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Abstract

Integrating experiment and simulation provides invaluable insights into the critical parameters that de-
termine the microstructure of alloys produced by additive manufacturing. Here, the grain structure forma-
tion due to solidification during single pass laser scans (mimicking bead-on-plate single tracks) on a 316L
stainless steel is studied in situ inside a scanning electron microscope that is directly integrated with a
continuous-wave laser. The grain size distribution before melting is used as an initial condition in a coupled
phase-field/thermal multiphysics modeling framework. The predicted resolidified microstructures are found
to agree favorably with those observed experimentally for multiple laser powers and scan velocities, indi-
cating the validity of the overall model. Grain morphology is analyzed quantitatively, and the top surfaces
are compared between the experiments and simulations. Analysis of the three-dimensional grain shapes
predicted by the simulations shows that the length of the major axis of the resolidified grains is sensitive
to laser power and scan speeds, while the length of the minor axis is not. Furthermore, the preferential
alignment of the major axes of the grains depends on the melt pool geometry.

Keywords: Additive manufacturing, Multiphysics modeling, Solidification, Laser polishing, Phase-field
method, Computational fluid dynamics, Scanning electron microscopy

1. Introduction

There has been significant interest from the community to understand the melting and subsequent reso-
lidification of metal alloys undergoing additive manufacturing (AM). However, there remains an ongoing
motivation to develop computational models that can predict the as-solidified microstructures and grain
morphologies [1, 2]. In processes such as laser powder bed fusion (LPBF), hundreds or thousands of grains
may be exposed to the solid-liquid interface, creating a uniquely competitive set of resolidification kinetics as
the orientations along the interface continuously change. The richness of this process and its interplay with
heat and mass transport introduces significant complexity to the obtained microstructures and their evolu-
tion, which has concurrently motivated the need for model validation against benchmark datasets [3–7]. To
date, models that adopt cellular automata (CA) and kinetic Monte Carlo (KMC) approaches have attracted
the most interest at predicting the grain structure that forms within individual laser tracks or across the
entire build [8–29]. These methods adopt a rules-based or stochastic description of a predetermined “growth
law” to update the voxel representation of a microstructure from one time step to the next. Both CA
and KMC can be implemented in computationally efficient manners, which allows them to consider rather
large simulation volumes. This has allowed models to obtain quantitative agreement of key features such as
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crystallographic texture for representative volumes of a full build [9, 23, 26, 27]. However, the rules-based
nature of these methods is not always readily generalized. For example, the usual Decentered Octahedra CA
formulation assumes a single-phase material that only grows along ⟨100⟩ crystallographic directions [30].

Another possible modeling technique is the phase-field method (PFM3), which has been applied to un-
derstand microstructure and composition development in AM processes [11, 31–43]. PFMs are a powerful
general tool that can be formulated to capture a wide variety of materials physics. This generality often
carries considerable computational cost, although there is interest in either developing reduced-order models
or parameterizing the CA model to accurately reproduce the microstructure produced by a PFM [11, 35].
The computational expense has also presented a barrier in validating PFMs of the AM process against ex-
periments. Pinomaa et al. performed a convergence study of a two-dimensional (2D) PFM against thin-film
experiments of rapid solidification in Al-Cu alloys and obtained quantitative agreement in the interfacial
velocity as well as similar microstructures and solute concentration distributions [31]. Similarly, Karayagiz
et al. observed agreement in the primary dendrite arm spacing and cellular-to-planar solidification transition
in a 2D PFM of Ni-Nb alloys [32]. Although their approaches neglect the latent heat of solidification, the
studies of both Liu et al. [42] and Yang et al. [33] obtained agreement with experiment when predicting
certain aspects of the grain morphologies in Ti-6Al-4V and 316L stainless steel, respectively. Beyond these
examples, there are also several works that have performed verification studies against analytical models to
demonstrate model correctness [34, 35, 39, 43]. However, validation of three-dimensional (3D) PFMs against
experiments at the scale of a melt track does not appear to have been investigated.

Recently, Santos Maćıas et al. coupled a continuous-wave laser and a scanning electron microscope (CW
Laser-SEM) [44]. The purpose of this device is to perform laser scanning in a controlled environment (e.g.,
secondary vacuum or stationary inert gas to prevent oxidation) that can be reproduced in an AM machine,
thus providing a platform for physical simulation. The added advantage of this device is that microstructure
characterization before and after laser scanning is possible without the need to re-polish samples between
measurements. Consequently, laser scanning inside the CW Laser-SEM offers more control over initial and
boundary conditions of the problem and provides microstructural input as well as post-laser scan data for a
one-to-one comparison with simulations. Recently, Mohanan et al. [45] used microstructural input from one
of the studies conducted by Santos Maćıas et al. [44] to drive thermomechanical polycrystalline simulations
and studied the evolution of intergranular residual stresses and plastic strains due to laser scanning. A
one-to-one comparison of the predicted and experimentally derived dislocation density (Nye’s) tensor was
performed, and it demonstrated a good match at the statistical level [45]. Importantly, this comparative
study highlighted the significant potential of CW Laser-SEM to test and validate the predictive capabilities
of microstructure models.

Here, we present a study of a modeling framework to predict the as-solidified microstructure after laser
melting and resolidification in the CW Laser-SEM. This framework couples an analytically verified PFM
[34, 36, 37] with a separate thermal multiphysics model [46]. We validate the modeling framework by
comparing morphological features from the model against CW Laser-SEM experimental data and examining
how microstructures vary as a function of the input power and scan velocity. With the model, we also
examine 3D morphological data of the predicted microstructures and the orientations of the principal axes
of grains with respect to the scan direction.

2. Experimental Methods

The base material used in the experiment was hot rolled, annealed and pickled 316L stainless steel
(see Table 1 for composition) with an average grain size of 11.6 µm when the twins are not merged with
their parent grains. A 15 × 10 × 10 mm3 piece was ground using SiC grinding paper, then polished with
diamond paste down to 1µm particle size. The laser parameters employed are listed in Table 2. All scans
were performed under vacuum with a constant spot size of 60µm. For each set of laser parameters, a line
scan was performed on the polished surface. The tracks were parallel and spaced 350 µm apart to avoid
interference. EBSD was performed with a 0.5 µm step size on the same sample surface before and after
lasering.

3Throughout this work, PFM refers to phase-field method or phase-field model as appropriate.
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Element Fe Cr Ni Mo Mn Si Co Cu N P C S
wt.% 69.072 16.52 10.08 2.08 1.31 0.5 0.31 0.036 0.033 0.033 0.024 0.002

Table 1: Chemical composition (wt.%) of the base 316L material.

Track Power (W) Speed (mm/s)
1 66 150
2 45 150
3 66 250
4 45 250
5 24 150
6 66 500
7 24 250
8 45 500
9 24 500

Table 2: Lasering parameters employed in the present study.

To validate the model that is developed in this work, laser scanning experiments were performed on the
316L stainless steel in a controlled environment. The device employed for performing single track surface
scans at different power (P ) and scan speed (v) was the CW Laser-SEM, developed in [44]. This device
is a coupling between a 1070 nm wavelength SPI QUBE 200W CW fiber laser with a FEI Quanta 600
environmental scanning electron microscope (SEM). Additionally, the SEM is equipped with an electron
backscatter diffraction (EBSD) detector. The laser power can be varied between 9 and 209 W and scanning
speed between 0.01 and 20000 mm/s. The spot size can be changed from 45 to 500 µm with the help of
the incorporated Scanlab varioSCANde 20i Type 133 (optical z) device. 2D scanning is possible with the
equipped Scanlab intelliSCAN III 20 scanner on a relatively large area (100 × 100 mm2). The laser spot size
as a function of optical z and the power has been calibrated using the Femto Easy BP 13.9 beam profiler
and Gentec UP55N-40S-H9-D0 calorimeter. More details on the CW Laser-SEM can be found in [44, 45].

3. Model Formulation

3.1. Thermal Multiphysics Model

The temperature distribution throughout the volume of the track is a necessary input to the PFM
described above. In this section, we present the methodology employed for our multiphysics modeling, which
closely follows the framework established by Samaei et al. [46, 47]. Key aspects of this approach, including
the governing equations that represent various physical phenomena in the simulations, along with detailed
information on thermophysical properties, geometric configurations, and process parameters are elucidated.
To enhance model accuracy, physics relevant at the mesoscale are incorporated, including surface tension,
Marangoni forces, heat loss, buoyancy, laser-material interactions, and solidification.

There are three immiscible phases in the computational domain – solid metal, liquid metal, and gas.
Mass conservation is applied across the entire domain (metal and gas) to ensure that mass transfer between
phases is conserved. The Volume of Fluid (VOF) method is used to differentiate metal (solid and liquid)
from gas, while a temperature-dependent liquid fraction variable is employed to distinguish solid from liquid
metal. To model this multiphase flow problem, mass and momentum conservation equations are solved:

∂ρ

∂t
+∇ · (ρu) = 0 (1)

∂

∂t
(ρu) +∇ · (ρu⊗ u) = −∇p+∇ ·

(
µ
(
∇u+∇uT

))
+ ρgβ (T − Tref )−Au (2)

Here, ρ represents fluid density, u flow velocity, p pressure, µ fluid viscosity, g gravitational acceleration, β
the thermal expansion coefficient, Tref the reference temperature, and A the Kozeny-Carman permeability
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of the solid-liquid mushy zone. The last is dependent on the liquid fraction (fL) and the characteristic length
(λ1) of the mushy region:

A =
180µ

λ2
1

(1− fl)
2

f3
l

. (3)

The liquid fraction linearly increases from 0 to 1 between the solidus temperature, TS , and liquidus temper-
ature, TL, following the step function formulation:

fL =


0 T < TS

T−TS

TL−TS
TS < T < TL

1 TL < T

(4)

We apply the energy conservation equation to compute the temperature field within the computational
domain:

∂(ρh)

∂t
+∇ · (ρuh) = ∇ · (κ∇T ) (5)

where h and κ represent enthalpy and heat conductivity, respectively. The enthalpy is related to the
temperature and the liquid fraction through the expression

h(T, fL) = (1− fL)

∫ T

Tref

Cp,S(T
′)dT ′ + fL

∫ T

Tref

Cp,L(T
′)dT ′ + fL∆Hsl (6)

where Cp,S(T ) and Cp,L(T ) are the specific heats in the solid and liquid phases, ∆Hsl is the latent heat of
fusion, and Tref is an arbitrary reference temperature. We employ the Volume of Fluid (VOF) method to
track the melt pool interface over time, with the governing equation satisfying the advection equation:

∂Φ

∂t
+ u · ∇Φ = 0. (7)

Here, Φ(x, t) denotes the volume fraction of metal, including both liquid and solid phases. The VOF equation
is solved after the mass and momentum equations and energy equation at each timestep.

Our laser model integrates laser physics and interactions with materials. Key laser parameters, such as
spot size, power, and scanning speed, are defined based on the experimental conditions. We use the ray
tracing method to simulate the complex interaction between the laser and materials during the AM process
[48, 49]. This approach accounts for multiple reflections influenced by the keyhole’s shape.

The calculation of absorbed laser energy follows the Fresnel equation [50],

αFr(ε, θ) = 1− 1

2

(
1 + (1− ε cos θ)2

1 + (1 + ε cos θ)2
+

ε2 − 2ε cos θ + 2 cos2 θ

ε2 + 2ε cos θ + 2 cos2 θ

)
, (8)

where αFr is the Fresnel absorptivity, θ is the angle between the laser ray incident and the normal vector of
the metallic surface and ε is the material constant associated with the electrical conductance [48], respectively.
For 316L, we calibrated ε to be 0.15 to match melt pool width and depth. This value is consistent with the
range of 0.08–0.25 that has been reported in similar studies and leads to a zero-angle absorptivity of 25.8%
[48, 51].

In the VOF formulation, heat flux at the material surface is captured through diffuse volumetric source
terms in the energy equation; these include surface heating from laser interaction and heat loss due to surface
convection, radiation, and evaporation. The laser beam profile is prescribed as a Gaussian profile for the
incoming energy flux represented by the ray tracing method,

QLaser =
2P

πr2b
exp

(
−2r2

r2b

)
, (9)

where QLaser represents heat flux, P is the laser power, r is the radial distance from the laser beam center,
and rb is the effective radius of the laser beam, where the heat flux is 1/e2 of its maximum value. The
total heat loss (QLoss) from the metal to the surroundings includes contributions from convection (QConv),
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radiation (QRad), and evaporation (QEvap),

QConv = hc(T − T0), (10)

QRad = σSBϵ(T
4 − T 4

0 ), (11)

QEvap =
0.005√
2πRv

Pa exp

[
∆Hlv

RvTboil

(
1− Tboil

T

)]
(12)

QLoss = QConv +QRad +QEvap (13)

where hc is the convective heat transfer coefficient, T0 is the ambient temperature, σSB is the Stefan-
Boltzmann constant, ϵ is the emissivity, ∆Hlv is the latent heat of evaporation, Pa is atmospheric pressure,
and Rv is the gas constant for evaporated material. In the multiphysics model, surface forces play a crucial
role as they provide boundary conditions for the momentum equation (the Navier-Stokes equation). These
forces include the recoil pressure, responsible for creating a depression in the melt pool after the temperature
of the 316L part surpasses its evaporation point, denoted as Tboil. Additionally, the Marangoni and capillary
effects are needed due to the temperature-dependent surface tension field of 316L. Mathematically, the
surface force, FSurf can be expressed as

FSurf = γLV κn+ (∇T − n(∇T · n)) ∂γLV

∂T
− Precoiln (14)

Precoil = 0.54Pα exp

(
∆Hlv

RvTboil

(
1− Tboil

T

))
(15)

where γLV is the liquid-vapor surface tension at surface temperature T , κ is the total curvature of the exposed
316L metallic phase surface, n is the normal vector to the free surface, ∇T is the temperature gradient, and(

∂γLV

∂T

)
is the sensitivity of 316L surface tension to temperature.

3.2. Microstructure Model

The temperature distribution is a necessary input to predict the microstructural evolution with a phase-
field model. Here, we employ a PFM developed for polycrystalline solidification under AM conditions in
systems that solidify in a planar or low-amplitude cellular regime [34, 36, 37]. The assumption is consistent
with self-consistent thermodynamic calculations of the interfacial temperature during solidification of 316L
recently performed by Martin et al. [52], which predict that planar solidification is likely under steady-state
conditions at the velocities and thermal gradients encountered in this study. This contrasts with the slower
velocities and lower gradients that are more characteristic of laser welding that typically produce dendritic
growth [53–55], although the present PFM predicts columnar grain morphologies that are similar to those
observed in laser welds [34]. In the planar and low amplitude cellular regimes, trijunctions on the solid-liquid
interface are assumed to be sufficiently mobile such that the resulting grain boundary is perpendicular to
the solid-liquid interface [34, 56]. We present an abbreviated description of the governing equations of the
PFM. Additional details on the model development, its expected behaviors, and its analytical verification
are available in the previous studies [34, 36, 37].

The PFM is derived from a functional of the total Helmholtz free energy of the system, F ,

F =

∫
V

[
f({ϕ}, T ) + κ

2

N∑
i=0

|∇ϕi|2
]
dV, (16)

where {ϕ} is a set of nonconserved order parameters that represent the melt pool and individual crystallo-
graphic orientations in the solid, T is the absolute temperature, κ is a gradient energy coefficient, and N is the
number of solid order parameters. The homogeneous free energy density, f({ϕ}, T ), contains contributions
from a multiwell energy density and the latent heat of fusion,

f({ϕ}, T ) = W

 N∑
i=0

(
ϕ4
i

4
− ϕ3

i

3

)
+

1

2

N∑
i=0

N∑
j>i

ϕ2
iϕ

2
j +

1

12

+ Lv
TL − T

TL
h({ϕ}), (17)
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where W is the height of the multiwell, Lv is the volumetric latent heat of fusion, TL is the liquidus
temperature, and h({ϕ}) is a 6th-order Moelans-type interpolation function with a value of zero in the solid
and one in the liquid [36, 57, 58]. Each order parameter evolves according to an Allen-Cahn-type equation,

∂ϕi

∂t
= −M({ϕ}, T ) δF

δϕi
, (18)

where M({ϕ}, T ) is the local mobility of the order parameter, which is locally interpolated according to the
pairwise values of order parameters and interfacial mobilities [34, 59].

Generally, the expressions relating the phase-field parameters to their sharp interface equivalents are the
same as in previous work [34, 36, 37]. The values of W and κ are related to the diffuse interface thickness,
ζ, and solid-liquid interface energy, γSL, as

W =
6γSL

ζ
, (19)

κ =
3γSLζ

2
. (20)

Note that we do not assign different energies to grain boundaries. The orientation-dependent solid-liquid
interface mobility is assumed to follow a two-parameter cubic harmonic expansion,

MSL(nij) =
2TLµ0

3ζLv

[
1 + ϵ4

(
4

3∑
k=1

n4
ij,k − 3

)]
, (21)

where µ0 is the modulus of the solid-liquid mobility, ϵ4 is the anisotropy parameter, and nij,k is the k-th
component of the normal vector between order parameters i and j. Presently, µ0 is assumed to be constant,
but the effects of microsegregation during solidification could be included through a nonlinear relationship
of velocity and undercooling [52]. Where ∂T/∂t > 0, we define an isotropic mobility of the melting interface,

Mmelt =
4TLµ0

3ζLv
, (22)

which prevents numerical pinning. Additionally, along melting interfaces we halve the latent heat term of
the Allen-Cahn equation to maintain the correct interface velocity; thus the increased mobility can also be
interpreted as an increase in the interfacial energy, which is well-known to numerically stabilize phase-field
models. Finally, we relax our previous assumption that grain boundary motion is negligible and introduce
an Arrhenius-type behavior for thermally activated grain boundary mobility,

MGB(T ) = A0 exp

[
−QGB

RT

]
, (23)

where A0 is the mobility prefactor, QGB is the activation energy, and R is the ideal gas constant. Thus,
as the temperature increases in proximity to the melt pool, the grain boundary mobility will increase. The
prefactor is chosen such that the grain boundary mobility is comparable to the solid-liquid mobility at the
liquidus temperature,

A0 =
2TLµ0

3ζLv
exp

[
QGB

RTL

]
. (24)

The above pairwise mobilities give the overall interpolated mobilities for the Allen-Cahn equation,

M({ϕ}, T ) =
∑N

i=0

∑N
j>i ϕ

2
iϕ

2
jMij∑N

i=0

∑N
j>i ϕ

2
iϕ

2
j

, (25)
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Mij =


MSL(nij) (i = 0 ∨ j = 0) ∧ ∂T/∂t ≤ 0,

Mmelt (i = 0 ∨ j = 0) ∧ ∂T/∂t > 0,

MGB(T ) i ̸= 0 ∧ j ̸= 0.

(26)

3.3. Numerical Details and Simulation Design

In this study, the PFM and thermal multiphysics model are solved asynchronously. First, thermal-fluid
simulations are conducted using FLOW-3D® to replicate experimental setups [60]. The simulations focus
on a single configuration involving a moving laser applied to solid substrates. Nine distinct simulations are
performed to match the considered experimental conditions, each varying in laser power and scanning speed.
A 3D simulation domain is created with dimensions of 500µm (x/scan direction) by 200µm (y/transverse
direction) by 130 µm (z/normal direction) for simulating thermal multiphase flow in a given single track. To
facilitate accurate simulations, a structured mesh is employed, comprising 3 µm × 3 µm × 3 µm cubic cells.
For all cases, the model included a total of 481,127 mesh cells. A mesh sensitivity analysis was performed by
using different voxel sizes, and the melt pool size was found to change by approximately 1% at steady state
between 3- and 4-micron meshes. This minimal difference indicates that the chosen voxel size is sufficient
for accurately capturing the melt pool curvature without distorting the results.

The laser is moved along the positive x-axis, spanning from coordinates (x, y) = (50 µm, 100 µm) to
(440 µm, 100 µm) to form the track on the solid substrate. The material properties used for the simulations
are listed in Table 3. In Flow-3D, the VOF method is solved with a finite volume discretization of the
momentum and continuity equations while tracking the interface between different phases. Time integration
of the pressure and heat transfer equations is performed implicitly, and the resulting system of equations is
solved by the Generalized Minimal Residual (GMRES) method. The calculation of the free surface pressure
and surface tension pressure employ explicit methods to capture the effects of these phenomena on fluid flow
behavior. A total of 2,930 core hours was required to perform the simulations for melt pool Tracks 1–9,
although the computational cost varied based on the specific parameters of a track.

Property Definition Value Units

ρS Density in solid phase [61] 8084.2− 0.42086T − 3.8942× 10−5T 2 kg/m3

ρL Density in liquid phase [61] 7432.7 + 0.039338T − 1.8007× 10−4T 2 kg/m3

µ Viscosity [61] exp
(
−0.5958 + 2385.2

T

)
× 10−3 mPa s

Cp,S Heat capacity in solid phase [61] 458.98 + 0.1328T J/(kgK)
Cp,L Heat capacity in liquid phase [61] 769.86 J/(kgK)
κS Thermal conductivity in solid [61] 9.248 + 0.01571T W/(mK)
κL Thermal conductivity in liquid [61] 12.41 + 0.003279T W/(mK)

hc Convective heat transfer coefficient [62] 25 W/(m2K)
∆Hsl Latent heat of fusion [61] 2.677× 102 kJ/(kg)
∆Hlv Latent heat of evaporation [61] 7.416× 103 kJ/(kg)
TS Solidus temperature [63] 1674.15 K
TL Liquidus temperature [63] 1697.15 K
Tboil Boiling temperature [63] 3090 K

Rv Gas constant 1.50774× 106 cm2/(s2K)
ε Electrical conductance parameter 0.15

γLV Liquid-vapor surface tension [64, 65] 1544.01− 0.1988(T − 1674) mN/m
γSL Solid-liquid interfacial energy [66, 67] 0.25 J/m2

ζ Diffuse interface length scale 408 nm
µ0 Solid-liquid mobility modulus [67] 0.217 m/sK
ϵ4 Solid-liquid mobility anisotropy [36, 67] 0.3
Lv Volumetric latent heat of fusion [61, 66] 1.3 kJ/cm3

QGB Grain boundary activation energy [68, 69] 150 kJ/mol

Table 3: Materials properties of 316L used in the simulations. When multiple references are reported for a parameter, the
employed value is chosen from within the range of values that have been reported.

The thermal multiphysics model requires a different numerical mesh resolution than the PFM. Therefore,
the calculated temperature profile must be interpolated onto the mesh of the PFM. We employ a modification
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of the method described by Saye [70], where polynomials of a fixed order are fit to a stencil of the finite
volume mesh by least-squares approximation. Here, we employ a second-order Taylor polynomial,

T (x, y, z) = c0 + c1x+ c2y + c3z + c4x
2 + c5y

2 + c6z
2 + c7xy + c8xz + c9yz, (27)

where the ci are the coefficients of the polynomial. When Eq. 27 is fit to a subset of the overall mesh, the
resulting system of equations can be written and solved as

T⃗ = Ac⃗, (28)

c⃗ =
(
ATA

)−1
AT T⃗ (29)

where T⃗ is a column vector of the temperatures in the smaller fitting stencil, A is a Vandermonde matrix
representation of Eq. 27, and c⃗ is a column vector of the unknown coefficients. The matrix inversion in
Eq. 29 can be analytically precalculated for a desired polynomial and stencil, which dramatically increases
the efficiency of the reconstruction. We find that fitting Eq. 27 to a 4×4×4 stencil of the temperature solution
balances the computational cost of the interpolation while maintaining the fidelity of the interpolated output.
This combination of polynomial and stencil size also provides a degree of smoothing to the temperature profile
that stabilizes the numerical solution of the PFM.

The governing equations for the PFM are implemented in a custom numerical framework. A nonlinear
transformation is applied to Eq. 18 for each order parameter field [34, 36, 37, 71], which creates a set of
governing equations for the signed distance fields describing interface locations rather than the original order
parameters. The transformed versions of the governing equations are available in Ref. [36] and are omitted
here for conciseness. This nonlinear transformation also allows for coarser numerical meshes to be employed
than is needed for the solution of the untransformed PDE. The governing equations are then solved by
the method of lines using an isotropic, second-order, cell-centered finite difference spatial discretization and
an adaptive third-order explicit Runge-Kutta time integration method [72, 73]. The overall framework is
implemented primarily in Fortran 2008 and is parallelized with MPI. To reduce memory usage, we employ
16 total order parameters with a variant of the active parameter tracking (APT) method [74, 75], which
is modified to accommodate adaptive time stepping. All calculations employed a 1600 × 768 × 384 mesh
with a uniform mesh spacing of 240 nm. While this mesh is coarser than in [34], the expected solidification
behaviors were found to be equivalent in following studies [36, 37]. The parameters employed for the PFM
are also listed in Table 3. Here, the chosen value of ζ results in an interface that has a typical width of
eight grid points and matches the ratio of ζ to grid spacing employed in previous studies [34, 36, 37]. The
grain boundary activation energy is chosen to be within the reported range of 135–316 kJ/mol for 316L and
similar austenitic stainless steels [68, 69].

As implemented, the two models are coupled in a one-way manner. After the thermal multiphysics model
attains a quasi-steady-state condition, the temperature field is exported from FLOW-3D and minimally post-
processed into a format that can be read by the PFM. During the startup of the PFM framework, a lookup
table (LUT) is created from the FLOW-3D solution that can be employed in the least-squares interpolation
described above. Each task in the parallel domain decomposition only requires a small fraction of the overall
LUT; thus, the LUT is cropped to the smallest necessary size for each task to reduce memory usage. Although
surface forces are always included in the VOF simulations, the resulting deformation is generally small and
does not significantly affect the overall melt pool shape. Additionally, the PFM employed in this study does
not consider the vapor phase. Thus, we neglect the surface deformation that is present in the steady-state
melt pools obtained from VOF when generating the LUTs for the PFM. This simplification allows for more
efficient modeling without sacrificing the accuracy of the results.

Production simulations were run across 1,024 cores on both Anvil at Purdue University and Quest11
at Northwestern University, with the shortest simulation running for approximately 4 days and the longest
running for approximately 14 days. The overall computational cost was approximately 830,000 core hours
to perform the PFM simulations for Tracks 5–9. Tracks 1–4 would require significantly more time and/or
memory due to their higher energy densities, slow scanning speeds, and resulting melt pool sizes; therefore,
these tracks are not calculated in the present study.
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Track ID Pool Depth (µm) Pool Width (µm)
1 152.52 146.71
2 30.64 82.2
3 110.3 119.39
4 25.14 76.07
5 14.16 51.56
6 40.78 79.87
7 12.26 50.29
8 18.59 55.78
9 10.57 39.72

Table 4: Measured melt pool dimensions.

3.4. Initial Condition Generation

The microstructural evolution in response to laser remelting is simulated for a polycrystalline volume
of material. A common synthetic initial condition is generated that is subsequently employed for each set
of experimental conditions. From EBSD analysis of the experimental baseplate prior to lasering, we first
identify grains and merge twins with their parent orientations using MTEX [76]. We determine the grain size
distribution of the merged microstructure, assuming the mean intercept area of a sphere is Ā = 2πr2/3 [77].
The grain size distribution as measured on the surface is well-described by a lognormal distribution with
µ = 2.84 and σ = 0.49, which produces an average equivalent sphere diameter of 19.3 µm. In addition, we
obtain a weighted histogram of the averaged crystallographic orientations of each grain to approximate the
orientation distribution function (ODF) of the baseplate. The grain size distribution and ODF are combined
into a pipeline in DREAM.3D [78], which is used to generate the initial condition for the simulations. After
generation, coherent Σ3 twin boundaries are randomly inserted into the microstructure to be consistent
with the experimental microstructure. However, in the present work, these twins exist only to introduce
variations in the solid-liquid interface mobility and the grain morphologies encountered during the melting
and resolidification processes. No special properties (e.g., low energy or mobility) are introduced to the twin
boundaries, and a comprehensive examination of the role of twin boundaries on the microstructural evolution
is beyond the scope of the present study.

4. Results and Discussion

4.1. Experimental Results and Multiphysics Model Calibration

The EBSD scans performed before and after the laser passes inside the CW Laser-SEM are shown in
Fig. 1. The state before melting can be observed in Fig. 1a. After laser scanning, preexisting grains grow
epitaxially towards the melt pool center (Fig. 1b), bending to follow the laser scanning direction and the
consequent temperature gradient.

Detailed views of the marked regions in Fig. 1 are presented in Fig. 2 for before (a–c) and after (d–f)
the laser scan. We observe instances where preexisting twin boundaries in the plate change orientation and
solidify across the melt pool boundary, as exemplified by the circled grains in Fig. 2d–f when compared with
the initial regions in Fig. 2a–c. The influence of power can be appreciated when observing Fig. 2d–f; for
these three tracks the scanning speed is the same, 500mms−1, but power is 66, 45 and 24 W, respectively.

Melt pool dimensions are obtained from the EBSD scans and optical microscopy on both the surface
and the cross-section. The cross-section is obtained by cutting the sample after lasering; the subsequent
surface preparation and characterization steps are the same as those employed for characterization of the
top surface prior to the laser scans. Additionally, all CFD simulations were run until steady-state conditions
were achieved, where melt pool depths and widths remained constant. The depths and widths of the melt
pools within these steady-state conditions (see Fig. 3) were measured for all cases. The measured melt pool
depth and width are listed in Table 4. Notably, Tracks 1 and 3 appear to be in keyhole mode based on the
significant increase in melt pool width and depth. Whereas the width of the melt pool is approximately 2-4
times the depth for the tracks in conduction mode, Tracks 1 and 3 are have widths that are comparable to
their depths.
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Figure 1: EBSD of wrought and annealed 316L before (a) and after the laser pass (b). The IPF color is in the out-of-plane
direction. The marked regions in (a) are the detail areas shown in Fig. 2.
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Figure 2: Detail (marked in Fig. 1a) of 500mms−1 tracks 6 (a,d), 8 (b,e) and 9 (c,f) before (a–c) and after (d–f) the laser
pass. The IPF color is in the out-of-plane direction. The circled grains in (d–f) are examples where a twin boundary changed
directions during solidification.
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100 µm

100 µm

Figure 3: Thermal-fluid simulation results for temperature distribution and track geometry. (a) Cross-sectional (top) and top-
down (bottom) views of temperature distributions at t = 172ms, representing the steady-state state of the melt pool. White
and black lines in the top and bottom plots respectively indicate the melt pool interface. The geometry of the melt pool is
defined by depth (H) and width (W) as illustrated in the top view. (b) Cross-sectional (top) and top-down (bottom) views of
the final resolidified track. The red region represents areas that underwent melting during the process, while the blue region
remained unaffected.
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Figure 4: Comparison of the experimentally measured melt pool dimensions and those predicted by the thermal-fluid simulations.
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The experimental melt pool dimensions are obtained from EBSD measurements of the cross-section of the
sample, while the dimensions of the simulated melt pools are calculated from the isosurface of the liquidus
temperature from the thermal multiphysics simulations. In both cases, the depth is calculated relative to
the flat surface of the surrounding unmelted regions. The melt pool dimensions of the experiments and
simulations are compared in Fig. 4, with the width and depth plotted as blue circles and red squares,
respectively. If we fit a line through the origin, the resulting slopes are 0.823 for the depth and 0.923 for the
width. While these indicate a slight underprediction of the melt pool dimensions, it seems to be characteristic
of the 66W conditions of Tracks 1, 3, and 6. This suggests that the absorptivity (ε in Eq. 8) of the liquid
phase increases at higher power densities beyond any effective increase from internal reflections in the melt
pool. If we consider only the 24W and 45W data, the linear slopes for the depth and width are 1.05 and
0.956, respectively. Additionally, if we fit a power law relationship (not shown) between the depth (d) and
width (w), we obtain w = 14.2d0.468 for the experiments and w = 16.0d0.442 for the simulations. Thus, we
observe good agreement between the simulated and measured dimensions for all melt pools in conduction
mode.

4.2. Comparison of Experimental and Simulated Top-Surface Grain Morphologies

We compare the predicted microstructures of the top surface for each of the PFM simulations of Tracks
5–9 against their corresponding experiments in Fig. 5. The laser power for Tracks 5, 7, and 9 is fixed at
24W, while the scan velocity is fixed at 500mm/s for Tracks 6, 8, and 9. Therefore, we are able to observe
the effects of increasing either the power or velocity on the obtained microstructure: Track 9 is shared
between the two sets. Visually, we observe qualitative agreement between the simulated and experimental
microstructures.

At the lowest velocity of 150mm/s (Track 5, Fig. 5), the resolidified features develop a characteristic
curved appearance with respect to the center of the laser track. This is similar to the feather- or frond-like
morphology observed in PFM simulations and other experiments [34, 36–38, 79–81]. Grains begin solidifying
at the sides of the melt pool and curve as they follow the melt pool surface [34]. Towards the centerline,
competitive grain growth from variations in the solid-liquid mobility and the Gibbs-Thomson effect eventually
cause slender, unfavorably aligned grains to be overgrown by their neighbors, ending solidification. The grains
that outcompete their neighbors progressively align with the scan direction, and along the center of the laser
track there is a combination of these kinetically favorable grains and small features belonging to grains that
likely grew upward from the bottom of the melt pool.

As the scan velocity is increased to 250mm/s (Track 7, Fig. 5) and 500mm/s (Track 9, Fig. 5), we observe
two primary effects. First, as the melt pool decreases in width and depth the set of grains that melt and
resolidify becomes smaller. In the simulations, we observe grains in Tracks 7 and 9 that are absent in Track
5. These grains are located such that they fully melted or coarsened at the lower velocity, but were able to
survive and resolidify at the higher velocities. Second, the grains that do resolidify become less noticeably
curved in the scan direction, although small features remain visible along the center of the laser tracks that
belong to grains lower in the melt pool. We note that, for the fastest velocity where the grains are minimally
curved, the melt pool depth is comparable to the grain size of the input microstructure. Conversely, previous
simulations where the grain size is smaller than the dimensions of melt pool produced grains with significant
curvature [34]. This suggests that there may be a characteristic length scale for a combination of melt pool
dimensions and grain size that determines whether strongly curved grains will form in a given laser pass.
However, the prior study notably did not consider the effects of twinning, and therefore a comprehensive
exploration of this possibility is beyond the scope of the present work.

For Tracks 9, 8, and 6 in Fig. 5, we observe that progressively more grains melt and resolidify as the
melt pool width and depth increase with the laser power. However, rather than becoming significantly more
curved, the angle of the initial growth direction of grains near the sides of the track approaches π/2 to the
scan direction, i.e., the grains initially grow nearly perpendicular to the scan direction. In the experiments,
this eventually causes the grains to “collide” with each other along the center of the track in Track 6. By
comparison, a few very slender grains survive in the simulated Track 6 along the scan direction. While
this is not observed in the experiment, the narrow length scale of these simulated grains should make their
evolution particularly sensitive to small perturbations of the melt pool shape. Thus, a deviation in the local
melt pool shape or the solidification kinetics would likely cause these grains to be overgrown at significantly
earlier times. This effect may be observed through some combination of a two-way coupling of the PFM
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Figure 5: Comparisons of the top surface microstructure between the simulation framework (left column) and experiments
(right). Tracks 5, 7, and 9 share a laser power of 24W, while Tracks 6, 8, and 9 share a scan velocity of 500mm/s. IPF coloring
assumes ⟨001⟩ is parallel to the scan direction. The dashed circles on the simulated microstructures indicate two of the twinned
grains present in all datasets.
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and thermal model to consider local variations in the latent heat release, including white noise in the PFM
on the order of typical thermal fluctuations, or by modifying the kinetic model to consider the effects of
microsegregation on the undercooling.

Across the simulations, we frequently observe that twinned grains resolidify such that both the parent
grain and its twin solidify in the same general direction. Thus, while twins introduce additional high-
mobility solidification directions to the system, there is not necessarily a direct correlation between the
twinned crystallographic orientations and the direction in which they solidify. For example, the circled teal-
red and magenta-green grains in the simulations in Fig. 5 have different morphologies in each track due
to the change in the melt pool shape, which affects the competitive resolidification. The parent teal and
magenta grains have high-index crystallographic directions aligned with the scan direction, while the red and
green twins have approximately ⟨100⟩ and ⟨110⟩ directions close to the scan direction, respectively. Despite
differences in the expected interfacial mobilities, the parent and twin solidify at similar relative angles to the
scan direction. Note that this behavior is also observed in the experiments (cf. Fig. 2 and accompanying
discussion). Additionally, the presence of the twin affects the competition between neighboring grains. For
example, the yellow grain to the right of the teal-red grain is able to cutoff the teal portion of the grain in
Track 9, but the teal grain competes more effectively in Track 7.

In addition to the qualitative comparison of the microstructures, we compare quantitative aspects of their
morphological features. For a given PFM microstructure, connected features are identified by obtaining a
list of orientations IDs that share first- or second-nearest-neighbor pixels in the top surface slice. Any two
orientation IDs that are connected are subsequently merged into a single parent grain if the misorientation
between them satisfies the Brandon criterion for a Σ3 twin boundary [82]. These merged grains are then
compared against the grains that were identified in the experimental dataset after laser exposure (cf. Sec. 3.4).
We calculate the major and minor axes lengths of the bounding ellipses, their orientation with respect to
the scan direction, and the aspect ratio of each feature using the scikit-image Python package [83]. We filter
both the experimental and simulated datasets to only consider grains where the fitted minor axis length is
greater than 32ζ. Below this length scale, the dynamics of grains in the PFM are sensitive to the interface
thickness (∝ ζ) and the coordination of a grain with its neighbors, and therefore may not exactly match the
expected sharp interface behavior [84].

The empirical cumulative distribution functions (ECDFs) of the obtained morphological quantities are
plotted in Fig. 6. Each column of Fig. 6 corresponds to a single track. Within a row, the ECDFs are plotted
for a given morphological quantity. The 95% confidence intervals of the simulated ECDFs are estimated

from the Kolmogorov-Smirnov test statistic, F (x)± [ln(2/α)/2n]
1/2

, where α = 0.05 and n is the number of
points in the ECDF [85]. More robust quantification of these bounds would carry substantial computational
cost. Generally, we observe good agreement between the experimental datasets (black lines with markers)
and the simulated datasets (solid red lines): the distance between the ECDFs is either minimal, or the
experimental curve is contained within the confidence intervals of the simulations (dotted black lines). For
the major and minor axes lengths (Fig. 6a and b), the experiments generally have longer maximum grain
lengths than observed in the simulations, but it is unclear how much of this is due to the finite sample size
of the PFM or other uncertainties in the model inputs such as the simulated melt pool dimensions. The
change in grain curvature that is visible in Fig. 5 is readily apparent in the ellipse orientations (Fig. 6c). As
defined, an orientation of 0 occurs when the major axis of a bounding ellipse is parallel to the scan direction.
Thus, an increase in the number of grains located towards ±π/2 indicates that more grains are aligned with
the transverse direction, i.e., the grains appear to be oriented closer to the normal to the scan direction.
We observe such an increase as we move outward from Track 9; Tracks 8 and 6, in particular, have very
noticeable increases at the edges of the distribution. If we now consider the aspect ratios of the bounding
ellipses (plotted as their inverse in Fig. 6d), we again observe good agreement between the simulations and
experiments. For the considered experiments and simulations, most of the features observed on the top
surface are not circular (i.e., the inverse aspect ratio is less than one), and both sets of data display a
roughly sigmoidal shape of the ECDF. Overall, we conclude that the simulated microstructures reproduce
key features of the experimental microstructures.

4.3. Three-Dimensional Analysis of Predicted Microstructures

In addition to the 2D comparisons against experiment, the grains of the overall 3D simulation datasets
are also analyzed. As in the previous section, connected features whose misorientation satisfies the Brandon
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Figure 6: Comparisons of two-dimensional morphological features of the melted and resolidified grains in the experimental (red
lines) and simulated (black dotted lines) datasets: (a) major and (b) minor axis lengths of the bounding ellipses, (c) orientation
of the bounding ellipses, and (d) inverse aspect ratio of each grain. The columns are organized to be consistent with the rows
of Fig. 5. The black dotted lines are estimated 95% confidence intervals.
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criterion for a coherent Σ3 twin are merged into unified grains [82]. Only grains that completely solidified
during the simulation and do not touch the ends of the simulation domain in the scan direction are retained
for further analysis, but no additional filtering by grain size is performed. For each of the identified grains,
we then calculate the second order central moment tensor (the moment of inertia tensor) of the grain [86],

In =

µ020 + µ002 −µ110 −µ101

−µ110 µ200 + µ002 −µ011

−µ101 −µ011 µ200 + µ020

 . (30)

Here,

µijk =

∫
V

(x− x̄n)
i(y − ȳn)

j(z − z̄n)
kg(r)dV (31)

are the corresponding moments with respect to the centroid of grain n, where g(r) is 1 inside a grain and
0 outside a grain. If we perform an eigendecomposition, In = QnΛnQ

−1
n , the principal axes of the grain

are the columns of the matrix Qn. The eigenvalue matrix, Λn, is the moment tensor in the principal axes
coordinates,

Λn =

µ̃020 + µ̃002 0 0
0 µ̃200 + µ̃002 0
0 0 µ̃200 + µ̃020

 . (32)

Here, µ̃ijk are the central moments in the rotated coordinate system represented by Qn, i.e, if the principal
axes are known for a grain, then µ̃ijk can be calculated directly from Eq. 31 in the rotated frame. Therefore,
we may obtain the semi-axes lengths of the equivalent ellipsoid as a = (5µ̃200/V )1/2, b = (5µ̃020/V )1/2,
c = (5µ̃002/V )1/2, where V is the grain volume. Multiplying each of these by two gives the overall length of
the axes.

The ECDFs of the calculated axes lengths for the simulations are plotted in Fig. 7. Additionally, we
include the CDF of the input lognormal grain size distribution (cf. Sec. 3.4) for reference, but truncate it
to an upper bound of 37.4 µm to align with the largest feature size represented in the DREAM.3D pipeline.
We immediately observe that only the major axis (7a) varies significantly from one track to another. Track
6 (66W, 500mms−1) produces the longest grains on average, while Track 9 (24W, 500mms−1) leads to the
shortest grains; the remaining tracks produce major axes lengths in between. These results are consistent
with the variations in the melt pool dimensions (cf. Table 4 and Fig. 4): Track 6 has the largest melt pool,
while Track 9 is smallest. The measured depth and width of Track 5 would suggest that the obtained grain
size should be in between Tracks 7 and 8. This trend is observed: until about 35 µm, the ECDF of Track
5 is in between those of Tracks 7 and 8, but for longer lengths the curves for Tracks 5 and 8 generally
overlap. Given that the initial condition is identical for all five simulations, this behavior suggests that there
is a particular set of grains that interacts with the boundaries of these three melt pools, and that we are
observing changes in this comparatively small portion of the overall population.

In contrast, the ECDFs of the simulations are generally indistinguishable for the median and minor axes
(Fig. 7b and c, respectively). For the median axis, we observe a slight increase in the average axis length
compared to the input grain size. The average minor axis lengths slightly decrease, but visually the ECDFs
are nearly identical to the input grain size distribution. On first examination, this may be a surprising
outcome, but we perform the following thought experiment. Prior to melting and resolidification, all three
principal axes should have identical length distributions that match the input grain size distribution, as
the parent grains are nominally equiaxed. During the laser scan, grain boundaries located on the solid-
liquid interface can nominally coarsen due to nonzero grain boundary mobility (Eqs. 23 and 24). However,
the mobility of grain boundaries perpendicular to the solid-liquid interface quickly vanishes in the bulk
material due to the sharp temperature gradient. The perpendicular boundaries in the bulk are essentially
pinned, and any coarsening that does occur must produce curvature along the small mobile segments of the
grain boundaries, which is energetically unfavorable. Large portions of the perpendicular grain boundaries
inevitably melt, which creates only a narrow window of time for a grain on the melt pool surface to experience
any measurable coarsening. Thus, the distributions of the median and minor axis lengths should reflect the
average size of the intersecting plane, which is simply the grain size, plus some deviation due to a minimal
amount of grain growth and the rotation of the interface that is forced by the changing melt pool location
over time.
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Figure 7: Empirical cumulative distribution functions of the (a) major, (b) median, and (c) minor axes lengths for the simulated
tracks as indicated. Additionally, the CDF of the input grain size distribution is plotted for reference (dashed black line).
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Figure 8: Orientation distributions of the major axis of the melted and resolidified grains from the simulations of (a) Track 5,
(b) Track 7, (c) Track 9, (d), Track 8, and (e) Track 6. The ordering of the tracks is consistent with Fig. 5.

As a note, the minor axis distributions in Fig. 6 are different than the input grain size distribution,
even if we do not filter out small features and considered all solidified grains on the top surface. This is
expected with the 2D analysis, as there is a small probability that the minor axis lies exactly in the plane
of the top surface. Prior to lasering, this is not a significant issue, as the grains are nominally equiaxed
and the same stereological relationships that inform the grain size distribution are thus valid. This is no
longer the case at the end of either the simulation or experiment, and thus we would likely need a very large
dataset of grains that are properly bisected in order to observe this same trend. However, this emphasizes
the need for 3D simulations and/or experimental characterization: the observed trend in the simulations
indicate that the grains effectively elongate along a single axis, while the remaining directions are minimally
affected. While beyond the scope of the present work, it may be worthwhile to investigate this trend across
a wider range of grain size distributions (particularly with respect to the melt pool dimensions). If the
insensitivity of the minor axis length distribution is a general behavior, then perhaps it could be exploited to
“back calculate” the grain size distribution of a 3D experimental dataset obtained through serial sectioning
or similar, eliminating the need to obtain reconstructions of the initial volume.

Next, we generate and plot orientation distribution functions (ODFs) for the major axis of each grain.
Each principal axis has two equivalent directions; thus, we apply an inversion symmetry operation to the
desired vector in Qn. Additionally, we assume that for a sufficiently long track the center of the laser track
acts as a mirror plane, which allows the ODF to be represented on the half of the hemisphere that contains
the positive scan direction (+SD), positive transverse direction (+TD), and both the positive and negative
normal directions (±ND), where the normal is perpendicular to the planar surface. Each set of directions is
converted from a discrete to a continuous representation by obtaining a kernel density estimator of the ODF
using the scikit-learn Python package [87]. The ODFs of the major grain axes for each track are plotted in
Fig. 8. In general, we observe that the highest probability regions for the major axis orientation are above the
SD-TD plane and the lowest probability regions are below the SD-TD plane. The shape of the distribution
indicates that the grains are aligned such that their major axes point towards the centerline of the laser
scan path, which is consistent with the microstructures in Fig. 5 as well as previous studies [34]. However,
the shape of the high probability region is different for each track due to changes in the geometry of their
melt pools. Panels (a)–(c) contain the results for Tracks 5, 7, and 9 (increasing velocity). We observe that
as velocity is increased, the highest probability shifts from an area between +ND and +SD towards an area
between +SD and +TD, although the peak also becomes significantly more diffuse. This shift is likely due
to the decreasing depth of the melt pool: fewer grains will remelt along the normal direction, therefore fewer
grains may preferentially align in this direction. Likewise, if we consider Fig. 5(c)–(e) for Tracks 9, 8, and 6
(increasing power), we observe that the highest probability region gradually becomes a band that transitions
between grains that are aligned in the SD-TD plane and grains aligned in the SD-ND plane. Tracks 6 and
8 are significantly larger than the other simulated conditions and more grains melt and resolidify; therefore,
more grains will have an opportunity for their major axes to align. A critical consideration of Fig. 8 is
that the major axis does not necessarily coincide with a ⟨100⟩ crystallographic direction due to the inclusion
of twins and the nonzero solid-liquid mobility along other possible growth directions (cf. Fig. 5 and its
discussion).
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5. Conclusions

Here, we presented a combined experimental and simulation study of the microstructure that evolves
during melting and resolidification of polycrystalline 316L stainless steel. The use of an in situ CW Laser-
SEM device allowed for direct observation of the same locations in the microstructures before and after
exposure with a minimal risk of damage to the specimen. This allowed for the collection of large datasets for
comparison against a coupled phase-field and thermal multiphysics model of the melting and resolidification
process.

We make the following conclusions of the present study:

1. The calibrated multiphysics model predicts melt pool widths and depths that are in good agreement
with those measured from the experimental microstructures, which is critical to predicting the resulting
microstructures.

2. As-printed microstructures predicted by the phase-field modeling framework reproduce many qualita-
tive and quantitative aspects of the experimentally-observed microstructures. Qualitatively, we observe
that the considered range of laser powers and scan velocities produces grains with varying degrees of
curvature along their solidification length. These grains may preferentially align with the scanning
direction of the laser, depending on the chosen power and velocity; grains with the largest melt pools
are typically more normal to the scan direction than the smallest melt pools. Even for the lowest input
energy density, a minimal amount of melting and resolidification is observed, despite the melt pool
dimensions being comparable to the grain size.

3. The top surfaces of the simulated microstructures predict equivalent ellipses with similar major and
minor axes, orientations, and aspect ratios as those obtained from the experiments. Empirical cumu-
lative distribution functions of the simulated quantities either overlap with those from the experiment
or agree within an estimated confidence interval. Combined with the melt pool dimensions predicted
by the multiphysics framework, we conclude that the overall modeling framework is validated for pre-
dicting the microstructures observed with the novel CW Laser-SEM device [44, 45]. This device is
capable of simulating a wide range of thermal process conditions that are characteristic of AM and
other laser-based processing techniques, including at higher velocities and laser powers than are con-
sidered in the present study. The combination of the CW Laser-SEM device and the coupled modeling
framework can thus be leveraged for further physical simulation of laser-based processing. While the
present study neglects the addition of feedstock material, the characteristic epitaxial grain growth that
occurs within a single track is well captured.

4. In three-dimensional analyses of the simulations, the major axis length is most affected by the change
in melt pool conditions. The median axis length changes during processing, but both the median and
minor axis length distributions appear to be relatively insensitive to changes in the scanning conditions.

5. Changes in the melt pool geometry produce variations in the major axis orientation of the resolidified
grains. Strong preferential alignment of the major axis can occur for certain melt pool conditions.
The presence of twins in the microstructure introduces additional crystallographic directions with
preferential growth, but twinned portions of grains do not necessarily have different alignment with
the axis of the laser scan. Thus, while the major axis of the overall grain is not necessarily aligned
with the preferred directions of the parent or twin, the final microstructure is sensitive to the presence
of twins in the preexisting microstructure.
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