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bLaboratoire de Modélisation en Mécanique, CNRS UMR7607, Université P. et M. Curie, Paris, France

The fracture toughness measurement of ceramics is based on notched specimens. If the notch-root radius is too large, it leads to overestimate 
the actual fracture toughness of the material. It is then necessary to control the notch shape and to machine it carefully in order to have 
a root-radius small enough (<10 �m) to be below the sensitivity threshold of the material. Then, the notch confounds with a sharp crack. 
Alternatively, it is proposed in this work to bring a correction to the measured fracture toughness depending on the notch-root radius. No 
restriction is brought to this radius except that it must be small compared to the notch length.
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1. Introduction

The fracture toughness is the capacity of resistance of a

material to a crack growth. Whatever the method used, its

measurement requires in general a pre-existing sharp crack

within the specimen. In many cases, it is obtained simply

by a saw cut. Sometimes it is followed by a fatigue loading.

But, in any case the geometry of this sharp crack is difficult

to control, if not impossible in ceramics. If the notch-root

radius is too large, it leads to overestimate the actual fracture

toughness of the material. A rough estimation of the initial

fatigue crack length can also be a cause of inaccuracy.

An alternative method called SENB-S is proposed.1–3 It

relies on 3-point bending notched specimens and consists in

controlling the notch-root radius ρ of the saw cut estimated

to be one half of the saw cut thickness e (Fig. 1). Reliable

measures are obtained if the notch is machined very precisely,

leading to a radius smaller than a critical threshold.1,2 This

bound can be empirically determined according to the mi-

crostructure of the material and especially to the grain size.

∗ Corresponding author. Tel.: +33 144 275 322; fax: +33 144 275 259.

E-mail address: dol@ccr.jussieu.fr (D. Leguillon).

In the present analysis no restriction is brought to the notch-

root radius, the only assumption is that it must be small com-

pared to the saw cut length. It is then necessary to bring a

correction to the apparent measured fracture toughness of

the material to get the actual value. It depends of course on

the blunting caused by the rounding. It is determined herein

using simultaneously two fracture criteria: an energy and a

stress condition. It requires in addition the knowledge of the

material strength.

The analysis is based on matched asymptotics, the small

parameter being the saw cut thickness. The elastic solution

of the 3-point bending problem, or any other kind of loading,

is approximated by a far and a near field. The far field is

a rough approximation where the notch is modelled by a

thin crack, allowing the definition of an apparent fracture

toughness based on the stress intensity factor at the crack tip.

The near field zooms in the vicinity of the rounded end of the

notch, providing an accurate stress field closed to the notch

root. In this second framework no stress intensity factor can

be invoked. To be consistent, these two fields must match in

an intermediate area.

A similar analysis was carried out previously for v-

notched specimens,4 but the method used there could not
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ptFig. 1. The 3-point bending specimen, e is the saw cut thickness, the notch-

root radius is estimated to be ρ = e/2.

be extended in a straightforward manner to the present ge-

ometry.

2. Asymptotic analysis of the undamaged specimen

The analysis is based on a two-scale asymptotic analysis

in plane strain linear elasticity. The actual displacement field

is denoted U-
e, the index e being used to recall its dependence

on the saw cut thickness. It is solution to the following set of

equations:



















−∇ · σ = 0

σ = C : ∇U-
e

σ · n- = O along the saw cut faces

+remote boundary conditions

(1)

The first equation is the balance of momentum (equilibrium),

σ denotes the stress tensor. The symbol nabla ▽ holds for

derivatives with respect to the Cartesian coordinates x1 and

x2. The second equation is the constitutive law, C is the elastic

operator relying classically on the Young’s modulus E (MPa)

and the Poisson’s ratio ν of the material. The third equation

expresses that the saw cut faces are free of traction. The re-

mote boundary conditions do not play an important role in

the analysis.

In a first step, assuming that e is small compared to the

saw cut length, the actual solution is approximated by:

U-
e(x1, x2) = U-

0(x1, x2) + small correction (2)

The first term U-
0 is solution to an idealized problem with

an infinitely thin cut (the index 0 means e = 0), i.e. a per-

fectly sharp crack. It is illustrated on Fig. 1 (left). The small

correction in (2) decreases to 0 as e → 0. Obviously this ap-

proximation is valid except in a vicinity of the saw cut where

it becomes meaningless. It is so-called the far field or the

outer field. It undergoes the classical singularity at the crack

tip:

U-
0(x1, x2) = U-

0(0, 0) + kI

√
ru-

I(θ) + · · · (3)

where r and θ stand for the polar coordinates with the origin at

the crack tip. The first term of the expansion in (3) is present

for consistency, it is the irrelevant rigid translation of the

origin. The coefficient kI (MPa m1/2) is the usual opening

mode I stress intensity factor. Because of the symmetries, the

Fig. 2. The notch-root vicinity with a short new crack embedded in the

unbounded inner domain (stretched domain).

antisymmetric mode II is not activated in a 3-point bending

experiment.

It is emphasized that kI is an apparent stress intensity factor

since it corresponds to a simplified geometry of the saw cut.

No actual intensity factor exists at the root of a rounded notch.

It corresponds to the quantity extracted from experiments,

using notched beam formulas.2

To have a detailed form of the actual solution U-
e, the ini-

tial domain is stretched by 1/e. The new dimensionless space

variables are yi = xi/e (i = 1, 2). As e → 0 the corresponding

domain becomes unbounded, it is illustrated on Fig. 2. There

is an infinitely long saw cut (dimensionless thickness 1) and

the outer boundary is sent to infinity. This so-called inner do-

main ignores the exact geometry of the specimen. The actual

solution is assumed to expand in the following way:

U-
e(x1, x2) = U-

e(ey1, ey2)

= F0(e)V-
0(y1, y2) + F1(e)V-

1(y1, y2) + · · · (4)

with

lime→0

[

F1(e)

F0(e)

]

= 0

The V-
i’s are solutions to problems with prescribed behaviour

at infinity, they form the near or inner field. More precisely,

these terms must match at infinity with the behaviour of the

far field near the singular point as described in (3), in order to

have consistent far and near (outer and inner) representations

of the solution. It means that there exists an intermediate

area in which the two expansions (2) and (4) hold true. Eq.

(4) together with (3) leads to5:

F0(e) = 1; V-
0(y1y2) = U-

0(0, 0); F1(e) = kI

√
e;

V-
1(y1, y2) ≈

√
γ u-

I(θ)

Here, γ = r/e and the symbol ≈ holds for “behaves like — at

infinity”. As before in (3), the first term is irrelevant. Using

the superposition principle:

V-
1(y1, y2) =

√
γu-

I(θ) + V̂-
1
(y1, y2)

2
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where V̂-
1

is solution to a problem derived from (1) and ex-

pressed in the stretched dimensionless variables y1 and y2:























−∇y · σ̂ = 0

σ̂ = C : ∇yV̂-
1

σ̂ · n- = −σI · n- along the saw cut faces

V̂-
1

decreases to 0 at infinity

(5)

with

σI = C : ∇y[
√

γu-
I(θ)]

The symbol nabla ▽y holds for derivatives with respect to

y1 and y2. The third equation expresses once again that the

saw cut faces are free of traction. The last one is the match-

ing condition resulting of the superposition principle. The

debatable point relies on the third equation but it is proved

that6:
∫

Σ

σI · n- ds = 0

where Σ denotes the stretched saw cut faces. It ensures the

problem in (5) to be well-posed, since the resulting moment

also vanishes due to the symmetries of the singular term.

The expansion finally writes:

U-
e(x1, x2) = U-

e(ey1, ey2)

= U-
0(0, 0) + kI

√
e [

√
γu-

I(θ) + V̂-
1
(y1, y2)] + · · · (6)

The function V̂-
1

is independent of the applied load and of the

geometry of the specimen. They intervene in (6) through the

single parameter kI.

3. Asymptotic analysis of the damaged specimen

including a short crack

Let us now consider a small crack emanating from the

notch root (Fig. 2). It is assumed that its length ℓ is smaller

or of the same order of magnitude than the saw cut thick-

ness e:

ℓ = µe and µ < +∞

By analogy, the actual solution with the additional crack ex-

pands as (see (6)):

U-
e(x1, x2, ℓ) = U-

e(ey1, ey2, eµ)

= U-
0(0, 0) + kI

√
e[

√
γu-

I(θ) + V̂-
1
(y1, y2, µ)] + . . . (7)

The term V̂-
1

now depends on the dimensionless crack length

µ, it fulfils the same system of equation than the previous V̂-
1

(in (5)) and the additional condition that the new crack faces

are also free of traction. To have homogeneous notations we

rewrite:

V̂-
1
(y1, y2) = V̂-

1
(y1, y2, 0)

Note that the unbounded inner domain makes impossible the

direct computation of the functions V̂-
1
. An approximation

is obtained by artificially bounding the domain at a large

distance R∞ (large compared to µ and to 1, i.e. the stretched

saw cut thickness, say R∞ = 400). The vanishing condition

at infinity is written out prescribing either a Neumann or a

Dirichlet boundary condition on the virtual line Γ ∞:

σ̂ · n- = 0 or V̂-
1 = 0 on Γ ∞

It replaces in (5) the last equation describing the behaviour

at infinity providing a classical boundary value problem.

4. The energy release rate

The following energy balance must hold true:

δWp + δWk + GcδS = 0

The first term δWp is the change in potential energy between

the initial state prior to any crack onset and the final state em-

bedding a new short crack (length ℓ) at the notch root (Fig. 2).

The second one δWk is the change in kinetic energy and the

last one is the fracture energy. This latter is proportional to the

newly created crack surface δS, the scaling coefficient being

the material fracture toughness Gc (J m−2). Since δWk ≥ 0,

the above condition leads to the Griffith criterion:

−
δWp

δS
≥ Gc (8)

The left hand side ratio is called the energy release rate G.

The change in potential energy can be expressed as4,5:

−δWp = Ψ (U-
e(x1, x2, ℓ), U-

e(x1, x2, 0)) (9)

Ψ is a contour integral relying on the Betti’s theorem. For any

displacement fields W-
1 and W-

2 satisfying the equilibrium

equations, it is defined by:

Ψ (W-
1, W-

2) =
1

2

∫

Γ

[σ(W-
1) · n- · W-

2 − σ(W-
2) · n- · W-

1] ds

(10)

The stress fields involved in (10) relate to the displacement

fields through the constitutive law:

σ(W-
i) = C : ∇yW-

i

The integral in (10) is independent of the contour Γ starting

and finishing on the faces of the notch. For technical reasons,

the contour in (10) must be taken as large as possible within

the artificially bounded inner domain (see the end of Section

3).

Using now the asymptotics (6) and (7) in (9), it writes

−δWp = k2
I e

A(µ) − A(0)

E∗ d + · · · with E∗ =
E

1 − ν2

(11)

3
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Fig. 3. The dimensionless function g(µ) (13) vs. the dimensionless crack

extension length µ.

where d is the specimen thickness (plane elasticity). The di-

mensionless coefficients A (either for µ �= 0 or µ = 0) are de-

fined by5:

A(µ) = E∗Ψ (V̂-
1
(y1, y2, µ),

√
γu-

I(θ))

The newly created crack surface is:

δS = ℓd

and then the above criterion (8) rewrites, thanks to (11):

k2
I

A(µ) − A(0)

µE∗ ≥ Gc (12)

The energy release rate can be expressed in terms of the di-

mensionless function g(µ):

G =
g(µ)

E∗ k2
I with g(µ) =

A(µ) − A(0)

µ
(13)

It is a generalization of the Irwin formula (see also (17) below)

and g(µ) → 1 as µ → ∞ (Fig. 3). Obviously, as µ increases

the new crack becomes longer and longer and the saw cut

lengthened by the new crack behaves more and more like a

long crack.

The function g(µ) is independent of the Young’s modulus

E, but it cannot be proved that it is independent of the Pois-

sons’s ratio ν, even if the coefficient 1 − ν2 has been singled

out. Fig. 3 is plotted for ν = 0.3. Nevertheless, different values

of ν ranging in a usual domain (i.e. from 0.1 to 0.4) have been

checked, they give almost confounded curves.

5. The failure criterion

Indeed, the inequality (12) is an incremental form of the

Griffith criterion, the dimensionless crack extension length

µ is still unknown. Usually, taking the limit for δS → 0 (i.e.

ℓ → 0) in (8) overcomes this difficulty. It leads to the classical

definition of the energy release rate:

Gdiff = lim
δS→0

(

−
δWp

δS

)

= −
∂Wp

∂S

Fig. 4. The dimensionless tension σ̃t(µ) (16) acting ahead of the notch root

prior to any crack onset, vs. the dimensionless distance µ to the notch root.

Gdiff is the derivative of the potential energy with respect to

the crack surface (up to the sign). It is effective in the anal-

ysis of the growth of a pre-existing crack but leads to some

paradox in many other cases as the present one. Here, this dif-

ferential form Gdiff vanishes whatever the applied load and

then can never become larger or equal to the fracture tough-

ness Gc, no failure can be predicted. The main explanation

is that the condition (8) is necessary for fracture but not suf-

ficient, except for a sharp crack. Various experiments show

that in general a stress condition must also be accounted for.7

Let us denote by σt(ℓ) the tension acting at a distance ℓ

on the ligament ahead of the notch root prior to any crack

onset. By symmetry, it is the only relevant stress component.

It is a decreasing function of the distance to the notch root

(Fig. 4). The additional stress condition is that this tension

must exceed the material strength σc all along the putative

crack path, then:

σt(ℓ) ≥ σc

According to the expansion (6) (i.e. the approximation of

the actual solution prior to the crack onset), the above stress

condition rewrites:

kI√
e

[(σI
t (µ) + σ̂t(µ)] ≥ σc (14)

For a fixed kI, i.e. for a fixed applied load, the inequality (12)

gives a lower bound of the admissible dimensionless crack

extension lengths µ while (14) gives an upper bound. The

compatibility between these two bounds provides the critical

length µc (and ℓc = µce) for which the two conditions (12)

and (14) are simultaneously fulfilled. The critical value µc is

solution to the following equation:

g(µc)

E∗σ̃t(µc)2
=

Gc

σ2
c e

(15)

with

σ̃t(µc) = σI
t (µc) + σ̂t(µc) (16)

The function σ̃t(µ) is plotted in Fig. 4 for ν = 0.3. But once

again it has been checked that the Poisson’s ratio plays a

4
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Fig. 5. The ratio R = k

app

Ic /kIc vs. the square root of the notch-root radius√
ρ (�m1/2) for alumina. Diamonds: experiments,1 solid lines: prediction

(20).

minor role. Different values of ν ranging from 0.1 to 0.4 give

almost confounded curves.

Using the Irwin formula:

Gc =
1

E∗ k2
Ic (17)

where kIc (MPa m1/2) is the critical value of the mode I stress

intensity factor, also baptised toughness because of its obvi-

ous one to one relationship with Gc, the Eq. (15) becomes

dimensionless:

g(µc)

σ̃t(µc)2
=

1

e

k2
Ic

σ2
c

(18)

The dimensionless critical length µc is a function of the saw

cut thickness e and of the material fracture parameters occur-

ring in the right hand side term of the above equation.

The failure criterion involves the apparent stress intensity

factor kI and using either (12) or (14), it finally reads:

kI ≥ kIc

√

1

g(µc)
(19)

6. The toughness correction

The right hand side of the inequality (19) is the critical

value k
app
Ic of the apparent stress intensity factor kI, thus:

k
app
Ic = kIc

√

1

g(µc)
(20)

This critical value k
app
Ic corresponds to the apparent tough-

ness measured during experiments, as already emphasized in

Section 2. The next Figs. 5–8 plot the ratio k
app
Ic /kIc for four

different materials:

- alumina: σc = 220–300 MPa, kIc = 3.8 MPa m1/2,1

- alumina: σc = 220–300 MPa, kIc = 2.8 MPa m1/2,2

- silicon carbide: σc = 310–400 MPa, kIc = 2.4 MPa m1/2,2

- silicon nitride: σc = 400–580 MPa, kIc = 5.4 MPa m1/2,2

Fig. 6. The ratio R = k
app

Ic /kIc vs. the square root of the notch-root radius√
ρ (�m1/2) for alumina. Diamonds: experiments,2 solid lines: prediction

(20).

Fig. 7. The ratio R = k
app

Ic /kIc vs. the square root of the notch-root radius
√

ρ

(�m1/2) for silicon carbide. Diamonds: experiments,2 solid lines: prediction

(20).

and compare the predictions derived from (20) with

experiments.1,2 They show a satisfying agreement (note the

different vertical scales) and remain within the scattering due

to the experiments. Another cause of some lack of precision

is that data are from different sources. Strengths σc are not

provided in the referenced papers,1,2 they are taken from In-

ternet. The two solid lines in the following figures correspond

Fig. 8. The ratio R = k
app

Ic /kIc vs. the square root of the notch-root radius
√

ρ

(�m1/2) for silicon nitride. Diamonds: experiments,2 solid lines: prediction

(20).
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Fig. 9. The implicit representation of functions σ̃t (horizontal axis) and g

(vertical axis).

to the above mentioned strength bounds. The upper lines are

associated with the highest strengths.

7. Conclusion

The procedure to determine the actual value of kIc is the

following:

- once the saw cut thickness e, the apparent toughness k
app
Ic

and the strength σc are known,

- solve the following equation derived from (18) and (20),

using Fig. 4 to obtain µc:

σ̃t(µc) =
σc

√
e

k
app
Ic

- determine g(µc) using Fig. 3 and compute kIc from the

following relation (see (20)):

kIc = k
app
Ic

√

g(µc)

In these operations µc is a dummy parameter. The two steps

can be resumed to a single one considering the implicit curve

derived from Figs. 3 and 4 and plotted in Fig. 9, where σ̃t and

g are respectively in the horizontal and vertical axes. When

σ̃t is known, it provides directly the corresponding value

of g.

Alternatively, the above operations can be performed us-

ing Table A1 in Appendix A.

This procedure allows bringing a correction to the fracture

toughness measurement depending on the notch-root radius,

in SENB specimens and for any other test triggering an open-

ing mode at the notch. Only non-symmetric loadings impos-

ing a mixture of symmetric and anti-symmetric modes must

be avoided. Applied herein to ceramics, it can be used for

any brittle material. The reference curves of Figs. 3 and 4 or

Fig. 9 alone are independent of the Young’s modulus of the

material and it is observed that the Poisson’s ratio plays no

role. The procedure requires the knowledge of the material

strength and the reliability of the final result depends on the

accuracy of its determination.

It is often reported that below a given threshold the mate-

rial is insensitive to the notch-root radius.1,2 This is mainly

due to the fine micro-structure and especially to the grain size

in case of ceramics. Of course such a threshold cannot be ob-

served in the present theoretical approach (Figs. 5–8), since

the only involved parameters, like the Young’s modulus for

instance, are macroscopic ones. They average in a sense all

the microscopic data. As a consequence, the apparent fracture

toughness curves are necessarily smooth from the beginning.

Nevertheless, this threshold is about ρ = 10 �m for the above

materials and concerns only the very beginning part of the

curves in Figs. 5–8 (
√

ρ ≤ 3) while the above correction ap-

plies for any (small) notch-root radius. In Figs. 5–8 ρ ranges

from ρ = 0 to ρ = 144 �m.
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Appendix A

See Table A1.

Table A1

The functions σ̃t(µ) (17) and g(µ) (14) vs. the dimensionless length µ

µ σ̃t(µ) g(µ) µ σ̃t(µ) g(µ)

0.00 1.595 0.000 2.55 0.257 0.933

0.05 1.406 0.127 2.60 0.254 0.934

0.10 1.216 0.293 2.65 0.252 0.935

0.15 1.085 0.411 2.70 0.249 0.935

0.20 0.977 0.497 2.75 0.247 0.936

0.25 0.887 0.562 2.80 0.244 0.937

0.30 0.815 0.613 2.85 0.242 0.938

0.35 0.756 0.654 2.90 0.240 0.938

0.40 0.706 0.687 2.95 0.238 0.939

0.45 0.664 0.715 3.00 0.236 0.940

0.50 0.627 0.738 3.05 0.234 0.941

0.55 0.596 0.758 3.10 0.232 0.941

0.60 0.568 0.775 3.15 0.230 0.942

0.65 0.544 0.790 3.20 0.228 0.942

0.70 0.522 0.803 3.25 0.226 0.943

0.75 0.502 0.814 3.30 0.224 0.943

0.80 0.484 0.824 3.35 0.223 0.944

0.85 0.468 0.833 3.40 0.221 0.944

0.90 0.453 0.841 3.45 0.219 0.945

0.95 0.440 0.849 3.50 0.217 0.945

1.00 0.428 0.855 3.55 0.216 0.946

1.05 0.416 0.861 3.60 0.214 0.946

1.10 0.406 0.867 3.65 0.213 0.946

1.15 0.396 0.872 3.70 0.211 0.947

1.20 0.386 0.876 3.75 0.210 0.947

1.25 0.378 0.881 3.80 0.208 0.947

1.30 0.370 0.885 3.85 0.207 0.948

1.35 0.362 0.888 3.90 0.206 0.948

1.40 0.355 0.892 3.95 0.204 0.948

1.45 0.348 0.895 4.00 0.203 0.948

1.50 0.342 0.898 4.05 0.202 0.949

1.55 0.336 0.901 4.10 0.200 0.949

1.60 0.330 0.903 4.15 0.199 0.949

6



Acc
ep

te
d 

M
an

us
cr

ip
t

Table A1 (Continued )

µ σ̃t(µ) g(µ) µ σ̃t(µ) g(µ)

1.65 0.324 0.906 4.20 0.198 0.949

1.70 0.319 0.908 4.25 0.196 0.949

1.75 0.314 0.910 4.30 0.195 0.949

1.80 0.309 0.912 4.35 0.194 0.949

1.85 0.305 0.914 4.40 0.193 0.949

1.90 0.301 0.916 4.45 0.192 0.949

1.95 0.296 0.918 4.50 0.191 0.949

2.00 0.292 0.919 4.55 0.190 0.950

2.05 0.289 0.921 4.60 0.189 0.950

2.10 0.285 0.922 4.65 0.188 0.950

2.15 0.281 0.924 4.70 0.187 0.950

2.20 0.278 0.925 4.75 0.186 0.951

2.25 0.274 0.926 4.80 0.185 0.951

2.30 0.271 0.928 4.85 0.184 0.951

2.35 0.268 0.929 4.90 0.183 0.951

2.40 0.265 0.930 4.95 0.182 0.951

2.45 0.262 0.931 5.00 0.181 0.951

2.50 0.260 0.932
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