̌Mk

, θMk+1, UMk+1) , . . . , X̌0 = φ́(X̌1, θ0, U0) ,

X̂Mk
= ÝMk

, X̂Mk+1 = φ́(X̂Mk
, θMk+1, UMk+1) , . . . , X̂0 = φ́(X̂1, θ0, U0) .

The (unknown) coupled (X́n)n∈Z
−

in equilibrium satisfies

X̌n 4 X́n 4 X̂n , n =Mk, . . . , 0 .

Since the update mechanism preserves the preorder 4 and that this constitutes an
order on non-decreasing c-tuples, if X̌n = X̂n for some n in {Mk, . . . , 0} then X̌m =
X̂m for all n ≤ m ≤ 0, which constitutes the event of coalescence, and in particular

X̌0 = X́0 = X̂0

constitutes a perfect draw from the invariant law π́ of X́ .
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This back-off procedure must be repeated for k ≥ 1 until coalescence is achieved.
This happens at least as soon as the time to which the backward simulation is con-
tinued is lesser than or equal to N defined in (15), which ensures some exponential
moments for the duration, see Theorem 6.

Note that in the above UMk−1+1, . . . , U0 do not affect the (Ýn, θn+1), and can be
redrawn anew since their reuse is not required for the coupling to be preserved.

This results in the following perfect simulation algorithm, written in mathematical
fashion and not in pseudocode. An actual implementation should follow Section 4.
The algorithm requires to choose a suitable back-off strategy (16).

Algorithm 3 DomCFTP with back-off and sandwiching

1: draw Y0 from γ⊗c and sort into Ý0 ⊲ see Section 4.1

2: for k = 1 to K = inf{k ≥ 1 : X̌
(k)
0 = X̂

(k)
0 }

3: determine Mk

4: for n =Mk−1 − 1 down to Mk

5: draw Ýn using Ýn+1 ⊲ see Theorem 5 and (14)
6: draw θn+1 using Ýn+1 and Ýn ⊲ see Theorem 5

7: set X̌
(k)
Mk

= 0 and X̂
(k)
Mk

= ÝMk

8: for n =Mk + 1 up to n = 0
9: draw Un uniformly in [0, 1] ⊲ reuse or redraw Un for n ≥Mk−1 + 1

10: set X̌
(k)
n = φ́(X̌

(k)
n−1, θn, Un) ⊲ the θn obtained in Loop 4

11: set X̂
(k)
n = φ́(X̂

(k)
n−1, θn, Un)

12: return X̂
(K)
0

Theorem 7. Let λ < c, and π be the invariant law of the queue length process X of a
load balancing network of Definition 1. Algorithm 3 uses simulatable draws, terminates
after a duration which has some exponential moments, and outputs a perfect draw
from π. Specifically, there exists s > 1 such that E(sK) < ∞, thus E(K) < ∞, and

X̂
(K)
0 has law π́.

Proof. The proof follows from the preceding discussion.

Remark 4. This algorithm can be used for the task described in Remark 3. The
backward simulation of (Ý0, . . . , ÝMk

) and of (θ0, . . . , θMk+1) should be continued back
in the past for k ≥ 1 until coalescence has been achieved for all the queue length
processes of the networks under consideration. In the case of parallel computing, the
backward simulation of (Ýn)n∈Z

−

may be continued while forward lower and upper
bound simulation at a Mk are undertaken.

6.4 Assessment of the DomCFTP algorithms

In [13, Sect. 6], the authors assess and compare the two algorithms that they have
developed for M/G/c.
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They do so mainly in the Markovian caseM/M/c. The invariant law is well-known
– its normalizing constant is obtained from the well-tabulated Erlang C formula –
and used for comparisons with the simulated draws. The dominating Markov chain is
given from c i.i.d.M/M/1 queues as in the present paper, and can be readily perfectly
simulated without using the Pollaczek-Khintchine formula.

Simulations indicate that the more sophisticated back-off sandwiching algorithm
takes considerably less time than the simpler emptying algorithm. The authors indicate
that the discussion is far from complete and recall that the computational demands
of the sandwiching algorithm are greater for similar durations. Some theoretic and
heuristic arguments on the durations are also provided.

7 Conclusion

The main scope of this paper is to provide efficient DomCFTP methods in the truly
multi-dimensional setting of a wide class of Markovian load balancing queueing net-
works. The policies we consider are quite general and natural, and include classic
polices for parallel servers as well as policies implementing instantaneous work steal-
ing at service completions. These policies may respect topological constraints such as
a directed graph structure, which breaks the exchangeability assumption under which
most asymptotic performance evaluation is achieved.

Such perfect simulation methods are valuable for Monte Carlo estimation of quan-
tities of interest in equilibrium, most notably for performance evaluation. This is
achieved on this infinite state space using an adequate coupling providing a dominating
Markov chain in an original preorder. It corresponds to an order up to permutations
of the coordinates which is strictly weaker than the classic product order.

The paper by Connor and Kendall [13] has been an inspiration, and we are glad
to have provided an answer to Question 3 in its Section 7. There are many remaining
questions left unanswered, and we list a few.

1. Provide mathematical evaluation of the benefits of the back-off and sandwiching
algorithm over the emptying algorithm ([13, Sect. 7 Question 2]).

2. Implement niceties about DomCFTP such as recycling, interruptible algorithms,
read-once, see [18, Chap. 5], simultaneous implementation for a suitable range of
values of c called “omnithermal DomCFTP” in [13, Sect. 7 Question 4]), etc. We
have noted that we may reuse or redraw the Un at will.

3. Extend results to non-Markovian queueing networks with general service distribu-
tions or general interarrival distributions or both, see [2, Sect. 9], [36].

4. Tell interesting things about asymmetric queueing networks, see [2, Sect. 9], beyond
the fact that the first two perfect simulation methods in this paper apply to the
networks of Definition 1.

5. Find other wide natural classes of networks, couplings, and orders for which the
ideas in this work can be adapted.

Acknowledgments. The author thanks Stephen Connor for a private communica-
tion about the mean run time of the DomCFTP algorithms in [13]. This paper was
an inspiration for us.
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