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Abstract. We present the algebraic foundations of the HEOL setting, which combines flatness-based control
and intelligent controllers, two advances in automatic control that have been proven in practice, including in
industry. The result provides a solution to many pending questions on feedback loops concerning flatness-
based control and model-free control (MFC). Elementary module theory, ordinary differential fields and
the generalization of Kähler differentials to differential fields provide an intrinsic definition of the tangent
linear system. The algebraic manipulations associated with the operational calculus lead to homeostat and
intelligent controllers. They are illustrated via some computer simulations.

Résumé. On présente les fondations algébriques de la méthode HEOL qui combine commande par platitude
et bouclage intelligent, c’est-à-dire deux avancées de l’automatique ayant fait leur preuve en pratique, y
compris industrielle. On résoud ainsi plusieurs questions pendantes sur les bouclages à propos de la platitude
et de la commande sans modèle. Théorie élémentaire des modules, corps différentiels ordinaires, et la
généralisation à ces corps des différentielles de Kähler permettent une définition intrinsèque du système
linéaire tangent. Les manipulations algébriques associées au calcul opérationnel conduisent à l’homéostat
et aux correcteurs intelligents, illustrés par simulations numériques.
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1. Introduction

(Differentially) flat systems [22, 24], which were introduced more than thirty years ago [21], have
been undeniably influential, not only in control engineering (see, e.g., [22, 24], the books [50, 53,
57, 58, 62], and references therein), but also in other fields such as pure physics (see, e.g., [28]).
Their discovery is the result of years of research into feedback linearization of systems modeled by
ordinary differential equations. Let us mention here a few important steps: static state-feedback
linearization [38], [37], and dynamic feedback linearization [10].1 For flat systems, a special type
of dynamic feedback, called endogenous, is used. As well known (see, e.g., [15, 29, 30]) their
implementation is difficult. Flat systems possess another characteristic that is as unexpected
as it is essential: There exists a finite set {y1, . . . , ym} of variables, called flat, or linearizing, output,
such that

• any system variable z may be expressed as a differential function of the component of the
flat output and their derivatives up to some finite order, i.e.,

z = f (y1, . . . , ym , . . . , y (ν1)
1 , . . . , y (νm )

m )

• any component of the flat output may be expressed as a differential function of the
system variables;

• the components of the flat output are differentially independent, i.e., they are not related
by any differential relation.

Assigning time functions to y1, . . . , ym yields time functions to any system variable without any
integration procedure:

• this is an open loop or feedforward control strategy;
• it provides a reference trajectory.

This feature plays a prominent rôle in concrete applications of flatness-based control.

Remark 1. A control system is an underdetermined system of ordinary differential equations,
i.e., a system where the number of equations is less than the number of unknown variables. It
is worthy of note to cite here a little-known paper [36] by Hilbert. He considers there a single
differential equation with two unknown variables. In our terminology he asks when such a system
is flat, i.e., when the unknowns may be obtained without any integration procedure. There is no
hint of any linearization!

Any practitioner knows the difficulty if not the impossibility of writing down a “good” math-
ematical modeling in “complex” situations. It turns out however that “(over)simplified” model-
ing is quite often flat. They may be useful for deriving an open-loop reference trajectory. Several
publications (see in chronological order [64], [20], [40], [55], [60], [65]) have successfully closed
the loop via the intelligent controllers associated to model-free control (MFC) [18, 19] to miti-
gate mismatches and disturbances. The ultra-local model [18, 19] reads in the case of the single
control (resp. output) variable u (resp. y)

dν

dtν
∆y = F +α∆u (1)

where

• ∆y = y − y⋆, ∆u = u −u⋆ where y⋆ is a reference trajectory and u⋆ the corresponding
reference control;

• the time-varying term F outlines all the quantities which are poorly known;
• the coefficient α ∈ R is constant such that the three terms in (1) are of the same magni-

tude.

1See, e.g., [12] for a survey on dynamic feedback linearization from the point of view of symmetry.
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Despite many successful concrete case studies (see numerous references in [18, 19], and, e.g., [1–
4, 9, 11, 14, 31–35, 45, 48, 51, 52, 54, 59, 66, 67, 69, 70] for some recent publications), there are
some difficulties:

• the determination the order ν of derivation (see [19]);
• the determination of the coefficient α and the necessity sometimes to allow time varia-

tions (see, e.g., [33, 54]);
• the passage to the multivariable case, i.e., to multi-inputs and multi-outputs, where α

becomes a matrix (see [49] for a solution in a concrete case-study).

The HEOL2 setting improves and streamlines this approach by taking advantage of the tangent
system, or variational system, associated with the simplified flat system, i.e., the linearized system
around a reference trajectory of the simplified flat system. When y is a flat output, the tangent
linear equation reads: ∑

finite
aι

dι

dt ι
∆y = b∆u (2)

where aι, b are possibly time-varying coefficients. Now

(1) the order ν of derivation is equal to the least ι, ι ̸= 0, such that aι ̸≡ 0;
(2) α= b

aν
: it yields a variable α if b

aν
is not constant;

(3) the multivariable case may be dealt with via a diagonal matrix α, which is obvious from a
theoretical standpoint.

HEOL not only helps to bypass the traditional difficulties of MFC, but also provides a straightfor-
ward way to close the loop in flatness-based control.

It is important to define intrinsically the tangent linear system. Remember moreover that
the very concept of flatness was discovered via a crane example [18], for which the traditional
state-variable description fails to hold [25].3 The algebraic standpoint advocated via differential
algebra4 for nonlinear systems [21] and elementary module theory for linear systems [17] permits
to do it in a clear cut manner, and, perhaps, in much more precise and elegant way than other
techniques (see, e.g., [23, 24] for the differential geometry of infinite prolongations). A tangent
linear system is precisely defined via Kähler differentials [16, 39]. It yields the homeostat,5 which
replaces the now classic ultra-local model [18, 19] in model-free control.6 In this approach

• the feedback design leads to intelligent controllers which are similar to those in [18, 19];
• the data-driven estimation techniques, which mimic [26, 27, 63], are based on algebraic

manipulations stemming from operational calculus [68], or Laplace transform;
• the whole implementation becomes therefore rather easy.

Our paper is organized as follows. Section 2 provides the necessary material for our algebraic
viewpoint on linear and nonlinear systems.7 Section 3 is devoted to the homeostat and the
associated intelligent controllers. A simple computer experiment is presented and discussed in
Section 4. See Section 5 for concluding remarks and hints for future investigations.

2The Breton word heol means sun.
3See [7] for a synthesis of the flatness-based setting in industrial applications of cranes. See also [56] for the flatness

of other crane models.
4See, e.g., [46] and [47] for a general overview of this fascinating domain.
5This word is borrowed from Ashby’s remarkable device [5], which is of course related to homeostasis.
6The terminology ultra-local model, which is now quite popular, becomes irrelevant in this new context, where at

least a simplified modeling is available.
7This algebraic point of view is not as popular as it was in Kalman’s day [42]. To get a taste of algebra, read Shafarevich’s

excellent introduction [61].
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2. Algebraic Preliminaries

2.1. Linear systems

An (ordinary) differential ring R is a commutative ring equipped with a single derivation d
dt =˙

such that, ∀a ∈ R, da
dt = ȧ ∈ R, and, ∀a,b ∈ R, d

dt (a +b) = ȧ + ḃ, d
dt (ab) = ȧb + aḃ. A constant is

an element c ∈ R such that ċ = 0. An (ordinary) differential field is an (ordinary) differential ring
which is a field.

Let k be a differential field. Write k
[ d

dt

]
the ring of linear differential operators

∑
finite aℓ

dℓ

dtℓ
,

aℓ ∈ k. This ring is obviously commutative if, and only if, k is a field of constants. In the
general noncommutative case, any finitely generated left k

[ d
dt

]
-module M satisfies the following

property (see, e.g., [13]), which is classic in the commutative case,

M =F
⊕

T (3)

where F (resp. T ) is a free (resp. torsion) finitely generated left k
[ d

dt

]
-module. Note that for a

finitely generated module M the following two properties are equivalent

• M is torsion,
• M is finite-dimensional as a k-vector space.

Notation. Write span
k
[

d
dt

](S) the submodule of M spanned by S ⊂M . A linear system over the

differential ground field k is a finitely generated left k
[ d

dt

]
-module Λ. A linear control system

over the ground field k is a finitely generated left k
[ d

dt

]
-module Λ where there is a finite set

U = {u1, . . . ,um} ⊂Λ of control variables such that the quotient moduleΛ/span
k
[

d
dt

](U ) is torsion.

The control variables are said to be independent if, and only if, span
k
[

d
dt

](U ) is free of rank m.

System Λ is said to be controllable [17] if, and only if, Λ is a free module. Contrary to the
usual approaches, this definition does not depend on any distinction between system variables
and any state space description. It has been proved nevertheless [17] that for a standard state-
variable representation this module-theoretic definition is equivalent to the classic Kalman’s
approach. The set of output variables Y = {y1, . . . , yp } ⊂Λ is a finite subset of the system Λ. The
input-output system Λ, with input U and output Y is said to be observable [17] if, and only if,
Λ= span

k
[

d
dt

](U ,Y ), i.e., any system variable is a k-linear combination of the control and output

variables and their derivatives up to some finite order. It has been proved [17] that this definition
is equivalent to the Kalman definition with a standard state-variable description.

2.2. Nonlinear systems

2.2.1. Differential field extension

Differential fields are assumed to be of characteristic 0. A differential field extension L/K is
given by two differential fields K and L, such that K ⊂ L, and the restriction to K of the derivation
of L coincides with the derivation of K . For simplicity’s sake, L/K is assumed to be finitely
generated. Write K 〈S〉 the differential subfield of L generated over K by S ⊂ L. An element ξ ∈ L
is said to be differentially algebraic over K , or differentially K -algebraic, if, and only if, it satisfies
an algebraic differential equation over K , i.e., there exists a polynomial π(x0, x1, . . . , xν), π ̸= 0,
such that π(ξ, ξ̇, . . . ,ξ(ν)) = 0; ξ is said to be differentially transcendental over K , or differentially K -
transcendental, if, and only if, it is not differentially K -algebraic. The extension L/K is said to be
differentially algebraic (resp. differentially transcendental) if, and only if, any (resp. at least one)
element in L is (resp. is not) differentially K -algebraic. A set {ξi | i ∈ I } is said to be differentially
K -algebraically independent, if, and only if, the set {x(ν)

i | i ∈ I ,ν = 0,1, . . . } is algebraically K -
independent. Such an independent set, which is maximal with respect to inclusion, is called a
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differential transcendence basis of L/K . Two such bases have the same cardinality, i.e., the same
number of elements, which is called the differential transcendence degree of L/K and is denoted
diff tr d° L/K . The differential field extension L/K is said to be purely differentially transcendental
if, and only if, it is generated by a differential transcendence basis. The two following properties
are equivalent

• diff tr d° L/K = 0;
• the familiar, i.e., non-differential, transcendence degree of L/K is finite.

2.2.2. Nonlinear systems and differential flatness

A system is a finitely generated differential field extension D/k. In a control system

• there is a finite set U = {u1, . . . ,um} of control variables,
• the extension D/k〈U 〉 is differentially algebraic.

The control variables are said to be independent if, and only if, k〈U 〉/k is a purely differential
transcendental extension where U is a differential transcendence basis. Introduce a finite set of
output variables Y = {y1, . . . , yp } ⊂ D. This input-output system is said to be observable if, and
only if, the field extension D/k〈U ,Y 〉 is algebraic.

The system D/k is said to be (differentially) flat if, and only if, the algebraic closure of D is
k-isomorphic to the algebraic closure of a purely differentially transcendental extension k〈Y 〉/k.
The components of Y are called flat, or linearizing, outputs. Note that any flat system is obviously
observable with respect to any flat outputs.

Remark 2. Consider the linear system Λ of Section 2.1 as a k-vector space. Let Symk Λ be
the symmetric algebra (see, e.g., [8, 61]) generated by this k-vector space. This integral ring
may be endowed with the structure of differential ring. Its field of fractions FracSymk Λ define
the differential field extension FracSymk Λ/k. The correspondence between a basis of the free
moduleΛ and the flat outputs of the flat system FracSymk Λ/k demonstrates that a linear system
is flat if, and only if, it is controllable. Differential flatness may be viewed as an extension of the
familiar Kalman controllability.

2.2.3. Kähler differentials

Kähler differentials were introduced in commutative algebra and algebraic geometry to mimic
some features of differential calculus (see, e.g., [16, 61]). They have been extended to differential
algebra [39]. Consider again a finitely generated differential field extension L/K , where K and L
are of characteristic 0. Introduce the (Kähler) differential dL/K : L →ΩL/K where ΩL/K is a finitely
generated left L

[ d
dt

]
-module, such that8

• ∀a ∈ L, dL/K ȧ = d
dt dL/K a;

• ∀a,b ∈ L, dL/K (a +b) = dL/K a +dL/K b and dL/K (ab) = adL/K b +bdL/K a;
• ∀c ∈ K , dL/K c = 0.

The following properties justify the introduction of Kähler differentials.

• A set {η1, . . . ,ηm} is a differential transcendence basis of L/K if, and only if,
{dL/K η1, . . . ,dL/K ηm} is a maximal set of L

[ d
dt

]
-linearly independent elements in ΩL/K .

Thus the differential transcendence degree of L/K is equal to the rank of the module
ΩL/K .

• L/K is differentially algebraic if, and only if, ΩL/K is torsion. A set {χ1, . . . ,χν} is a
transcendence basis of L/K if, and only if, {dL/Kχ1, . . . ,dL/Kχν} is a basis of the L-vector
spaceΩL/K .

• L/K is an algebraic extension if, and only if,ΩL/K = {0}.

8∀a ∈ L, dL/K a ∈ΩL/K should intuitively be viewed as a “small” variation of a.
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The tangent linear system, or variational linear system associated to the system D/k is the left
D

[ d
dt

]
-module ΩD/k of Kähler differentials. If D/k is flat, ΩD/k is obviously free: the tangent

system is controllable.

Remark 3. Possible singularities of flat systems have been investigated [43, 44]. The prominent
rôle played by tangent linear systems suggests another way to look which is closer to classic
algebraic geometry. Consider, for instance, ẏ = uy . It is flat and y is a flat output. The tangent
linear system reads

d

dt
(dL/K y) = udL/K y + ydL/K u (4)

It is degenerated at y = 0: the control variable dL/K u disappears in (4). Thus y = 0 should be
called a singularity.

3. Homeostat

3.1. The monovariable case

3.1.1. Preliminary calculations

Consider a control system Σ with a single input (resp. output) variable u (resp. y). Assume
that it is flat with flat output y . This is equivalent to saying that u is algebraic over k〈y〉 but not
over k(y). It yields the differential equation

E(y, ẏ , . . . , y (n),u) = 0 (5)

where E is a polynomial with coefficients in k, where at least one derivative of y appears.
Differentiate (5): ∑

0ÉιÉn

∂E

∂y (ι)
dk〈u,y〉/k y (ι) + ∂E

∂u
dk〈u,y〉/k u = 0

Let ν, 0 < νÉ n, be the smallest integer such that ∂E
∂y (ν) ̸= 0. Then

dν

dtν
(
dk〈u,y〉/k y

)=F+adk〈u,y〉/k u (6)

where

F=−∑
ι̸=ν

∂E
∂y (ι)

∂E
∂y (ν)

dk〈u,y〉/k y (ι)

a=−
∂E
∂u
∂E
∂y (ν)

The homeostat, which is replacing the ultra-local model [18, 19], is deduced from (6):

dν

dtν
∆y = F +α∆u (7)

There

• ∆y = y − y⋆, ∆u = u −u⋆, where y⋆ is a reference trajectory for the flat system Σ and u⋆

the (corresponding) nominal control;
• F =F+G , where G stands for all the mismatches and disturbances.
• α= a is evaluated on y⋆, and may be time-varying.
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3.1.2. Some data-driven calculations

To encompass systems with time-varying coefficients, let the ground field k be, for instance,
a field of meromorphic functions of the variable t , such that, ∀t ∈ R, the coefficients of their
Laurent expansions are real. The coefficients of E in (5) are, therefore, real-valued functions when
they are defined.

In order to estimate F in (7), we will use, like [18], classic operational calculus (see, e.g., [68]),
and the well-known fact that any integrable real-valued function may be approximated by a step
function, i.e., a piecewise constant function. Replace (7) by

sνY − I = Φ

s
+V

where

• Φ ∈R is a constant to be determined;
• Y (resp. V ) is the operational analogue, often called Laplace transform, of ∆y (resp.
α∆u);

• I ∈ R[s] is a polynomial of degree less or equal to ν− 1 and corresponds to the initial
conditions of ∆y,∆ẏ , . . . ,∆y (ν−1).

To get rid of I , i.e., of the poorly known initial conditions, derive both sides ν times with respect
to s, i.e. apply the operator dν

dsν . Remember [68] that dν

dsν corresponds in the time domain to the
multiplication by (−t )ν. Positive powers of s correspond to time-derivatives. Multiply therefore
both sides by s−µ, where µ > 0 is large enough. It yields Φ as a R

[ 1
s

]
-linear combination of dνV

dsν ,
and dιY

dsι , 0 É ιÉ ν.
For ν= 1, the operational analogue of (7) reads

sY −∆y(0) = Φ

s
+V

Derive both sides w.r.t. s:

Y + s
dY

ds
=−Φ

s2 + dV

ds

Multiply both sides by s−2:

−Φ
s4 = 1

s2 Y + 1

s

dY

ds
− 1

s2

dV

ds
It yields in the time domain a data-driven real-time estimator Fest:

Fest =− 6

T 3

∫ T

0

(
(T −2σ)∆ỹ(σ)+σ(T −σ)α̃(σ)∆ũ(σ)

)
dσ

where

• the time lapse T > 0 is “small.”
• ∆ỹ(σ) =∆y(σ+ t −T ), α̃(σ)∆ũ(σ) =α(σ+ t −T )∆u(σ+ t −T ).

For ν= 2, analogous calculations give [19]:

Fest = 60

T 5

[∫ T

0

((
T −σ)2 −4

(
T −σ)

σ+σ2
)
∆ỹ(σ)dσ− 1

2

∫ T

0
(T −σ)2σ2α̃(σ)∆ũ(σ)dσ

]
3.1.3. Intelligent controllers

Introduce [18], when ν= 1, the intelligent proportional controller, or iP,

∆u =−Fest +KP∆y

α
(8)



1700 Cédric Join, Emmanuel Delaleau and Michel Fliess

where KP ∈R is the gain. Combine (7) and (8):

d

dt
(∆y)+KP∆y = F −Fest

If

• the estimate of F is “good”, i.e., F −Fest ≈ 0;
• KP > 0,

then lim
t→+∞∆y ≈ 0. This local stability result is easily extended [18, 19] to the case ν = 2 via the

intelligent proportional-derivative controller, or iPD,

∆u =−Fest +KP∆y +KD
d

dt (∆y)

α
(9)

where the gains KP ,KD ∈ R are chosen such that the roots of s2 +KD s +KP have strictly negative
real parts.

Remark 4. The extension of Riachy’s trick [19] to (9), which is straightforward, permits to avoid
the calculation of the derivative d

dt (∆y).

3.2. The multivariable case

Let D/k a flat multivariable system with m independent control variables U = {u1, . . . ,um} and a
flat output Y = {y1, . . . , yp }. Then

• diff tr d° D/k = m, since diff tr d° D/k〈U 〉 = 0,
• diff tr d° D/k = diff tr d° k〈Y 〉/k = p.

Thus p = m, the number of flat output variables is equal to the number of independent control
variables.

Every component of U is algebraic over k〈Y 〉 but not over k(Y ). Therefore there exists
differential equations of the form:

Assume that the components of U are algebraic over k〈Y 〉 but not over k(Y ).9 Therefore there
exists differential equations of the form:

E j (Y , Ẏ , . . . ,Y (ν j ),u j ) = 0, j = 1, . . . ,m

where E j is a polynomial with coefficients in k in which at least a derivative of one component
of y appears. Taking now the Kähler differential of the E j ’s and, up to a renumbering of the
components of the flat output, one obtains:

∀ j = 1, . . . ,m,
∑

1ÉlÉm

∑
0ÉιlÉν j

∂E j

∂y (ιl )
l

dk〈U ,Y 〉/k y (ιl )
l + ∂E j

∂u j
dk〈U ,Y 〉/k u j = 0

Let µ j , 0 <µ j É ν j , be the smallest integer such that
∂E j

∂y
(µ j )

j

̸= 0. Then

dµ j

dtµ j

(
dk〈U ,Y 〉/k y j

)=F j +a j dk〈U ,Y 〉/k u j (10)

9If not it leads to algebraic equations and not to differential ones.
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where

F j =− ∑
1ÉlÉm

∑
ιl ̸=µ j

∂E j

∂y
(ιl )
l

∂E j

∂y
(µ j )

l

a j =−
∂E j

∂u j

∂E

∂y
(µ j )

j

The homeostat, which is deduced from (10), reads

dµ j

dtµ j
∆y j = F j +α j∆u j , j = 1, . . . ,m

with

• ∆y j = y j − y⋆j , ∆u j = u j −u⋆j , where Y ⋆ = {y⋆1 , . . . , y⋆m} is a reference trajectory for the flat
system D/k and U⋆ = {u⋆1 , . . . ,u⋆m} the (corresponding) nominal control;

• F j =F j +G j , where G j stands for all the mismatches and disturbances.

The extension of Section 3.1.3 to the multivariable case is straightforward.

4. A computer experiment

Consider the flat system 

ẋ1 = x1 +x2
1u1

ẋ2 = x3

ẋ3 = x4

ẋ4 =−x4 +x3 +x2 +x1u1u2

y1 = x1

y2 = x2

where y1, y2 are flat outputs. The nominal control variables are given by

u⋆1 = ẏ⋆1 − y⋆1
y⋆1

2

and

u⋆2 =
...
y ⋆

2 + ÿ⋆2 − ẏ⋆2 − y⋆2
y⋆1 u⋆1

The homeostat becomes 
d

dt (∆y1) = F1 + y⋆1
2
∆u1

d2

dt 2 (∆y2) = F2 +
(

ẏ⋆1
y⋆1

−1
)
∆u2

Close the loop for the first (resp. second) equation such that the root (resp. double root) of the
characteristic polynomial is −1 (resp. −0.15). The simulation duration is 150 s. The sampling
period is 10 ms. The following mismatches are introduced to show the robustness of our control
strategy:

• y1(0) = 1.1y⋆1 (0), y2(0) = y⋆2 (0);

• u⋆2 =
...
y ⋆

2 +ÿ⋆2 −1.1ẏ⋆2 −0.9y⋆2
y⋆1 u⋆1

The results displayed in Figure 1 are quite satisfactory.
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Figure 1. Control evaluation

5. Conclusion

The HEOL setting, i.e., the introduction of homeostats deduced from the tangent linear system,
suggests elementary solutions to questions, which are crucial from a practical viewpoint and have
been around for many years, like feedback control of flat systems and implementation issues in
model-free control. There are of course other issues which might benefit from our approach.
It has been observed (see, e.g., [6] for a recent contribution) that flatness-based control greatly
simplifies optimal control. The HEOL combination should bring further improvements (see,
e.g., [41]). Convincing concrete illustrations should be available soon.

Let’s conclude with some more general considerations. In applied sciences, too, an appropri-
ate formalism might be of paramount importance in order to trivialize technical investigations
that seemed before beyond the reach. This is the aim of the present paper in control engineering.

Declaration of interests

The authors do not work for, advise, own shares in, or receive funds from any organization
that could benefit from this article, and have declared no affiliations other than their research
organizations.



Cédric Join, Emmanuel Delaleau and Michel Fliess 1703

References

[1] A. Abid, A. Bakeer, H. Albalwi, M. Bouzidi, A. Lashab, A. Chub and S. A. Zaid, “Model-
free predictive control for improved performance and robustness of three-phase quasi Z -
source inverters”, IEEE Access 12 (2024), pp. 87850–87863.

[2] M. Ait Ziane, M. C. Pera, C. Join, M. Benne, J. P. Chabriat, N. Yousfi Steiner and C. Damour,
“Online implementation of model free controller for oxygen stoichiometry and pressure
difference control of polymer electrolyte fuel cell”, Int. J. Hydrog. Energy 47 (2022), no. 90,
pp. 38311–38326.

[3] K. Amasyali, Y. Chen and M. Olama, “A data-driven, distributed game-theoretic trans-
actional control approach for hierarchical demand response”, IEEE Access 10 (2022),
pp. 72279–72289.

[4] A. Artuñedo, M. Moreno-Gonzalez and J. Villagra, “Lateral control for autonomous vehi-
cles: A comparative evaluation”, Contr. Engin. Pract. 57 (2024), article no. 100910.

[5] W. R. Ashby, Design for a Brain, Chapman & Hall, 1960.
[6] L. E. Beaver and A. A. Malikopoulos, “Optimal control of differentially flat systems is

surprisingly easy”, Automatica 159 (2024), (11 pages).
[7] S. Bonnabel and X. Clayes, “The industrial control of tower cranes: An operator-in-the-loop

approach”, IEEE Control Sys. Mag. 40 (2020), no. 5, pp. 27–39.
[8] N. Bourbaki, Algèbre. Chap. 1 à 3, Hermann, 1970. English translation: Algebra I, Chap. 1–3,

Hermann, Paris & Addison-Wesley, Reading, MA, 1974.
[9] A. D. Carvalho, B. S. Pereira, B. A. Angélico, A. A. M. Laganá and J. F. Justo, “Model-free

control applied to a direct injection system: Experimental validation”, Fuel 358 (2024),
article no. 130071.

[10] B. Charlet, J. Lévine and R. Marino, “Sufficient conditions for dynamic state feedback
linearization”, SIAM J. Control Optim. 29 (1991), no. 1, pp. 38–57.

[11] S. Cheng, R. Zhou, Z. Li, Z. Xi, J. Zhao, K. Zhao and C. Xiang, “Robust model-free fault-
tolerant predictive control for PMSM drive system”, IEEE Access 12 (2024), pp. 8502–8512.

[12] J. N. Clelland, T. J. Klotz and P. J. Vassiliou, “Dynamic feedback linearization of control
systems with symmetry”, SIGMA, Symmetry Integrability Geom. Methods Appl. 20 (2024),
article no. 058 (49 pages).

[13] P. M. Cohn, Free rings and their relations, Second edition, Academic Press Inc., 1985.
[14] M. Y. Coskun and M. Itik, “Intelligent PID control of an industrial electro-hydraulic system”,

ISA Trans. 139 (2023), pp. 484–498.
[15] E. Delaleau and J. Rudolph, “Control of flat systems by quasi-static feedback of generalized

states”, Int. J. Control 71 (1998), no. 5, pp. 745–765.
[16] D. Eisenbud, Commutative algebra. With a view toward algebraic geometry, Springer, 1995.
[17] M. Fliess, “Some basic structural properties of generalized linear systems”, Syst. Control

Lett. 15 (1990), no. 5, pp. 391–396.
[18] M. Fliess and C. Join, “Model-free control”, Int. J. Control 86 (2013), no. 12, pp. 2228–2252.
[19] M. Fliess and C. Join, “An alternative to proportional-integral and proportional-integral-

derivative regulators: intelligent proportional-derivative regulators”, Int. J. Robust Nonlin-
ear Control 32 (2022), no. 18, pp. 9512–9524.

[20] M. Fliess, C. Join, K. Moussa, S. M. Djouadi and M. W. Alsager, “Toward simple in silico
experiments for drugs administration in some cancer treatments”, IFAC-PapersOnLine 54
(2021), no. 15, pp. 245–250.

[21] M. Fliess, J. Lévine, P. Martin and P. Rouchon, “Sur les systèmes non linéaires différentielle-
ment plats”, C. R. Math. Acad. Sci. Paris 315 (1992), no. 5, pp. 619–624.



1704 Cédric Join, Emmanuel Delaleau and Michel Fliess

[22] M. Fliess, J. Lévine, P. Martin and P. Rouchon, “Flatness and defect of non-linear systems:
introductory theory and examples”, Int. J. Control 61 (1995), no. 6, pp. 1327–1361.

[23] M. Fliess, J. Lévine, P. Martin and P. Rouchon, “Deux applications de la géométrie locale des
diffiétés”, Ann. Inst. Henri Poincaré, Phys. Théor. 66 (1997), no. 3, pp. 275–292.

[24] M. Fliess, J. Lévine, P. Martin and P. Rouchon, “A Lie-Bäcklund approach to equivalence and
flatness of nonlinear systems”, IEEE Trans. Autom. Control 44 (1999), no. 5, pp. 922–937.

[25] M. Fliess, J. Lévine and P. Rouchon, “Generalized state variable representation for a simpli-
fied crane description”, Int. J. Control 58 (1993), no. 2, pp. 277–283.

[26] M. Fliess and H. Sira-Ramírez, “An algebraic framework for linear identification”, ESAIM,
Control Optim. Calc. Var. 9 (2003), pp. 151–168.

[27] M. Fliess and H. Sira-Ramírez, “Closed-loop Parametric Identification for Continuous-time
Linear Systems via New Algebraic Techniques”, in Identification of Continuous-time Models
from Sampled Data (H. Garnier and L. Wang, eds.), Springer, 2008, pp. 363–391.

[28] D. Guéry-Odelin, A. Ruschhaupt, A. Kiely, E. Torrontegui, S. Martínez-Garaot and J. G.
Muga, “Shortcuts to adiabaticity: concepts, methods, and applications”, Rev. Mod. Phys.
91 (2019), no. 4, article no. 045001 (54 pages).

[29] V. Hagenmeyer and E. Delaleau, “Exact feedforward linearization based on differential
flatness”, Int. J. Control 76 (2003), no. 6, pp. 537–556.

[30] V. Hagenmeyer and E. Delaleau, “Robustness analysis of exact feedforward linearization
based on differential flatness”, Automatica 39 (2003), no. 11, pp. 1941–1946.

[31] P. Hamon, L. Michel, F. Plestan and D. Chablat, “Model-free based control of a gripper
actuated by pneumatic muscles”, Mechatronics 95 (2023), article no. 103053.

[32] D. He, H. Wang, Y. Tian, N. Christov and I. Simeonov, “Trajectory tracking of two-stage
anaerobic digestion process: A predictive control with guaranteed performance and sat-
urated input, based on ultra-local model”, J. Process Control 129 (2023), article no. 103039.

[33] D. He, H. Wang and Y. Tian, “An α-variable model-free prescribed-time control for nonlin-
ear system with uncertainties and disturbances”, Int. J. Robust Nonlinear Control 32 (2022),
no. 9, pp. 5673–5693.

[34] D. He, H. Wang and Y. Tian, “Model-free super-twisting terminal sliding mode controller
using sliding mode disturbance observer for n-DOF upper-limb rehabilitation exoskeleton
with backlash hysteresis”, Int. J. Control 97 (2024), no. 4, pp. 756–772.

[35] T. Hegedüs, D. Fényes, Z. Szabó, B. Németh, L. Lukács, R. Csikja and P. Gáspár, “Implemen-
tation and design of ultra-local model-based control strategy for autonomous vehicles”,
Vehicle System Dynamics 62 (2024), no. 6, pp. 1541–1564.

[36] D. Hilbert, “Über den Begriffder Klasse von Differentialgleichungen”, Math. Ann. 73 (1912),
no. 1, pp. 95–108.

[37] L. R. Hunt, R. J. Su and G. Meyer, “Global transformations of nonlinear systems”, IEEE
Trans. Autom. Control 28 (1983), no. 1, pp. 24–31.

[38] B. a. Jakubczyk and W. Respondek, “On linearization of control systems”, Bull. Pol. Acad.
Sci., Math. 28 (1980), no. 9-10, pp. 517–522.

[39] J. Johnson, “Kähler differentials and differential algebra”, Ann. Math. 89 (1969), pp. 92–98.
[40] C. Join, A. d’Onofrio and M. Fliess, “Toward more realistic social distancing policies via

advanced feedback control”, Automation 3 (2022), no. 2, pp. 286–301.
[41] C. Join, E. Delaleau and M. Fliess, The Euler-Lagrange equation in optimal control: Prelim-

inary results, 12th Internat. Conf. Systems Control, Batna, Algeria, 2024.
[42] R. E. Kalman, P. L. Falb and M. A. Arbib, Topics in mathematical system theory, McGraw-Hill,

1969.



Cédric Join, Emmanuel Delaleau and Michel Fliess 1705

[43] Y. J. Kaminski, J. Lévine and F. Ollivier, “Intrinsic and apparent singularities in differentially
flat systems, and application to global motion planning”, Syst. Control Lett. 113 (2018),
pp. 117–124.

[44] Y. J. Kaminski, J. Lévine and F. Ollivier, “On singularities of flat affine systems with n states
and n −1 controls”, Int. J. Robust Nonlinear Control 30 (2020), no. 9, pp. 3547–3565.

[45] F. Kenas, N. Saadia, A. Ababou and N. Ababou, “Model-free based adaptive finite time
control with multilayer perceptron neural network estimation for a 10 DOF lower limb
exoskeleton”, Int. J. Adapt. Control Signal Process. 38 (2024), no. 2, pp. 696–730.

[46] E. R. Kolchin, Differential algebra and algebraic groups, Academic Press Inc., 1973.
[47] E. Kolchin, Selected works of Ellis Kolchin with commentary (H. Bass, A. Buium and P. J.

Cassidy, eds.), American Mathematical Society, 1999.
[48] P. La Hera, O. Mandeza-Trejo, H. Lideskog and D. Ortíz Morales, “A framework to develop

and test a model-free motion control system for a forestry crane”, Biomimetic Intell. Robot.
3 (2023), no. 4, article no. 100133.

[49] F. Lafont, J.-F. Balmat, N. Pessel and M. Fliess, “A model-free control strategy for an experi-
mental greenhouse with an application to fault accommodation”, Comput. Electron. Agric.
110 (2015), pp. 139–149.

[50] J. Lévine, Analysis and control of nonlinear systems. A flatness-based approach, Springer,
2009.

[51] W. Li, S. Li, H. Yuan, Y. Zhang and J. Zhu, “Controller design automation for power electron-
ics: A model-free approach”, IEEE Trans. Power Electron. 39 (2024), no. 2, pp. 2155–2168.

[52] L. Michel, I. Neunaber, R. Mishra, C. Braud, F. Plestan, J.-P. Barbot and P. Hamon, “A Novel
Lift Controller for a Wind Turbine Blade Section Using an Active Flow Control Device
Including Saturations: Experimental Results”, IEEE Trans. Autom. Control 32 (2024), no. 5,
pp. 1590–1601.

[53] T. Miunske, Ein szenarienadaptiver Bewegungsalgorithmus für die Längsbewegung eines
vollbeweglichen Fahrsimulators, Springer, 2020.

[54] M. Moreno-Gonzales, A. Artuñedo, J. Villagra, C. Join and M. Fliess, “Speed-Adaptive
Model-Free Path-Tracking Control for Autonomous Vehicles: Analysis and Design”, Vehi-
cles 5 (2023), no. 2, pp. 698–717.

[55] H. Mounier, C. Join, E. Delaleau and M. Fliess, “Active queue management for alleviating
Internet congestion via a nonlinear differential equation with a variable delay”, Annu. Rev.
Control 55 (2023), pp. 61–69.

[56] M. Nowicki, W. Respondek, J. Piasek and K. Kozłowski, “Geometry and flatness of m-crane
systems”, Bull. Pol. Acad. Sci., Tech. Sci. 67 (2019), no. 5, pp. 893–903.

[57] G. G. Rigatos, Nonlinear control and filtering using differential flatness approaches. Appli-
cations to electromechanical systems, Springer, 2015.

[58] J. Rudolph, Flatness-Based Control, Shaker Verlag, 2021.
[59] C. Sancak, M. Itik and T. T. Nguyen, “Position Control of a Fully Constrained Planar Cable-

Driven Parallel Robot With Unknown or Partially Known Dynamics”, IEEE/ASME Trans.
Mechatronics 28 (2023), no. 3, pp. 1605–1615.

[60] P. M. Scherer, A. Othmane and J. Rudolph, “Combining model-based and model-free
approaches for the control of an electro-hydraulic system”, Contr. Engin. Pract. 133 (2023),
article no. 105453.

[61] I. R. Shafarevich, Basic notions of algebra. Transl. from the Russian, Springer, 1997.
[62] H. Sira-Ramírez and S. K. Agrawal, Differentially flat systems., Marcel Dekker, 2004.
[63] H. Sira-Ramírez, C. García-Rodríguez, J. Cortés-Romero and A. Luviano-Juárez, Algebraic

identification and estimation methods in feedback control systems, John Wiley & Sons, 2014.



1706 Cédric Join, Emmanuel Delaleau and Michel Fliess

[64] J. Villagra and D. Herrero-Perez, “A comparison of control techniques for robust docking
maneuvers of an AGV”, IEEE Trans. Control Sys. Technol. 20 (2012), no. 4, pp. 1116–1123.

[65] Z. Wang, X. Zhou, A. Cosio and J. Wang, “Ground vehicle lane-keeping assistance system via
differential flatness output feedback control and algebraic derivative estimation”, Contr.
Engin. Pract. 137 (2023), article no. 105576.

[66] Y. Wei, H. Wang and Y. Tian, “Prescribed performance model-free hybrid force/position
control for 3-DOF SEA-based manipulator under partial state constraints”, J. Franklin Inst.
361 (2024), no. 10, article no. 106944 (15 pages).

[67] J. Yang, L. Huang, S. Wu, H. Liu and Y. Zhang J. Wang, “Approximate optimal condition
model-free predictive velocity control of a direct-drive wave energy converter based on
ultra-local model”, Ocean Eng. 307 (2024), article no. 118214.

[68] K. Yosida, Operational calculus. A theory of hyperfunctions. Transl. from the Japanese,
Springer, 1984.

[69] Y. Zhang and Z. Min, “Model-Free Predictive Current Control of a PWM Rectifier Based
on Space Vector Modulation Under Unbalanced and Distorted Grid Conditions”, IEEE J.
Emerg. Sel. Top. Power Electron. 10 (2022), no. 2, pp. 2319–2329.

[70] Y. Zhang, W. Shen and H. Yang, “An improved deadbeat predictive current control of PMSM
drives based on the ultra-local model”, Chin. J. Electr. Eng. 9 (2023), no. 2, pp. 27–37.


	1. Introduction
	2. Algebraic Preliminaries
	2.1. Linear systems
	2.2. Nonlinear systems
	2.2.1. Differential field extension
	2.2.2. Nonlinear systems and differential flatness
	2.2.3. Kähler differentials


	3. Homeostat
	3.1. The monovariable case
	3.1.1. Preliminary calculations
	3.1.2. Some data-driven calculations
	3.1.3. Intelligent controllers

	3.2. The multivariable case

	4. A computer experiment
	5. Conclusion
	Declaration of interests
	References

