
HAL Id: inria-00102947
https://polytechnique.hal.science/inria-00102947v2

Submitted on 4 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Polynomial differential equations compute all real
computable functions on computable compact intervals

Olivier Bournez, Manuel L. Campagnolo, Daniel S. Graça, Emmanuel Hainry

To cite this version:
Olivier Bournez, Manuel L. Campagnolo, Daniel S. Graça, Emmanuel Hainry. Polynomial differen-
tial equations compute all real computable functions on computable compact intervals. Journal of
Complexity, 2007, 23 (3), pp.317–335. �inria-00102947v2�

https://polytechnique.hal.science/inria-00102947v2
https://hal.archives-ouvertes.fr

Polynomial differential equations compute all

real computable functions on computable

compact intervals ⋆

Olivier Bournez a,b,∗ , Manuel L. Campagnolo c,d ,
Daniel S. Graça e,d , Emmanuel Hainry f,b

aInria Lorraine, France
bLORIA (UMR 7503 CNRS-INPL-INRIA-Nancy2-UHP), Campus scientifique,

BP 239, 54506 Vandœuvre-Lès-Nancy, France
cDM/ISA, Technical University of Lisbon, 1349-017 Lisboa, Portugal
dSQIG/IT, Technical University of Lisbon, 1049-001 Lisboa, Portugal

eDM/FCT, Universidade do Algarve, C. Gambelas, 8005-139 Faro, Portugal
fInstitut National Polytechnique de Lorraine, France

Abstract

In the last decade, the field of analog computation has experienced renewed interest.
In particular, there have been several attempts to understand which relations exist
between the many models of analog computation. Unfortunately, most models are
not equivalent.

It is known that Euler’s Gamma function is computable according to computable
analysis, while it cannot be generated by Shannon’s General Purpose Analog Com-
puter (GPAC). This example has often been used to argue that the GPAC is less
powerful than digital computation.

However, as we will demonstrate, when computability with GPACs is not re-
stricted to real-time generation of functions, we obtain two equivalent models of
analog computation.

Using this approach, it has been shown recently that the Gamma function be-
comes computable by a GPAC [1]. Here we extend this result by showing that, in an
appropriate framework, the GPAC and computable analysis are actually equivalent
from the computability point of view, at least in compact intervals. Since GPACs
are equivalent to systems of polynomial differential equations then we show that all
real computable functions over compact intervals can be defined by such models.

Preprint submitted to Elsevier Science 14 October 2008

1 Introduction

According to the Church-Turing thesis, all “reasonable models” of digital
computation, based on the intuitive notion of algorithm, are computationally
equivalent to the Turing machine.

No similar result is known for analog computation. While many analog models
have been studied including the BSS model [2], Moore’s R-recursive functions
[3], neural networks [4], or computable analysis [5–7], but none was able to
affirm itself as “universal”. In part, this is due to the fact that few relations be-
tween them are known. Moreover some of the known results assert that these
models are not equivalent, making the idea of a Church-Turing thesis for ana-
log models an apparently unreachable goal. For example the BSS model allows
discontinuous functions while only continuous functions can be computed in
the framework of computable analysis [7].

Here, we will show that this goal may not be as far as those results suggest.
Indeed, we will prove the equivalence of two models of real computation that
were previously considered nonequivalent: computable analysis and Shannon’s
General Purpose Analog Computer (GPAC). However, this result is only true
when considering a variant of the GPAC that is nevertheless defined in a
natural way.

The GPAC was introduced in 1941 by Shannon [8] as a mathematical model of
an analog device: the Differential Analyzer [9]. The Differential Analyzer was
used from the 1930s to the early 60s to solve numerical problems. For example,
differential equations were used to solve ballistics problems. These devices were
first built with mechanical components and later evolved to electronic versions.
A GPAC may be seen as a circuit built of interconnected black boxes, whose
behavior is given by Figure 1, where inputs are functions of an independent
variable called the time (in an electronic Differential Analyzer, inputs usually
correspond to electronic voltages). These black boxes add or multiply two
inputs, generate a constant, or solve a particular kind of Initial Value Problem
defined with an Ordinary Differential Equation (ODE for short).

While many of the usual real functions are known to be generated by a GPAC,

⋆ Expanded version of the article “The General Purpose Analog Computer and
Computable Analysis are two equivalent paradigms of analog computation” pre-
sented in the Theory and Applications of Models of Computation conference
(TAMC06).
∗ Corresponding author.

Email addresses: Olivier.Bournez@loria.fr (Olivier Bournez),
mlc@math.isa.utl.pt (Manuel L. Campagnolo), dgraca@ualg.pt (Daniel S.
Graça), Emmanuel.Hainry@loria.fr (Emmanuel Hainry).

2

∫u

v
α+
∫

t

t0

u(x)dv(x)

An integrator unit

×
u

v
u · v

A multiplier unit

k k

A constant unit associated
to the real value k

+
u

v
u+ v

An adder unit

Fig. 1. Different types of units used in a GPAC.

a notable exception is the Gamma function Γ(x) =
∫∞

0 tx−1e−tdt [8]. If we have
in mind that this function is known to be computable under the computable
analysis framework [5], the previous result has long been interpreted as evi-
dence that the GPAC is a somewhat weaker model than computable analysis.

However, we believe that this limitation is due to the notion of GPAC-com-
putability rather than the model itself.

Indeed, one assumes usually that GPAC computes in “real time” - a very
restrictive form of computation. But if we change this notion of computability
to the kind of “converging computation” used in recursive analysis, then it
has been shown recently that the Γ function becomes computable [1]. Notice
that this “converging computation” with GPACs corresponds to a particular
class of R-recursive functions [3,10,11]. As in [11] we only consider a Turing-
computable subclass of R-recursive functions, but here we restrict our focus to
functions that can be defined as limits of solutions of polynomial differential
equations.

In the present paper, we further strengthen this result and show that actually
every computable function defined over a compact interval can be computed
by a GPAC in the above sense. 1 Reciprocally, we show that under some
reasonable hypotheses, the converse is also true.

In other words, we prove that (non-real time) GPAC computability coincides
with computability according to recursive analysis, over computable compact
domains. This is a significantly stronger result than Shannon’s approximation
of real continuous functions with the GPAC [8].

It is worth noting that it was shown in [12] that Turing machines can be
simulated by GPACs. Since real computable functions are those computed by
function-oracle Turing machines [6], this paper also shows that the result in
[12] can be extended to oracle Turing machines.

The outline of this paper is as follows. In Section 2 we describe the GPAC and

1 If not otherwise stated, the expression “computable function” is interpreted in
the computable analysis sense.

3

we recall that GPACs are equivalent to systems of polynomial ordinary differ-
ential equations. The constructions in the remainder of the paper will rely on
such systems, which are explicitly continuous-time in nature. Then, we define
a notion of “converging computation”, which we call GPAC-computability in
opposition to the original “real-time” notion of GPAC-generability. We also
recall the definition of computable real functions according to Computable
Analysis. To conclude the preliminaries, we review how Turing machines can
be simulated with ODEs. In Section 3 we state the main result of the paper
on the equivalence between computable real functions and GPAC-computable
functions over compact domains. In Section 4 we present some preliminary re-
sults. In particular, we show that GPACs can simulate oracle Turing machines.
Finally, in Sections 5 and 6, we prove the main result of the paper. Since this
result is about an equivalence, Section 5 proves the “only if” direction, while
Section 6 proves the “if” direction.

2 Preliminaries

2.1 The GPAC

The GPAC was originally introduced by Shannon in [8], and further refined
in [13–15,1]. The model basically consists of families of circuits built with
the basic units presented in Figure 1, not all kinds of interconnections are
allowed since this may lead to undesirable behavior (e.g. non-unique outputs.
For further details, refer to [15]).

Shannon, in his original paper, already mentioned that the GPAC generates
polynomials, the exponential function, the usual trigonometric functions, their
inverses, and their composition. More generally, Shannon claimed that all
functions generated by a GPAC are differentially algebraic in the sense of the
following definition.

Definition 1 A unary function y is differentially algebraic (d.a.) on the inter-
val I if there exists an n ∈ N and a nonzero polynomial p with real coefficients
such that

p
(

t, y, y′, ..., y(n)
)

= 0, on I. (1)

As a corollary, and noting that the Gamma function Γ(x) =
∫∞

0 tx−1e−tdt is
not d.a. [16], we get that

Proposition 2 The Gamma function cannot be generated by a GPAC.

However, Shannon’s proof relating functions generated by GPACs with d.a.

4

∫

∫

∫

-1

q

q

t
y3

y2

y1

y′1 = y3 & y1(0) = 1

y′2 = y1 & y2(0) = 0

y′3 = −y1 & y3(0) = 0

Fig. 2. Generating cos and sin via a GPAC: circuit version on the left and ODE
version on the right. One has y1 = cos, y2 = sin, y3 = − sin.

functions was incomplete (as pointed out and partially corrected in [13,14]).
Actually, as pointed out in [15], the original GPAC model suffers from several
robustness problems. However, for the more robust class of GPACs defined
in [15] by restricting the possible layout of a GPAC, the following stronger
property holds:

Proposition 3 A scalar function f : R → R is generated by a GPAC iff it is
a component of the solution of a system

y′ = p(y, t), (2)

where p is a vector of polynomials. A function f : R → Rk is generated by a
GPAC iff all of its components are.

For a concrete example of Proposition 3, see Figure 2. From now on, we will
mostly talk about GPACs as being systems of ODEs of the type (2). Functions
generated by GPACs have a number of interesting properties. The following
results are taken from [17] and will be used later, in an explicit or implicit
manner.

Proposition 4 ([17]) The class of functions generated by GPACs is closed
under the operations +,−,×,÷, under composition, derivation, and composi-
tional inverses (i.e. if f is generated by a GPAC, then so is f−1).

The following result states that the solution of an initial-value problem defined
with functions generated by GPACs is also generated by a GPAC.

Proposition 5 ([17]) Consider the initial value problem (IVP)

x′ = f(t, x),

x(t0) = x0,
(3)

where f : Rn+1 → Rn and each component of f is a composition of polynomials
and functions generated by GPACs. Then there exist m ≥ n, a polynomial
p : Rm+1 → Rm and a y0 ∈ Rm such that the solution of (3) is given by the
first n components of y = (y1, ..., ym), where y is the solution of the polynomial

5

IVP

y′ = p(t, y),

y(t0) = y0.
(4)

We now set some useful notations.

Definition 6 In the conditions of Proposition 3, we say that t is the input of
the GPAC and that the components y1, . . . , yn of the solution are the outputs
of the GPAC.

Notice that GPAC generable functions are obviously d.a.. Another interesting
consequence is the following (recall that solutions of analytic ODEs are always
analytic – cf. [18]):

Corollary 7 If f is a function generated by a GPAC, then it is real analytic.

As one can see, GPAC generation refers to a notion of “real-time” computa-
tion. To follow the idea of a “converging” computation, as the one used in
recursive analysis, we now introduce the idea of GPAC computability from [1]
(Notice that in Shannon’s original definition of the GPAC nothing is assumed
about the constants and initial conditions of the ODE (2). In particular, there
can be non-computable reals. This kind of GPAC can trivially lead to super-
Turing computations. To avoid this, the model of [1] is actually reinforced
here):

Definition 8 A function f : [a, b] → R is GPAC-computable 2 iff there exist
some computable polynomials 3 p : Rn+1 → Rn, p0 : R → R, and n − 1
computable real values α1, ..., αn−1 such that:

(1) (y1, ..., yn) is the solution of the Cauchy problem y′ = p(y, t) with initial
condition (α1, ..., αn−1, p0(x)) set at time t0 = 0

(2) There are i, j ∈ {1, ..., n} such that limt→∞ yj(t) = 0 and |f(x)− yi(t)| ≤
yj(t) for all x ∈ [a, b] and all t ∈ [0,+∞). 4

We remark that α1, . . . , αn−1 are auxiliary parameters needed to compute f .
We will also use the following notation. If we are given the GPAC (2), with
initial condition (α1, ..., αn−1, p0(x)) set at time t0 = 0, where α1, ..., αn−1 are

2 Note that in this paper, the term GPAC-computability refers to this particular
notion. The expression “generated by a GPAC” corresponds to Shannon’s notion of
computability.
3 The notion of computable function and computable real will be provided in the
next section.
4 We suppose that y(t) is defined for all t ≥ 0. This condition is not necessar-
ily satisfied for all polynomial ODEs, and we restrict our attention only to ODEs
satisfying this condition.

6

fixed computable values, and where x may vary for each computation, as in
Definition (8), we say that the initial condition x sets the output of the GPAC
(2).

Proposition 9 ([1]) The Gamma function Γ is GPAC-computable.

In this paper, we show that for compact domains, GPAC-computable functions
are precisely the computable functions in the sense of computable analysis.

2.2 Computable Analysis

Recursive analysis, or computable analysis, was introduced by Turing [19],
Grzegorczyk [20], and Lacombe [21].

The idea underlying computable analysis is to extend the classical computabil-
ity theory so that it can deal with real quantities. See [7] for an up-to-date
monograph of computable analysis from the computability point of view, or
[6] for a presentation from a complexity point of view.

In this approach, informally, a function f : R → R is computable if there
is a computer program that does the following. Let x ∈ R be an arbitrary
element in the domain of f . Given an output precision 2−n, the program has
to compute a rational approximation of f(x) with precision 2−n.

To formalize this notion, we need oracle TMs. We say that M is an oracle TM
if, at any step of the computation of M using oracle φ : N → Nk, M is allowed
to query the value φ(n) for any n written on its tape.

The following definition is from [5,7], but is slightly adapted to match the
approach of Ko91, so that we can make use of oracle TMS, as described in
Section 9.4 of [7].

Definition 10 (1) A sequence {rn} of rational numbers is called a ρ-name
of a real number x if there are three functions a, b and c from N to N such
that for all n ∈ N, rn = (−1)a(n) b(n)

c(n)+1
and

|rn − x| ≤
1

2n
. (5)

(2) A real number x is called computable if it has a computable ρ-name, i.e.,
if a, b and c in (5) are computable (recursive) functions.

(3) A sequence {xk}k∈N of real numbers is computable if there are three com-

7

putable functions a, b, c from N2 to N such that, for all k, n ∈ N,

∣

∣

∣

∣

∣

(−1)a(k,n) b(k, n)

c(k, n) + 1
− xk

∣

∣

∣

∣

∣

≤
1

2n
.

The notion of the ρ-name can be extended to points in Rl as follows: a se-
quence {(r1n, r2n, . . . , rln)}n∈N of rational vectors is called a ρ-name of x =
(x1, x2, . . . , xl) ∈ Rl if {rjn}n∈N is a ρ-name of xj, 1 ≤ j ≤ l. Similarly, one
can define computable points and sequences over Rl, l > 1, by assuming that
each component is computable. Next we present a notion of computability for
open and closed subsets of Rl (cf. [7], Definition 5.1.15).

Definition 11 (1) An open set E ⊆ Rl is called recursively enumerable (r.e.
for short) open if there are computable sequences {an} and {rn}, an ∈
E ∩ Ql and rn ∈ Q such that

E = ∪∞
n=0B(an, rn).

Without loss of generality one can also suppose that for any n ∈ N,
the closure of B(an, rn), denoted as B(an, rn), is contained in E, where
B(an, rn) = {x ∈ Rl : |x− an| < rn}.

(2) A closed subset K ⊆ Rl is called r.e. closed if there exist computable
sequences {bn} and {sn}, bn ∈ Ql and sn ∈ Q, such that {B(bn, sn)}n∈N

enumerates all rational open balls intersecting K.
(3) An open set E ⊆ Rl is called computable (or recursive) if E is r.e. open

and its complement Ec is r.e. closed. Similarly, a closed set K ⊆ Rl is
called computable (or recursive) if K is r.e. closed and its complement
Kc is r.e. open.

It is well known [7, Example 5.1.17] that an open interval (α, β) ⊆ R or a
closed interval [α, β] is computable if and only if α and β are computable
real numbers. Having defined the notion of recursive and r.e. sets, we are now
ready to introduce the notion of computable functions defined on those sets
[5–7].

Definition 12 Let A ⊆ Rl be either a r.e. open set or a r.e. closed set. A
function f : A→ Rm is computable if there is an oracle Turing machine such
that for any input n ∈ N (accuracy) and any ρ-name of x ∈ A given as an
oracle, the machine outputs a rational vector r satisfying |r − f(x)| ≤ 2−n.

The following result is a straightforward adaptation of Corollary 2.14 from [6].

Proposition 13 A real function f : [a, b] → R, with a and b computable, is
computable iff there exist three computable functions m : N → N, sgn, abs :
N4 → N such that:

8

(1) m is a modulus of continuity for f , i.e. for all n ∈ N and all x, y ∈ [a, b],
one has

|x− y| ≤ 2−m(n) =⇒ |f(x) − f(y)| ≤ 2−n

(2) For all (i, j, k) ∈ N3 such that (−1)ij/2k ∈ [a, b], and all n ∈ N,

∣

∣

∣

∣

∣

(−1)sgn(i,j,k,n)abs(i, j, k, n)

2n
− f

(

(−1)i j

2k

)

∣

∣

∣

∣

∣

≤ 2−n.

2.3 Simulating TMs with ODEs

To prove the main result of this paper, we need to simulate a TM with dif-
ferential equations. To this end, we recall in this section some results from
[12].

For simplicity, and without loss of generality, we only consider Turing machines
using 10 symbols and set the following coding. Let M be some one tape Turing
machine, with m states and 10 symbols. Then to each state we associate a
number in {1, ...,m} and to each symbol we associate a number in {0, ..., 9},
assuming that the blank symbol corresponds to the 0. If

...B B B a−k a−k+1... a−1 a0 a1... anBBB...

is the tape content of M, where a0 is the currently scanned symbol, then it
can be coded in the following two integers:

y1 = a0 + a110 + ...+ an10n, y2 = a−1 + a−210 + ...+ a−k10k−1. (6)

The configuration of M is then given by its state s, and two integers y1 and y2.
The transition function of M corresponds therefore to a function ψM : N3 → N3

(we consider that if x0 ∈ N3 is an halting configuration, then ψ(x0) = x0, i.e.
x0 is a fixed point). In [12] it is shown that ψM admits a robust extension to R3

and that this extension can be written as the composition of polynomials, the
exponential, the trigonometric functions, and their inverses (such a function
will be termed closed-form). In what follows, ‖ · ‖∞ stands for the sup-norm:
‖x‖∞ = max1≤i≤n |xi| and ψ[j](x0) stands for jth iteration of function ψ on
x0: ψ

[0](x0) = x0, and ψ[j+1](x0) = ψ(ψ[j](x0)).

Proposition 14 ([12]) Let ψM : N3 → N3 be the transition function of a
Turing machine M, under the encoding described above and let 0 < ε < 1/2.
Then ψM admits a computable closed-form extension ΨM : R3 → R3, robust
to perturbations in the following sense: for all j ∈ N, and for all x̄0 ∈ R3

9

satisfying ‖x̄0 − x0‖∞ ≤ ε, where x0 ∈ N3 represents an initial configuration,

∥

∥

∥Ψ[j](x̄0) − ψ[j](x0)
∥

∥

∥

∞
≤ ε.

More generally, if M has l tapes, then its transition function is defined over
N2l+1 and also admits a closed-form robust extension to R2l+1.

The following result is an adaptation of Theorem 4 from [12] and shows that
GPACs can iterate the transition function of a given Turing machine.

Proposition 15 ([12]) Suppose that ψM : N2l+1 → N2l+1 is the transition
function of a Turing machine M, under the encoding presented in Equation
(6), x0 ∈ N2l+1 represents an initial configuration and ε, δ > 0 are constants
satisfying ε + δ < 1/2. Then there is a computable polynomial p and some
computable value α ∈ Rn

z′ = p(z, t), z(0) = (x̃0, α)

such that for all x̃0 ∈ R2l+1 satisfying ‖x̃0 − x0‖∞ ≤ ε, one has 5

∥

∥

∥z1(t) − ψ
[j]
M (x0)

∥

∥

∥

∞
≤ δ.

for all j ∈ N and for all t ∈ [j, j + 1/2].

If there exists some computable value α ∈ Rn such that z′ = p(z, t) has the
properties described in Proposition 15, we say that the GPAC z′ = p(z, t)
simulates the Turing machine M on input x.

Later we will use this result and, for that reason, it is convenient to survey
some ideas underlying its proof. In particular, let ψ : N → N be a function
over the integers that admits a closed-form extension Ψ : R → R to the reals.
We would like to iterate ψ with a system of analytic ODEs. In [12] it is shown
that this can be done (a more detailed analysis can be found in [17]) with a
system of the type

y′1 = f1(Ψ(z1), y1, t) (7)

z′1 = g1(y1, z1, t)

where f1, g1 : R3 → R are computable closed-form functions and Ψ is supposed
to be robust in the following manner: for all n ∈ N

|x− n| < δ ⇒ |Ψ(x) − Ψ(n)| < δ.

5 For simplicity, we denote the solution z of the initial-value problem by (z1, z2),
where z1 ∈ R2l+1 and z2 ∈ Rn.

10

0.5 1 1.5 2 2.5 3

Fig. 3. Simulation of the iteration of a map ψ via ODEs. The solid line represents
the variable y1 and the dashed line represents z1.

The ODE (7) can be shown to be equivalent to a (larger) polynomial ODE
(cf. Proposition 5). Ideally, the variables y1, z1 have the following behavior
on an interval [n, n + 1], where n ∈ N (cf. Fig. 3). On [n, n + 1/2], variable
z1 is kept constant to the value ψ[n](x0). This kind of “memory” is then used
by the first equation of (7) to update the variable y1 to the value ψ[n+1](x0).
In the following next half-interval [n + 1/2, n + 1], the roles of y1 and z1 are
switched: y1 is kept constant to the value ψ[n+1](x0) and z1 is updated to this
value.

However, this is only an ideal behavior since real analytic functions cannot be
constant in an interval without be constant everywhere. Instead, the functions
f1, g1 are defined so that the derivatives of y1 and z1 are kept sufficiently close
to zero when their respective values should be kept constant. These functions
can be defined to be computable and closed-form [12], [17]. A similar result
can be obtained for the case of an 2l+1-dimensional map ψ and, in particular,
to the case of Turing machines (use the map Ψ given by Proposition 14).

Finally, we want to read the value ψ[n](x0) from (7) with precision bounded by
δ. As we mentioned earlier, in the time interval [n, n+1/2], z1 is kept close to
the value ψ[n](x0). In particular, it can be shown in the constructions from [12]
that there is some η < 1/2 such that, for t ∈ [n, n+1/2], ‖z1(t)−ψ

[n](x0)‖ ≤ η.
Using the error-contracting function σ defined in the following result of [12]

Proposition 16 Let σ : R → R be defined by

σ(x) = x− 0.2 sin(2πx). (8)

Let ε ∈ [0, 1/2). Then there is some contracting factor λε ∈ (0, 1) such that,
∀δ ∈ [−ε, ε], and for all n ∈ Z, one has |σ(n+ δ) − n| < λεδ.

We see that it is enough to apply σ a fixed number of times k to the variable
z1 to get the desired accuracy in the interval [n, n+1/2] (just pick some k sat-
isfying σ[k](η) ≤ δ). This still can be obtained as the solution of a polynomial

11

ODE.

Refer to [12] for full details.

3 The result

The main result of this paper relates computable analysis with the GPAC,
showing their equivalence in the framework described in the previous section.

Theorem 17 (Main result) Let a and b be computable reals. A function
f : [a, b] → R is computable iff it is GPAC-computable.

We postpone the proof of this result to Sections 5 and 6.

4 Simulating Type-2 machines with GPACs

We present in this section a result that shows that GPACs can simulate oracle
Turing machines, under a suitable encoding. This will be necessary to prove
Theorem 17.

From Proposition 15, we know how to simulate a Turing machine. However,
the error of the output is bounded by some fixed quantity ε > 0, whereas in
Type-2 machines we would like that the output is given with error bounded
by 2−n, where n is one of the inputs of the machine. The next theorem shows
how this can be done with a GPAC.

Theorem 18 Let f : [a, b] → R be a computable function. Then there exists
a GPAC and some index i such that if we set the initial conditions (x, n̄) ∈
[a, b]× R, where |n̄− n| ≤ ε < 1/2, with n ∈ N, there exists some T ≥ 0 such
that the output yi of the GPAC satisfies |yi(t) − f(x)| ≤ 2−n for all t ≥ T .

Before giving the proof of the theorem, we provide some preliminary lemmas.
To compute f(x) with a GPAC, we want to use the hypothesis that f is
computable. Hence, it would be useful to get a GPAC that, when we set the
initial condition x ∈ [a, b], outputs a succession of rationals converging to x.
This succession could then be used to compute approximations of f(x), as
in condition 2 of Proposition 13. The problem is, given x, to get integers i,
j, and 2k such that (−1)ij/2k approximates x enough to compute f(x) with
precision 2−n, and to compute the values sgn(i, j, k, n) and abs(i, j, k, n).

We assume first in what follows that [a, b] ⊆ R+, so that x is always positive.
It follows that i can be considered as constant 0. Now, from Proposition 13,

12

this is sufficient to take k = m(n) (where m is a modulus of continuity), and
j ≃ x2m(n).

In the following lemma, the function g(j, n) is intended to represent function
abs(0, j,m(n), n).

By a barycenter of x, y ∈ R we mean a value of the form tx + (1 − t)y, for
t ∈ [0, 1]. By other words, a barycenter is a point in the segment of line joining
x to y.

Lemma 19 Let g : N2 → N be a recursive function, [a, b] ⊆ R+ be a bounded
interval, m : N → N be a recursive function, and ε be a real number satisfying
0 < ε < 1/4. Then there is a GPAC with the following property: for all
x ∈ [a, b] and all j, n ∈ N satisfying j ≤ x2m(n) < j + 1, there exists some
T > 0 and some index i such that, when we set initial conditions n̄, x2m(n),
where |n− n̄| < ε and

∣

∣

∣x2m(n) − x2m(n)
∣

∣

∣ < ε, the output yi of the GPAC

satisfies |yi(t) − c| ≤ ε for all t ≥ T , where c is a barycenter of g(j, n) and
g(j + 1, n).

Proof. By Proposition 15 there is a GPAC G that when set on initial condition
k, n̄, where

∣

∣

∣k − k
∣

∣

∣, |n− n| < 1/3 (the reason why we use 1/3 will be clear

later) and k, n ∈ N, ultimately (i.e. at any time t ≥ T for some T > 0) outputs
g(k, n) with an error less than or equal to ε/2 (k is intended to be j or j+ 1).
Define k1 = x2m(n). We would like to use k = k1 as an initial condition to
GPAC G. However, k1 is not guaranteed to be close to an integer (i.e. within
distance 1/3). We show now how to overcome this. Let us consider two cases:

(1) If k1 ∈ [l − 1/4, l + 1/4], for some l ∈ {j, j + 1}, then we can set k = k1.
With this initial condition, the output of GPAC G (let us call it y1) will
be g(j, n) or g(j + 1, n), plus an error not exceeding ε/2. Therefore, the
output satisfies the conditions imposed by the lemma. Notice that this
reasoning extends for the case k1 ∈ [l − 1/3, l + 1/3], because (integer)
initial conditions of the GPAC can be perturbed by an amount bounded
by 1/3;

(2) If k1 ∈ [j+1/4, j+3/4], then we can set the initial condition k = k1−1/2.
With this initial condition, the output of GPAC G (let us call it y2) will
be g(j, n) plus an error not exceeding ε/2. Therefore, the output satisfies
the conditions imposed by the lemma. Notice that this reasoning extends
for the case k1 ∈ [l + 1/6, l + 5/6].

The real problem here is to implement both cases in a single GPAC. Since
GPACs do not allow the existence of discontinuous functions that might work
like a “case checker,” we have to resort to a different approach.

From the study of the previous cases, we know the following: there is a GPAC

13

0.2 0.4 0.6 0.8 1

Fig. 4. Functions ω1 and ω2. The solid line represents ω1, while the dashed line
represents ω2.

G such that on initial conditions k1 or k1 − 1/2, outputs y1 or y2, respectively.
We now consider a new GPAC, obtained with two copies of G, but where one
copy has initial condition set to k1, and the other has initial condition set to
k1−1/2 (from the comments following Definition 8, both cases are covered by
the expression “each copy has initial condition set to k1”). Hence, this GPAC
outputs both y1 and y2. We now combine these outputs to get the desired
result.

Assume we had two periodic functions ω1 and ω2, with period 1 and graphs
similar to the ones depicted in Fig. 4. We do not explicitly define ω1 and ω2,
but rather state their most important properties: (i) for every t ∈ R, ω1(t) ≥ 0,
ω2(t) ≥ 0, and ω1(t)+ω2(t) > 0, (ii) ω1(t) > 0 implies that t ∈ (a−1/3, a+1/3)
for some a ∈ N, and (iii) ω2(t) > 0 implies that t ∈ (a + 1/6, a + 5/6)
for some a ∈ N. Remark that, for all a ∈ N, (ii) implies ω1(t) = 0 for all
t ∈ (a+ 1/3, a+ 2/3), and (iii) implies ω2(t) = 0 for all t ∈ (a− 1/6, a+ 1/6).
Then, taking into account the previous two cases described above, one sees
that we could output the value

ȳ =
ω1(k1)y1 + ω2(k1)y2

ω1(k1) + ω2(k1)
. (9)

that would be correct in any of the two cases above. Indeed, the only case
where both ω1(k1) and ω2(k1) are non-null is whenever k1 ∈ [l+ 2/3, l+ 5/6],
where both outputs y1 and y2 are valid, and the result is a barycenter of y1

and y2, i.e. a barycenter of g(j, n) and g(j + 1, n) plus an error not exceeding
ε/2.

However, ω1 and ω2 are not GPAC-generable since they are not analytic.
Alternatively, we will use closed-form functions that approximate ω1 and ω2.
In particular, we use the function l2 defined in [12] as below, with the following
property.

Proposition 20 ([12]) Let l2 : R2 → R be given by l2(x, y) = 1
π

arctan(4y(x−
1/2)) + 1

2
. For y > 0 one has:

14

0.2 0.4 0.6 0.8 1

-1

1

2

3

Fig. 5. Function Υ.

(1) If x ≤ 1/4, then 0 < l2(x, y) < 1/y;
(2) If x ≥ 3/4, then 1 − 1/y < l2(ā, y) < 1.

We also use the periodic function Υ : R → R defined by

Υ(x) = 1 + 2 sin 2π(x+ 1/4)

with period 1 and whose graph is depicted in Fig. 5. Notice that for x ∈
[1/3, 2/3], Υ(x) ≤ 0, and for x ∈ [−1/4, 1/4], Υ(x) ≥ 1. Therefore, we can
take

ω1(x) = l2(Υ(x), 1/δ) ≃ ω1(x), ω2(x) = l2(Υ(x− 1/2), 1/δ) ≃ ω2(x)

since |ω1(x)−ω1(x)| ≤ δ, for x ∈ [a+1/3, a+2/3], where a ∈ Z, and similarly
for ω2. Moreover, |ω1(x) − 1| ≤ δ for x ∈ [a− 1/4, a + 1/4], and similarly for
ω2, which implies that

ω1(t) + ω2(t) > 1 − 2δ ≫ 0,

for all t ∈ R (i.e. the magnitude of ω1(t) + ω2(t) is not comparable to that of
δ, to avoid problems). Now, we just have to substitute (9) by

ȳ ≃
ω1(k1)y1 + ω2(k1)y2

ω1(k1) + ω2(k1)
. (10)

If we pick 1/δ = γ(y1 + y2 + 1), for some γ > 0 (the value 1 is to avoid a
singularity for y1 = y2 = 0), we conclude that l2(Υ(k1), 1/δ)y1 approaches
ω1(k1)y1 with error bounded by γ, and similarly for the other term. Moreover,
Υ(k1) + Υ(k1 − 1/2) > 1 − 2γ. This implies that ȳ in (10) is computed with
error bounded by 2γ/(1 − 2γ) < ε/2 for γ sufficiently small. By other words,
this yields a GPAC with an output yi such that for some T > 0, |yi(t)− c| ≤ ε
for all t ≥ T , where c is a barycenter of g(j, n) and g(j + 1, n).

In many occasions it will be useful to switch the behavior of a GPAC upon
some “control function” y : R → R which is also the output of some GPAC.
Ideally, we would like to have the situation pictured in Fig. 6, which illustrates

15

t

t

y(t)

f
f1

f2

α

Fig. 6. Switching functions. Functions f1 and f2 are represented in the first graph
by the dashed and dotted line, respectively. The resulting function is represented in
gray. The second graph displays the control function y, where α is the threshold.

a coupled system that behaves like a “switch”. There one can see on the
above graph two functions f1 and f2, generated by GPACs. The graph below
represents the control function and a value α ∈ R called the threshold value.
Then we would like to have a GPAC with output z such that, if y(t) < α,
then z(t) = f1(t), and z(t) = f2(t) otherwise.

Of course, the previous idea cannot be implemented with a GPAC, since we al-
low immediate transitions between two distinct functions, which would yield a
discontinuous function. To remedy that, we allow some transition zone around
the threshold value (in gray in the second graph of Fig. 6).

The construction of switching functions has to be further relaxed to cope with
the fact that only analytic functions can be used. Therefore, function z in the
following lemma will just be an approximation of f1 and f2.

Lemma 21 (Switching functions) Let y, f1, f2 : R → R be three functions
generated by GPACs (y is called the control function) and ε > 0. Then there
is a function f : R → R generated by a GPAC with the following property: for
all t ∈ R,

|f(t) − f1(t)| ≤ ε if y(t) ≤ α− 1/4

|f(t) − f2(t)| ≤ ε if y(t) ≥ α+ 1/4.

Proof. This can be done in a quite straightforward way using the function l2
introduced in the proof of Lemma 19. It suffices to take

f = f1.l2

(

α+ 1/2 − y(t),
f1 + f2

ε/2

)

+ f2.l2

(

y(t) − α+ 1/2,
f1 + f2

ε/2

)

16

It is easy to see that f satisfies the given conditions.

We will mainly use this lemma to switch between dynamics simulating different
Turing machines. Suppose that the GPACs z′1 = p1(t, z1) and z′2 = p2(t, z2)
simulate two Turing machines TM1 and TM2 as in Proposition 15, respectively.
Then if we have a control function yi(t), provided by the output of a third
GPAC y′ = p(t, y), we can build a function f that switches between f1 =
p1 and f2 = p2, yielding a new system y′(t) = p(t, y(t)), z′(t) = f(t, z(t)),
simulating the transition function of TM1 and TM2, according to the value of
yi(t). From Proposition 5, this corresponds to a GPAC.

An useful application will be to simulate two Turing machines TM1 and TM2

working in series, i.e. where the output of TM1 is be used as the input of TM2.

Indeed, when simulating TM1 with a GPAC as in Proposition 15 we can
suppose that the states are coded by the integers 1, . . . ,m, where state m
corresponds to the halting state, and that there is a variable yi of the GPAC
giving the current state of TM1 in the simulation with error bounded by 1/4 for
every t ∈ [n, n+1/2]. Therefore, if we set α = m−1/2 and y = yi in Lemma 21,
we have a way of switching between dynamic of a GPACs simulating TM1 and
another one simulating TM2 upon the value of yi, i.e. depending on whether
TM1 is still running, or already halted.

We can obtain a GPAC having the desired property in the following manner.
The initial condition sets the input of TM1 and this GPAC simulates TM1

until it halts. When this happens, the variables coding the tape contents have
the input of TM2. Then we switch the evolution law of this GPAC so that
now it simulates TM2, thus giving the desired output (to avoid interference
problems, the control function should be given by a separated GPAC that just
simulates TM1 and that stays in an halting configuration after this Turing
machine halts).

From the robustness conditions of Proposition 15, by choosing ε sufficiently
small in the lemma above, one can ensure that errors will stay controlled at
each step, so that a correct simulation of TM1 and then TM2 will happen.

In some cases, we will need to switch to a dynamic that sets one variable to
some value. This can be done with the following lemma, taken from [17].

Lemma 22 ([17] Resetting configurations) Let ε ∈ R satisfy 1/4 ≥ ε >
0. Let y be some GPAC generated function and t0 < t1 be some reals.

There is a polynomial p such that the solution of z′ = p(t, z, y) with some fixed
initial condition at t0 satisfies ‖z(t1) − k‖∞ < ε, whenever ‖y(t) − k‖∞ ≤ ε
for all t ∈ [t0, t1] for some vector k ∈ Nm.

17

Proof of Theorem 18. For simplicity, let us suppose that a > 0 so that
we don’t have to care about sign of x ∈ [a, b]. This is never problematic
since, if a < 0, we can always shift [a, b] by an amount k ∈ N such that
a+k > 0, to define a new computable function h : [a+k, b+k] → R satisfying
h(x) = f(x− k).

Suppose also that f(x) always takes the same sign for all x ∈ [a, b]. The case
where the sign of f(x) switches can be reduced to this one. Indeed, since [a, b]
is compact, there is some l ∈ Z such that g(x) = l+f(x) > 0, for all x ∈ [a, b].
Once we have a GPAC computing g(x), we just have to subtract l to the
output to obtain a GPAC computing f(x). So, to fix ideas, let us suppose
that f(x) always takes positive values.

Let us now proceed with the proof. Since f is computable, according to Propo-
sition 13, and previous discussions, there are recursive functions m : N → N,
abs (the function sgn is no longer needed since f(x) takes positive values)
such that given x ∈ [a, b] and non-negative integers j, n satisfying

∣

∣

∣j/2m(n) − x
∣

∣

∣ < 2−m(n), (11)

one has
∣

∣

∣

∣

∣

abs(0, j,m(n), n)

2n
− f(x)

∣

∣

∣

∣

∣

<
2

2n
.

We will design a GPAC with an output yi such that, for some T > 0, for all
t ≥ T , yi(t) is always close to

abs(0, j,m(n), n)

2n
, (12)

the error between two values being bounded by 2−n. This will be sufficient to
prove the theorem.

Let us show how we can compute (12) with a GPAC. Let TM0 and TM1 be
Turing machines computing 2n and 2m(n) on input n. From Proposition 15,
there are GPACs simulating these Turing machines. This yields two GPACs
with outputs y1 and y2, so that on initial condition n̄ close to n, one has
|y1(t) − 2n| ≤ ε and |y2(t) − 2m(n)| ≤ ε for all t ≥ T2 for some T2. Moreover,
since [a, b] is bounded, we can suppose that |xy2(t)−x2m(n)| ≤ ε (if necessary,
apply σ a fixed number of times, independent of n, to y2). The values n̄
and xy2 can then be used to feed the GPAC described in Lemma 19, with
g(j, n) = abs(0, j,m(n), n). This GPAC U3 has an output y3, which, after some
time T3, yields a barycenter of abs(0, j,m(n), n) and abs(0, j+1,m(n), n) plus
an error bounded by ε. Since m is a modulus of continuity,

|abs(0, j,m(n), n) − abs(0, j + 1,m(n), n)| ≤ 1.

18

This implies that the output of U3, let it call abs(j, n), satisfies

|y3(t) − abs(0, j,m(n), n)| ≤ 1 + ε

for all t ≥ T3. Since [a, b] is bounded, there is some η ∈ N such that one
has abs(0, j,m(n), n) ≤ 2nη for all n ∈ N and all j satisfying (11) for every
x ∈ [a, b]. Therefore

∣

∣

∣

∣

∣

y3(t)

y1(t)
−
abs(0, j,m(n), n)

2n

∣

∣

∣

∣

∣

≤
ε.abs(0, j,m(n), n) + 2n(1 + ε)

2n(2n − ε)
≤

≤
εη + 1 + ε

2n2−1
≤ λ2−n (13)

with λ = 2(εη + 1 + ε) independent of j, n, for all t ≥ T3, thus giving an ap-
propriate approximation of abs(0, j,m(n), n)/2n, with error bounded by λ2−n,
with λ independent of j, n. This proves the theorem.

Remark 23 Notice that after the time T referred to in Theorem 18, the cor-
responding GPAC continues to output forever an approximation of f(x) with
error bounded by 2−n. This is because, as assumed in Section 2.3, the halting
configuration of the Turing machine simulated by the GPAC is a fixed point
(modulo some error bounded by ε).

5 Proof of the “only if” direction of Theorem 17

Our idea is the following. From Theorem 18, we already know how to generate
f(x) with precision 2−n with a GPAC G fed with approximations of n and
x2m(n) as initial conditions, say in components y1 and y2, respectively. Hence,
to get a GPAC with an output converging to f(x) in the limit, it suffices to
implement the previous theorem in a cyclic way: start the computation with
n = 0. When the computation finishes, increment n, repeat the computation,
and so on.

To do so, we need to address several problems. The first one is to know when
the computation with the current n is over. Indeed, Theorem 18 tells us that
this happens after some time T , but does not give us any procedure to compute
this instant T .

This can be solved by building another GPAC that provides a corresponding
control function. Indeed, consider a clocking Turing machine TM0 that basi-
cally simulates all involved Turing machines in the constructions of Theorem
18 on all possible arguments x ∈ [a, b] of type k2n (that are finitely many).
This guarantees that whenever TM0 terminates on input n, we are sure that
all involved Turing machines in the constructions of Theorem 18 have had

19

enough time to do their computations in GPAC G, and so that the output is
correct. The description of TM0, on input n ∈ N, is as follows:

(1) Compute the first k1 ∈ Z such that k1/n ≥ a, and the last k2 ∈ Z such
that k2/n ≤ b

(2) For i = k1 to k2 simulate Turing machines involved in the proof of The-
orem 18 on input (i, n).

Observe that Step 1 can be implemented because, by hypothesis, a and b are
computable constants. The Turing machine TM0 can be simulated by a GPAC
(independent from GPAC G). The output yi of this GPAC that encodes the
state of TM0 can be used as a control function. Indeed, whenever it becomes
greater than m0 − 1/2, where m0 is the number of states of TM0, this means
that TM0 halted, and hence the output of G is correct. This solves our first
problem.

Actually, we need to simulate G on increasing n. So, more precisely, we consider
a Turing machine TM1 that does the following:

(1) Start with n = 0
(2) Simulate TM0 with input n
(3) Increment n and go to Step 2.

Suppose, without loss of generality, that this Turing machine has m1 states,
where m1 is the halting state (that is never reached), and m1 − 1 is a special
state, only reached in the transition of Step 3 to Step 1. Value m1 − 3/2 can
then be used a threshold. Whenever the output encoding the state of TM1,
call it yi, is higher than m1 − 3/2, we know that the computation of G is over
for corresponding n.

We can then use Lemmas 21 and 22 so that control function yi resets the value
of y1 and y2 to approximations of n+1 and x2m(n+1), respectively, and begins
a new cycle by allowing again the simulation of G on these new values for y1

and y2.

So far we have seen that while y1 and y2 are respectively approximations of n
and x2m(n), one of the components of the system, say yj, approaches f(x) with
error 2−n. However, during the following time period, when n is incremented,
yj fluctuates before converging to f(x) with error 2−(n+1). Therefore, yj doesn’t
match condition 2 of Definition 8 for all times.

To define a component of the system that converges to f(x) with time, we use
the components of the system that encode the values of abs(0, j,m(n), n) and
2n in each time period. We create a pair of components, say z1, z2, that are reset
to the values of abs(0, j,m(n), n) and 2n respectively, at the end of each time
period. This can be done with Lemma 22 using the control function yi. More

20

precisely, when yi is above the threshold, z1, z2 approach abs(0, j,m(n), n)
and 2n. During the following time period, i.e. while yi is below the threshold,
z1, z2 are kept approximately constant. This can be done with Lemma 21 by
switching the dynamics from our current system to a GPAC that simulates
a Turing machine in a fixed configuration. Again, we use yi as the control
function.

Hence, a sufficient approximation of f(x) is then given by z1/z2, and a bound
on current error on f(x), as required in Definition 8, is given by 1/z2 both
values being valid at any time.

6 Proof of the “if” direction of Theorem 17

We now proceed with the proof of the “if” direction of Theorem 17. Let
f : [a, b] → R be a GPAC-computable function. We want to show that f is
computable in the sense of computable analysis. By definition, we know that
there is a computable polynomial ODE

y′ = p(t, y)

y(0) = (α, x)
(14)

whose solution has two components yi : R2 → R and yj : R2 → R such that

|f(x) − yi(x, t)| ≤ yj(x, t) and lim
t→∞

yj(x, t) = 0 (15)

Since we have to study the computability of functions defined by ODEs, we
resort to the following result, taken from [22].

Theorem 24 Let E ⊆ Rm+1 be a r.e. open set and f : E → Rm be a com-
putable analytic function. Let (α, β) be the maximal interval of existence of
the solution x(t) of the initial-value problem

ẋ = f(t, x),

x(t0) = x0,
(16)

where (t0, x0) is a computable point in E. Then (α, β) is a r.e. open interval
and x is a computable function on (α, β). In particular, there is an oracle TM
that on inputs (t0, x0) outputs the solution x.

Since for (14) E = Rm+1 is r.e. and p is computable, we conclude that the so-
lution is computable over the maximal interval, which is assumed in Definition
8 to include (0,+∞). It follows that yi and yj are computable in (0,∞).

21

Suppose that we want to compute f(x) with precision 2−n. Then proceed with
the following algorithm.

(1) Set t = 1
(2) Compute an approximation ȳj of yj(x, t) with precision 2−(n+2)

(3) If ȳj > 2−(n+2) then set t := t+ 1 and go to Step 2
(4) Compute yi(x, t) with precision 2−(n+1) and output the result

Steps 1, 2 and 3 are used to determine an integer value of t for which |yj(x, t)| ≤
2−(n+1). Once this value is obtained, an approximation of yi(x, t) with precision
2−(n+1) will provide an approximation of f(x) with error 2−n, due to (15), thus
providing the desired output. This proves the result.

7 Conclusion

In this paper we established some links between computable analysis and
Shannon’s General Purpose Analog Computer. In particular, we showed that
contrarily to what was previously suggested, the GPAC and computable anal-
ysis can be made equivalent from a computability point of view, as long as we
take an adequate notion of computation for the GPAC. In addition to those
results it would be interesting to answer the following questions. Is it possi-
ble to have similar results, but at a complexity level? For instance, using the
framework of [6], is it possible to relate polynomially-time computable func-
tions to a class of GPAC-computable functions where the error ε is given as a
function of a polynomial of t? And if this is true, can this result be generalized
to other classes of complexity? From the computability perspective, our results
suggest that polynomial ODEs and GPACs are very natural continuous-time
counterparts to Turing machines.

Acknowledgments. This work was partially supported by Fundação para
a Ciência e a Tecnologia and EU FEDER POCTI/POCI via CLC, project
ConTComp POCTI/MAT/45978 /2002, grant SFRH/BD/17436/2004 (DG),
and within the initiative RealNComp of SQIG - IT, and by French Ministery of
Research through ANR Project SOGEA. Additional support was also provided
by the Fundação Calouste Gulbenkian through the Programa Gulbenkian de
Est́ımulo à Investigação, and by EGIDE and GRICES under the Program
Pessoa through the project Calculabilité et complexité des modèles de calculs
à temps continu.

22

References

[1] D. S. Graça, Some recent developments on Shannon’s General Purpose Analog
Computer, Math. Log. Quart. 50 (4-5) (2004) 473–485.

[2] L. Blum, M. Shub, S. Smale, On a theory of computation and complexity over
the real numbers: NP-completeness, recursive functions and universal machines,
Bull. Amer. Math. Soc. 21 (1) (1989) 1–46.

[3] C. Moore, Recursion theory on the reals and continuous-time computation,
Theoret. Comput. Sci. 162 (1996) 23–44.

[4] H. T. Siegelmann, Neural Networks and Analog Computation: Beyond the
Turing Limit, Birkhäuser, 1999.

[5] M. B. Pour-El, J. I. Richards, Computability in Analysis and Physics, Springer,
1989.

[6] K.-I. Ko, Computational Complexity of Real Functions, Birkhäuser, 1991.

[7] K. Weihrauch, Computable Analysis: an Introduction, Springer, 2000.

[8] C. E. Shannon, Mathematical theory of the differential analyzer, J. Math. Phys.
MIT 20 (1941) 337–354.

[9] V. Bush, The differential analyzer. A new machine for solving differential
equations, J. Franklin Inst. 212 (1931) 447–488.

[10] J. Mycka, J. F. Costa, Real recursive functions and their hierarchy, J.
Complexity 20 (6) (2004) 835–857.

[11] O. Bournez, E. Hainry, Recursive analysis characterized as a class of real
recursive functions, to appear in Fund. Inform.

[12] D. S. Graça, M. L. Campagnolo, J. Buescu, Robust simulations of Turing
machines with analytic maps and flows, in: S. B. Cooper, B. Löwe, L. Torenvliet
(Eds.), CiE 2005: New Computational Paradigms, LNCS 3526, Springer, 2005,
pp. 169–179.

[13] M. B. Pour-El, Abstract computability and its relations to the general purpose
analog computer, Trans. Amer. Math. Soc. 199 (1974) 1–28.

[14] L. Lipshitz, L. A. Rubel, A differentially algebraic replacement theorem, and
analog computability, Proc. Amer. Math. Soc. 99 (2) (1987) 367–372.

[15] D. S. Graça, J. F. Costa, Analog computers and recursive functions over the
reals, J. Complexity 19 (5) (2003) 644–664.

[16] L. A. Rubel, A survey of transcendentally transcendental functions, Amer.
Math. Monthly 96 (9) (1989) 777–788.

[17] D. S. Graça, M. L. Campagnolo, J. Buescu, Computability with polynomial
differential equations, submitted for publication.

23

[18] V. I. Arnold, Ordinary Differential Equations, MIT Press, 1978.

[19] A. M. Turing, On computable numbers, with an application to the
Entscheidungsproblem, Proc. London Math. Soc. 2 (42) (1936) 230–265.

[20] A. Grzegorczyk, On the definitions of computable real continuous functions,
Fund. Math. 44 (1957) 61–71.

[21] D. Lacombe, Extension de la notion de fonction récursive aux fonctions d’une
ou plusieurs variables réelles III, Comptes Rendus de l’Académie des Sciences
Paris 241 (1955) 151–153.

[22] D. Graça, N. Zhong, J. Buescu, Maximal intervals of computable IVPs are not
necessarily computable, trans. Amer. Math. Soc., to appear.

24

