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Data-based models for flow control

Abstract: This thesis presents two experimental data-based model design tech-
niques: the system identification and the data-assimilation. The first allows the
construction of a model, based on the system’s input-output signals only. Sev-
eral flow-control examples, using systyem identification, are described: flow inside a
channel, and behind a cylinder. Data-assimilation is another data-based technique
which makes use of a physical model. The assimilated model gives access to physics-
based interpolation and extrapolation of a scattered data-set. Three examples of
mean-velocity measurement assimilation are presented: a turbulent boundary layer,
the flow around a cylinder, and the flow over an idealized airfoil. The impact of mea-
surement uncertainty is demonstrated. An extension is developed for both methods
to cope with corrupted data.

Keywords: flow control, system identification, data-assimilation, uncertainty prop-
agation.

Modèles basés sur les données pour le contrôle d’écoulement

Résumé: Cette thèse est basé sur les méthodes de construction de modèles utilisant
des données expérimentales. Deux groupes de méthodes sont étudiées, l’identification
de systèmes et l’assimilation de données. La première permet de mettre en place
une représentation pour un système donné en se basant sur l’histoire de ses entrées
sorties. Cette représentation est calculée puis utilisée pour contrôler efficacement
plusieurs exemples d’écoulements. La seconde, nécessite un modèle physique et met
en oeuvre des mesures qui relève du vecteur d’état. Le modèle qui assimile les
données offre un moyen d’extrapoler et d’interpoler ces dernières. Trois exemples
d’assimilation de vitesses moyennes sont présentées, une couche limite turbulente,
l’écoulement autour d’un cylindre et l’écoulement autour d’un profil d’aile idéal-
isé. Enfin plusieurs pistes pour la prise en compte d’incertitudes de mesures sont
développés, pour l’assimilation de données et l’identification de systèmes.

Mots clefs: contrôle d’écoulement, identification de systèmes, assimilation de
données, propagation d’incertitude.
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Man-made and natural systems that are governed by internal or external fluid
flow can often be described by these flows’ base-flow and perturbation dynamics.
Instabilities and noise amplification often limit performance, operational range, and
robustness in these systems. Improving flow conditions under these circumstances
often involves active or passive flow control techniques. The ability to control and
manipulate fluid flows comes with a broad spectrum of applications, ranging, for ex-
ample, from noise reduction around airfoils and in jet engines to mixing enhancement
in chemical processes. While natural fluid systems make extensive use of general
flow control techniques, the application of fluid manipulation in many industrial
settings offers technological advantages that can hardly be overestimated.
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Early attempts in flow control research date back to the beginning of the 20th

century when the first patents were published after 1920, and when Prandtl already
experimented with boundary-layer control devices (see Wygnanski, 2006). However,
further progress in flow control has slowed, while general control theory applied to
electronic and mechanical systems developed rapidly and occupied an increasingly
larger part in the academic community. This rise was accompanied by the found-
ing of the International Federation of Automatic Control in 1957, and the creation
of leading control journals such as Automatica and the Journal of Electronics and
Control (continued as Journal of Control after 1965). Even though flow control rose
simultaneously during this period with first dedicated books and articles published
around 1960 (see Lachmann, 1961; Chang, 1976), the discipline of flow control ad-
vanced far slower and more reluctantly. The reason for this developmental delay
may be associated with the far greater complexity of fluid systems. Fluid systems
are characterized by many different spatial and temporal scales and a substantial
number of degrees of freedom.

Control and guidance for mechanical and industrial systems, such as robots or
chemical processes, has seen a major growth after 1960 (see Qin & Badgwell, 2003)
with many important developments in control algorithms and model design: com-
parative advances for flow control applications were rather slow. The simultaneous
development of Micro-Electro-Mechanical Systems (MEMS) and the rise of efficient
computer algorithms in the late 80’s set the stage for confronting flow control re-
lated problems and therefore triggered increased interest in flow control research
(see Bewley, 2001).

Today, flow control is an active research field which greatly benefits from the
earlier developments of general control theory. Even though the technological gap
between general control theory and flow control methods is gradually narrowing,
there remains a great deal of important control technology that has yet to be
adapted to flow control applications. This present thesis aims at decreasing this
technological gap by employing system-identification techniques (see Ljung, 1987),
data-assimilation schemes (see Ghil & Malanotte-Rizzoli, 1991) and model predic-
tive control design (see Camacho & Bordons, 2004), and by critically assessing the
performance, robustness, and applicability of these techniques to fluid systems. This
chapter presents a broad overview of flow control techniques; the remaining thesis
will then focus on model design algorithm for flow control based on data.

1.1 Classification of flow control methods

Drag reduction, lift enhancement, mixing augmentation, heat transfer improvement,
and flow-induced noise suppression are but a few applications that demonstrate the
variety and range of flow control objectives. Equally, the manner in which we
manipulate the flow or extract information from it adds even more to this variety.
For this reason, there exists a great number of flow control configurations, which calls
for a classification according to an appropriate criterion (see Kral, 2000). Among



1.1. Classification of flow control methods 9

Figure 1.1: Geometric shaping of commercial airfoils during different flight condi-
tions.

the many possible classification criteria we choose energy expenditure to categorize
different flow control layouts. Flow control methods are referred to as active if
energy is transferred to the system; in contrast, if no external energy is injected into
the system, the corresponding configuration is labeled as passive.

1.1.1 Passive control

Geometric modification, the use of fixed, mechanical vortex generators and the
placement of riblets on a surface are examples of passive flow control. A familiar
illustration of passive control technologies can be observed on most commercial air-
crafts in the form of flaps which modify the lift and drag characteristics by changing
the airfoil shape (see figure 1.1). Additionally, vortex generators are often encoun-
tered on top of the engines (see figure 1.2); they also manipulate the local mean flow
field to avoid adverse flow conditions. A review of passive flow control techniques is
given in Gad-el Hak et al. (1998).

The passive approach has been found effective in many flow-control problems,
for example, in delaying transition (see Cossu, 2007), in manipulating a flow’s ther-
mal transport (see Allan et al., 2006), or in reducing drag by shape optimization
(see Owen et al., 2001). Despite its effectiveness, we can often improve control per-
formance through an actuation device which injects energy into the fluid system.
In practice, both strategies (passive and active) can be brought to bear on a single
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Figure 1.2: Vortex generators on a commercial aircraft.

application where the advantages of either technique can be exploited efficiently.

1.1.2 Active control

Methods based on the injection of external energy into a fluid system have appeared
nearly twenty years ago and have been developed considerably since then. These
active control methods may be divided into two sub-categories (see Kral, 2000).

In the first case, energy is given to the fluid system regardless of the current
flow state. In this sense, the control is predetermined and applied without on-line
modification. Predetermined control is also known as open-loop control. Many
examples of successful predetermined control can be found: Corke et al. (2010) (see
figure 1.3) for separation control using plasma actuators, and Gonzalez et al. (2010)
and Wallace & McKeon (2012) for separation control using a dynamic roughness
element which oscillates at a constant frequency in a boundary layer.

Predetermined control assumes that the control law is effective regardless of the
evolving fluid state and thus cannot cope with complex control objectives. For in-
stance, it is known that a shear layer amplifies time-periodic disturbances near its
convectively unstable frequencies (see Huerre & Monkewitz, 1985). A fixed control
law cannot adapt to varying flow conditions and therefore to varying disturbance
amplifications; it thus becomes ineffective in suppressing instabilities or amplifica-
tions in time-varying flows. To achieve reasonable control performance, the control
law has to adjust to the current state of the fluid system, which leads to the concept
of interactive control.

In interactive control, information about the flow’s state is extracted via sensors,
and an appropriate control law is determined for the control unit based on this
extracted information. The controller then produces a signal which gets passed
onto the actuators and injects engery into the fluid system to achieve a given control
objective. The terms closed-loop control, feedback control and feedforward control
are specific types of interactive control which are commonly used in the flow control
literature.
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Figure 1.3: Flow past a cylinder at Re = 33000. (a) uncontrolled, (b) controlled by
plasma actuators aiming at separation control.

1.2 Focus on interactive control

In interactive control, the control law uses information about the fluid state and
adjusts the control signal accordingly in order to satisfy a user-specified control ob-
jective. The essential components of interactive flow control are thus: (i) a model
which accurately describes the temporal evolution of the flow state, (ii) an objective
function quantifying the performance and success of the applied control, and (iii) a
control unit forcing the fluid system in a prescribed manner. The goal of interactive
control design is to determine an optimal control strategy, with respect to the ob-
jective function, based on the model’s prediction of the state evolution. These three
components will be discussed in more detail below.

1.2.1 Objective functional

The choice of an objective for flow control is closely linked to the concept of a utility
function which can be thought of as a mapping of relevant state variables which
describe the fluid system onto an ordered space of scalar quantities. In this context,
the ordered space represents a hierarchy of performance measures that allows a
ranking from minimal to maximal. Even though it may appear straightforward to
define control objectives, such as “the system should be stable”, or “the flow over
a bluff body should not separate”, it is non-trivial to recast these objectives into
a quantitative utility function. The degree of success (or failure) to formulate the
utility function directly and significantly impacts the effectiveness and efficiency of
the designed controller.

For example, choosing separation avoidance around an airfoil as our control
objective, a quantitative expression of utility is hard to find. A controller may be
built to reattach the flow by minimizing the distance between the separation and
reattachment point. Alternatively, it may be built to maximize the integrated wall
shear stress along the airfoil. Either case will result in substantially different optimal
actuator placements, optimal control laws, and ultimate performances. Moreover,
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Figure 1.4: Separation control on an idealized airfoil using a predetermined control
strategy, from Gonzalez et al. (2010). The colored contours represent the mean
velocity; stream lines are also plotted to visualize the recirculation bubble. (top)
uncontrolled flow around a smooth airfoil; (middle) flow around the airfoil with
a static roughness element; (bottom) flow around the airfoil with a periodically
activated roughness element. In the latter case the flow reattaches.

the utility function or control objective has to be based on quantities that can be
readily measured or extracted from the flow fields. For example, figure 1.4 shows
a controlled recirculation bubble using predetermined control. In this particular
set-up neither the reattachment point nor the lift can be measured to sufficient
accuracy and therefore cannot be used to evaluate the controller’s performance. A
proxy quantity that can be extracted from the experiment has to be used instead,
for example, time-resolved PIV measurements in this case.

1.2.2 Model

The underlying model for our flow control design represents the mapping of a dy-
namic input to a responsive output. In some, but not all, cases this input-output
mapping passes through a state-vector that often has a physical interpretation, such
as a flow state. Not surprisingly, the fidelity of this model crucially affects the ul-
timate performance of the controlled system. The term model is rather general: it
spans a range of complexity from simple models based on physical intuition to non-
linear sophisticated numerical models with millions of degrees of freedom. Again, a
classification is desirable.
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One criterion for classification is based on the source of the model’s derivation.
A model is said to be physics-based, if it mostly stems from an application of first-
principle physical conservation laws. In contrast, a model is said to be data-based,
if its main characteristics have been derived from an observation of data. A typical
physics-based model can be determined from the Navier-Stokes system of equa-
tions, with the only data-based input related to the geometry and the boundary
conditions. On the other hand, an example of a data-based model is one that is
system-identified from data sequences, with the only physics-based input contained
in the structure and order of the model to be identified (e.g. linear, non-linear, fuzzy,
auto-regressive, neural networks). In most cases, there does not exist a purely data-
based or purely physics-based model but rather a hybrid model of various degrees
of either component.

The amount of data-based input into a model design process is closely related
to its specific application. If the boundary conditions, the flow domain and the un-
derlying physics are well established, a physics-based model may be more suitable.
In contrast, in the presence of uncertainties regarding the geometry, the external
disturbance environment, or even the underlying physics, a data-based design pro-
cedure using observed measurements may be more appropriate.

A physics-based approach has been successfully applied in flow-control prob-
lems, which resulted in a large body of literature, see for example Moin & Bewley
(1994); Gerber et al. (2006); Barbagallo et al. (2009, 2012); Illingworth et al. (2011);
Semeraro et al. (2011).

In this thesis we focus on the data-based approach and consider two particular
methods: (i) a technique based on system identification and (ii) a procedure using
data assimilation. Sections 1.3 and 1.4 describe these two methods, their character-
istics, their applicability, and their distinct features.

1.2.3 Controller design

Once the objective functional has been selected and the model has been determined,
the control design can be formulated as an optimization problem: find a control
strategy that maximizes (or minimizes) the objective functional taking into account
the model behavior. In a first step, an appropriate space of admissible controllers
has to be defined. Examples include proportional controllers or controllers described
by a non-linear auto-regressive transfer function of given order.

The range of admissible controllers may impact the attainable control optimum.
If our controllers are restricted to proportional scalar controllers, the optimization
procedure may be fast and straightforward, but the performance may likely be poor.
A balance has to be struck between (i) a complex or high-dimensional controller
which may be highly effective, but difficult to identify and expensive to apply on-
line, and (ii) a simple or low-dimensional controller which may be easy to identify
and apply on-line, but inadequate in terms of performance.



14 Chapter 1. Introduction

1.3 Model design by system identification

Historically, system-identification techniques became popular in the 1980’s after
Ljung pioneered this field and produced a large body of literature and an identifi-
cation toolbox in MatLabr (see Ljung, 1988, and references therein) that made it
easy and convenient for industrial and academic applications. Following his work,
it is difficult to give a better definition of a system than the one offered in the
introduction of System identification: Theory for the user (Ljung, 1987).

In loose terms a system is an object in which variables of different
kinds interact and produce observable signals. The observable signals
that are of interest to us are usually called outputs. The system is also
affected by external stimuli. External signals that can be manipulated
by the observer are called input. Others are called disturbances and can
be divided into those that are directly measured and those that are only
observed through their influence on the output.

System identification refers to a family of techniques that identify the system be-
havior from input-output data sequences. These input-output relationships link the
actuation (input) to the different sensors (output), and the observable disturbances
to the variables of interest (output-output relationship). The result of system iden-
tification consists of a model that approximately describes the observable system
behavior.

Three user-supplied ingredients are required for system identification: (i) a model
structure, (ii) a learning and testing data sequence, and (iii) a fitting criterion.
In effect, system identification represents an optimization problem where we find
the best realization within our chosen model-structure which reproduces the data
sequence according to a fitting criterion.

1.3.1 Model structure

The model structure provides a set of admissible models, and the optimization will
identify a final model within this set. For this reason, a first decision has to be
made as to the precise type of model. Possible choices include, for example, state-
space models, frequency-domain transfer functions, continuous models, non-linear
Hammerstein-Wiener models, or auto-regressive models (ARX, ARMA, ARMarkov,
ARMAX, ARARX ARARMAX, OE Output Error, BJ Box-Jenkins, etc).

Each structure is particularly geared towards representing a specific type of
system behavior. For example, finite impulse response (FIR) models are particularly
apt at capturing delays and transient short-time behavior and are thus appropriate
for convection-dominated and stable flows. In contrast, non-linear Hammerstein-
Wiener models allow for input and output non-linearities, together with a linear
transfer function to represent the state-vector dynamics; they are particularly suited
for configurations with anemometry sensors and non-linear synthetic jets acting
on a linear fluid system. Within the fluid mechanics community, many different
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structures have been used for control design purposes, among them : Cortelezzi &
Speyer (1998); Juillet et al. (2013) using state-space models, Kegerise et al. (2002)
using finite- and infinite-impulse response models, and Williams et al. (2010) using
non-linear block models.

After a particular structure has been chosen, the order of the model needs to
be determined. The order of a model represents the number of degrees of freedom.
A Finite Impulse Response (FIR) structure of order 150 (i.e., with 150 Markov
parameters), contains 150 degrees of freedom, whereas a single-input single-output
(SISO) state-space model of order two contains eight degrees of freedom. Higher-
order models with more degrees of freedom are more likely to match complex data
sequences and thus can represent more complex system behavior, but are more
difficult to identify in a robust manner.

It is advantageous to supplement the choice of model and the choice of order by
physical arguments about the flow behavior of the system under investigation. Inher-
ent or assumed linear behavior should lead to an admissible set of linear models. For
example, a double pendulum can be described most appropriately by a second-order
ARX model. In the absence of physical arguments, a more mathematical approach
can be taken which favors among a suite of potential candidates a relevant model by
evaluating and ranking a robustness measured such as the Akaike Information Crite-
rion (AIC, see Akaike, 1974) or Minimum Description Length (MDL, see Rissanen,
1983). This will simultaneously determine the best order of the model.

1.3.2 Data sequence

The data sequence used in the identification is the observable part of the system’s
behavior, and therefore should be used to its fullest extent. In some cases, the
data sequences are given a priori and may cause limitations in the quality and ro-
bustness of the identified model. A better situation is given when a user-designed
input sequence can be implemented that can be judiciously tailored to account for a
particular system behavior or for specific flow or model characteristics. More partic-
ularly, if the length of the data sequence and the choice of sampling time are under
the control of the user, a more information-rich data sequence can be generated
which will yield a better model. For example, for identification techniques based on
a discrete Fourier transform (DFT), the length of the data sequence should exceed
the larger characteristic time-scale while the sampling time should fall below half
the smallest characteristic time-scale (conforming with the Nyquist-limit criterion).

Choosing an appropriate input sequence for system identification is a non-trivial
problem which remains at the center of many discussions within the system-identification
community (see Mehra, 1974; Kalaba & Spingarn, 1982). Common input signals in
system identification are: the step function, a sum of trigonometric functions, Auto-
Regressive with Moving-Averges (ARMA) sequences, and Pseudo-Random Binary
Signals (PRBS). The preference for a specific input signal is, among others, governed
by the noise-to-signal ratio, the data-sequence length, and the frequency response
of the system (see Ljung, 1987, for details).
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Broad-band signals are often most effective, if the system response is not fully
known. While white-noise forcing may cause a broad-band driving of the unknown
system, in practice it is often damaging to the actuator hardware. A pseudo-random
binary signal (PRBS) is a good compromise as its spectrum is sufficiently broad-
band, but its impact on the actuator is less harmful.

1.3.3 Fitting criterion

After the model structure and order have been chosen, and the input-output data
sequence has been recorded, the model parameters can be determined as the final
part of the identification procedure. An optimization problem can be formulated
based on a user-specified utility. Ideally, this utility should include information
about the controlled system and should produce an efficient control strategy. In
other words, the reproduction of the data sequence by the model is less relevant than
the controller’s performance. However, this goal is rarely achievable and alternative
formulations have to be resorted to in practice. Common choices for the fitting
criterion include the distance between a measured output and its estimation by the
model which is taken as a prerequisite for a proper controller performance. Most
often this distance is based on classic norms such as average square distance or
maximal distance. In the end, the identified model is the minimizer of the fitting
criterion.

1.3.4 Optimization for system identification

The actual model-identification step is an optimization problem: we find a model,
within the selected model structure family, which minimizes the fitting criterion.
The solution of this optimization problem calls for an algorithm which should be
closely related to the underlying model structure, as suggested in Ljung (1976, 2002).
If a full solution of the optimization problem is sought, the available techniques fall
under the category of Prediction-Error-Methods (PEM). Alternatively, if only an
approximate, and thus sub-optimal, solution is attempted, subspace identification
algorithms are often the method of choice, among others.

If the model structure is linear and the fitting criterion is explicitly and linearly
dependent on the model parameters (which holds true for Auto-Regressive with eX-
ogeneous parameters – ARX – and Finite Impulse Response – FIR – models, but not
for ARMA models with eXogeneous parameters, state-space, or Output Error mod-
els), the optimization simply reduces to a linear least-squares minimization. In this
case, the problem can be written in terms of an under-parametrized problem (in-
volving rectangular matrices), which can easily be solved using the Moore-Penrose
pseudo-inverse. In all other cases (e.g. for general forms of the fitting criterion
or for non-linear model structures), non-linear optimization algorithms have to be
considered. Typical algorithms, in the latter category, include the Newton-Raphson
method, gradient-based methods, or grid-search algorithms. Despite the consider-
able effort expended by these non-linear optimization algorithms, only local minima
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may be attained, at the expense of slow convergence, and substantial computational
cost. In addition, the first initial guess crucially affects the final convergence and
consequently the optimal solution.

Typically, for state-space model structures, PEM identification is prohibitively
expensive and yields only local minima. In this case, subspace identification, see
Katayama (2005), presents a more affordable alternative and provides suboptimal
results which are nonetheless preferred. Whenever possible, a linear formulation is
advantageous since the model parameters are more efficient to compute, and the
associated identification algorithms show a more robust performance.

1.3.5 System identification for flow control

In figure 1.5 the main steps and components of the system-identification procedure
are presented. The figure attempts to indicate how physics-based and data-based
information contribute at various stages of the overall algorithm (see the associated
colormap). We observe modules that are purely physics- or data-based, together
with modules of a hybrid nature that include physical insight as well as observed
measurements. A clear distinction between physics-driven or data-driven design is
case-dependent and has to be assessed according to the flow details. This latter am-
biguity is maybe best summarized by again quoting Ljung (1988) — this time from
his recommendation taken from the user’s guide to Matlab’s system-identification
toolbox:

Step 1, Looking at the Data: Plot the data. Look at it carefully. Try
to see the dynamics with your own eyes.

System identification is certainly a model design technique which can be applied
to a complex system with rather little knowledge of its physical behavior or response
characteristics. This advantage makes system-identification techniques attractive for
a wide range of general control problems. For this reason, we find applications of
system identification in process control, control of HVAC (Heating, Ventilation and
Air Conditioning), and robotics, among many others fields.

For this reason, it has developed into a mature application field with a substan-
tial body of literature covering specific applications or high-performance algorithmic
improvements. In contrast, system identification is a rather recent technique to ma-
nipulate wall-bounded shear flows, and this thesis attempts to make a contribution
towards the applicability, implementation, and performance evaluation of system-
identified flow control design.

1.4 Model design by data assimilation

Conceptually, there is little difference between data assimilation and system identi-
fication. Both techniques rely on an underlying model, observed data, and a fitting
criterion. In our case, system identification aims at providing a predictive dynam-
ical model around which an effective control strategy can be built, whereas data
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Figure 1.5: Data-based and physics-based components of the system-identification
procedure



1.4. Model design by data assimilation 19

assimilation will be used to extend under-sampled observations while satisfying a
physics-based constraint. Beyond the scope of this thesis, these two concepts are far
closer than what might be implied from the following chapters, and the difference
between them may often come down to linguistic details.

Considering the applications covered in this thesis, we can make the follow-
ing heuristic observations. In system identification, the parametric model structure
contains various mathematical assumptions such as linearity, causality, input-output
cross-correlation length. In data assimilation, the parametric model-structure con-
tains significantly more physical constraints such as incompressibility, or conserva-
tion of momentum, energy or passive scalars. In system identification, the dynamical
model links a few input signals to a few output signals. In data assimilation, a limited
number of measurements is related to a substantially larger number of extrapolated
output variables. Even though data assimilation is based on the same three ingredi-
ents as introduced for system identification, namely a model, observed data, and a
fitting criterion, in what follows we will briefly outline the main characteristics and
significance of these ingredients and point out relevant differences.

1.4.1 Model and its compliance

The model underlying data assimilation is commonly based on physical principles
expressed in terms of governing equations. In order to assimilate data, this model has
to be properly parameterized. Examples for this parametrization include the initial
conditions for time varying problems, material properties such as compressibility
or viscosity, or boundary conditions. A set of parameters is then used to drive a
given model output towards the observed data. In many cases the parameters are
difficult to obtain experimentally. For example, for turbulent flows, modeled by the
Reynolds-Averaged Navier-Stokes equations, the Reynolds stress tensor is difficult
to model or measure at a reasonable cost. It can however be recovered via data
assimilation by matching more accessible variables to their equivalent measurements.
In this respect, non-measurable and non-observable quantities can be determined
from measured data by observing the constraints given by the model.

This way, we may distinguish between three distinct data-recovery applications:
(i) the interpolatory computation based on coarsely-sampled or scattered data, (ii)
the extrapolatory extension of measured data beyond their domain of measurement,
and (iii) the calculation of state-vector components from partial or composite mea-
surements.

1.4.2 Data measurements

Whereas for system identification there exists a great deal of flexibility in processing
various data-types (for example, the raw current output from a hot-film sensor),
data-assimilation techniques are more stringent, as they can only process data for
which a model equation is available. In order to process secondary data signals, it is
necessary to convert them into variables that are tracked by the governing equations.
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This conversion often involves an empirical model and proper calibration.

1.4.3 Fitting criterion

As before, the fitting criterion represents the objective of the optimization problem.
For the data-assimilation case, this commonly involves the residual norm accounting
for the mismatch between measured and model-reconstructed data. In its simplest
case, a standard L2-norm is used, but a more sophisticated spatial or componentwise
weighting can be straightforwardly accommodated. The latter technique is often
applied to increase the accuracy near critical points such as, a separation point, a
reattachment location, and actuator position, or any other location with increased
demands on accuracy.

1.4.4 Optimization procedure

A non-linear governing equation as a constraint on the data-assimilation procedure
leads to a non-linear optimization problem. With it come typical issues such as,
increased computational costs, low convergence rates, convergence towards local
rather than global minima, and increased sensitivity to initial starting vectors. Many
of these disadvantages and challenges can be overcome with some numerical effort,
as evidenced by a long list of research articles, see for example Thévenin & Janiga
(2008); Mohammadi & Pironneau (2004), and references therein.

1.5 Impact of measurement uncertainties on data-based
models

In both system identification and data assimilation, the quality of the data plays an
important role. As the data quality impacts nearly all design steps, any uncertainty
in the data will influence the identified model parameters or the recovered variables,
and will ultimately affect the performance and robustness margins of the controller
(for system identification) or the accuracy and validity of the reconstructed flow
fields (for data assimilation). System identification and data assimilation are par-
ticularly attractive for processing experimental or real-life data; but these data are
often contaminated by deterministic or stochastic perturbations of unknown origin.
It is thus important to address the issue of how data uncertainty propagates through
the entire system-identification or data-assimilation process and manifests itself in
the respective output models.

A common procedure to deal with the influence of noise in the data is filtering.
This technique is most effective, if the frequency content and nature of the noise
source is known or can be rather accurately estimated. For system identification, the
filtering of incoming noise is inherent for under-parameterized models, i.e. models
whose order is too low to recover the learning data-set accurately. In this case, the
identified model acts as a filter.
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Due to the importance of uncertainty propagation during system-identification
or data-assimilation calculations, we develop and present a framework for the sen-
sitivity analysis of the model-design algorithm with respect to noise sources in the
processed data.

1.6 Outline

Chapter 2: System identification for flow control This chapter presents a
particular system-identification algorithm for control design of convection-dominated
flows. A finite-impulse response (FIR) model is postulated and identified from input-
output data sequences, after which a controller is designed based on a disturbance-
rejection approach and a feed-forward controller set-up.

Both Single Input Single Output (SISO) and Multiple Input Multiple Output
(MIMO) configurations are treated. The control performance is compared to the
Linear Quadratic Gaussian (LQG) design framework, and the theoretical equivalence
of the two algorithms for convection-dominated flows is demonstrated.

A second part focuses on the robustness of system-identification algorithms.
Measurement uncertainty is taken into account and its impact on the final model
is quantitatively estimated. As the identified model is used to estimate the con-
troller performance, the influence of measurement disturbances on the controller is
quantified as well.

Chapter 3: Linear control of an open shear layer, the limits of linear
identification? The third chapter applies the technique developed in chapter 2
to control an experimental flow over an idealized airfoil at Rec = 12500. First,
the controllability of the flow with respect to a disturbance-rejection algorithm is
assessed. The amplifier behavior of the shear layer and oscillator behavior of the von
Karman vortices have been found to be uncoupled. The convection-dominated shear
layer is then assumed to be controllable by a feed-forward disturbance-rejection
algorithm aiming at suppressing disturbances near the reattachment point of the
recirculation bubble. While this control approach could successfully achieve this
goal for numerical simulations of the linearized Navier-Stokes equations, the same
approach applied to an equivalent experimental set-up failed to stabilize the flow
due to inherent non-linearities at the chosen chord-based Reynolds number.

Chapter 4: Data assimilation of mean flows The last chapter focuses on
model design by data-assimilation algorithms. A theoretical framework for data
assimilation based on the Reynolds-Averaged Navier-Stokes equations is developed
using a direct-adjoint optimization algorithm to find a model that optimally complies
with the measured data. Three test cases have been considered: an experimental
turbulent pipe flow, a numerical simulation of flow around a cylinder, and exper-
imental flow around an idealized airfoil in a water tunnel. For the last example,
measurement uncertainties had a significant impact on the assimilated model, and
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a theoretical technique to cope with measurement-noise for data-assimilation ap-
plications is presented. All three aspects of data assimilation, i.e. interpolatory,
extrapolatory and recovery of state vector components, have been included.
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2.1 Introduction

As stated before, system identification is a data-oriented model design strategy,
which recovers the coefficients of a user-specified parameterized model structure
form observed input-output data sequences, with rather little physical insight re-
quired from the user. It has been successfully implemented in many different appli-
cations areas, but its impact on flow control problems is still in its infancy. Even
though a few encouraging studies already exist in the fluid dynamics literature (see
Rathnasingham, 1997; Weyer, 2001; Kegerise et al., 2002), the full potential of sys-
tem identification for flow control problems may not yet have been realized.

This chapter describes a system-identification algorithm together with a control
design based on disturbance rejection. Once the performance of such a controller
has been demonstrated, we develop a quantitative framework for the propagation
of uncertainties stemming from the data through the identification procedure and
assess the impact of uncertainties in the data on the final model robustness.

Previous research (see Barbagallo et al., 2012; Hervé et al., 2012; Juillet et al.,
2013) pointed towards an inherent difficulty in controlling shear flows dominated by
convection, their studies provided the motivation for a further and more detailed
look into control design for this type of flow. Additional past research also demon-
strated that standard control design algorithms such as state space identification
and LQG compensators seemed overly complicated for and unadapted to the con-
trol of convectively dominated flows. Furthermore, a large number of linear control
strategies, summarized under the term model predictive control (MPC, see Camacho
& Bordons, 2004), suggests a renewed investigation to find a proper design approach
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Figure 2.1: Contours of averaged perturbation energy for an excitation by three
upstream noise sources. Above, uncontrolled case; Below, controlled case.

for amplifier flows. Even though these techniques have been extended to non-linear
settings, we will limit ourselves to the control of linear systems by linear means.

Despite a great variety of underlying models, we will choose a simple Finite
Impulse Response filter (FIR) to represent the perturbation dynamics. This choice
has been motivated by the realization that convection in a finite domain is an in-
trinsically finite-time process, characterized by the transit time of perturbations
through the domain given by the location of the noise source and the placement of
actuators and sensors. The FIR model represents a convenient compromise between
model simplicity and thus ease of identification, and flexibility to capture all relevant
phenomenon of the flow (convection, delays, etc).

With the model structure chosen, we introduce a control design based on dis-
turbance rejection. To this end, a feed-forward approach is used that introduces a
properly designed control input based on upstream measurements of the incoming
perturbations such that, at a specified location downstream, the two signals (in-
coming perturbations and control) destructively interfere. The design of the control
strategy relies on a ratio of transfer functions and can be equally applied to single
input-output or multiple input-output configurations.

This technique has been applied to flow through an obstructed channel and has
been successful in suppressing disturbances arising from upstream noise sources. The
control results have been encouraging in terms of achieved performance (see figure
2.1) and have been found robust to off-design conditions. Since the entire system
identification and control-design procedure has been based on measured data, which
is readily available in physical experiments, this approach shows potential for an
application under realistic conditions.

Since system identification and subsequently flow control design heavily rely
on data-sequences, the data quality, fidelity and ability to represent pertinent flow
features seem crucial to a successful control design. In effect, we have to assume
that data, particularly data from experimental settings, contain both deterministic
and stochastic components whose origin is not part of the fluid system. These
perturbations contaminate the data-sequence, and it is important to assess which
impact they may have on the ultimate control performance as well as on robustness
margins. A common technique to deal with data-contamination is pre-filtering.
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While certain components of undesirable noise can be eliminated by filtering, this
procedure also impacts frequencies and times scales of physically relevant processes.

It appears difficult to make a clear distinction between relevant flow features
and undesirable noise sources, especially since they may appear on the same time-
or frequency-scale. For this reason, it may be more advantages to consider the
propagation of disturbances at all frequencies (modeled by white noise) through
the full identification and control-design process and to quantify the influence of all
frequencies on the final performance and robustness measures. In return, we can
recover time signals that are responsible for the most severe deterioration of control
robustness; a subsequent Fourier transform will give the spectral signature of the
most dangerous data-contamination.

The second article in this chapter is a study of error propagation stemming from
the data through all procedural steps of the system identification process. The map-
ping of uncertainties in the resulting model to robustness margins of the controller
is also given and taken as a quality measure of the design process. For simplic-
ity a ARMarkov Least-Squares (LS) identification scheme is chosen to illustrate
the algorithmic steps, but alternative and more complex underlying models can be
treated within the same framework. With ARMarkov/LS model fully identified, we
construct a general controller and quantify its performance and robustness limits.

As a motivational example, we consider the linear Ginzburg-Landau equation
controlled by an optimal LQG controller using a localized volume force. The control
objective is given by

J =
∞∑

k=0

‖y(k)‖22 + `‖u(k)‖22, (2.1)

with y(k) as the output signal, u(k) as the applied control, and ` as a user-specified
parameter that represents the cost of control, but mathematically acts as a regu-
larizing parameter in the optimization problem of the control design. We choose
governing parameters for the Ginzburg-Landau equation that assure an asymptoti-
cally stable behavior. For this case, two limiting values of ` have to be considered.
For `→∞, we penalize the control term in J such that ultimately no control effort
will be expended and u(k) = 0. This limit is referred to as the small gain limit. For
`→ 0, we apply a control signal without restrictions on its amplitude. This limit is
referred to as the large gain limit. For the Ginzburg-Landau equation the eigenval-
ues of the closed-loop (compensated) system are displayed in figure 2.2. In the limit
` → ∞, we recover the eigenvalues of the uncontrolled system. As the parameter
` is reduced, the closed-loop system becomes even more stable, even though some
individual eigenvalues (for example, eigenvalue 3 in figure 2.2) move towards the
unstable half-space, in our case the exterior of the unit disk. In the large gain limit
(` → 0, with no penalty on the control), the nominal control performance, defined
as the performance of the compensated true system that corresponds to our iden-
tified model, is expected to improve, as control energy is expended more liberally.
However, due to data-inaccuracies the error bars around this nominal performance
increase drastically as ` tends to zero which can ultimately cause significantly re-
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Figure 2.2: Eigenvalues of the controlled Linear Ginzburg-Landau system. Red un-
controlled system; black infinite gain limit for the controlled system; blue controlled
system with a gain between the two limits

duced stability margins or, in the worse case, control failure by instabilities. This
behavior is reflected in the loss of stability of the third eigenvalue in figure 2.2. This
simple example clearly demonstrates the importance of studying the propagation of
uncertainties and data-inaccuracies (i.e. the error bars around the nominal control
performance) during the identification and control design process.

An alternative and common way of visualizing robustness margins for closed-loop
systems is the Nyquist diagram, i.e. a frequency-parameterized curve in the complex
plane describing the open-loop transfer function of the system. The closeness of the
curve to the point (−1, 0) in the complex plane can be used to determine the positive
and negative gain margins; through a similar procedure the phase margin can be
calculated.

Figure 2.3 displays a nominal Nyquist curve in the complex plane (black solid
line), together with the 95% likelihood-bands (about two standard deviations). From
this figure it can be seen that even a small contamination in the data can result in a
markedly reduced gain margin, as indicated by the arrows. In our case, we observe
a 50% reduction in the gain margin for data perturbations that result in a model
within two standard deviations of the nominal value.



2.2. Article 1: Data-based model-predictive control design for
convectively dominated flows 27

Figure 2.3: Nyquist plot of the Open-Loop Transfer Function. Exact model: solid
red line; nominal model: solid black line; and 95% likelihood bands centered around
the nominal value: dashed blue line. The arrows show the nominal and true gain
margins.

2.2 Article 1: Data-based model-predictive control de-
sign for convectively dominated flows



Under consideration for publication in J. Fluid Mech. 1

Data-based model-predictive control design
for convectively unstable flows

NICOLAS DOVETTA, FABIEN JUILLET AND PETER
J. SCHMID

Laboratoire d’Hydrodynamique (LadHyX), Ecole Polytechnique, 91128 Palaiseau, France

(Received )

Convection-dominated or convectively unstable flows are characterized by the amplifica-
tion of disturbances over a broad range of scales as they propagate in the downstream
direction. Controlling this type of flows favors a feedforward configuration that actuates
on the flow based on information provided by an upstream sensor. A simple and effective
identification and control procedure, based on model-predictive concepts, is proposed
that extracts the proper transfer functions from input-output data-sequences which are
then used to design disturbance-rejection control laws. It provides a less complex and
more efficient alternative to commonly applied LQG-methods. This technique is applied
to a simple model problem as well as a two-dimensional obstructed channel flow; in both
cases, satisfactory control performance can be demonstrated. Since the implementation
of this technique merely requires input-output measurements, it is not only applicable to
numerical, but also to experimental data.

Key words:

1. Introduction
It has long been acknowledged that flow control is a key technology in fluid systems to

reduce drag, suppress instabilities, enhance efficiencies or increase operational envelopes,
to name but a few potential applications. For this reason, flow control has attracted a
great deal of attention. The current state of this discipline is characterized by a wide
range of techniques and approaches brought to bear on specific flow configurations. In
particular, linear control has received strong interest as evidenced by a large body of
literature (see, e.g., Kim & Bewley 2007; Williams & Rowley 2006; Bagheri & Henningson
2011). It most readily applies to flow situations that are either globally stable or only
sightly supercritical, such that a linearization about a steady equilibrium point can be
justified.

The choice of a successful control strategy critically depends on the type of flow be-
havior. For example, relying solely on downstream sensors to control upstream-generated
perturbations in a convection-dominated flow would appear futile. These types of flow —
which will be considered in this article — are indeed more suited for feedforward than for
feedback control (Juillet et al. 2013). Common techniques to design feedforward control
strategies fall under the category of Model Predictive Control (MPC; Qin & Badgwell
2003; Gerber et al. 2006), examples of which are the Model Predictive Heuristic Controller
algorithm, originally developed in Richalet et al. (1978) but also well presented in Cama-
cho & Bordons (2004) and Zheng (2010), and the step-response-based Dynamic Matrix
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Controller (DMC; see Cutler & Ramaker 1980). Even the familiar Linear Quadratic Gaus-
sian (LQG) control (Kalman 1960) can be interpreted within the MPC framework (see,
e.g., Qin & Badgwell 2003; Camacho & Bordons 2004). This latter technique has been
used extensively in the flow control literature due to its theoretical foundation and prov-
able optimality. Using LQG control for convection-dominated flow, where a feedforward
control seems more appropriate and practical, is rather cumbersome: first, two Riccati
equations for the control and Kalman gains need to be solved, and, second, a model for
the system noise is required. Whereas the former can be resolved by efficient algorithms
and model reduction efforts, the latter poses a far greater challenge that is not easily
overcome but, nonetheless, is a deciding factor for the ultimate control performance.
In contrast, a Model Predictive Heuristic Controller (MPHC) is significantly simpler to
design as only a least-squares problem is required. At the root of this technique, finite-
impulse responses are used to describe the fluid system. These impulse responses are
commonly obtained from system-identification algorithms.

System identification is concerned with the extraction of a model of the fluid sys-
tem from input-output data sequences only. Typical system identification techniques are
subspace identification techniques (van Overschee & de Moor 1996; Katayama 2005) or
classical least-squares fitting techniques (Ljung 1987). Among the subspace identifica-
tion techniques, the Canonical Variate Analysis algorithm (CVA; Larimore 1983, 1990),
the Multiple-inputs and multiple-outputs Output-Error State sPace algorithm (MOESP;
Verhaegen & Deprettere 1991) and the Numerical algorithms for Subspace State Space
System IDentification (N4SID; van Overschee & de Moor 1994) are the most widely
used. All these techniques identify the system directly in its state-space form. Alterna-
tively, a specific model for the system can be prescribed: for instance, a simple Finite
Impulse Response model (FIR), an AutoRegressive model with eXogeneous inputs (ARX;
Huang & Kim 2008)) or an AutoRegressive Moving-Average model with eXogeneous in-
puts (ARMAX; Hervé et al. 2012). The unknown coefficients in the chosen model are
then determined by fitting the true output measurements to the ones predicted by the
model, using a least squares algorithm. In convection-dominated flows, long delays are
typical due to the physical separation of the input and output components. For this rea-
son, describing this type of systems by finite impulses responses may be more appropriate
than enforcing a state-space form, even though the latter may resemble more closely a
familiar “governing equation”-format.

In a second step, the controller can be designed using a disturbance rejection argument
based on the identified finite impulse response (FIR) model. Regularization techniques
may be necessary for a robust control performance. Alternatively, a state-space model
may be recovered from the FIR-model via a procedural step referred to as system real-
ization, after which a controller can be designed using Riccati-techniques.

In this article, a multiple-input multiple-output (MIMO) data-based control design
procedure, particularly suited for convection dominated flows, is proposed and validated.
The procedure is linear and is intended to control flows that are globally stable, but react
sensitively to external perturbations and noise sources. Typical examples in this category
are pipe or channel flows, boundary layers, co-flow mixing layers or homogeneous jets, at
subcritical Reynolds numbers, but any shear flow that is mainly governed by a convective
process can benefit from the control setup and design illustrated in this article.

After a short introduction to disturbance rejection by feedforward techniques, the
finite-impulse-response (FIR) least-squares identification procedure is presented. First, a
single-input single-output (SISO) model predictive heuristic control algorithm is obtained
for the design of an optimal control law, which is subsequently extended to accommodate
multiple-input and multiple-output (MIMO) signals. Then, this algorithm is applied to

2.2. Article 1: Data-based model-predictive control design for
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Figure 1. Feedforward control setup for convectively dominated flows. An unknown disturbance
environment w is convected past the spy-sensors si which estimate the characteristics of w. The
actuators ui then manipulate the flow such that the control-objective, given by the downstream
sensors yi, is met.

a convection-dominated flow modeled by the linear Ginzburg-Landau equation. Possible
extensions and implementation details of the technique are mentioned at the end of the
section. The algorithm, in its MIMO-form, is then applied to a two-dimensional, linearized
finite-element simulation of a channel flow with two obstructions and its effectiveness is
evaluated. Attention is also directed towards user-specified weights for the input and
output signals. Summarizing remarks conclude this article.

2. Control design based on data-sequences
Convectively dominated flows are characterized by information propagation largely in

the downstream direction. Consequently, a control setup, respecting this feature, has
to be designed in a feedforward configuration. The goal of flow control efforts is the
reduction of disturbance levels measured by downstream sensors y, also referred to as
cost sensors. Since the source of these disturbances is assumed to be mainly upstream,
actuators u have to be placed upstream of the sensors. To complete the control setup,
spy-sensors s will be placed upstream of the actuators. Their role is the detection and
estimation of the incoming disturbance environment – information that is valuable for an
effective control design u to accomplish our cost objective (measured by y). The resulting
configuration of spy-sensors, actuators and cost-sensors is depicted in figure 1.

The fluid system is then characterized by two sets of input (the known actuator signals
u and the unknown disturbance environment w) and two sets of output (the measure-
ments y yielding the control objective and measurements s providing information about
the incoming disturbances w). For the sake of simplicity, but without loss of generality,
only single input- and output-signals are assumed; a generalization to multiple inputs
and outputs will be addressed later.

The setup above can be formulated in the terms of transfer functions according to

y = Gwyw + Guyu (2.1)

which describes the dependency of the downstream cost measurement y on the distur-
bance environment w and the control u. Similarly,the spy-sensor output s is expressed
in terms of the true disturbance environment w by writing

s = Gwsw. (2.2)

Owing to the convective nature of the flow, no influence of the control u on the spy-
sensor s is assumed. Ultimately, we wish to determine a transfer function Csu which links
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information from our spy-measurements s to the actuation u, i.e.

u = Csus. (2.3)

This latter transfer function has to be designed such that our cost-objective is satisfied.
In our case, we wish to minimize the disturbance energy at the cost-sensor location and
thus choose y = 0 (for all times) as our control objective. Upon substitution of (2.3)
and (2.2) into (2.1), we arrive at an expression linking the output y to the input w
according to

y = (Gwy + GuyCsuGws)w. (2.4)
For a controller that suppresses the output signal y for all times and independent of the
disturbance environment w, we have to require the expression in the parenthesis to be
identically zero which yields a control law u of the form

u = −G−1
uy GwyG−1

wss ≡ Csus. (2.5)

At this point, a discussion about the existence of the inverse transfer functions, their
minimal-phase properties and their compliance with causality is postponed to a later
section. Instead, we proceed by introducing techniques to identify the involved transfer
functions from input-output data sequences. Any transfer function requiring information
about the unknown disturbance environment w, such as Gwy and Gws, cannot be deter-
mined under realistic conditions. Coincidentally, the control design (2.5) only requires
the composite transfer function GwyG−1

ws . Using relation (2.2) between w and s we have

y = Guyu+ GwyG−1
wss. (2.6)

Since the signals u, s and y are readily accessible (e.g. from an experiment) we can
determine the two transfer functions Guy and GwyG−1

ws . Their identification by processing
finite-impulse responses (in the temporal rather than frequency domain) is the focus of
the next section.

2.1. Finite-impulse responses (FIR)
To take advantage of a data-based approach, an input-output data sequence of N samples
will be recorded from which the transfer functions will be determined. This latter process
can be divided into two steps: a model-structure for the system’s impulse responses has
to be chosen first, after which a fitting procedure will determine the inherent parameters
of the selected model.

It is important to choose an input signal u that properly excites the inherent fre-
quencies of the system and thus provides a complete input-output map that accurately
represents the response behavior of the system to a range of harmonic excitations. To
this end, a pseudo-random binary signal (PRBS), a chirp signal or, simply, white noise
are appropriate and common choices of a frequency-rich input signal.

2.1.1. FIR model structure
Among the many options to represent a transfer function of a linear system, one of the

most straightforward is the finite-impulse response description. For discrete times, this
description links the present output to past inputs in the form

y = Guyu ⇒ y(k) =
∞∑

j=0

Hju(k − j) (2.7)

where y(k) is a short-form for y(k∆t) with ∆t as the discrete time-step, and Hj stands
for the jth impulse response coefficient (also referred to as the jth Markov parameter).

2.2. Article 1: Data-based model-predictive control design for
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Under the assumption that, after a sufficient time, the influence of past actuation on the
present measurement is negligible, we can truncate the above expression and arrive at
the Finite Impulse Response (FIR) model of order µ

y(k) =
µ−1∑

j=0

Hju(k − j) (2.8)

where only the µ first Markov parameters are accounted for. For single input and sin-
gle output signals, the Markov parameters are scalar; for nu input signals u and ny

measurement signals y the Markov parameters will be ny × nu matrices.
For our control configuration (see figure 1) two transfer functions need to be identified:

Guy and GwyG−1
ws . Consequently, two sets of Markov parameters, denoted by Hu and Hs,

describe the FIR input-output relation,

y(k) =
µu−1∑

j=0

Hu
j u(k − j) +

µs−1∑

j=0

Hs
j s(k − j). (2.9)

Even though each term of the FIR model can have a different order, for the sake of
simplicity, we will take µu = µs = µ for the remainder of this study.

2.1.2. Least-squares identification
Denoting by ŷ(k;Hu, Hs) the output predicted by the identified model, the identifi-

cation error E may be written as the L2-norm distance between the exact (measured)
output y and its estimation, i.e.,

E(Hu, Hs) =
1
N

N∑

k=1

‖y(k)− ŷ(k;Hu, Hs)‖2 . (2.10)

The identification procedure then corresponds to the minimization of E, resulting in
the set of Markov parameters Hu, Hs. Among the many different ways to solve this
optimization problem, the pseudo-inverse is used to arrive at the solution. In vector form
the identification error can be written as

E =
1
N
‖Y −HΦ‖2 (2.11)

with

Y = (y(µ), y(µ+ 1), . . . , y(N)) (2.12a)

H =
(
Hu

0 , . . . , H
u
µ−1, H

s
0 , . . . , H

s
µ−1

)
(2.12b)

Φ =




u(µ) u(µ+ 1) · · · u(N)
u(µ− 1) u(µ) · · · u(N − 1)

...
...

...
u(0) u(1) · · · u(N − µ)

s(µ) s(µ+ 1) · · · s(N)
s(µ− 1) s(µ) · · · s(N − 1)

...
...

...
s(0) s(1) · · · s(N − µ)




. (2.12c)
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Based on this formulation, the set of Markov parameters which minimizes the L2-
identification error is obtained using the pseudo-inverse of the data matrix Φ according
to

H = Y Φ†. (2.13)

Using the identified Markov parameters H we can form the two sought-after transfer
functions Guy and GwyG−1

ws based on our FIR-representation and determine the controller
according to u = −G−1

uy GwyG−1
wss = Csus. Thus, the remaining step is to apply the inverse

of Guy (by left multiplication) to the composite transfer function GwyG−1
ws ; this final step

is the focus of the next section.

2.2. Disturbance rejection control design

For realistic cases the inversion of the transfer function Guy may be complicated by
the fact that for some frequencies the modulus of the transfer function is nearly zero,
resulting in excessively large control amplitudes following the inversion. Regularization
techniques have to be employed to avoid these situations. The idea is to invert the transfer
function only for frequencies where the transfer-function modulus is above a pre-set
threshold value. This technique is equivalent to singular-value thresholding when forming
the pseudo-inverse of the transfer function. In our case, the transfer function is expressed
as a finite-impulse response in the time domain, and the algorithm of Model Predictive
Heuristic Control (MPHC) (see, e.g., Camacho & Bordons 2004) is most conveniently
applied to arrive at a regularized inverse and a robust expression for the transfer function
G−1

uy GwyG−1
ws . The MPHC approach determines the Markov parameters of the transfer

function Csu using a variational principle: we seek a signal u which minimizes the cost
functional J given by

(SISO) J =
µ−1∑

k=0

y(k)2 + α

µ−1∑

k=0

u(k)2, (2.14a)

(MIMO) J =
1
2

µ−1∑

k=0

no∑

i=1

βiyi(k)2 +
1
2

µ−1∑

k=0

ni∑

j=1

αjuj(k)2. (2.14b)

The first cost functional is relevant for a single-input-single-output (SISO) configura-
tion, whereas the second expression allows for multiple-input and multiple-output signals
(MIMO), where no and ni are respectively the number of cost-sensors and the number of
actuators. In either case, the aim is to compute a signal u which will cancel an impulse in
s. Furthermore, the cost functional covers a time span of µ time steps (the length of the
impulse response from s to reach y) and represents a balance between the compensated
signal and its associated control. The balancing constant α (for the SISO-case) account-
ing for the relative weight of the control cost and the measured signal is an analog to the
threshold value for the frequency cut-off (in the frequency domain). In the MIMO-case,
the cost of the different actuators αj and the weights for the measured signals βi allow
a great deal of flexibility to account for special features of the physical system under
consideration.

2.2. Article 1: Data-based model-predictive control design for
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2.2.1. Optimal actuation: single input, single output (SISO)
Starting with the cost functional for the SISO-case, we use the additional fact that the

signal s is given by an impulse and that y is given by (2.9) and obtain

J =
µ−1∑

k=0


Hs

k +
µ−1∑

j=0

Hu
j u(k − j)




2

+ α

µ−1∑

k=0

u(k)2. (2.15)

Introducing the impulse response coefficients (Markov parameters) corresponding to the
transfer function Csu as Lk we can write

u(k) =
µ−1∑

j=0

Ljs(k − j). (2.16)

Again, for the special case of an impulse in s, that is s(0) = 1 and s(k) = 0 for k > 0,
we arrive at the simplified relation

u(k) = Lk−1. (2.17)

Returning to (2.15) we obtain, using (2.17), an expression for the cost functional J in
terms of Markov parameters only. We have

J =
µ−1∑

k=0


Hs

k +
µ−1∑

j=0

Hu
j Lk−j−1




2

+ α

µ−1∑

k=0

L2
k. (2.18)

The desired transfer function Csu has to be causal which requires that for k < 0, the
Markov parameters Lk have to be identically zero. We proceed by defining the transposed
(upper triangular) Toeplitz matrix TT containing the Markov parameters of Guy, i.e.,

TT =




Hu
0 Hu

1 · · · Hu
µ

Hu
0 · · · Hu

µ−1

. . .
...
Hu

0


 . (2.19)

Furthermore, we introduce S as the vector of Markov parameters of Gsy,

S = (Hs
0 , H

s
1 , . . . , H

s
µ−1)

T , (2.20)

and L as the vector of (unknown) Markov parameters of the desired transfer function
Csu, that is,

L = (L0, L1, . . . , Lµ−1)T , (2.21)
and can then reformulate the cost functional J in the more compact form

J(L) = ‖S + TL‖2 + α‖L‖2 → min (2.22)

which attains its minimum for (see appendix A)

L = −(TT T + αI)−1TT S. (2.23)

We recognize the expression (TT T+αI)−1TT as a Tikhonov regularization of the pseudo-
inverse of the Toeplitz matrix T, where α acts as the Tikhonov regularization parameter
that avoids large coefficients in L stemming from the ill-posedness of the original problem.
Low values of α enforce a low frequency-cutoff threshold and result in large-amplitude
actuation; large values of α yield low-amplitude (but maybe ineffective) actuation.
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The desired transfer function of the controller is determined directly from (2.23): the
Markov parametersHu andHs have been identified earlier, which makes the computation
of L straightforward. With L determined, the optimal control for disturbance rejection is
given by the application of the transfer function to the measured signal s according to

u(k) =
µ−1∑

j=0

Ljs(k − j). (2.24)

This expression concludes the computational procedure for the design of a controller —
from measured data-sequences — that optimally acts on the flow to suppress the signal
energy downstream.

2.2.2. Optimal actuation: multiple inputs, multiple outputs (MIMO)
This generalization to multiple inputs and/or outputs is very similar to the previous

SISO case; the optimization procedure is equivalent, but the derivation of the cost func-
tional with respect to the unknown Markov parameters is rather arduous. Starting with
the cost functional

J =
1
2

µ∑

k=1

no∑

i=1

βiyi(k)2 +
1
2

µ∑

k=1

ni∑

j=1

αjuj(k)2 (2.25)

which, upon analogous substitution of the Markov parameters, becomes

J =
1
2

no∑

i=1

βi




ns∑

k=1

∥∥∥∥∥∥
Ski +

ni∑

j=1

TijLjk

∥∥∥∥∥∥

2

+

1
2

ni∑

j=1

αj

(
ns∑

k=1

‖Ljk‖2
)
. (2.26)

In this expression, Tij denotes the transpose Toeplitz matrix of the Markov parameters
of the transfer function from the control uj to the sensor yi, and Ski stands for the vector
of Markov parameters of the transfer function from the spy sensor sk to the cost sensor
yi. Finally, the terms Ljk represent the Markov parameters of the controller (from spy
sk to actuation uj), the quantities that have to be determined.

As before, it is convenient to formulate the minimization problem for J in matrix form
which then allows a simple solution in terms of a pseudo-inverse. For this reason, we
introduce

Jk(L1k, L2k, . . . , Lnsk) =
1
2

no∑

i=1

βi




∥∥∥∥∥∥
Ski +

ni∑

j=1

TijLkj

∥∥∥∥∥∥

2

+

1
2

ni∑

j=1

αj

(
‖Ljk‖2

)
(2.27)

which simplifies (2.26) to

J =
ns∑

k=1

Jk(L1k, L2k, . . . , Lnik). (2.28)

From this we conclude that the minimization of J with respect to Lij is equivalent to the
minimization of each individual Jk with respect to Lik and that the controller associated
with each spy sensor can be designed independently. We proceed by defining

T =




T11 T12 . . . T1,ni

T21 T22 . . . T2,i

...
...

. . .
...

Tno,1 Tno,2 . . . Tno,ni


 (2.29a)
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(2.29b)

Sk =




Sk,1

Sk,2

...
Sk,no


 Lk =




Lk,1

Lk,2

...
Lk,ni


 (2.29c)

which brings the individual cost functionals (2.27) into the compact form

Jk = ‖B(Sk + TLk)‖2 + ‖ALk‖2. (2.30)

with

B =




√
β1Iµ 0 . . . 0

0
√
β2Iµ

. . .
...

...
. . . . . . 0

0 . . . 0
√
βno

Iµ




A =




√
α1Iµ 0 . . . 0

0
√
α2Iµ

. . .
...

...
. . . . . . 0

0 . . . 0 √
αni

Iµ



.

(2.31)
including the weight measures βk and αk. The minimization of Jk with respect to the
controller Markov parameters Lk is then simply a matter of linear algebra resulting in

Lk = −(TT B2T + A2)−1TT B2Sk. (2.32)

The solution of this optimization is similar to the SISO case, except for the appearance
of weight matrices A and B accounting for the specific balance of terms in the cost
functional. In a last step, the control laws for each actuator uj (j = 1, ..., ni) can be
written as

uj(p) =
ns∑

k=1

µ−1∑

i=0

Lkjsk(i− p) (2.33)

which concludes the design process for the MIMO case.

2.3. Validation on a simple example
Before applying the above control design strategy to a more realistic flow case, we will
first validate its effectiveness on a simple, yet fluid-related model problem. The key
steps in the design of a SISO, model-predictive control strategy can be summarized
as follows: (i) We force the system with a broadband control signal u and record the
resulting output signals s (representing the unknown upstream disturbance environment)
and y, as well as the control input u. (ii) From these data-sequences, we identify the
impulse response coefficients (Markov parameters) based on a FIR-model using a least-
squares technique (see equ. (2.13)). (iii) Based on the identified transfer functions Guy

and GwyG−1
ws , we determine the impulse response coefficients (Markov parameters) Lk

of the control transfer function Csu using a variational approach with (2.23) as the cost
functional. (iv) Using the coefficients Lk and (2.24), an optimal control law results linking
the input signals s to an actuator signal u that optimally suppresses the cost-sensor energy
given by y.

These procedural steps will be followed for the design of a disturbance rejection con-
trol law for the Ginzburg-Landau equation. This equation is a popular choice for bench-
marking control schemes, since it contains advective, dissipative, dispersive and unstable
terms, thus mimicking (with a substantially reduced number of degrees of freedom) the
fundamental, underlying processes of many fluid systems. For our case, the parameters
of the equation have been chosen to replicate the behavior of a convectively dominated
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Figure 2. Setup of a control problem for the Ginzburg-Landau equation.
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Figure 3. Left :Identified impulses responses, Guy (dashed) and GwyG−1
ws (plain). Right :

computed impulse response of the controller Csu.

(amplifier) flow (see Roussopoulos & Monkewitz 1996). We have

∂ψ

∂t
− ωkkk0

∂ψ

∂z
− i

2
ωkk

∂2ψ

∂z2
+ i

(
ω0 + ωkk

k2
0

2

)
ψ = 0. (2.34)

The layout of the control problem based on the Ginzburg-Landau equation is shown in
figure 2. The upstream noise disturbance w is convected in the streamwise x-direction
and is measured by the sensor s. The actuation u aims at reducing this disturbance so
that the signal y at the cost sensor location is minimized. The dotted line symbolizes the
spatial disturbance energy distribution for the uncontrolled case.

Working through the design procedure, the identified FIR representation of Guy and
GwyG−1

ws are displayed in figure 3; quantitatively, the residuals from the identification of
Guy and GwyG−1

ws are less than 0.5% in either case. It is noteworthy that the controller’s
transfer function approximates a delay combined with an opposition action. Finally, fig-
ure 4 shows space-time diagrams of the energy magnitude (starting with an impulse
applied at the noise location) with the controller switched off (figure 4(a)) or on (fig-
ure 4(b)). The controller efficiency (for α = 0.01) is approximately 97%. After applying
control, the signal measured by the cost sensor is only a 1/20-th of the uncontrolled
signal.

2.4. Additional remarks, implementation issues and extensions of the method
We recall that finding the optimal model-predictive controller for disturbance rejection
is equivalent to computing the transfer function Csu = −G−1

uy GwyG−1
ws which links the

sensors measurements s to the actuator signal according to u = Csus. For this procedure
to yield feasible results, causality constraints have to be respected. For purely convective
flows the transfer functions introduced above can be thought of as approximations of

2.2. Article 1: Data-based model-predictive control design for
convectively dominated flows 37



Model-predictive control design for convectively unstable flows 11

Space

T
im

e

10 20 30 40 50 60 70 80 90 100

50

100

150

200

250

300

350

400

450

Space

T
im

e

 

 

10 20 30 40 50 60 70 80 90 100

50

100

150

200

250

300

350

400

450

Energy magnitude Location of disturbances Sensor upstream Actuation Cost sensor
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Figure 5. Example of a feedforward configuration that satisfies the causality constraint and
hence is controllable by the proposed algorithm.

delay operators; for example, Guy corresponds to a forward translation over τuy time
units while G−1

ws can be represented as a translation backward in time. The final control
transfer function Csu is thus describes a time delay of τsu = −τuy + τwy − τws which is
only sensible if it is positive, or if τwy > τuy +τws. This causality constraint, expressed in
terms of time delays for convective systems, has implications for the placement of sensors
and actuators to ensure an effective control configuration. A feedforward configuration
for a more complex geometric setup (e.g., the one displayed in figure 5) can be treated
analogously by the technique introduced above, as long as this constraint is accounted
for.

It is worth pointing out that the transfer function Csu = −G−1
uy GwyG−1

ws can be com-
puted by a variety of algorithms: in the time domain, in the frequency domain, or using
other model structure, such as state-space representations. All those techniques are mu-
tually consistent and should give equivalent results, even though the individual imple-
mentation details may vary. We have chosen the MPHC-approach for its simplicity, ease
of implementation and effectiveness. In a similar vein, the computation of the impulse
response coefficients can also be accomplished with a wide range of available methods,
such as, for example, ARX (Gerencsér et al. 2009), ARMarkov (Akers & Bernstein 1997),
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subspace identification (Katayama 2005) or any other linear system identification algo-
rithm (see Ljung 1987). The overall procedure, however, is identical to the one introduced
above, even though slight variations in the convergence rate or statistical properties of
the errors are conceivable.

Under the assumption of a pure feedforward configuration (the information only travel
in one direction), stability — but not performance — of the controlled system is assured.
If this assumption is violated, however, robustness issues arise. In this case, a feedback
from the controller u to the sensor s can be modeled by a transfer function of the form

s = Gwsw + Gusu =
Gws

1− GusCsu
w. (2.35)

The non-zero term Gus can give rise to divergences in the sensor s which subsequently
impact the control signal u. This divergence occurs when GusCsu approaches unity; the
minimum distance to this singularity can be interpreted as a robustness margin of the
controlled system. A more detailed analysis of robustness margins can be found in Dovetta
et al. (2011).

An implementation concern stems from the signal delay caused by the convective
nature of the flow: due to causality, signals generated upstream will have an impact on
measurements downstream after a delay that can be estimated by the convection speed
and the distance between upstream and downstream signal location. This delay can be
accounted for explicitly in the computation of the respective transfer functions. In this
manner, one avoids the calculation of unnecessary zero Markov parameters that reflect
the time delay in the various impulse responses.

Placing multiple spy sensors in a MIMO configuration appears to be a prudent way of
extracting more information about the unknown upstream disturbance environment and
is expected to improve the effectiveness and performance of the disturbance rejection
control. However, the cost of this procedure has to be taken into consideration, since
we aim at a real-time implementation of the feedforward control which may become
prohibitive with a large number of sensors. In this latter case, redundant information
from the spy sensors should be removed. Even though this objective poses a non-trivial
problem, various approximate options exist. The multiple signals could be combined via
a linear combination to yield a smaller number of filtered (noise-reduced) spy signals.
Alternatively, the estimation error for all combinatorial sensor configurations can be
computed and only the most performing combinations could be retained. A far more
efficient approach is based on the sequential evaluation of the rms-difference between the
estimated signal ŝ2(s1) based on retained spy sensors s1 and the true signal s2 at the
same location. If this value falls below a given threshold (for example, related to the
measurement noise), the sensor s2 is eliminated, since most of its contribution is already
captured by s1.

3. Application to two-dimensional obstructed channel flow
We intend to test the proposed control design technique MPHC on a more challeng-

ing case and chose a configuration depicted in figure 6 with a MIMO setup. The two-
dimensional channel has two rectangular-shaped obstructions that cause flow separation
and recirculation regions. Nonetheless, the flow is convectively dominated and is thus a
suitable application of feedforward control. Included in figure 6 is also the location of
the sensors s1 and s2, the actuators u1 and u2, as well as the performance sensors y1
and y2. Causality constraints have been observed in the placement of these elements.
The flow is excited upstream with multiple high-dimensional broad-band noise sources.

2.2. Article 1: Data-based model-predictive control design for
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Figure 6. Flow in an obstructed two-dimensional channel; the base flow is visualized by the
streamwise velocity, and the location of sensors and actuators is indicated.
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Figure 7. Contours of averaged perturbation norm, in response to excitation by the three
upstream noise sources.

Our numerical experiment is is based on the Navier-Stokes equations linearized about a
steady base flow. Upstream perturbations are initially damped, but are then re-amplified
(due to a Kelvin-Helmholtz instability) in the shear regions near and downstream of the
obstructions. The response of the flow to excitation by the noise sources, measured by
the average perturbation norm, is shown in figure 7; the aim of our control efforts is the
minimization of the fluctuating signals measured by the sensors y1 and y2.

3.1. Identification and control
Numerical experiments have been performed with a white noise actuator signal, from
which all necessary impulse responses have been identified using (2.13). Four of the total
eight identified impulse responses are shown in figure 8. In particular, the identified
impulses responses from the spy sensors s1 and s2 to the cost sensor y2 (see figure 8(b))
appear far noisier compared to its equivalent in the Ginzburg-Landau case. Part of this
phenomenon can be attributed to the more complex flow configuration yielding more
complex transfer functions Gwy and Gws, which also reflects into the product GwyG−1

ws . A
second reason is more of a numerical nature: by the time the broad-band noise w reaches
the location of the respective spy sensors it has lost a substantial part of its frequency
content, causing the input s1,2 into the identification algorithm to be not as rich in
frequency as desired. The resulting least-squares problem can thus be ill-conditioned. To
compensate for this difficulty, lower cut-off thresholds for the truncation of the singular
values of Φ in (2.13) have to be chosen. As a consequence, small oscillations can appear
in the FIR representation of the associated transfer function, evident in figure 8(b).

With all necessary transfer functions identified, a control strategy can be designed to
minimized the signals at y1 and y2. For simplicity, the weight coefficients for the actuators
and performance sensors have been chosen as α1 = α2 = 0.01 and β1 = β2 = 0.5. The
controller designed with these parameters has been attached to the numerical simulation,
and the controlled flow is represented in figure 9, visualized by the averaged perturbation

40 Chapter 2. System identification for flow control
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Figure 8. Identified impulse response functions: (a) response measured at y2 for an impulse
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impulse in s1 (continuous line) and s2 (dashed line).
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Figure 9. Averaged perturbation norm of the controlled flow in an obstructed channel flow.
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Figure 10. On the left: Actuations u1 (red) and u2 (blue) standard deviation when the flow
is designed for actuation penalty weights α1 = α2 ≡ α varying from 0 to 0.015. On the right:
Corresponding attenuation on y1 (red) and y2 (blue).

norm. The perturbation flow has been drastically reduced, which is apparent from a
comparison with the contour plots of the uncontrolled flow in figure 7 (the same colormap
has been used). More quantitatively, the rms-value of the signals y1 and y2 has been
reduced by more than 80%.

The effectiveness of the disturbance-rejection feedforward control is very encouraging;
we will next explore the flexibility of our MIMO setup and investigate the influence of
the different weights parameters αi and βi (see expression (2.14)) on the performance of
the MIMO control strategy.

3.2. Influence of the actuator weigths α1 and α2

The weights α on the actuator signal in the objective functional (2.14) takes into account
the cost of control. Large values of α penalize any control effort and yield parsimonious
actuation, while small values of α produce more liberally expended control signals.

Figure 10 displays the standard deviations of the actuator and sensor signal as a
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Figure 12. On the left: Actuations u1 (red) and u2 (blue) standard deviation when the flow
is designed for actuation penalty weights α1 = 1 − α2 varying from 0 to 1. On the right:
Corresponding attenuation on y1 (red) and y2 (blue).

function of the weight α. We observe that the more expensive the control efforts, the less
control will be expended and the more fluctuations can be expected at the objective sensor
locations and vice versa. More interestingly, we set the sum of the actuation penalizations
to a constant and vary the relative weight between the two. Figures 11 and 12 show two
cases of tuning the actuation penalties: with

∑
αi = 0.01 and

∑
αi = 1, respectively.

In figure 11, even though the different actuators are more or less active, depending
on the penalty distribution, the disturbance attenuation recorded by the two objective
sensors remains in approximately the same range. We conclude that the two actuators
are independently able of significantly reducing the energy of the flow perturbations.
In figure 12, the overall cost of the actuation is substantially larger when compared to
the sensor signal. Consequently, for α1 ≃ α2, each actuation is too expensive, and the
controller nearly shuts down. On the other hand, if one of the actuation signal becomes
cheap, it is able to control the flow by itself; the controller increases its signal, and we
converge to the performance of a single-actuator configuration. Next, we investigate the
effect of the sensor weights which discriminates the different outputs.

3.3. Influence of objective sensor weights β1 and β2

The penalization of the actuations is set to αi = 0.005, and β1 = 1− β2 varies from 0 to
1. In figure 13 the standard deviations of the control signals and the attentuation of the
sensor signals are represented. The control efficiency is influenced, as expected, by the
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Figure 14. Controlled perturbation norm (case A)
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Figure 15. Controlled perturbation norm (case B)

variation of the weight coefficients. However, even if one coefficient is set to zero (i.e.,
the controller is not designed to reduce the fluctuations measured by the corresponding
sensor), the attenuation in the associated sensor signal is still significant; for instance,
the signal measured at y1 has its standard deviation reduced by 73% compared to the
uncontrolled case, even when β1 = 0. This means that the flow responds more globally to
a certain perturbation and that it suffices to control this perturbation based on at least
one sensor measurement and still reap remarkable benefits at the other sensors.

To see the impact of the weight coefficients on the flow behavior, the controlled per-
turbation norm is presented for two cases (referred to as A and B; see figure 13) in
figures 14 and 15. Both controllers significantly reduce the perturbation norm over the
entire downstream flow field. However, closer inspection of the difference between the
two compensated perturbation norms (figure 16) reveals slightly different behavior in
the two cases. Hence, the MIMO algorithm together with the weight coefficients can be
used to design control schemes that will change the flow behavior such that some regions
of the flow are more or less sensitive to external perturbation as the cost functional is
minimized.

4. Summary and conclusion
A data-based identification and control design algorithm for fluid flows that are dom-

inated by convection has been presented. The identification step is based on a simple
finite-impulse-response model, whose unknown coefficients can be determined by a least-
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Figure 16. Difference between the averaged perturbations for case A and B. Regions in blue are
more effectively controlled by the compensator A whereas regions in red are better controlled
by the compensator B.

squares match of the true and model-predicted output sequence, as the model is driven
by frequency-rich input signals. Noise sources are captured by a sensor located upstream
of the actuator. The two identified transfer functions (Markov parameters) between (i)
upstream and downstream sensors and (ii) actuator and downstream sensor are then
used to compute a control strategy based on disturbance rejection. This yields a transfer
function between upstream sensor and actuator, thus providing a control strategy. The
SISO-case has been tested on a simple Ginzburg-Landau model, while the MIMO-version
has been applied to control two-dimensional channel flow over two rectangular obstruc-
tions. In both cases, an effective and efficient control performance could be achieved.

The presented approach is particularly suited for convection-dominated flows where it
provides a simpler and far more efficient alternative to the more commonly used LQG-
technique (for a relation between the proposed and LQG-approach, see appendix B). It
is also noteworthy that the entire design process only relies on flow measurements and
thus is equally applicable to numerical simulations and experimental data. Future work
will explore the implementation of the FIR-based model-predictive heuristic controller
to experimental data aiming at the suppression of upstream generated disturbances in
convectively dominated shear flows.

Appendix A. Minimization of the cost functional
More details are given on the minimization of the cost functional J with respect to the

Markov parameters L of the controller. The mathematical problem can be stated as

J(L) = ‖S + TL‖2 + α‖L‖2 → min (A 1)

which can be rewritten, using the norm-related scalar product, as

J(L) = 〈S + TL, S + TL〉+ α〈L,L〉. (A 2)

Using the bilinearity property, the latter expression can be expanded as

J(L) = 〈S, S〉+ 2〈TL, S〉+ 〈TL,TL〉+ α〈L,L〉. (A 3)

A minimum is obtained when the first variation of J with respect to L vanishes, i.e.,

∂J

∂L
δL = J(L+ δL)− J(L) = 2〈δL,TTS〉+ 2〈δL,TT TL〉+ 2α〈δL, L〉 = 0. (A 4)

The last expression has to hold for all variations δL, which leads to

TTS + TT TL+ αL = 0 (A 5)

which, after rearrangement, results in an explicit expression for L that renders J minimal.
We finally arrive at

L = −(TT T + αI)−1TTS. (A 6)
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Appendix B. Equivalence between finite and infinite time-horizon
control design for convective systems

We will consider the infinite time-horizon cost functional

J∞ = lim
N→∞

1
N

(
N∑

k=0

y(k)2 + α

N∑

k=0

u(k)2
)
. (B 1)

This cost functional is minimized by the LQG controller based on a state-space rep-
resentation of a system that has been identified by its finite impulse responses. The
disturbances are taken as white in time, and the system is assumed to be convectively
dominated. This allows the formulation of the system’s behavior by a set of finite-impulse
responses (FIR) of length µ. Substituting this formulation back into (B 1) we obtain

J∞ = lim
N→∞


 1
N

N∑

k=0




µ−1∑

j=0

Hu
j

µ−1∑

i=0

Lis(k − j − i) +
µ−1∑

j=0

Hs
j s(k − j)




2

+ α
1
N

N∑

k=0

(
µ−1∑

i=0

Lis(k − i)

)2

 (B 2)

which, after rearranging the sums, yields

J∞ = lim
N→∞


 1
N

N∑

k=0







µ−1∑

j=0

(
µ−1∑

i=0

Hu
j Lis(k − j − i) +Hs

j s(k − j)

)


2

+ α

(
µ−1∑

i=0

Lis(k − i)

)2



 . (B 3)

Introducing Sk
k−2µ = (s(k), s(k − 1), . . . , s(k − 2µ+ 2)), as well as two linear operators

(A,B) corresponding to the above quadratic forms, we arrive at a compact formulation
according to

J∞ = lim
N→∞

1
N

N∑

k=0

(
‖ASk

k−2µ‖2 + α‖BSk
k−2µ‖2

)
, (B 4)

and, using the definition of the operator scalar product, we obtain

J∞ = lim
N→∞

[
trace

(
A 1
N

N∑

k=0

(
Sk

k−2µS
k
k−2µ

T
)
AT

)

+ α trace

(
B 1
N

N∑

k=0

(
Sk

k−2µS
k
k−2µ

T
)
BT

)]
. (B 5)

In the above expression, we notice that (
∑N

k=0 Sk
k−2µS

k
k−2µ

T )/N = σI with I as the
identity matrix of size 2µ and σ denoting a scalar, which follows from the fact that the
noise has been taken as white. We thus have

J∞/σ = ‖A‖2 + α‖B‖2. (B 6)

Based on the definition of J(L), and the expressions for the two linear operators above,
we recognize that the infinite time-horizon cost functional is proportional to the finite
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time-horizon cost functional (which our disturbance-rejection algorithm optimizes)

J∞/σ = 2µJ(L) = 2µ
(
‖S + T L‖2 + α‖L‖2

)
. (B 7)

We conclude that, if the system, driven by white noise, is convectively dominated, then
the controller that minimizes an infinite time-horizon cost functional is equivalent to a
controller that stems from a (sufficiently long) finite time-horizon optimization.
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Hervé, A., Sipp, D., Schmid, P.J. & Samuelides, M. 2012 A physics-based approach to flow
control using system identification. J. Fluid Mech. 702, 26–58.

Huang, S.-C. & Kim, J. 2008 Control and system identification of a separated flow. Phys.
Fluids 20 (10), 101509.

Juillet, F., Schmid, P.J. & Huerre, P. 2013 Control of amplifier flow using subspace iden-
tification techniques. J. Fluid Mech. 725, 522–565.

Kalman, R.E. 1960 A new approach to linear filtering and prediction problems. Trans. ASME
J. Basic Eng. 87, 35–45.

Katayama, T. 2005 Subspace Methods for System Identification. Springer Verlag.
Kim, J. & Bewley, T.R. 2007 A linear systems approach to flow control. Ann. Rev. Fluid

Mech. 39, 383–417.
Larimore, W.E. 1983 System identification, reduced order filtering and modeling via canonical

variate analysis. Proc. Conf. Dec. Control .
Larimore, W.E. 1990 Canonical variate analysis in identification, filtering and adaptive control.

Proc. 29th Conf. Dec. Control, Honolulu, Hawaii .
Ljung, L. 1987 System Identification: Theory for the User . Prentice-Hall, Inc.
van Overschee, P. & de Moor, B. 1994 N4SID: subspace algorithms for the identification

of combined deterministic-stochastic systems. Automatica 30, 75–93.
van Overschee, P. & de Moor, B. 1996 Subspace Identification for Linear Systems. Kluwer

Academic Publishers.
Qin, S.J. & Badgwell, T.A. 2003 A survey of industrial model predictive control technology.

Control Eng. Pract. 11, 733–764.
Richalet, J., Rault, A., Testud, J.L. & Papon, J. 1978 Model predictive heuristic control:

applications to industrial processes. Automatica 14, 413–428.
Roussopoulos, K. & Monkewitz, P. A. 1996 Nonlinear modelling of vortex shedding control

in cylinder wakes. Physica D 97, 264–273.
Verhaegen, M. & Deprettere, E. 1991 A fast, recursive MIMO state space model identifi-

cation algorithm. Proc. 30th IEEE Conf. Dec. Control pp. 1349–1354.
Williams, D.R. & Rowley, C.W. 2006 Recent progress in closed-loop control of cavity tones.

AIAA Paper 712, 2006.
Zheng, T. 2010 Model Predictive Control . Sciyo Publishing.

46 Chapter 2. System identification for flow control



2.3. Article 2: Uncertainty propagation in the design process of
data-based flow controllers 47

2.3 Article 2: Uncertainty propagation in the design
process of data-based flow controllers



Under consideration for publication in J. Fluid Mech. 1

Uncertainty propagation in model extraction
by system identification and its implication

on control design

NICOLAS DOVETTA1†,
PETER J. SCHMID2 AND DENIS S IPP3

1Laboratoire d’Hydrodynamique (LadHyX), Ecole Polytechnique, 91128 Palaiseau, France
2Dept. of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom

3ONERA DAFE, 8rue des Vertugadins, 92190 Meudon, France

(Received ?; revised ?; accepted ?. - To be entered by editorial office)

In data-based control design, system-identification techniques are used to extract low-
dimensional representations of the input-output map between actuators and sensors from
observed data-signals. Under realistic conditions, noise in the signals is present and is ex-
pected to influence the identified system representation. For the subsequent design of the
controller, it is important to gauge the sensitivity of the system representation to noise
in the observed data; this information will impact the robustness of the controller and
influence the stability margins for a closed-loop configuration. Commonly, Monte-Carlo
analysis has been used to quantify the effect of data-noise on the system identification
and control design, but in fluid systems, this approach is often prohibitively expensive,
both for numerical simulations and physical experiments. Instead, we present a frame-
work for the estimation of statistical properties of identified system representations given
an uncertainty in the processed data. The ARMarkov/LS identification procedure has
been chosen to illustrate this framework and to obtain error bounds on the identified
system parameters based on the signal-to-noise ratio of the input-output data sequence.
Multiple simulations (as in Monte-Carlo techniques) are not necessary, which makes the
proposed technique affordable and efficient even for large-scale flow control problems.
The procedure is illustrated on the control design for flow over an idealized airfoil with
a trailing-edge splitter plate.

Key words: uncertainty, ARMarkov model, system identification, flow control, sensitiv-
ity analysis

1. Introduction
Flow control is an attractive and promising technology as it aims at altering and im-

proving inherent flow behavior by externally applied forces. Reducing drag, suppressing
instabilities, extending parameter envelopes or enhancing mixing are only a few objectives
that could be accomplished by flow control strategies. Despite its potential for techno-
logical advances, the design of flow control schemes still poses significant challenges,
principally among them the modelling of the flow behavior and the accurate description
of the disturbance environment.

† Email address for correspondence: nicolas.dovetta@ladhyx.polytechnique.fr
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Model-based approaches, based on a prescribed set of equations and an a priori as-
sumption on the characteristics of the noise environment, have been successfully applied
to numerical simulations and have demonstrated their effectiveness within the range of
design assumptions. For applications in experiments, in the absence of sufficient informa-
tion on the disturbance environment, a different approach may be more appropriate that
does not impose a preconceived model but rather extracts information for the control
design, such as transfer functions, directly from measured (noise-contaminated) data.
Techniques in this category rely on system identification methods to obtain represen-
tations of the flow’s input-output behavior; they fall into two major families: subspace
identification and Markov-parameter/realization techniques. Whereas the former exploits
the low-rank nature of the control signal space to arrive at approximate system matrices
via oblique projections (see, e.g., Katayama 2005), the latter first determines the discrete
impulse responses (Markov parameters) of the flow which are then, in a second step, used
to derive a state-space model.

System identification has been an active field of research for many decades and has
matured into a well-established discipline of system theory. Even though many techniques
and algorithms are available, the use of system-identification techniques in the design of
flow control strategies is rather recent (see Kim 2003; Hervé et al. 2012; Juillet et al. 2013).
For the identification of a reduced-order model that will form the basis of our control
design, a two-step process, referred to as the separation principle, is often advocated (see,
e.g., Hjalmarsson 2005). It consists of a high-order identification of a preliminary model
that best fits the available data, which is subsequently transformed into a low-order
representation by model-reduction techniques. The two-step approach ensures favorable
statistical properties, since the asymptotic efficiency of the high-order system can be
shown to be inherited by the low-order system; furthermore, the thus reduced low-order
system is optimal within the constraints given by the high-order system.

Following this separation principle, we choose a Markov parameter/realization tech-
nique in this study. In particular, we use a ARMarkov/LS technique to convert mea-
sured data-sequences into discrete impulse responses (Markov parameters) by assuming
an underlying auto-regressive model that explicitly contains the Markov parameters; the
parameters of the auto-regressive model are determined by a least-squares (LS) matching
to the measured data. The Markov parameters are then used in the Eigensystem Real-
ization Algorithm (ERA) to arrive at a state-space representation of the model, which in
turn can be used to design a control law by standard techniques. The ARMarkov/LS pro-
cedure has originally been proposed by Akers & Bernstein (1997), and many subsequent
studies (see Van Pelt & Bernstein 1998; Kamrunnahar et al. 2000; Fledderjohn et al.
2010) have confirmed it as a very efficient technique to obtain the Markov parameters of
a system. The ERA state-space realization step has been developed by Juang & Pappa
(1985), has been studied extensively (see Lew et al. 1993) and has recently been applied
to flow control problems in the form of an adjoint-free model reduction procedure (see
Ma et al. 2011).

One of the advantages and appeal of data-based control design using system identifi-
cation techniques are its applicability to realistic flow situations, where the only infor-
mation about the system to be controlled consists of (low-dimensional) measurements.
This advantage is, however, off-set by the uncertainty these signals introduce into the
design process, since the processed data will surely be contaminated by background and
measurement noise and ultimately affect the control performance. In particular, for a
practical control design, it is important to quantify the noise in the data and how it
propagates through the procedural steps of the system identification and control design
to ultimately influence the control performance and its internal stability margins. A sen-
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sitivity analysis of this type is the focus of this article. Due to the separation principle,
we can break apart the error in the identification step into a variance estimation of the
identified model and a bias estimation of the reduced-order model. This distinction is
valid as long as the model reduction step is robust, i.e., shows a negligible sensitivity of
the model parameters to noise in the underlying data.

Computing estimates of the variance and bias error with respect to variations in the
model parameters for an identification-realization algorithm has been the topic of pre-
vious articles in the identification/realization literature. For example, the model-order
criteria of Akaike (1974) and Rissanen (1983) apply penalization techniques to a re-
peatability estimate to arrive at an objective model order (see Ljung 1987). In the study
of Longman et al. (1991), the model parameters for the ERA-step have been chosen
based on statistical information of the identified variables. Besides its obvious benefits
for control and stability calculations, the quantification of the variance and bias of the
identification-realization parameters can also be used as a model structure falsification
criterion (see Hjalmarsson 2005).

This paper is concerned with the propagation of uncertainties and stochastic fluctua-
tions in the processed data through a multi-step procedure based on system identification,
state-space realization and optimal control design. In particular, we wish to quantify
how small perturbations in the data will ultimately affect closed-loop control perfor-
mance and degrade internal stability margins. We start in section § 2 by presenting the
ARMarkov/LS/ERA identification-realization algorithm for a single-input single-output
(SISO) system. Section § 3 will then concentrate on a perturbation technique to derive
estimates of the error between the real and identified model; this section naturally divides
into two parts: quantifying the ARMarkov/LS-identification error and deriving an ERA
error estimate. A validation of these error estimates is presented in section § 4, where we
consider a one-dimensional (thus computationally tractable) model problem that mimics
noise-amplifier flows. Numerical simulations of flow over a backward-facing step will be
used to illustrate the introduced techniques on a more realistic flow configuration and
to demonstrate the utility of sensitivity measures in the analysis of closed-loop control
problems based on system identification and realization. Conclusions are presented in
§ 5.

2. From data-sequences to control performance
We start by developing the essential steps in the design of a efficient and robust control

strategy, starting from input-output data sequences. These steps will consist of (i) a
system identification process, which matches the coefficients of a given model structure
using observed input-output signals, (ii) a design of a feedback or feed-forward controller,
and (iii) the assessment of gain and phase margins of the compensated system.

2.1. General framework for linear time-invariant systems (LTI)
We choose a discrete-time state-space representation to describe the flow-control setup
for a linear time-invariant (LTI) system and consider a single input and single output
(i.e., a SISO-system). We have

x(k + 1) = Ax(k) + Bu(k) + Exwx(k), (2.1a)

y(k) = Cx(k) + Du(k) + Eywy(k), (2.1b)

where k denotes the discrete time index, x(k) represents the state vector, u(k) is the
control, y(k) stands for the measurement, and wx(k) and wy(k) are the state noise and
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measurement uncertainties, respectively. The system matrix is given by A, the actuation
is modeled by B, and the sensors by C. The spatial distribution of the noise is contained
in the matrices Ex and Ey, for the state vector and measurements, respectively. Finally,
D describes the instantaneous effect of the actuation on the measurement. For a system
of order n, the system matrix A is n × n, the actuation matrix B is n × 1, the sensor
matrix C is 1× n, and D is a scalar. Finally, Ex, Ey, wx and wy are matrices and vectors
of dimensions that correspond to the order of the noise.

The impulse response of the above system (2.1), in the case of vanishing noise matrices,
can be defined as a sequence of scalars. This sequence is also referred to as the Markov
parameters Hj . From the state-space representation (2.1) an explicit form of the Markov
parameters can be derived according to

H0 = D, (2.2a)

Hj = CAj−1B, j > 1. (2.2b)

Based on these Markov parameters, we can formulate regressive or auto-regressive rep-
resentations of the system’s input-output behavior that do not involve the state-vector
x(k). Rather, the output at k can be determined solely as functions of past inputs and
outputs. The definition (2.2) of the Markov parameters Hj then allows us to formulate a
regressive representation of general LTI-systems as a discrete transfer function from the
input u to the output y. We obtain

y(k) =
∞∑

j=0

Hju(k − j). (2.3)

An approximation of this model, assuming that after a certain time the effects of the
actuations are negligible, is the well-known Finite Impulse Response (FIR) model of order
µ. We have

y(k) =
µ−1∑

j=0

Hju(k − j). (2.4)

A more sophisticated representation is applying an auto-regressive term to the signal y
which yields the well-known ARMA (auto-regressive-moving-average) model

y(k) =
n∑

j=1

−Njy(k − j) +
n∑

j=0

Mju(k − j) (2.5)

where Mj and Nj are coefficients to be determined. Akers & Bernstein (1997) showed that
the Markov parameters can be extracted from the ARMA representation via the following
recursive algorithm. Using (2.5) and the definition of the measurement y we obtain, after
repeated substitution, the following auto-regressive representation that explicitly isolates
µ Markov parameters (referred to as µ-ARMarkov):

y(k) =
n∑

j=1

−Njy(k − µ− j + 1) +
µ∑

j=1

Hj−1u(k − j + 1) +
n∑

j=1

Qju(k − µ− j + 1). (2.6)

To proceed, the µ-ARMarkov model may be written as a linear relation between y(k), a
vector φ(k) and the model parameters, grouped into the vector W, according to

y(k) = φ(k)W, (2.7)
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where φ(k) and W are given as

φ(k) = [y(k − µ), . . . , y(k − µ− n + 1), u(k), . . . , u(k − µ− n + 1)] , (2.8)

and

WT = [−N1 , . . . , −Nn , H0 , . . . , Hµ−1 , Q0 , . . . , Qn] . (2.9)

Equation (2.7) is a compact form of the auto-regressive representation of equation (2.6)
where φ(k) contains the input-output sequence just before the kth time index and W con-
tains the ARMarkov parameters. The transfer functions based on the z-transform of the
above models (FIR, ARMA and µ-ARMarkov) are given in the appendix for complete-
ness. The following section presents the algorithm proposed by Akers & Bernstein (1997)
to identify the µ-ARMarkov parameters (in W) from input-output data sequences. Once
the Markov parameters are identified (as a part of the vector W), the system behavior
is predicted using the FIR model (2.4). The other coefficients (i.e. Ni and Qi) — even
though ultimately not used — are to account for noise in the data-set and thus yield
more accurate Markov parameters (see Hjalmarsson 2005; Kamrunnahar et al. 2000).

2.2. From data to an identified system: ARMarkov/Least Squares

This section shows how the coefficients of the ARMarkov model are obtained from data-
sequences via a least-squares minimization. Many alternative techniques exist to identify
model coefficients, in particular, for the ARMarkov representation. While details are kept
to a minimum in what follows, the interested reader is referred to Ljung (1987); Hjal-
marsson (2005) for more information about the mathematical and algorithmic principles
underlying system identification.

2.2.1. The Least-Squares (LS) algorithm

Given an input-output data-set, a system identification procedure is concerned with
finding a model that can reproduce the output (y) sequence using the input (u) sequence.
Formally, y(k) is the array of measured outputs at time k, W denotes a set of parameters
that describe the model, and ŷ(k|W) stands for the output computed using the input
sequence and the model parameterized by W. The goal is to find W such that the sequence
ŷ(k|W) best matches y(k). Thus, the ARMarkov/LS-identification consists of minimizing
J given by

J(W) =
1
N

N∑

k=1

(y(k)− ŷ(k|W))2, (2.10)

with N as the number of data points. For ARMarkov, the relationship between ŷ(k|W)
and W is explicit and given by (2.7). Substituting into (2.10) yields

J(W) = ‖Y − ΦW‖2
2 (2.11)

with

Y =




y(1)
y(2)

...
y(N)


 and ΦT =




φ(1)
φ(2)

...
φ(N)


 . (2.12)

The minimization of J(W) may be solved using the pseudo-inverse to obtain

W = Φ†Y. (2.13)
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The coefficient vector W contains the Markov parameters Hj . The pseudo-inverse is often
computed using Moore’s definition

Φ† ≡ lim
ǫ→0

(ΦT Φ + ǫI)−1ΦT (2.14)

which minimizes a regularized cost functional J̃(W) of the form

J̃(W) = lim
ǫ→0

‖Y −WΦ‖2
2 + ǫ‖W‖2

2 (2.15)

The parameter ǫ can be set to machine precision, but it can also be used to enforce
regularization of an otherwise ill-posed problem, as Φ is often rank-deficient. Φ contains
the input-output data-sequence: when the input does not consist of a broad-band signal,
the resulting least-squares problem becomes ill-posed. In this case, the use of Moore’s
pseudo-inverse definition allows us to implement a Tikhonov regularization of the problem
(ǫ 6= 0, Fleming (2011)). This way, the norm of W remains bounded which, in turn, avoids
numerical problems when using the identified model. In the different test cases presented
in this paper, regularization is always applied with ǫ ranging from 10−5 to 10−16 (machine
precision). The choice of ǫ is depends on the application and the ill-posedness of the data-
sequence (Φ).

In order to have W represent the system’s dynamics rather than measurement noise,
the minimization problem should be strongly under-parametrized, i.e., 2n + µ ≪ N. In
the limiting case of 2n + µ = N, the input-output data sequence (u, y) will be exactly
matched by the reconstructed data (u, ŷ). In this case, the model parameters in W are
strongly noise-dependent and will unlikely be consistent with another set of data. In our
examples, the parameters are chosen such that 2n + µ < N/5; this choice is related to
the AIC criterion defined below (see equation (2.16)). Even so, the model parameters in
W are still dependent on noise, where the majority of this dependence is contained in
the auto-regressive part of W. For this reason, only the Markov parameters are kept (see
Hjalmarsson 2005; Kamrunnahar et al. 2000), to minimize the noise dependence. The
ARMarkov/LS procedure identifies all coefficients of the ARMarkov representation, but
only a finite impulse response (FIR, i.e., the set of Markov parameters) transfer function
is kept. Still, with all these precautions to identify a model that faithfully represents the
system dynamics, the Markov parameters are influenced by noise, especially in realistic
data-set where the noise-to-signal ratio may be rather high. The uncertainty propaga-
tion analysis aims at quantitatively estimating this dependence in order to improve the
prediction of a controller’s performance.

2.2.2. Choice of data sequence
As we saw, the choice of the spectral content of the inputs has a significant impact

on the statistical property of the identified model, as it is related to the well-posedness
of the minimization problem. For the examples given in this article the input will be
chosen as a Pseudo-Random Binary Signal (PRBS): it is broad-band, widely used and
actuator-friendly. For details on the choice and implications of the input signals, the
reader is referred to the studies of Gerencser et al. (2009); Brighenti et al. (2009); Mehra
(1974).

2.2.3. Model order and its link to model estimation error
The order of the model constitutes a crucial choice that has to be made in the identi-

fication process. For an ARMarkov model the order is 2n + µ, while for a FIR model the
order is simply µ. As shown previously, the model order is constrained, on one hand, by
the length of the data sequence 2n + µ ≪ N. On the other hand, we have that 2n + µ
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Figure 1. Sketch of the variance and bias error contribution to the total estimation error, as a
function of the model order.

(and in particular µ since only a FIR is kept from the identification) has to be large
with respect to the order of the model that describes the dynamics between the input
and the output. A model order has to be chosen to balance these two criteria. Figure 1
graphically illustrates this balance that has to be struck. The bias error is related to an
under-modelling of the dynamics, while the variance error is caused by a data-sequence
which is too small compared to the model order. An adequate model order can be found
by various means. The very common Akaike criterion is chosen for our work (see Akaike
1974). For model orders higher than Akaike’s criterion, see 2.16, the model error is as-
sumed to be mostly due to variance error; for model orders below Akaike’s value, the
model error is mostly due to bias error. In our case, the Akaike criterion reads

AIC = log(J(W)) +
2
N

card(W). (2.16)

This value can be computed a posteriori, once a model has been determined. The optimal
model according to Akaike has a minimal AIC-value. The criterion contains two terms.
The first term log(J(W)) characterizes the residual minimization error, which is meant to
represent the bias error of the identified model. Indeed, if the model order is sufficiently
high, the problem becomes over-parameterized and J(W) consequently tends to zero.
However, if the model order is rather low, the problem is over-constrained and J(W)
may not vanish. The second term in (2.16) denotes an index that is correlated to the
variance error. It increases linearly with the number of parameters in the model and
penalizes over-parameterization. For our ARMarkov-model, the cardinality card(W) is
the number of parameters 2n + µ. The model order that minimizes AIC is taken as the
optimal order for the identification procedure.

The uncertainty propagation developed later allows us to estimate the variance error;
the bias error, however, is far harder to estimate, particularly, when the noise-to-signal
ratio is high. In order to take advantage of the variance error estimation, it is essential
to choose a model order that is sufficiently high. What constitutes a sufficiently high
model order is difficult to define theoretically based on only the data sequence. For the
remainder of the article, we base the model order on the minimal value of AIC given
in (2.16).

2.3. From identified system to controller design
Once a model of appropriate order has been identified, a control strategy can be de-
fined. Among the various choices to manipulate the flow, we will concentrate on two of
the most common approaches: simple feedback control and simple feed-forward control.
Both strategies are outlined in figure 2 in the form of a block diagram; they cover the most
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u

uu′ yy
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G0

G0 G1

K C

Figure 2. Feed-back (left) and feed-forward (right) control layout. Gi are transfer functions
inherent to the system, K and C are the transfer functions of the respective controllers. The
respective physical systems are enclosed by dashed lines.

widely studied structures to control oscillatory and convectively dominated fluid flows.
In these configurations, y represents the signal from the objective sensor which enters a
user-specified objective function, and u is the control variable, i.e., the signal passed to
the actuator. In the feed-forward configuration, an additional sensor is present, which
provides information about incoming disturbances and acts as a proxy for the (upstream)
disturbance environment. In either configuration, Gi stands for a transfer function de-
scribing the fluid behavior between input and output signals; the transfer functions of the
respective controllers are denoted by K and C, respectively. For the feedback setup, we
also account for environmental noise sources, indicated by uc and y′, which will influence
the stability of the controller. Before describing performance and stability criteria, we
briefly outline common design algorithms for the two control configurations.

2.3.1. Feedback controllers
One of the most commonly applied strategy for feedback control is the infinite-time-

horizon LQG/LQR control. After the identified system has been converted to a state-
space representation, for example, by using the Eigenvalue Realization Algorithm (ERA;
Juang & Pappa 1985), a Kalman filter (for the optimal state-estimation from measure-
ments) and a proportional controller (which minimizes the control objective) can be
designed. A large body of literature gives details of this design process; a data-based
feedback approach applied to a fluid system can be found, e.g., in Illingworth et al.
(2011).

Regardless of the details of the designed controller, transfer functions of the feedback-
controlled system can be expressed explicitly. They will be referred to as the closed-loop
transfer function (CLTF) throughout this paper. The CLTF describing the influence of
the noise signal uc on the output y reads

TCL =
G0

1 + G0K
, (2.17)

while the closed-loop transfer function linking the noise signal y′ to the same output is
given by

T′CL =
KG0

1 + G0K
. (2.18)

2.3.2. Feed-forward controllers
This type of control is commonly applied to flows with a strongly convective behav-

ior, where disturbances originating upstream are to be compensated. In this setup, an
upstream sensor detects the incoming disturbances, after which an actuator counteracts
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them to create a nearly disturbance-free environment farther downstream (at the loca-
tion of the objective sensor). General algorithms to design such controllers fall within the
category of Model Predictive Controllers (MPC). Following the diagram in figure 2(b),
the mapping between the measured incoming perturbations s and the output (objective)
sensor y is given by the transfer function G1. An equivalent link between the actuator
signal u and the same output sensor y can be established and described by the tranfer
function G0. The goal of the control design is then to construct a controller transfer
function C such that the signal passing through C and G0 destructively interferes with
the signal passing though G1. It is straightforward to show that C = −G−1

0 G1 provides
a control law that accomplishes this task. As before, the transfer function of a system
controlled by a feed-forward controller (from the upstream to the downstream sensor)
can be stated explicitly. We will refer to it as the controlled-system transfer function
(CSTF), given by

TCS = G1 + CG0. (2.19)

2.4. From controller design to performance and stability: Nyquist and Bode plot analysis

The two transfer functions can be used to determine performance and stability measures.
However, one has to keep in mind that the true transfer functions are not known; only
their identified variants are available. To formally differentiate the exact and identified
transfer functions, we introduce Gi for the exact (but experimentally inaccessible) transfer
function and Ĝi for the nominal (identified) transfer function. Differences between these
two tranfer functions can be traced back to uncertainties or noise in the processed data.

For performance and stability studies, a simple substitution of Gi by Ĝi in (2.17)
and (2.19) and a small-difference expansion can be applied for a first estimate of the
influences of data corruption. In some high noise-to-signal cases, however, a different
approach, involving a better approximation of the identification error, is called for. In
the following section, we give a brief summary of stability criteria for feedback (the
Nyquist criterion) and feed-forward controller. Only stability issues will be dealt with in
this article; uncertainty propagation, as introduced here, however is not limited to this
output criterion.

2.4.1. The Nyquist stability criterion for feed-back controllers

Considering the expression for the CLTF and CLTF ′ in (2.17) and (2.18), the closed-
loop transfer functions are singular when G0K = −1. This singularity is linked to the
instability of the controlled system. The Nyquist plot is a representation of the open-loop
transfer function (OLTF) as a parameterized curve (by frequency) in the complex plane.
The phase and gain margins defined by the Nyquist plot are measures that quantify the
distance of the open-loop transfer function G0K to the point −1 in the complex plane. The
phase margin is the maximally admissible phase variation of the system before stability
is lost; the gain margin is the maximally admissible gain variation for the system to lose
stability. The Nyquist curve can be recovered from the discrete-time transfer function (a
function of z) by a transformation to a continuous-time transfer function (a function of
the frequency ω) via z = eiωTe , where Te stands for the sampling time step of the data
sequence.

Figure 3 shows an example of a Nyquist plot. In this figure gives a graphical definition
of the phase and gain margins, as well as a potential reduction in the margins due to
general uncertainties. For small noise-to-signal ratio the phase and gain margins can be
satisfactorily estimated from the nominal system. As soon as uncertainties become more
prevalent, the stability margins computed from the nominal system increasingly differ
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Figure 3. Nyquist plot of the OLTF, showing phase and gain margins, based on the nominal
system (left) and the nominal system with uncertainty bounds (right).
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Figure 4. Bode diagram of the uncontrolled (thin black) and controlled (thick black) transfer
function, showing H∞-based performance of nominal system (left) and the nominal system with
uncertainty bounds (right).

from the realized margins. In this latter case, uncertainty has to be directly taken into
account to properly correct the margins.

2.4.2. Performance analysis for feed-forward disturbance rejection controllers
For feed-forward control configurations and strictly convective systems (i.e., with no

feedback from the downstream input u to the upstream sensor s), the controller cannot be
unstable. In this case, performance is of principal concern and constitutes the criterion for
our analysis of uncertainty propagation. Performance will be defined using the maximum
value of the CSTF (i.e., its H∞ norm). A controller is deemed effective if the maximum
value of the transfer function without control is larger than the maximum value of the
CSTF . Figure 4 provides a sketch of this criterion. In this figure, the uncontrolled and
the controlled transfer function of the system are plotted, and the performance measure
of the controller is evaluated. Similar to the feedback configuration, uncertainty bounds
about the nominal transfer function may yield a pronounced reduction of this nominal
performance.

3. Uncertainty propagation for the ARMarkov/LS-identification
process

We proceed by developing procedures to estimate uncertainty bounds in the identified
system stemming from uncertainty in the processed data. In our case, we assume that the
standard deviation of the data is known. First, the uncertainty propagation is demon-
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strated for the ARMarkov/LS identification algorithm, where the impact on the model
parameters (Markov parameters and auto-regressive parameters) is quantified. This is
followed by establishing a link between the uncertainty in the Markov parameter and the
resulting uncertainty bounds in the Bode and Nyquist diagrams. Monte-Carlo variance
estimation is then used, on a simple test case, to validate the uncertainty propagation
results by alternative means.

T′CL =
KG0

1 + G0K
. (3.1)

3.1. Variance error: linear perturbation analysis of the least-squares algorithm

Contrary to Monte-Carlo techniques, we seek an explicit expression linking statistical
information (such as the standard deviation) of the input data to an equivalent statis-
tical measure of the Markov parameters. The uncertainty in the data is assumed to be
additive; multiplicative uncertainty propagation analyses can be found in Skogestad &
Postlethwaite (2001), but will not be considered here. In addition, we restrict ourselves to
sufficiently small measurement uncertainty in order to justify a first-order perturbation
approach. The original data sequence, described by the vector Y, is perturbed as follows

Ỹ = Y + δY. (3.2)

The influence of the perturbation δY on the identified parameters (contained in W) can
be quantified using (2.13). We note that, since Φ contains past measurements, the size
N of the total data sequence differs from the number of equation N − n + 1. For this
reason, two notations must be put forth: the vector of output data Y of size N, and the
solution Yt of the least-squares problem of size N − n + 1

(W + δW) = (Φ + δΦ)† . (Yt + δYt) . (3.3)

The resulting perturbations δW of the model parameters W is sought as a function of
the perturbation δY in the data Y. Under the previously mentioned assumption of small
perturbations δY, we linearize the above expression and derive a first-order perturbation
solution for δW. This step is equivalent to linearizing the pseudo-inverse term (Φ + δΦ)† ,
a complex problem that has been the object of many past studies (see Wedin 1973; Stew-
art 1977, 1990). Before proceeding, we have to state the following underlying hypothesis
and assumption: rank(Φ) = rank(Φ̃) which states that the rank of Φ is not affected by
the additive perturbation δΦ. This statement is true for sufficiently small δY; in fact, the
rank preservation defines the size of the admissible perturbations δY.

Under this assumption, we can give an explicit expression for the model parameter
perturbations δW (see Stewart 1977)

δW ≈ Φ†δYt +
(
−Φ†PΦδΦRΦΦ† + (ΦT Φ)†RΦδΦT P⊥Φ − R⊥Φ δΦT PΦ(ΦΦT )†

)
Yt, (3.4)

where

PΦ ≡ ΦΦ†, RΦ ≡ Φ†Φ, (3.5a)
P⊥Φ ≡ I− PΦ, R⊥Φ ≡ I− RΦ. (3.5b)

The matrix δΦ contains perturbations of the data-sequence. By definition, it can be
directly expressed in terms of δy(k) for k ∈ [1, N ] according to
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δΦ =




δy(n) δy(n− 1) . . . δy(1) 0 . . . 0
δy(n + 1) δy(n) . . . δy(2) 0 . . . 0

...
...

...
...

. . .
...

δy(N) δy(N − 1) . . . δy(N − n + 1) 0 . . . 0


 Φ (3.6)

or, in a more compact form,

δΦ =
N∑

k=1

E(k)δy(k) (3.7)

where we have introduced the operator E(k)i,j as

E(k)i,j =
{

1 if i− j + n = k and j < n,
0 elsewhere. (3.8)

With this definition, we can reformulate the above relation between the data perturba-
tions and the model parameter perturbations and state it in the form

δW ≈ Φ†δYt+
N∑

k=1

(
−Φ†PΦE(k)RΦΦ† + (ΦT Φ)†RΦE(k)T P⊥Φ − R⊥ΦE(k)T PΦ(ΦΦT )†

)
Ytδy(k).

(3.9)
Finally, this expression is equivalent to

δW = L δY (3.10)

where L can be interpreted as the Jacobian of W with respect to Y. Consequently,
the gradient of each component of W with respect to a specific perturbation in the
processed data can be extracted from L. We recall that only the Markov parameters Hi

are relevant for the representation of the system-identified model. With the definition
of W, the propagation of data-uncertainties into each Markov parameter can be found
from (3.10). If we introduce the notation Li as the ith row of the Jacobian L, we obtain

δHi = Li+n δY, i = 0, . . . , µ− 1. (3.11)

With the above link between the data perturbations and Markov parameter perturba-
tions, we can now establish a mapping between statistical properties of the two pertur-
bations. To this end, let σδy and σδHi

denote, respectively, the standard deviation of
the measurement noise and of the ith Markov parameter. Further introducing the noise
standard deviation δYT δY = Nσ2

δy, we can state

σHi
= σδy

√
Li+nLT

i+n. (3.12)

This final expression (3.12) describes the first-order uncertainty mapping (in terms of the
standard deviation) from the output data sequence to the identified Markov parameters;
given the noise standard deviation, it is now possible to determine uncertainty bounds
for each Markov parameter. These bounds are associated with statistical probabilities:
if the measurement noise is Gaussian, the ith Markov parameter falls within the range
Hi±σHi

with a 68.2% probability or is contained within Hi±2σHi
with a 95% probability.

However, evaluating the 95% probability range of a specific Markov parameter is not an
effective way of probing the potential impact of data uncertainty on the controlled-system
behavior. Rather, a direct influence on stability or performance criteria is sought. As
stated in section § 2.4, we will limit our stability and performance assessment to criteria
that can be straightforwardly extracted from Nyquist or Bode plots.
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Two approaches to extend the uncertainty analysis to apply to stability and perfor-
mance measures come to mind. First, the numerical procedures to compute the criteria
and corresponding margins can be linearized about a nominal set of Markov parameters,
after which the Jacobian of these criteria/margins with respect to data uncertainty can
be extracted. Such a linearization, however, is rather cumbersome owing to the complex
steps in computing the criteria and margins; for instance, the stability phase margin in
the Nyquist diagram of a feedback controller requires to (i) compute a transfer function,
(ii) find the frequency for which the gain in one, and (iii) determine the minimal phase
between this frequency and the singularity at z = −1 in the complex plane. Each of these
three steps needs to be linearized to arrive at sensitivity measures. An alternative, and
more attractive, technique to extend the uncertainty analysis to stability and performance
measures is based on a Monte-Carlo approach. We recall that the Monte-Carlo method
has been dismissed as an option for determining the uncertainty propagation from mea-
surement errors to Markov parameters. Our reasoning came from the prohibitively large
dimensionality of the space that defines the measurement uncertainty, and ultimately
led us to the linearization approach. For the sensitivity measure of stability and perfor-
mance quantities, however, the situation is reversed: the number of Markov parameters µ
is substantially smaller than the number N of measurement points (for example, N ≈ 104

whereas µ ≈ 102), and Monte-Carlo techniques thus become a viable option. In short,
once the uncertainty of the identified Markov parameters is known (using linearization of
the least squares identification), a more appealing Monte-Carlo procedure may be used
for the final step of the uncertainty analysis — from Markov-parameter perturbations to
performance/stability margins. The uncertainty regions around the nominal Nyquist and
Bode diagram are thus computed using a large number of possible systems taken within
the uncertainty bounds of the identified Markov parameters (see equation (3.12)).

In summary, for a given set of perturbed data, a Nyquist or Bode plot including
uncertainty bounds may be computed as follows: (i) solve the nominal problem for W ,
using the pseudo-inverse of Φ, according to (2.13); (ii) compute the Jacobian Matrix L
defined in (3.10) using the nominal solution; (iii) compute the standard deviation of each
Markov parameter based on (3.12); (iv) generate a large number (order µ) of transfer
functions using Markov parameters that are given by their mean (nominal value) and
standard deviation (from the above uncertainty propagation); (v) compute the standard
deviation of the Nyquist or Bode plots, or any other stability or performance criterion,
from this set of transfer functions. In the following section we apply the above procedure
to several test cases of controllers.

4. Application to a test flow
We consider a linear numerical simulation of flow over an idealized airfoil followed by

an infinite plate. The airfoil consists of a circular body of radius R and two straight
segments joining at the trailing edge. The Reynolds number based on R is Re = 400,
the radius R = 0.5 and the chord length is 4.6 non-dimensional units; see figure 5 for a
sketch of the flow configuration. With a unit inflow velocity, the viscosity is chosen to
correspond to the inverse Reynolds number ν = 1/Re. The flow domain is meshed by
a two-dimensional unstructured grid of about 5 · 105 nodes. First, a stable base flow is
computed using a Newton iterative solver. Then, equations for the temporal evolution of
perturbations (u, v, p) around this base flow are formulated and spatially discretized using
finite elements (in our case, P2-P1 Taylor-Hood elements). The pressure field is computed
using the Uzawa algorithm with a Cahouet-Chabart preconditioner (see Glowinski 2003).
The time discretization is semi-implicit based on a second-order backward-differentiation
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Figure 5. Numerical domain and boundary condition for the case of flow over an idealized
airfoil.

scheme. We choose a time step of ∆t = 0.003 for the simulations. Data sequences gen-
erated by the simulations are extracted with a time-step of dt = 0.075, before being
subjected to the identification algorithms. The length of the sampled data is N = 1500,
and the entire measurement sequence is used in the identification algorithms. Two sim-
ulations are performed: the first contains an upstream source of noise (one radius R
upstream of the leading edge) that creates fluctuations in the flow field which are de-
tected by both sensors; in the second simulation, a broad-band pseudo-random binary
signal (PRBS) is applied to the input which mostly affects the downstream sensor. Ar-
tificial measurement perturbations are added to the downstream sensor, using a white
Gaussian noise with the same variance as the noise-free signal variance (i.e., we consider
a 100% noise contamination). All identified nominal transfer functions will be found us-
ing the ARMarkov identification algorithm with the set of parameters µ = 200, n = 20
and N = 1500. Based on the given noise standard deviation, the standard deviation of
each Markov parameter is estimated using the uncertainty propagation algorithm given
by (3.12). Finally, exact transfer functions are also identified from longer noise-free data
signals (with N = 4000). These latter signals are assumed unobtainable in realistic ex-
periments; they are computed here solely for a performance evaluation of the uncertainty
propagation algorithm.

With the nominal transfer function and the different controller transfer functions
known, it is then possible to estimate the performance and stability of a given controlled
system. The next subsections focus on two control setups: a feedback and a feed-forward
configuration. It will be shown that the exact performance and stability is quite different
from the nominal values, and that this difference is well predicted by the uncertainty
propagation technique.

4.1. Feedback control
We first consider a feedback configuration for flow over the idealized airfoil. The devel-
oped framework applies to the block diagram shown in figure 2(a) where, in the present
case, y denotes the signal from the downstream sensor and u stands for the upstream
control input. From the realistic (i.e., noise-contaminated) data sequence, the nominal
transfer function (Markov parameters) is identified using the ARMarkov/LS idenification
algorithm. The number of identified Markov parameters is set to µ = 200, which is about
1.4 times the AIC value of µ = 144. The nominal system together with the noise standard
deviation then provides an estimate of the standard deviation of the identified Markov
parameters. This latter standard deviation can be interpreted as uncertainty bands about
the nominal transfer function.

For demonstration purposes, we assume a proportional feedback controller with K =
0.025. The stability of the closed-loop system is determined by the distance of the open-
loop transfer function G0K to the point −1; see (2.17). Figures 6(a) and (b) show the
Nyquist plots of the exact OLTF, the nominal OLTF and the uncertainty bounds asso-
ciated with twice the standard deviation at each frequency. These bounds correspond to
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Figure 6. Nyquist plot of the Open Loop Transfer Function (OLTF): (red) exact, (black)
nominal value; the 95%-likelihood bounds around the nominal value are given by dashed-blue
lines. (b) Magnified detail of the OLTF in (a) near the point z = −1 with arrows showing the
nominal and real gain margins.

a confidence interval of 95%, i.e., in only 5% of cases does the real OLTF fall outside
these bounds. Furthermore, the nominal transfer function of the controlled system shows
a gain margin of GM = 0.033 which overestimates the real gain margin by more than
40% (GM = 0.023). Our uncertainty propagation algorithm gives estimates for the gain
margin of more than GM = 0.017 with a probability of 95%, and more than GM = 0.025
with a probability of 68.2%. According to the same algorithm, the standard deviation of
the gain margin is about σGM = 0.008. In contrast, the singularity at −1 is nearly four
standard deviations away from the nominal transfer function, which — according to the
gain margin criterion and under the assumption of Gaussian noise — suggests that in
only 0.1% of all cases should we expect an unstable feedback-controlled system. A similar
comparison may be performed using the phase margin: the nominal margin is PM = 29o,
the exact phase margin is PM = 21o, while the 95%-likelihood margin is determined as
PM = 13o.

In this feedback control example, compared to the nominal transfer function, the real
transfer function tends to overestimate the stability margins of the closed-loop system.
The uncertainty propagation technique allows a quantitative estimation of the error
bounds which results in a more realistic estimation of these margins.

4.2. Feed-forward control
In feed-forward control applications, the control performance is often measured by the
maximum magnitude of the controlled system transfer function (CSTF). In this case,
the input signal comes from the upstream sensor (see figure 5). As before, this controlled
system transfer function can be estimated with the nominal identifications and compared
to the real transfer function. Figures 7(a) and (b) show the transfer function of the
exact system without control, the nominal controlled system and the exact system. This
time, the performance of the controller seems to be positive (note the reduction of the
maximal amplitude) with the nominal estimation. However, a closer look reveals that the
real system behaves worse with control than without. This can be predicted using the
95%-uncertainty bounds which show the probable lack of performance of the controlled
system.

62 Chapter 2. System identification for flow control
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by a dashed horizontal line. (b) Magnified view of (a) for a limited frequency range.

5. Conclusions
The identification error due to measurement uncertainty can have an important effect

on the stability margins and performance bounds of any data-based controller. In this
study, an uncertainty propagation technique has been developed and applied to two types
of control architectures: feedback and feed-forward control. In both cases, the nominal
prediction overestimate either the controller’s performance or stability margins. When
input-data uncertainty is taken into account, more accurate predictions can be made.
Even though uncertainty propagation may be treated via Monte-Carlo analysis, the re-
lated computational costs are often prohibitive. In contrast, a linearization of the identi-
fication algorithm provides statistical information about the identified transfer function,
requiring only one single experiment and thus overcoming the previous computational
bottleneck. Estimating a priori the performance and stability characteristics of a given
controller, using the data-sequences from which the controller has been designed, may
lead to a better design of control strategies. In fact, controllers are commonly built to
be optimal in the nominal sense. Being able to give a robust definition of optimality
with respect to uncertainty should allow the construction of control setups that are more
relevant for implementation in experiments or more suited for the control of flows under
realistic conditions.

Appendix A. Transfer functions for linear time-invariant systems
Three different models have been introduced in section § 2.1. For completeness sake,

we present the transfer functions of these models which can be obtained by taking the
z-transform of the equivalent discrete-time models.

For the finite-impulse response (FIR) model we obtain the transfer function

G(z) = H0 + H1z
−1 + . . . + Hµ−1z

1−µ. (A 1)

with Hi as the Markov parameters (discrete impulse response). The transfer function is
simply a sum of monomials in z−1. Following the same procedure, the more complicated
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auto-regressive moving average (ARMA) model yields the transfer function

G(z) =
M0 + M1z

−1 + . . . + Mnz−n

1 + N1z−1 + . . . + Nnz−n
(A 2)

which represents a rational function in z−1 to approximate the transfer function of the
identified system. The third and final model, the ARMarkov model, has the transfer
function

G(z) =
H0 + H1z

−1 + . . . + Hµ−1z
−(µ−1) + z−µ(Q0 + Q1z

−1 + . . . + Qnz−n)
1 + z−µ(N1z−1 + . . . + Nnz−n)

(A 3)

which also represent a rational approximation of the system response but, contrary to
the previous ARMA model, contains the first µ Markov parameters Hi explicitly.

Appendix B. Validation using Monte-Carlo simulation
We will validate the perturbation framework introduced in the main text using Monte-

Carlo simulations. In particular, we wish to assess the dependence of the perturbative
approach on the signal-to-noise ratio of the processed data. To this end, we introduce
the parameter γ defined as γ = σδy/σy, measuring the standard deviation of the pertur-
bations with respect to the standard deviation of the unperturbed data. For efficiency
reasons, we choose as our test case a system that can be solved quickly, yet still has char-
acteristics of a full-scale fluid system. In particular, the chosen system should produce
data-sequences reminiscent of many fluid systems: with a range of certain frequencies
amplified by the flow, while other frequencies damped, and with a delay between input
and output signals mimicking advection.

The selected test case consists of incompressible flow around a cylinder (Re = 40),
modeled by the linear Ginzburg-Landau equation. An actuator is placed about half a
radius upstream of the cylinder, and the sensor is located in the stable wake; both employ
or provide signals of the normal-velocity component. The linear Ginzburg-Landau model
equation is solved numerically using finite differences on a one-dimensional equispaced
mesh of N = 100 grid points. The relatively small dimensionality of the system facilitates
the convergence of the Monte-Carlo variance estimation. The flow behaves as a filter with
delay, and the power spectral density of the output signal (given white-noise input) is
plotted in figure 8 (solid line); it shows amplification of lower frequencies (around 25 mHz)
and a strong damping of higher frequencies. The input sequence has been generated with
a Pseudo-Random Binary Signal (PRBS) algorithm. A total of 500 noise-free numerical
experiments have been performed, resulting in 500 independent noise-free input-output
data sequences with each sequence containing 1000 measurement-points sampled at 1
Hz (i.e., about 50 times the characteristic time scale of the system). The length of each
sequence represents 25 characteristic time units. This length and the sampling frequency
are adequate to accurately identify the system behavior (see section 2.2).

After establishing the base-line data-sequences, we add noise to each of the 500 ex-
periments. In general, three different approaches can be distinguished. The added noise
could be (i) broadband and affect all frequencies nearly equally. Alternatively, it could be
strongly colored with (ii) higher amplitudes near the system’s natural frequency or (iii)
with higher amplitudes at higher frequencies that do not correspond to physically ob-
served frequencies. Often, the system’s characteristic frequency can be estimated, which
allows the application of low-pass filters to eliminate the noise for the third case. In the
first two cases, low-pass filtering will not succeed in eliminating the noise components in
the data. For this reason, we will focus on these cases.

64 Chapter 2. System identification for flow control
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Figure 8. Power spectral density of the different measurement disturbances: crosses denote the
white noise, circles show the colored noise 1, the dashed-line displays the colored noise 2. The
spectrum of the noise-free output signal is represented by the solid line.

Three different measurement disturbances will be considered: white noise and two
colored noise distributions with a pronounced amplitude near the system’s characteristic
frequencies. Their power spectra are presented in figure 8 together with the output power
spectrum. These noise spectra cannot be simply filtered and are likely to influence the
value of the identified Markov parameters. Their noise-to-signal ratio γ is set by choosing
the noise amplitude. For each of the three noise spectra and for every considered noise-
to-signal ratio, we compare the statistical information estimated by the Monte-Carlo
approach to the same information computed by the uncertainty algorithm of the main
text. The mean standard deviation of the identified Markov parameter (mean(σH)) is the
objective for this test case; it has to be compared to the average of the Markov parameter
value which is one. If mean(σH) = 10−2, the variance error is estimated to be on average
one percent for each Markov parameter.

First, 500 noisy data-sequences are used to estimate the standard deviation of the iden-
tified Markov parameters (the Monte-Carlo approach). Then, one single input-output
data-sequence and the noise standard deviation are used to estimate the standard devia-
tion of the identified Markov parameters (using the uncertainty propagation approach).
For the Monte-Carlo estimation, each of the 500 perturbed input-output data-sequences
is used in the ARMarkov/LS identification algorithm, yielding the corresponding Markov
parameters; from these 500 sets of Markov parameters, their means and standard devia-
tions can easily be determined. For the uncertainty propagation, one arbitrarily perturbed
data-sequence is taken as input to the algorithm of section 3. Equation (3.12) produces
the standard deviation of the Markov parameters based on the noise standard devia-
tion, from which the mean can be computed. The parameters for the different algorithms
are N = 1000, µ = 400, n = 40, and ǫ is set to machine precision. The corresponding
AIC is not given, since its value varies with each noise-to-signal ratio and each color of
noise. Figure 9 shows the results of the standard deviation estimates for each algorithm
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Figure 9. Monte-Carlo (blue dots) and uncertainty propagation (red squares) estimates of the
standard deviation of the identified Markov parameters as a function of the noise-to-signal ratio.
(left) white noise; (middle) low-pass filtered noise 1; (right) low-pass filtered noise 2.

(Monte-Carlo and uncertainty propagation) and for each noise-spectrum/noise-to-signal
ratio.

As can be deduced from figure 9, the three different noise spectra (measurement dis-
turbances) affect the standard deviation of the Markov parameters in a similar man-
ner. Independent of the noise spectrum, the Monte-Carlo and uncertainty propagation
approaches give identical estimates for high noise-to-signal ratios, thus validating the
uncertainty propagation algorithm for sufficiently high values of γ. According to these
experiments, accurate estimates of the standard deviation of the Markov parameters can
be expected for noise-to-signal ratios γ between 10−5 and 2 (very noisy signal). For low
values of γ (≪ 10−5), two reasons may explain the discrepancy between the Monte-Carlo
results and the uncertainty propagation. First, the standard deviation may be influenced
by round-off errors which become important at 10−8 due to the square root dependence
of the standard deviation. Secondly, with only 500 samples available, the Monte-Carlo
algorithm may only be converged up to 10−6. In any event, realistic data-sequences taken
from fluid systems are rarely contaminated by noise of less than 0.001%.

This simple test case illustrates that uncertainty propagation provides accurate and
valuable estimates of the Markov-parameter variance error for realistic noise-to-signal
ratios.
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3.1 Introduction

The identification and control design techniques developed and previously applied to
numerical simulations are now applied to and tested on an experimental case: flow
over an idealized airfoil. This type of flow consists of an oscillatory component given
by the shedding of the von Karman vortices into the wake, as well as a noise-amplifier
component represented by the shear layer associated with the separation bubble
forming on top of the airfoil. Only the noise-amplifier part can be properly treated
by the technique introduced earlier; for this reason, we have to ensure ultimate
controllability with model predictive control by establishing an uncoupling of the
two competing instability mechanisms. Once controllability is assured, the system-
identification and control design algorithm described in chapter 2 is applied. It
consists of two components: (i) a system-identification technique that constructs
a finite impulse response (FIR) model for the perturbation dynamics, and (ii) a
disturbance-rejection model predictive controller (MPC) that aims at controlling
perturbations that are convected and amplified in the shear layer.

When applied to a numerical simulation of the linearized Navier-Stokes equations
(for the same flow configuration), this technique successfully reduces the amplifica-
tion of external disturbances (see figure 3.1).

Encouraged by these results, the same controller-design procedure is applied to
an experimental setting of the same flow configuration (idealized airfoil at Rec =
12500). However, it has been observed that the identification step fails at extracting
a sufficiently accurate model, which subsequently compromises the performance of
the associated controller. Non-linearities in the flow dynamics are thought to be the
cause of this lack of performance, as, by design, they are not sufficiently captured
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Figure 3.1: Numerical simulations of the linearized Navier-Stokes equations for flow
around an idealized airfoil (chord Reynolds number Rec = 2000, uncontrolled (top)
and controlled (below) configurations. The colormap shows the local kinetic per-
turbation energy. Applying a disturbance rejection controller effectively reduces the
fluctuation intensity.

Figure 3.2: Linear identification error, the blue point is the chosen input, the rest
of the field is the output-set.

by the linear system-identification technique. To further investigate this break-
down in performance, several point-to-field (single-input multiple-output, SIMO)
system-identifications have been performed, and their respective identification error
is plotted in figure 3.2. The color-contours represent the identification error from
a single input location (blue dot) to the entire flow field. The measures give an
indication of the parts of the flow that can be linearly identified based on informa-
tion from the single measurement point. For a successful identification and control,
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this identification error has to be sufficiently small to expect our technique to give
reasonable control performance. As can be seen in figure 3.2, the size and spatial
distribution of the identification error does not bode well for a successful control of
the shear layer disturbances.
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1 Introduction

Noisy measurements, non-linearities and upstream residual turbulence are a few examples of challenges
inherent to experimental flow control problems. For these flows, the controllers have to cope with
output signals that are corrupted by measurement noise, and on-line actuation has to be sufficiently
fast to control the equally fast dynamics.

While many experimental cases of successful oscillator-flow manipulation using feedback control exist
(e.g. [17]), very few experimental disturbance-rejection studies have been reported with good perfor-
mance [14, 9].

In this work, the controller design procedure developed in [6] is applied to an experiment. The pro-
cedure is composed of : (i) a linear ARMarkov system-identification [1] model design algorithm that
identifies the impulse response of the system from input-output data-sequences, and (ii) a Model
Predictive Heuristic Control (MPHC) design-algorithm [5] which computes an optimal disturbance-
rejection controller from impulse responses of the system. Flow over an idealized airfoil is considered,
and the control design aims at reducing the fluctuations propagating through the shear layer and
bounding the recirculation bubble over the airfoil.

First, the flow-behavior around the airfoil is characterized. The identification and control design pro-
cedure is then applied to reduce the level of fluctuations close to the reattachment point. As the
identification-step of the algorithm fails at predicting the temporal evolution of the shear-layer, the
final section of this report explains the reasons for this unsuccessful controller design attempt.

2 Description of the test case and experimental set-up

The idealized airfoil (Figure 1) has already been studied by Prof. McKeon’s group ; this profile showed
promising potential for flow control applications since a predetermined control design has successfully
be implemented to reattach the flow over the airfoil (see Figure 2 and reference [8, 16]).

Fig. 1 – Idealized airfoil profile with a circular leading edge and a planar trailing edge. The actuation
device is not plotted.

The profile is 50.8 cm wide (spanwise), 15.86 cm long (streamwise), and 3.43 cm thick. It is composed
of a circular leading edge followed by a straight body. The shape has a rather specific impact on
the separation bubble as it triggers detachment at the jump in curvature (for the range of Reynolds
number considered).

1
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Fig. 2 – From [8], predetermined separation control. The colormap visualizes the mean velocity ;
stream lines are also plotted to highlight the recirculation bubble. The top plot shows the flow around
a smooth airfoil ; the middle plot shows the flow around the airfoil with static actuation ; the bottom
plot shows the flow around the airfoil with predetermined periodic actuation. In the latter case, the
predetermined control successfully reattaches the flow.

Facility : The experiment is performed in a free-surface water facility (see figure 14 and [12, 7]). It
has a test section length of 1.6 m, a width of 0.46 m and a depth of 0.50 m. The flow is preconditioned by
a perforated plate, a honey comb, three turbulence-reducing screens and a 4 : 1 fifth-order polynomial
contraction. The water temperature is 23 degrees Celsius (ν = 0.943 ·10−6). The tunnel’s flow velocity
ranges from 5.4cms−1 to 45cms−1. (For our profile, the width-based and chord-based Reynolds number
in this tunnel falls within the intervals Rew = [2000; 16000] or Rec = [10000; 80000]).

Three types of measurements are available : dye visualization, Particle Image Velocimetry (PIV),
and hot-film Constant Temperature Anemometry (CTA). In addition , numerical simulations are
performed.

Dye visualization : Dye was put in the flow near the leading edge, near the middle of the profile’s
spanwise dimension, using a tube of 5 mm diameter. The dye is an eatable colorant of density slightly
higher than water, but the effect of density variation is rather small and has thus been neglected.

Particle Image Velocimetry : PIV measurements were made using a LaVision time-resolved 2D
PIV set-up with one Photron Fastcam APX-RS high-speed camera equipped with a Nikon lens of 50
mm focal length and a 1 : 1.2 aperture. The camera was synchronized with a high speed controller at
83 Hz, with a resolution of 1024×512 pixels squared, and calibrated at 5.25 pixels per mm. The camera
frequency is chosen to guarantee a freestream particle-displacement of about 7 pixels between every
snapshot. The seeding particles are hollow glass spheres (reference 110P8 with an average diameter
11.7µm and a specific gravity of 1.1) ; the seeding density is about 0.1 particles per square pixel.
The particles are illuminated by a 2 mm thick laser sheet provided by a Photonics DM20-527 solid-
state laser. To avoid large uncertainty near the illuminated profile due to surface reflection, the image
intensity is calibrated using white image subtraction (normalization of the image intensity using the
average light distribution) and background image subtraction. The white and background images are
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Fig. 3 – From [13], velocity fluctuations within the shear layer at Re = 2500. The measurements are
made at x/D = 1 and y/D = 0.8.

taken before each run and averaged over 100 snapshots.

3 Shear layer behavior

Two instability mechanisms are acting on this profile : the shear-layer, convective instability on both
sides of the idealized airfoil, and the von-Karman street, absolute instability starting at the trailing
edge of the profile. These two phenomena may be coupled : the shear-layer beating frequency may be
locked to the frequency of the von-Karman instability, in which case a disturbance-rejection controller
is likely to perform rather poorly. If shear-layer and von-Karman vortices are uncoupled (i.e., their cha-
racteristic frequencies are distinct from each other), a disturbance-rejection controller may efficiently
reduce perturbations that are convected and amplified in the shear layer.

Literature about bluff body flow [13, 18] shows that even though von-Karman vortices perturb the flow
at a specific frequency, the shear layer may still behave independently. Indeed, frequency locking will
occur only if the characteristic frequency of the shear layer is close to the characteristic frequency of the
vortices (or its first harmonics). If the shear layer frequency is locked onto the vortex-street frequency,
the flow is globally oscillating, in which case feed-forward control will be ineffective. However, if the
two frequencies are distinct, the shear layer may behave as a noise amplifier and therefore be a suitable
candidate for MPHC control [6]. Figure 3 shows the spectrum of velocity fluctuations behind a cylinder
at a Reynolds number of Re = 2500, with fK as the von-Karman street frequency and fSL as the
shear-layer frequency. This spectrum shows that the two dynamics are likely uncoupled, because their
frequencies are separated by almost one order of magnitude. The shape of the amplification further
supports this argument, as the peaks at fK and 2fK have a rather sharp shape which highlights the
associated oscillatory behavior ; in contrast, the smooth peak at fSL corresponds to what is commonly
observed for noise-amplifier behavior (see [3]). Another study from [18] has demonstrated similar
results for flow around an airfoil at a chord-based Reynolds number of Re = 104 (see figure 4).

In summary, the flow around bluff bodies or around thick airfoils may present two types of instabilities
that have distinct dynamics, if they are uncoupled. In this case, the shear layers behave as noise-
amplifiers and thus fit into a disturbance-rejection control framework.
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Fig. 4 – From [18], spectra of the fluctuating lateral-velocity component at Rec = 104. The amplitude
of each successive spectrum is increased by one order of magnitude.

4

76
Chapter 3. Experimental flow over an airfoil: reaching the limit of

linear identification



Report on experimental research at GALCIT Spring 2012

Fig. 5 – First unstable linear mode. The mode represents the von-Karman instability, apparent about
one-and-a-half chord lengths from the airfoil.

Fig. 6 – Impulse response of the shear layer computed from the linearized Navier-Stokes equation.
The shear layer convects and amplifies the initial perturbation due to a Kelvin-Helmholtz instability.

The last part of this section demonstrates the non-coupling character of the instability mechanisms
on our idealized airfoil, which motivates the application of feedforward MPC to its shear layer.

Numerical simulations : First, the steady, two-dimensional, laminar solution of the Navier-Stokes
equation (i.e., the base flow) is computed using a finite-element discretization of the equations on a
triangular mesh. Newton’s algorithm is applied to find the base flow at increasing Reynolds number,
exploiting continuity of the problem. Any base flow at chord-based Reynolds numbers higher than
Rec = 1600 is linearly unstable, and the most amplified mode shows von-Karman structures (see
figure 5) oscillating at a Strouhal number of 0.23. The lowest experimental Reynolds number is Rec =
10000; hence, regardless of the selected velocity, von-Karman shedding certainly appears in the wake
of the airfoil in our facility.

To evaluate the frequency at which the shear layer is amplifying incoming disturbances, the numerical
domain is truncated (see figure 6). Above a Reynolds number of Rec = 1600, the shear layer becomes
convectively unstable, and the Strouhal number of the most amplified frequency is approximately 1.
From linear numerical simulations of flow about the idealized airfoil we conclude that the instability
mechanisms are uncoupled ; however, these numerical studies are describing the flow at much lower
Reynolds numbers than what can be realized in our experimental facility.

Spectrum using PIV data : Time-resolved PIV data have been recorded by R. Wallace ([16]).
Using Dynamic Mode Decomposition (DMD ; see [15]) on this set of data provides the frequency

5
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Fig. 7 – Eigenvalues and corresponding modes from a dynamic mode decomposition (DMD) of the
TR-PIV data around the airfoil. The circled eigenvalue corresponds to the eigenmode plotted below.

Fig. 8 – Dye streaks in the shear layer for flow around an airfoil with a splitter plate ; the chord-based
Reynolds number is Rec = 10000.

content and associated flow features, in our case for Rec = 11000. Figure 7 shows the eigenvalues
and some eigenvectors of the DMD-companion matrix. Three fields are plotted corresponding to three
frequencies circled (in red) in the spectrum. The first (left) mode shows a large flow structure, which
could be caused by the von-Karman street ; the corresponding Strouhal number is about 0.15. The two
other structures plotted are localized in the shear layer ; their respective Strouhal numbers are 0.61
(middle) and 0.32 (right). This seems to correspond to the results found at higher Reynolds numbers,
even on different profiles in [18].

The frequencies and modes found with DMD suggest a separation of behavior between the shear layer
and the vortex street. Therefore, a feed-forward controller may successfully control perturbations
growing in the shear layer.

Flow features using dye visualization : In order to confirm the above behavior, flow visua-
lizations with dye coloration have been performed. Figures 8 and 9 show the flow marked with dye
coloration for two different Reynolds numbers. The shear-layer structures are clearly identifiable. Their
characteristic frequency may be qualitatively evaluated, yielding their shape and average velocity in
the shear layer. The results agree with the Strouhal number found with the DMD.

Besides confirming the results from the DMD, the dye pictures show the separation point, which is,
as expected, at the jump in curvature of the airfoil. The upstream sensor has to be placed just ahead
of this separation to detect upstream perturbations before they enter the convectively unstable shear
layer.

6
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Fig. 9 – Dye streaks in the shear layer for flow around an airfoil with a splitter plate ; the chord-based
Reynolds number is Rec = 25000.

Conclusions on the shear layer behavior : The shear layer appears to be uncoupled from von-
Karman vortices. This has been observed in several studies [13, 18] and is confirmed by the spectral
and numerical analysis performed on our profile : the frequencies of the two phenomena are distinct
and separated. Additionally, the dye visualization confirmed the location of separation as the position
of the curvature jump. Since the shear layer starts at the separation point, perturbations that grow in
the shear layer are most easily detected by a sensor just upstream of the separation point (as shown
in figure 13).

4 Limits of linear system identification

The controller design algorithm is described in more detail in [6]. It is first briefly summarized here
and then applied to both numerical and real experiment.

4.1 System identification and control design algorithm

The goal of the controller is to reduce the disturbance levels in the shear layer. The disturbance level
is represented by a scalar signal y denoting the deviation of a measurement from its mean ; y = 0
is achieved for a steady flow. This scalar information is either coming from a hot-film on the airfoil
or from PIV-measurements of a large area of the flow field. Actuation is denoted by u and is placed
near the separation point. The spy-sensor s is either a hot-film placed upstream of the actuator, or an
upstream point measurement from PIV. Its role is to detect the incoming disturbance for an effective
control design.

The fluid system is governed by two input signals (the known actuator signal u and the unknown
disturbance environment w) and two output signals (the measurements y and s). The following linear
model is assumed to be representative of the flow’s input-output relationship.

y = Gwyw + Guyu (1)
s = Gwsw. (2)

The control u is assumed to have no influence on the spy-sensor s, due to the convective behavior of
the flow. The controller-structure is taken as the set of linear transfer functions from the spy sensor
to the actuation ; it is a feedforward set-up.

u = Csus. (3)

This transfer function has to be designed to reduce the shear layer disturbances. In our case, we wish
to reach y = 0 at all times, which gives

u = −G−1
uy GwyG

−1
wss ≡ Csus. (4)

7
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Since w is unknown, the transfer functions Gwy and Gws cannot be determined. Using relation (2)
between w and s, y may be written without referring to w

y = Guyu+ GwyG
−1
wss. (5)

Since the signals u, s and y are measurable, the two transfer functions Guy and GwyG
−1
ws are identifiable.

The next section describes the chosen identification algorithm.

4.1.1 Finite-impulse response model

To take advantage of a data-based approach (due to its feasibility in an experimental setup), an
input-output data sequence of N samples will be recorded from which the transfer functions will be
determined. This latter process can be divided into two steps : (i) a model-structure for the system’s
impulse responses has to be chosen first, after which (ii) a fitting procedure will determine the inherent
parameters of the selected model.

It is important to choose an input signal u that properly excites the inherent frequencies of the system
and thus provides a complete input-output map that accurately represents the response behavior of
the system to a range of harmonic excitations. To this end, a pseudo-random binary signal (PRBS),
a chirp signal or, simply, white noise are appropriate and common choices of a frequency-rich input
signal.

FIR model structure : A Finite Impulse Response model links the present output to past inputs
in the form

y = Guyu ⇒ y(k) =
µ−1∑

j=0

Hju(k − j) (6)

where y(k) is a short-form for y(k∆t) with ∆t as the discrete time-step, Hj stands for the jth impulse
response coefficient (also referred to as the jth Markov parameter), and µ is the length of the impulse
(order of the model). Hu and Hs are the Markov parameters associated with the two transfer functions
to be identify : Guy and GwyG

−1
ws .

y(k) =
µ−1∑

j=0

Hu
j u(k − j) +

µ−1∑

j=0

Hs
j s(k − j). (7)

Least-squares identification : Denoting by ŷ(k;Hu, Hs) the output predicted by the identified
model, the identification error E may be written as the 2-norm distance between the exact (measured)
output y and its estimation :

E(Hu, Hs, ZN ) =
1
N

N∑

k=1

‖y(k)− ŷ(k;Hu, Hs)‖2 (8)

where ZN stands for a compound vector containing the input and output signals, i.e., ZN = (u(k)k=1,N , y(k)k=1,N , s(k)k=1,N ) .
The identification procedure then corresponds to the minimization of E, resulting in

(Hu, Hs) = arg min
Hu,Hs

E(Hu, Hs, ZN ). (9)

Details about the optimization algorithm may be found in [6]. The identification problem may be
split : first no actuation is given to the flow and the Markov parameters Hs are identified ; then, the
parameters Hu are identified using the actuated configuration.

Using the identified Markov parameters Hs,u the two transfer functions Guy and GwyG
−1
ws are formed.

The final step consists of multiplying the inverse of Guy to the transfer function GwyG
−1
ws .
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4.1.2 Disturbance-rejection control design

Model Predictive Heuristic Control (MPHC) [5] is applied to arrive at a regularized inverse and a
robust expression for the transfer function G−1

uy GwyG
−1
ws . The MPHC approach determines the Markov

parameters of the transfer function Csu such that the signal u minimizes the cost functional J given
by

J =
µ−1∑

k=0

y(k)2 + α
µ−1∑

k=0

u(k)2 (10)

where the scalar α balances the control cost and the measured objective signal — a penalization that
prevents excessively large values for the control u.

In its impulse response form, the transfer function Csu can be written

u(k) =
µ−1∑

j=0

Ljs(k − j), (11)

with Lk as the kth Markov parameter. MPHC consists of building the transposed (upper triangular)
Toeplitz matrix T T containing the Markov parameters of Guy, i.e.,

T T =




Hu
0 Hu

1 · · · Hu
µ

Hu
0 · · · Hu

µ−1
. . .

...
Hu

0


 . (12)

Then, by introducing S as the vector of Markov parameters of Gsy,

S = (Hs
0 , H

s
1 , . . . ,H

s
µ−1)T , (13)

and L as the vector of (unknown) Markov parameters of the desired transfer function Csu

L = (L0, L1, . . . , Lµ−1)T , (14)

the cost functional J may be reformulated in the more compact form

J(L) = ‖S + T L‖2 + α‖L‖2 → min (15)

which attains its minimum for (see [6])

L = −(T TT + αI)−1T TS. (16)

The desired transfer function of the controller is determined directly from (16). The Markov parameters
Hu and Hs have been identified earlier, which makes the computation of L straightforward and leads
to the controller’s transfer function according to

u(k) =
µ−1∑

j=0

Ljs(k − j). (17)

This expression concludes the computational procedure for the design of a controller using the MPHC
framework.
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Fig. 10 – Uncontrolled (top) and controlled (below) flow around the airfoil. The colormap shows the
fluctuations’ intensity about the base flow. Applying a disturbance-rejection controller reduces the
fluctuation intensity.

4.2 Numerical simulation

The simulation is based on the linearized Navier-Stokes equations for the evolution of perturbations
around the mean flow. The Reynolds number is Rec = 1600. Actuation and sensor placement corres-
pond to the set-up used the previous section. The controller is computed using the previously defined
MPHC algorithm. Figure 10 shows the amplitude of the fluctuation around the mean flow of the
streamwise component. The uncontrolled case (on top) shows yellow and red contours behind the
airfoil where the fluctuations are high compared to the freestream values. When the control is applied,
the bulk of the fluctuations are damped to a rather low level. The fluctuation energy is diminished
to about 10% of its initial value. Despite this encouraging result, we have to keep in mind the ideali-
zed nature of the flow : linear governing equations, convectively dominated flow, and the absence of
measurement disturbances.

4.3 Experimental shear layer

We aim at controlling disturbances traveling into the shear layer using a data-based model. The model
describes the effect of the control input and the effect of the incoming disturbances on the flow. The
most challenging step is the identification of the incoming disturbances ; indeed, the optimization
problem is often ill-posed due to the narrow spectral content of the upstream sensor. Because the
input spectrum is chosen broad, which makes the identification problem well-posed.

First, incoming disturbances and output data-sequences from the hot-films were recorded and analyzed.
No linear system can predict the evolution of the sensor downstream solely from the upstream sensor
information — even after employing different pre-processing operations (filtering, removing the mean,
extracting only the frequency at which the shear layer responds). Since the identification fails at
predicting the evolution of the flow between the leading and trailing edge, an intermediary step is
designed which consists of using PIV measurements as incoming disturbances and as output. Because
PIV measurements contain the velocity everywhere in the measured flow field, we can assess the
conditions when flow structures become too nonlinear to be identified by a linear model. A Single
Input Multiple-Output (SIMO) linear system identification is designed to identify a transfer function
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Fig. 11 – Linear identification error, the blue point is the chose input, the rest of the field represents
the set of outputs.

between one location (the input) and the rest of the flow field (the output). For each of these transfer
functions, an estimation error Er is computed ; it is a measure of the accuracy of the identified model

Er =
∑N
k=1 ‖y(k)− ŷ(k;Hs)‖2∑N

k=1 ‖y(k)‖2
. (18)

Given a point in the flow field (the input), a map can be determined which identifies the regions (the
outputs) that are linearly related to that point. Figure 11 shows different colormaps, which represent
the estimation error from linear identification. For each of these colormaps, one point is chosen to
be the input, the rest of the field are outputs. If the flow can be estimated by a linear system and
by knowing the input, our linear-control framework may produce satisfactory results. If, on the other
hand, the flow cannot be estimated linearly, our control design efforts will certainly fail. It appears
that fluctuation can be predicted as they propagate in the freestream. It is also shown (on the first
two colormaps) that the estimation of fluctuations is rather inaccurate near the recirculation bubble
and on the shear layer. This figure provides evidence that our controller, based on this particular
sensor set-up, will likely fail. This, however, does not imply that no controller is capable of reducing
the fluctuations in the shear layer ; only our specific configuration will be unsuccessful.

5 Conclusions and perspectives

In this study, an analysis of the flow over an idealized airfoil has been conducted. The unstable shear
layer has been found to be convectively dominated. However, identification of its behavior using linear

11
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Fig. 12 – Drawing of glue-on films for anemometry measures. The conductance of the film varies with
its temperature, directly linked to the velocity thermal conduction of the fluid.

system identification failed, as an estimation error analysis showed.

Identification of the linear part of the flow : Looking at [14], it appears that, even though the
turbulent boundary layer is nonlinear, linear identification and control can be effectively applied.

The sensor-actuator placement in their work is much more compact, and nonlinear effects do not
negatively influence the identification process. As was shown in figure 11, linear identification decreases
in accuracy with the distance to the input. Moving input and output closer together (as in [14]) allows
an efficient control.

Non-linear identification : Nonlinear identification and control may also be employed to bypass
the accuracy problem. A Hammerstein-Wiener nonlinear system showed some significant improvement
in identification accuracy (not plotted here) and seems to provide a favorable framework for shear
layer control beyond a linear approach. Identification may be performed using Ljung’s classical PEM
method [11], or using different identification algorithms [2]. Nonlinear control design has already been
developed (see, e.g., [4]), which would facilitate an effort towards such flow control applications.

A Constant temperature anemometry

The anemometry makes use of the convective heat-transfer phenomenon : velocity variations around
the probe change the probe’s temperature. This temperature variation produces a change in the elec-
trical resistance of the probe. This resistance variation can then be sensed with a constant-temperature
anemometer composed of a Wheatstone bridge and a servo amplifier. Finally, the analog electric tension
from the amplifier may be acquired via an analog/digital card. As may be expected, the relationship
between the acquired tension and the velocity around the probe is nonlinear. An example of this issue
is the relationship for hot-wires that may be described by a 5th-order power-law as shown in [10] :

U = C0 + C1E + C2E
2 + C3E

3 + C4E
4 + C5E

5. (19)

The hot-films used in our experiment (see figure 12) are a special version of the flush-mounting probes,
where the sensor is deposited on a 50 µm thick Kapton foil. The sensor is 0.9×0.1mm2 and connected
to gold-plated lead areas (middle of the figure 12). The film is glued directly onto the wall where time-
resolved information about the velocity is required. Even if this type of sensors is primarily intended
for qualitative measurements of transition and separation points, it is used here for the acquisition of
time-varying data-sequences. A typical mounting of the sensor onto the airfoil is shown in figure ??
where the film is placed on the leading edge, near the separation point. The airfoil, with sensors, in the
tunnel is shown in figure 13. In our experiment, two Dantec glue-on hot-films with nominal resistance
of 9.8 and 11 Ohms are used, placed at the leading and trailing edge of the profile.
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Fig. 13 – Hot-film placement on the airfoil. Bboundary layer perturbations are sensed on the leading
edge. The wires are placed on the uncontrolled side.

Fig. 14 – Image of the airfoil in the tunnel. The flow is from left to right.
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Data-assimilation of mean flows
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4.1 Introduction

Data-assimilation is a numerical technique for the identification of model-parameters
from observed measurements. It can be used for the interpolatory or extrapolatory
recovery of unobserved physical quantities.

Data-assimilation was first developed for meteorological applications to recon-
struct and predict time-evolving atmospheric flows and weather patterns, from
measurements which were dispersed over the entire globe. More recently, data-
assimilation has been employed in many other research domains, for example in
structural and fluid dynamics (see Avril et al., 2008; Apte et al., 2010; Tissot et al.,
2011; Bukshtynov et al., 2011).

Underlying any data-assimilation effort is a physically motivated model postu-
lated by the user, to which the observed data will be optimally matched. For this rea-
son, the cost of data-assimilation not only involves the simulation of the model, but
also the additional cost involved in the optimization procedure. Data-assimilation
thus exceeds numerical simulation in computational cost and effort. In particular,
the time-resolved assimilation of high-Reynolds number time-varying problems is
often beyond the capabilities of today’s computer resources; nonetheless, research
in this area is very active. For example, Daescu & Navon (2007) address the high
cost of time-resolved data-assimilation by using reduced-order physics-based models
during the optimization step, yielding an affordable assimilation technique. Alter-
natively, the computational cost associated with time-varying problems can also
be diminished by concentrating on mean quantities and averaged models. Follow-
ing this concept, a data-assimilation algorithm for mean-velocity measurements is
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developed in this chapter where the parametric model is taken as the Reynolds-
Averaged Navier-Stokes (RANS) equations, and the processed data-set is based on
mean-velocities only. Parametrization of the RANS equations is accomplished by
assuming an unknown Reynolds stress tensor. In this particular case, no additional
assumptions related to closure, e.g. a Boussinesq hypothesis, k − ε or other turbu-
lence models, are needed. Therefore, besides being mainly used for reconstructive
purposes, data-assimilation of mean-velocity measurements can also be performed
to extract turbulent statistics without postulating any closure assumptions.

As the output of data-assimilation is a model that optimally fits a given data-
set, it can also be applied to control design (passive or active) where it provides the
underlying plant model; even though this appears to be an interesting application
of data-assimilation, this aspect will not be pursued within the scope of this thesis.

Data-assimilation algorithms have recently produced impressive results in a wide
range of applications; however, it seems rather difficult to a priori estimate the per-
formance of a specific algorithm, owing to the sensitivity to model details and data
inaccuracies, as well as to the non-linear nature of the optimization problem. For
this reason, we simply demonstrate the efficiency of our mean-velocity assimilation
on three different examples: an experimental turbulent pipe-flow, a numerical sim-
ulation of flow around a cylinder, and an experimental flow over an idealized airfoil.

The first example (section 4.2) presents the assimilation of mean-velocity mea-
surements taken from a turbulent-pipe flow at a Reynolds number of about Re =
37000. At such Reynolds numbers, the probe size limits the minimal distance from
the wall at which measurements can be taken. The extrapolatory property of the
assimilation procedure is thus particularly useful, as the mean velocity profile can
be reconstructed between the last measurement point and the wall.

The experimental measurements have been performed by Mckeon et al. (2004)
at the Superpipe facility of the Princeton Gas Dynamics Laboratory. The mean
streamwise velocity has been measured at 57 locations in the radial direction. Using
only 15 of these data-measurements as an input to the data-assimilation algorithm,
the entire mean-flow profile is reconstructed (see figure 4.1). Also included in this
figure is the relative error between the reconstructed flow and the 57 true measure-
ments of the mean-velocity profile. As can be seen, the relative error is relatively
high far from the 15 data-measurements taken for the reconstruction but rather low
near these points. The result of this 1D assimilation problem is not satisfying in
itself, but it gave useful information about the behavior of such an adjoint-based
optimization problem. An estimation of the Reynolds number and pressure drop
have been obtained from the data-assimilation procedure; the values (Re = 36235,
∆p = 4.72Pa.m−1) are not too far from a classical Spalding profiles estimation
(Re = 37155, ∆p = 6.87Pa.m−1).

Section 4.3 focuses on a numerical simulation of flow around a cylinder at a
Reynolds number of Re = 150. Different input data-sets are processed to recon-
struct the mean flow field while demonstrating the capability of interpolation, ex-
trapolation and variable reconstruction during the assimilation process. Among
these options, figure 4.2 illustrates an example of interpolatory and state-variable
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Figure 4.1: Mean velocity versus wall distance (in inner scales). Black circles,
measurements ; blue line, reconstructed velocity field ; red dashed line, asymptotic
solutions for the viscous and log layers. The error between the reconstructed and
measured mean velocities is shown in the upper sub-plot, quantified by percentage
of the measured velocity.

reconstruction based on velocity magnitude measurements. First, the full flow field
is computed using a direct numerical simulation of the two-dimensional Navier-
Stokes equations (top sub-figures), from which the velocity magnitude is extracted
(middle sub-figure). This latter magnitude is then used as input for the assimilation
procedure based on a two-dimensional RANS model resulting in the reconstructed
velocity flow fields shown in the bottom sub-figures. This example demonstrates
the successful recovery of full mean flow information on a fine grid from magnitude
data sampled on a coarse grid.

Even if the velocity magnitude measurements are artificially polluted by white
noise, the individual velocity components could be reconstructed with sufficient
accuracy. This fact proves encouraging for an application of data-assimilation tech-
niques to experimentally measured and/or more complex mean flows.

The idealized airfoil is identical to the one described in chapter 3, but a two-
camera PIV measurement system has been used to extract flow-field measurements.
Physically, two competing instability mechanisms are present in the flow: the con-
vectively unstable shear layer bounding the recirculation bubble, and the absolutely
unstable Von Karman vortex-street forming at the trailing edge of the profile. The
objective of the assimilation procedure is to reconstruct the entire flow field us-
ing only 20 measurement locations, for which the streamwise and normal velocity
components are recorded.
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Figure 4.2: Mean velocity reconstruction by data-assimilation of velocity magnitude
measurements. Top: initial mean flow from a direct numerical simulation, (left)
streamwise velocity component, (right) normal velocity component; Middle: velocity
magnitude on a coarsened grid, taken as the input to the assimilation algorithm;
Bottom: reconstructed flow fields, (left) streamwise velocity component, (right)
normal velocity component.
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Figure 4.3: Top: mean velocity field from averaging time-resolved PIV measure-
ments, visualized by color contours of the velocity magnitude and streamlines; Bot-
tom: reconstructed flow field using data-assimilation, visualized as above. The
black squares indicate the measurement locations that serve as input to the data-
assimilation algorithm.

Figure 4.3 shows, on top, the mean velocity determined from averaging the time-
resolved PIV measurements (color-contours of velocity magnitude and streamlines).
The lower figure displays the reconstructed mean-velocity field from our assimilation
procedure. The 20 measurement locations which act as input to the assimilation
are shown in black squares. Even though the details of the reconstructed flow
confined to the interior of the separation bubble do not agree with the true averaged
measurements, the remaining flow features are well-captured, both qualitatively and
quantitatively.

These three examples are probing the performance but also the limitations of
data-assimilation techniques for mean-velocity recovery from under-sampled data
using an underlying RANS model. More details for each of these cases will be
presented in what follows.
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I. INTRODUCTION

In this article it is shown how a mean-velocity profile can be optimally reconstructed from a rather limited number
of mean-velocity measurements from a turbulent boundary layer. Based on the Reynolds-Averaged Navier-Stokes
equations, an optimization technique is presented that uses the few experimental mean-flow measurements to provide
a full profile that allows the evaluation of the mean velocity across the boundary layer and, more importantly, close
to the wall where precise measurements are difficult or prohibitive to attain.

Data-assimilation is the chosen approach to solve this reconstruction problem. In general, it refers to a family
of techniques that use observations, a model and a fitting criterion to build what is commonly referred to as an
assimilated or fitted model. Data-assimilation has its roots in meteorology where predicting the future evolution of
the atmosphere’s characteristics has to take into account the scattered weather data from around the world. Within
this context, two types of estimation problems may be distinguished [9]: (i) estimation of the state variables (e.g.
atmospheric pressure, temperature, velocity) at a given time using a spatial distribution of measurements available
at that time (referred to as off-line or fixed-sample estimation), or (ii) estimation of the future state-vector trajectory
corrected with the available data (known as online, recursive or sequential estimation). The mean-flow reconstruction
technique from turbulent measurements, treated in this article, falls into the first category, as the temporal dimension
is removed by averaging in time. Data-assimilation technique for off-line state estimation can either rely solely on
past measurements and neglect explicit physical constraints, or take into account a specified physical model under
a weak or strong formulation. Among the statistical approaches for noisy data, the Wiener-filtering methods are
most popular and widely used, especially as part of algorithms such as the optimal interpolation (OI) method or
the Kriging technique, well known in the atmospheric flow-prediction community [6, 8]. In fluid mechanics, methods
approximately related to data-assimilation have been used to reconstruct gaps in particle image velocimetry (PIV)
measurements [4] or to improve the standard PIV algorithm [11].

In our work, the Reynolds-Averaged Navier-Stokes (RANS) equations are enforced as a strong constraint during the
assimilation process. This means that the estimated states (mean velocity and turbulent moments) will be solutions
of the RANS equations. When using the strong-constraint form, the underlying model has to be flexible or compliant
to be able to fit the data. The compliance of a model refers to a set of selected parameters that are adjustable in the
model. Choices of parameters are, for example, an initial or inflow condition as in [1, 7, 12] or a material property
as in [2, 5]. In our application, a compound quantity involving the unknown Reynolds stress tensor and the pressure
drop is taken as the compliance parameter; the state is the mean-velocity field. Data-assimilation problems based on
strong constraints can be recast into a variational formulation [3] which then allows an iterative solution following
a gradient-based optimization method. In the end, a distance measure between the data and the model-estimated
mean-velocity profile is minimized, which results not only in the recovered profile but also in the associated values of
the compliance parameters.

II. MOTIVATION

Two principal motivations for the current work shall be highlighted. The first is concerned with the reconstruction
of a turbulent boundary layer profile from limited measurements with no accessory assumptions on the behavior of
different layers. Indeed, wall-shear estimation is often realized using semi-empirical profiles (such as, e.g. Spalding or
Musker profiles). With the data-assimilation approach, only the (one-dimensional) Reynolds-Averaged Navier-Stokes
equations are postulated and enforced. No further empirical input is necessary. An additional motivation is the
identification of turbulent mean quantities and the improvement of mean PIV-measurements in two and three spatial
dimensions; this present article is a first step in this direction.

III. ASSIMILATION PROCEDURE

Three components are required for an assimilation procedure: an underlying model, compliance parameters and
measured data. In this work, we use the Reynolds-Averaged Navier-Stokes equations as a model, the Reynolds shear
stress, pressure drop and Reynolds number as compliance parameters, and mean-velocity measurements from the
experiment as input data. The goal then is to find the values of the compliance parameters such that the recovered
mean-velocity profile matches the measured values.
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A. Model equation

The model equation in our case is the axial (z) momentum part of the one-dimensional Reynolds-Averaged Navier-
Stokes (RANS) equations in radial coordinates under the assumption of a fully developed turbulent pipe flow. It
reads

ν

r

∂

∂r

(
r
∂Vz
∂r

)
− 1
r

∂
(
rV ′rV ′z

)

∂r
− ∂p

∂z
= 0 (1)

where ν is the kinematic viscosity of the fluid, Vz stands for the axial mean velocity, taken as a function of the radius
r, ∂p/∂z represents the constant axial pressure drop and V ′rV ′z is the Reynolds stress component that affects the axial
momentum equation (again, taken as a function of the radius only). This equation establishes a link between the
mean velocity and both the turbulent Reynolds stress and the pressure drop. The boundary conditions are Vz = 0
and V ′rV ′z = 0 at the wall (r = R), ∂Vz/∂r = 0 and V ′rV ′z = 0 on the pipe’s centerline (r = 0). Integrating these
equations through the pipe, we obtain the following force-balance equation:

πR2 ∂p

∂z
= −2πRτw (2)

where τw = −ν ∂V
∂r

∣∣
r=R

is the wall-shear stress (the minus sign has been added to make this quantity positive).

B. Type of measurements

Measurements of the mean velocity are taken from experiments conducted in the Princeton/ONR Superpipe facility,
see [10], a facility capable of investigating fully developed turbulent pipe flow over a wide range of Reynolds numbers.
The pipe has an internal diameter (2R) of about 13 centimeters, an aspect ratio of L/(2R) = 200 and a wall roughness
of less than 0.15 millimeters. Mean velocities are measured with a Pitot tube at 57 different wall-normal locations.
More detailed information about the experiment can be found in reference [10] and on the Gas Dynamics Laboratory
website [? ]. The kinematic viscosity was accurately evaluated to be: ν = 1.8487×10−5 ???. For the data-assimilation
procedure, only 15 measurements (of the 57 available wall-normal locations) will be considered, in order to validate
the accuracy of the assimilation technique.

To formulate the optimization problem let V mesz (ri)|i∈[0:N ] denote the set of measured mean velocities. Here we
assume that we have a measurement at the centerline of the channel (r0 = 0, V mesz (r0) > 0) and that rN = R, which
induces that V mesz (rN ) = 0 (no-slip condition).

Analogously, we define a set of computed mean velocities at the same radial locations Vz(ri)|i∈[0:N ] . The goal of
the data-assimilation algorithm is then to find the pressure drop and Reynolds stresses such that Vz(ri) = V mesz (ri)
for all indices i ∈ [0 : N ]. Thus, a cost functional to minimize can be defined as the 2-norm of the difference between
measured and computed sets of mean velocities according to

J(Vz) =
N∑

i=0

[Vz(ri)− V mesz (ri)]
2
ri. (3)

Minimization of this cost functional while respecting the underlying model leads to a constrained optimization problem.

C. Model compliance parameter

As mentioned above, the constant pressure drop and the radially dependent Reynolds stress component V ′rV ′z are
taken as unknowns in the optimization problem. Based on the model equation (1), the unknown parameters and
variables can be regrouped into one variable, a composite function of the radius g(r) satisfying:

1
r

∂

∂r

(
r
∂Vz
∂r

)
=

1
r

∂

∂r
[rg(r)] . (4)

The following boundary condition Vz(r = 0) = Vz(r0) has to be applied to compute Vz from g. Using g(r0) = 0
(symmetry condition), we obtain:

∂Vz
∂r

= g(r), (5)
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so that: Vz(r)− Vz(r0) =
∫ R
r0
g(r′)dr′.

Once g and Vz have been identified, we may obtain a value for the pressure gradient and the Reynolds shear-stress:

∂p

∂z
=

2νg(R)
R

(6)

V ′rV ′z = ν
[
g(r)− r

R
g(R)

]
. (7)

The Reynolds number may then be computed as Re = VmR/ν, where Vm = 2
∫ R
0
r′V dr′/R2 is the actual mean

mass-flow rate. The wall shear-stress τw may finally be obtained from Eq. (2), the friction velocity from uτ =
√
τw

and the friction length-scale from δ+ = ν/uτ .

D. Optimization

The objective of the optimization step is to find a scalar function g, such that the solution of (5) minimizes the
cost functional J defined in (3). This constrained optimization problem is easily transformed into an unconstrained
problem using an augmented Lagrangian formulation. We define

L = J(Vz)−
∫ R

0

[
∂Vz
∂r
− g(r′)

]
u†(r′) r′dr′ (8)

which introduces u† as the solution to the adjoint one-dimensional governing equation. The minimization of this
augmented Lagrangian L will ensure the minimization of J and the enforcement of the RANS equation.

An iterative algorithm can be derived by taking the first variations of the Lagrangian functional L with respect
to all involved variables and setting these first variations to zero. The first variation with respect to u† recovers the
governing equation (5), while the first variation with respect to Vz yields an adjoint RANS-equation for the adjoint
variable u† which reads

1
r

∂

∂r

[
ru†(r)

]
= −

N∑

i=0

2 [Vz(r)− V mesz (ri)] δ(r − ri). (9)

This yields:

u†(r) = −r−1
∑

ri≤r
2 [Vz(ri)− V mesz (ri)] ri, (10)

Note that any mismatch between the assimilated profile and the true measurements acts as driving term in the
adjoint term. Finally, the first variation with respect to the function g results in an optimality condition, expressed
as a gradient of the cost functional with respect to g. We obtain

∇gJ = u† (11)

which can be used in any standard gradient-based optimization algorithm to iteratively find the minimum of J.
Using a steepest-gradient descent method, the final solution g is a sum of a series of gradients udag. Hence, since

u†(0) = 0 and u†(R) 6= 0, we can see that: g(0) = 0, which is consistent with the assumptions, and g(R) 6= 0, which
ensures ∂p/∂z 6= 0.

E. Results

Before presenting the results of the data-assimilation process, we introduce the wall-normal coordinate y+ in inner
units defined as y+ = (R − r)/δ+, the axial mean velocity scaled by the friction velocity V +

z = Vz/uτ , and by the
mean velocity averaged over the pipe radius V ∗z = Vz/Vm, the Reynolds shear-stress scaled by the friction velocity
V ′rV ′z

+
= V ′rV ′z/u

2
τ .

Figure 1 displays the mean velocity recovered from a limited number of data points (indicated by red symbols)
using the data-assimilation algorithm. The full mean-velocity profile is successfully reconstructed, with satisfactory
accuracy at radial locations between the included data-points and in the near-wall region where measurements were
unobtainable. These findings are further corroborated in figure 2 which presents the recovered mean-velocity profile (in
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FIG. 1: Mean-velocity profile Vz versus the normalized radius r/R. Black symbols indicate true measurements, while
the blue line displays the reconstructed mean-velocity profile using data-assimilation of a restricted set of

measurements. The radii where velocity measurements entered the data-assimilation algorithm are shown as the red
circles. (Left) mean-velocity profile over the entire pipe radius, (right) magnified region close to the pipe wall.

blue) in inner units and compares it to well-known asymptotic solutions for the viscous sublayer and the logarithmic
layer. Good agreement is observed, even though only 15 experimental values have been used in the reconstruction
procedure. Quantitatively, the relative error between the true measurements and the values from the data-assimilated
mean-velocity profile never exceeds 0.5%. Again, the recovered mean-velocity profile gives accurate estimates for
the near-wall region, extrapolating the measurements from the outer region. Finally, figure 3 shows the recovered
Reynolds stress component V ′rV ′z

+
versus the outer scale r/R and the inner scale y+. Both the magnitude and shape of

this cross-moment are comparable to the results found in direct numerical simulations [13]. As mentioned above, the
data-assimilation procedure also produces the Reynolds number and the axial pressure drop. In our case, we recover
a Reynolds number of Re = 36235 and an axial pressure drop of 4.72 Pa m−1. These values should be compared to
the values based on a semi-empirical Spalding profile, namely, Re = 37155 and 6.87 Pa m−1.

As it can be observed the reconstruction lacks of smoothness, the optimisation is recovering a solution that satisfies
the constrains (governing equation and matches the data). The solution plotted, as sharp as it is, does follow all
the constraints that have been the input of the optimization problem. The formulation of the problem does not give
any reason for such non-smooth (and presumably not physical) solution to be avoided. In order to obtain a solution
of our optimization problem that is physically more relevant additional constraints have to be implemented. Such
constraint could have many theoretical origin, such as the principle of total variation diminishing applied to the second
derivative. The system may also be constraint by additional measurements as a total debit value which will force in
every point instead of the local measurement data that have been applied here.

IV. CONCLUDING REMARKS

This article introduces a data-assimilation technique based on a variational formulation to reconstruct a turbulent
mean-velocity profile from selected measurement values that complies with the one-dimensional Reynolds-Averaged
Navier-Stokes equations for the mean flow. The Reynolds shear-stress, the axial pressure drop and the Reynolds
number are used as parameters to attain a best fit to the measurements. The recovered mean-flow profile shows
resonable agreement with results from numerical simulations and asymptotic results. The relative error is contained
to small values around the measurement point but can reach over 30

Even though, data-assimilation is computationally more costly than commonly applied models (such as the Spalding
profile), it does not rely on semi-empirical assumptions but rather enforces the full equations governing the mean
velocity profile. It thus offers a potential alternative to recovering near-wall turbulent mean quantities, such alternative
would be useable once more investigation is performed in order to obtain a smoother and more physical solution of
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FIG. 2: Mean-velocity profile versus distance from the wall (in inner scales). Black symbols indicate true
measurements. The blue line shows the reconstructed mean-velocity profile. The red dashed lines are asymptotic

solutions for the viscous sublayer and the logarithmic layer, respectively. The relative reconstruction error is shown
in the upper graph.

FIG. 3: Shear stress (normalized with the velocity scale uτ ) as a function of : the normalized radius (outer scale, left
plot); the distance from the wall (inner scale, right plot).
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We present a data-assimilation technique based on a variational formulation and a La-
grange multipliers approach to enforce the Navier-Stokes equations. A general operator
(referred to as the measure operator) is defined in order to mathematically describe an
experimental measure. The presented method is applied to the case of mean flow measure-
ments. Such a flow can be described by the Reynolds-Averaged Navier-Stokes (RANS)
equations, which can be formulated as the classical Navier-Stokes equations driven by a
forcing term involving the Reynolds stresses. The stress term is an unknown of the equa-
tions and is thus chosen as the control parameter in our study. The data-assimilation
algorithm is derived to minimize the error between a mean flow measurement and the
measure performed on a numerical solution of the steady, forced Navier-Stokes equa-
tions; the optimal forcing is found, when this error is minimal. We demonstrate the
developed data-assimilation framework on a test case: the two-dimensional flow around
an infinite cylinder at a Reynolds number of Re = 150. The mean flow is computed
by time-averaging instantaneous flow fields from a direct numerical simulation. We then
perform several ‘measures’ on this mean flow and apply the data-assimilation method
to reconstruct the full mean flow field. Spatial interpolation, extrapolation, state vector
reconstruction and noise filtering are considered independently. The efficacy of the devel-
oped identification algorithm is quantified for each of these cases and compared to more
traditional methods when possible. We also analyze the identified forcing in terms of un-
steadiness characterization, present a way to recover the second-order statistical moments
of the fluctuating velocities, and finally explore the possibility of pressure reconstruction
from velocity measurements.

1. Introduction
In a large variety of experimental scientific domains where measurements are per-

formed, a major challenge has to be faced: no matter the type of data acquisition, the
measured quantities are only a very sparse representation of the real, and therefore inac-
cessible, field. This sparsity can manifest itself in several forms depending on the specific
circumstances. For example, in fluid mechanics, measurements are often under-resolved
in time or space, or only contain partial information about the total state. The mea-
sured field can be thought of as a low-order representation of the real field. Moreover,
the measured fields are commonly contaminated by noise and thus deviate from the true
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values. Techniques that aim at a full reconstruction of the state vector from available
(limited) data are referred to as inverse methods. The data-assimilation approach took
its roots in the domain of weather forecasting where predicting the future evolution of
both atmospheric and oceanic flows is based on the space-time extrapolation of unequally
distributed data of different types measured at weather stations all around the world.

Several types of estimation problems can be distinguished. For example, the full state
(for instance, pressure, velocity, temperature, etc.) can be estimated at a fixed time
everywhere in space, or the future state-vector trajectory can also be predicted. Math-
ematically, both of these cases fall into the same category of inverse problems, where
full information is retrieved from low-order, limited measurements. Many different meth-
ods have been developed to achieve accurate data reconstruction, ranging from simple
interpolation techniques to more sophisticated approaches which take advantage of the
underlying governing equations of the system. The formulation of such a problem using
a variational formulation has been thoroughly studied in the meteorological community
(Le Dimet & Talagrand (1986), Courtier (1997), Mohammadi & Pironneau (2004)). A
review of various data-assimilation techniques used in meteorology is given in Ghil &
Malanotte-Rizzoli (1991). Recently, the interest in data-assimilation has reached fluid
experimentalists, who wish to extract a maximum amount of information from their
measurements. This method can therefore be applied to improve the quality of a par-
ticle image velocimetry (PIV) or magnetic resonance imaging (MRI) acquisition. This
includes spatial refinement, extension of the measured fields beyond their domain of ac-
quisition, and the reconstruction of unmeasured flow field quantities from measured ones.
In this context, it is worth mentioning the ‘gappy POD’ method proposed by Everson &
Sirovich (1995), based on incomplete proper orthogonal decomposition, which has been
used successfully to reconstruct missing PIV snapshots (see Gunes et al. (2006)).

This paper focuses on data-assimilation using variational methods and the enforce-
ment of the governing equations with Lagrange multipliers (or adjoint variables). This
approach is widely used in the flow optimization community for finding optimal pertur-
bations, forcing or control strategies, to cite but a few applications (Hill (1995), Luchini
& Bottaro (2001), Gunzburger (2000), Schmid (2007)). The adjoint variables can be in-
terpreted as sensitivities and therefore yield valuable information on the impact of any
kind of changes in the constraints that apply to the system. A variable then has to be
chosen as a design parameter (or control parameter) which will be optimised in order to
identify an extremum of a cost functional measuring the deviation from the simulated
state vector to the dataset of measurements. The control parameters can be of various
kind, e.g., an initial condition (Lundvall et al. (2006)), a physical parameter, or a mate-
rial characteristic (Avril et al. (2008)). The outcome of such data-assimilation techniques
is twofold: both the state and the design parameter are identified optimally, as the error
between the model-based solution and the true measurements reaches a minimum. Be-
yond reconstructing the state vector, the application of such a methodology leads to an
improvement of the model through the identification of the optimal control variable.

Variational techniques for fluid flow estimation from image sequences have been intro-
duced recently to consistently combine image measurements with constraints expressing
that the fluid behaves as a continuum material (Heitz et al. (2010)). The objective is
to add physical constraints to the measurements (here snapshots of optical intensity) to
improve the quality of the flow reconstruction in terms of velocity components. Clas-
sical PIV algorithms rely on correlation techniques to extract the velocity fields. More
physical constraints have already been considered: optical flow model (Ruhnau et al.
(2005)), Stokes equations (Ruhnau & Schnorr (2007)) and even time-dependent vorticity
transport equations (Ruhnau et al. (2007)).
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In the present paper, contrary to these authors, we directly consider snapshots with
velocity components (for example obtained with a PIV technique). Also, we do not aim
at reconstructing a series of flow snapshots obtained at successive times but rather the
time-average of these snapshots – the mean-flow –, and their second order statistics – the
Reynolds stresses. For this, we will use as a regularization the full Reynolds-Averaged-
Navier-Stokes (RANS) equations. It is important to note that this choice of regularization
operator (or kernel) is not unique. However, we choose the RANS equations as we believe
they describe the physics of the problem accurately. The computational cost should
therefore remain reasonable, even in three-dimensional configurations, since only steady-
state solutions of the RANS equations and adjoint solutions, which do not involve time,
need to be evaluated numerically. The approach employed in this paper can be applied
to any unsteady (not necessarily turbulent) flow. Such a flow can, in a first instance,
be described by its first statistical moment, the mean-flow. Even if the original flow can
only be fully understood using both the mean and the unsteady components, we can gain
some information about the flow by replacing the full unsteady terms by the second-order
momentum, i.e. the Reynolds stress tensor. The goal of the present study is to investigate
the possibilities of state-vector reconstruction from sparse mean flow measurements. We
presume that the mean (or time-averaged) flow satisfies the RANS equations. In this
set of equations, the Reynolds stress tensor appears as an additional unknown, and its
definition in terms of the mean quantities is known as the closure problem. However,
in our case, this unknown is chosen as a design variable (sometimes referred to as the
control parameter) in an optimization process and will be considered as an unknown
forcing term in the standard, steady Navier-Stokes equations. We thus identify the full
mean flow from sparse data measurements (taken from a direct numerical simulation),
together with the corresponding optimal forcing, that ensures the averaged flow to be a
solution of the RANS equations.

This article presents the mathematical framework of variational data-assimilation and
applies it to the specific case of time-averaged quantities of unsteady flows. We present, in
§ 2, the governing equations of the problem as well as the theory for the data-assimilation
procedure. Once the optimization algorithm has been derived, we define the test case in
§ 3. The geometry is presented as well as the base and mean flows around a cylinder at
a Reynolds number of Re = 150. We then present, in § 4, the results in terms of inter-
polation and extrapolation of data measurements. In the same section, a more realistic
case is considered where the magnitude of the velocity field is measured and the full state
vector is retrieved. The ability of the developed optimization algorithm to filter out mea-
surement noise is also investigated. The identified forcing is used in order to characterize
the unsteadiness of the flow in section § 5. We lastly stress the versatility as well as the
many possible improvements of the presented method in § 6 and draw our conclusions.

2. Data-assimilation of flow measurements
The presented technique aims at finding a solution of a parameterized model equation,

that optimally matches the data-measurements. The section starts by introducing the
considered model and the type of measure performed. The optimization procedure is then
developed in a further section. Finally, uniqueness and other properties of the optimal
solution will be briefly discussed.

2.1. Mean flow considerations
Any unsteady (laminar or turbulent) flow can be described following the Reynolds decom-
position, where the total flow (u, v, w, p)⊤ is taken as a sum of a steady term (u, v, w, p)⊤
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(the time-average) and an unsteady term (u′, v′, w′, p′)⊤ (the fluctuations around the
mean); the · operation denotes the average in time. Any fluctuation term q′ naturally
satisfies the property q′ = 0, and we furthermore have ∂tq = 0. By time-averaging the
Navier-Stokes equations for the total flow, we obtain the so-called steady RANS equa-
tions, which read

u · ∇u +∇p− Re−1∇2u = f∗, (2.1a)
∇ · u = 0. (2.1b)

In the case of the RANS equations, the forcing term can be expressed as

f∗ = −∇ ·R, with Rij = u′iu
′
j . (2.2)

with R being the Reynolds stress tensor, which represents the flow unsteadiness.
By using the incompressibility condition ∂iu′i = 0, we can write f∗i = u′j∂ju′i. This

expression shows that the forcing has to vanish f∗ = 0 on solid walls, where no-slip
boundary conditions apply. Also, we notice that ∇ · f∗ 6= 0 in the bulk of the flow.

A challenge in turbulence research (and, more generally, in any investigation of un-
steady flow behaviour) is to model this second-order moment of the velocity field by
linking it to the mean flow. This issue is often referred to as the closure problem. This
tensor, however, does not explicitly depend on the mean flow, and −∇ ·R can therefore
be considered as an independent volumetric forcing term f∗ applied to the standard,
steady Navier-Stokes equations, as written in (2.1). This forcing term will be considered
as a design variable in the following optimization procedure.

2.2. Data-assimilation and error measure
The starting point of our reconstruction algorithm is the measured quantity which will
be later on referred to as the target field and denoted m. Motivated by PIV/MRI flow
reconstruction, we choose not to consider measurements of the pressure field and only
focus on field reconstruction based on velocity-only measurements. The measured field is
obtained by the application of a low-rank projection operator M : V → M which maps
the velocity vectorial field onto a finite-dimensional vector. We denote by V the space of
vectorial fields and by M the measure space. This mapping, or measure, can be expressed
as

m = M (u) , (2.3)
where u = (u, v, w)⊤ is the mean-velocity vector. This operator M defines the type of
data acquisition performed. This measure corresponds to a discrete, low-order represen-
tation of the real solution u. The operator M also defines the type of quantity observed,
and accounts for the spatial quality and location of the measure.

We consider a flow field (ũ, ṽ, w̃, p̃)⊤ to be a solution of the steady, forced Navier-Stokes
equations, without any assumption on the forcing term f ,

ũ · ∇ũ +∇p̃− Re−1∇2ũ = f , (2.4a)
∇ · ũ = 0. (2.4b)

This system of equations is completed by homogeneous Dirichlet boundary conditions
on solid walls, non-homogeneous Dirichlet boundary conditions for the inflow and ap-
propriate outflow boundary conditions. These boundary conditions will be stated more
explicitly when we define the geometry of the example chosen to demonstrate the method.
By tuning the forcing term f appropriately, we seek the flow (ũ, p̃)⊤ that will best match
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the measurements m. The solution of (2.4) with f = 0 will be classically referred to as
the base-flow solution.

The true mean flow is assumed to satisfy equations (2.1), with f∗ as the true forcing
(which is directly derived from the true Reynolds stress tensor). The goal is to find the
optimal forcing fopt such that the corresponding velocity field ũopt is compatible with the
measured quantity m. To find this optimal forcing, we have to define the distance (error)
between the observed quantity m and the corresponding measure m̃ of the reconstructed
field M (ũ). The error is thus defined as

E (ũ) =
1
2
‖m−M (ũ)‖M

2 =
1
2
‖∆m‖M

2 =
1
2
〈∆m,∆m〉M , (2.5)

where ‖·‖M is the norm associated with the scalar product 〈·, ·〉M which acts on the
measure space. Moreover, we implicitly defined in this expression ∆m as the error field
between the real and simulated measure evaluated at each measurement location. The
goal is to reduce the error functional E as much as possible by adjusting the forcing f ,
until a minimum value is reached, at which the optimal forcing fopt emerges.

In this article, the reference velocity field u and the measurements are obtained by
direct numerical simulations, thus allowing us to consider the full velocity error field:

∆u = u− ũ. (2.6)

The field ∆u is a vector field. In a real experimental situation, such an error field cannot
be evaluated since the flow u is by definition not accessible. By minimising the error
on the measure E , we expect to also decrease the norm of the true error ∆u and thus
reconstruct the field u.

Note finally that the problem of identifying the optimal forcing fopt is not yet a well-
posed problem; in fact, inspection of equation (2.4) shows that infinitely many solutions
exist at this stage. More specifically, starting with a forcing term f , a modified forcing
f ′ = f + ∇φ will lead to the same solution ũ with the appropriate modification in the
pressure term (p̃′ = p̃+φ), ensuring the incompressibility of the velocity field. In compact
form, we can write

ũ (f , p̃) = ũ (f +∇φ, p̃ + φ) . (2.7)
In the next section, we will add constraints on f so as to define properly the minimization
problem.

2.3. Comments on the choice of the reconstruction operator
In the previous section, we chose the forced Navier-Stokes equations (as presented in
(2.4)) as the underlying governing equations for the data-assimilation procedure. How-
ever, it is legitimate to ask whether another, simpler kernel (modeling equation) could
be used in order to reconstruct the field. An obvious simplification would be to consider
the following Stokes operator:

∇p̃− Re−1∇2ũ = g, (2.8a)
∇ · ũ = 0. (2.8b)

If such a model was to be chosen, the identified forcing gopt would contain all nonlinear
properties of the reconstructed flow. Indeed, if the same minimum of the error functional
E is reached using both methods (Navier-Stokes and Stokes), we can write:

gopt = fopt − uopt · ∇uopt. (2.9)

It thus seems possible to obtain the same solution with the simpler Stokes kernel. Yet,
we verified that the optimization procedure is not well-posed in such a case and that the
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descent algorithm has difficulties decreasing the objective functional despite numerous
iterations (we found that E decreased by a more order of magnitude using 6000 iterations
with the Stokes kernel while a decrease by seven orders of magnitude using 2000 iterations
was achieved with the Navier-Stokes kernel, see Fig. 3 below). We conclude that the
optimization space corresponding to f appears to be more convex than the optimization
space of g. Hence, based on our experiment, for the descent algorithm to be efficient,
it is advantageous to treat the convective phenomena by the Navier-Stokes kernel while
having the optimization procedure search for the Reynolds stress term f .

We conclude that choosing a kernel for the optimization procedure that accurately
captures the underlying physics leads to a well-posed optimization problem.

2.4. Variational formulation
An optimal forcing f is sought such that the error E reaches a minimum. The chosen
functional, however, does not explicitly depend on f ; rather, the dependence on f arises
implicitly as ũ is a solution of (2.4). Therefore, in order to account for this constraint in
the optimization, we have to define an augmented functional which not only measures
the error E but also ensures that the flow equations are satisfied. This new functional is
called the Lagrangian functional L and can be formulated as

L(f , ũ, p̃, ũ†, p̃†) = E (ũ)−
〈
ũ†, ũ · ∇ũ +∇p̃− Re−1∇2ũ− f

〉
−

〈
p̃†,∇ · ũ

〉
, (2.10)

where 〈·, ·〉 represents the spatial scalar product

〈a,b〉 =
∫

Ω

a · b dΩ, (2.11)

with a and b denoting arbitrary (possibly vectorial) functions of space. To this scalar
product is associated the L2-norm defined as:

‖c‖2 =
√
〈c, c〉, (2.12)

with c denoting again an arbitrary function of space. Now that we have embedded the
constraint in the Lagrangian functional, the forcing appears explicitly in the functional
to optimise. However, unconstraining the problem comes at the expense of introducing
new (a priori unknown) variables, the adjoint state variables (ũ†, ṽ†, w̃†, p̃†)⊤ which are
the Lagrange multipliers enforcing the incompressible Navier-Stokes equations.

We are looking for a minimum of the cost functional, which means that all the partial
functional derivatives of L have to vanish. We notice that enforcing a vanishing first
variation with respect to adjoint variables is equivalent to the constraint (2.4). Enforcing
the variation with respect to direct variables to be zero yields the adjoint Navier-Stokes
equations

−ũ · ∇ũ† + ũ† · ∇ũ⊤ −∇p̃† − Re−1∇2ũ† =
δE
δũ

, (2.13)

∇ · ũ† = 0. (2.14)

together with an appropriate set of boundary conditions, stemming from the vanishing
of the boundary terms in the functional derivative. Again, the boundary conditions will
be detailed later, when the definition of the test-case geometry is presented.

We observe that the adjoint equations are forced by the functional derivative of the
error functional E with respect to ũ. The forcing will therefore depend on the type of the
selected physical measure M, as well as the associated scalar product used to define the
error. We can derive the formal expression for the forcing by using the definition of the
adjoint of an operator with respect to a scalar product. For example, for any v ∈ V (V

106 Chapter 4. Data-assimilation of mean flows



Data-assimilation method for RANS-driven mean flow reconstruction 7

being the space of the velocity vectors), n ∈ M (M being the space of the measure) and
any operator N : V → M we can write

〈N (v) ,n〉M =
〈
v,N † (n)

〉
, (2.15)

where the scalar product on the right-hand side is a scalar product on the space of
velocity fields V , and N † : M → V stands for the adjoint operator of N with respect to
these scalar products. With this property, we can derive the following expression for the
forcing term in the adjoint equation

δE
δũ

= −δM
δũ

†
∆m. (2.16)

At this stage, the operator δM
δũ

†
has yet to be defined; the dependence of the forcing

term on the error ∆m is nonetheless evident: the adjoint momentum equation is linearly
forced by the error measure ∆m.

The derivation of the gradient with respect to the forcing f is straightforward. By
noticing that the partial derivative of L with respect to f is indeed the total derivative
of E , the gradient of the error functional with respect to the forcing can be expressed as

∇fE = ũ†, (2.17)

where u† is solution of (2.13) with appropriate boundary conditions and u is solution of
(2.4) with the specified boundary conditions and the considered f .

With the gradient of the error with respect to the forcing known, we need to employ a
descent algorithm to minimise the error and identify both the optimal forcing fopt and the
associated recovered field ũopt. We will use a conjugate-gradient descent method along
with a line-search algorithm. We also need to choose an initial guess fg in order to start
the optimization procedure. We decide to start from a forcing fg that is divergence-free
(∇ · fg = 0) and zero at the no-slip walls (fg = 0). For example, fg = 0 verifies these
conditions.

In the following, we will denote fopt as the solution that is obtained at the end of
the minimization process. It is worth noting that, using a gradient-based approach, this
forcing can be expressed as a linear combination of gradients (evaluated at different lo-
cations in the optimization space). Therefore, the identified forcing will naturally satisfy
∇ · fopt = 0 and fopt = 0 on solid boundaries (because ũ† and the initial guess fg sat-
isfy these conditions). Therefore, the use of the present iterative gradient-based method
combined with the above mentioned choice of the initial condition implicitly imposes
additional constraints on the choice of the forcing f that minimizes the cost-functionnal
E . Uniqueness of the resulting solution fopt and its relation to the true forcing f∗ will be
discussed in section 2.6. Finally, the flow-field (ũopt, p̃opt) will refer in the following to
the solution of equation (2.4) with the forcing fopt.

2.5. Type of measure
As detailed in the previous section, the error functional E is entirely defined by the op-
erator M which is at the heart of the data-assimilation technique. Here, we will consider
operators that can be decomposed into two operators P and Q, respectively describing
the projection from the true solution (having an infinite number of degrees of freedom,
space V ) to a low-rank representation of the field, i.e., the sampled data points (with, in
practice, a finite number of degrees of freedom, space M), and the projection from the
vector of velocities to whatever quantity is indeed observed. According to this definition,
we can write

M (u) = P (Q (u)) . (2.18)
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The simplest operator Q one can imagine is the identity, indicating that the measure is
performed on all the components of the velocity field, such as for PIV measurements.
However, many other measures are possible, for example observation of a single compo-
nent of the velocity field. In this case, we would have Q (u) = u which would be a scalar
field containing the streamwise velocity only. In any case, for vectorial or scalar measured
quantities alike, we will use

Q (u) = q. (2.19)

At this stage, the vector q still belongs to an infinite-dimensional space. The operator
P, acting on q, describes the ‘geometrical’ features of the measure. This operator is
responsible for the discretisation of the continuous field q onto a finite-dimensional vector
containing all the data points; the projection operator P defines the spatial sampling
quality and the spatial extent of the measure. The measure can, for instance, be the
evaluation of q at a finite number N of locations in the domain

[P (q)]i = q(xi) =
∫

Ω

q(x)δ(x− xi) dΩ, (2.20)

where δ(xi) is the delta function centred on the coordinate points xi = (xi, yi, zi)⊤.
However, a more general type of measure would be a weighted, local average of the

real field over small elements of the domain Ωi such as

[P (q)]i =
∫

Ω

q(x)bi(x) dΩ, (2.21)

where bi is the weight function associated with element Ωi. The before-mentioned case
with point-wise measure would correspond to bi = δ(xi). An average over each measure-
ment cell Ωi can be described by the weight function bi(x) = H(Ωi), where H(Ωi) is
equal to 1/VΩi

(VΩi
being the volume of the element Ωi, VΩi

=
∫
Ωi

dΩi) for x ∈ Ωi

and zero everywhere else. At this point, we decide to stay as general as possible by not
specifying the basis functions bi. The measurement mesh, and therefore the projection
operator P is entirely defined by the basis functions (bi)i∈J1,NK.

In the case of a discrete measure operator P, the space M is a finite-dimensional space.
In this case, the scalar product on the space M will be defined as the classical vectorial dot
product (the sum of the component-wise products). According to the previous definition,
and using the usual vectorial scalar product for 〈·, ·〉M , we can express the error defined
in (2.5) as

E(ũ(f)) =
1
2

N∑

i=0

∆mi
2, with ∆mi = mi −

∫

Ω

qbi dΩ, (2.22)

and then compute its derivative as
〈

δE
δũ

, δũ
〉

= −
N∑

i=0

∆mi

∫

Ω

δQ
δũ

δũbi dΩ. (2.23)

After rearranging the integral and the sum, we find

δE
δũ

= −
N∑

i=0

δQ
δũ

bi∆mi. (2.24)

This expression is in the space of velocities V and corresponds to the forcing term in
the adjoint equations; it is proportional to the error made at each measure location (over
the domain Ωi in the case of averaged measures). If the point-wise measurement had been
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used instead, we would have a sum of Dirac distributions centred on each measurement
point. We see that the averaged evaluation (2.21) is more regular than the discrete one
because the field δE

δũ is piecewise continuous. Moreover it is mathematically closer to a
real physical measure.

Moreover, from equations (2.16) and (2.24), we identify

δM
δũ

†
∆m =

N∑

i=0

δQ
δũ

bi∆mi. (2.25)

2.6. Relation between fopt and f∗

The link between the optimal solution fopt with the true forcing f∗ is an important issue
to be discussed. We start by recalling that on the one hand we have ∇ · fopt = 0 with
fopt = 0 on solid-wall boundaries (see section 2.4), while on the other hand we have
∇ · f∗ 6= 0 with f∗ = 0 on the walls (see section 2.1). It is therefore tempting to compare
fopt to the divergence-free part of f∗ and discuss their relation.

The real forcing f∗ (as expressed in (2.2)) can be decomposed into:

f∗ = f∗s +∇φ, (2.26)

where f∗s is a divergence-free part of f∗ and ∇φ a potential component. By taking the
divergence of this equation and setting ∇ · f∗s = 0, we find:

∇ · f∗ = ∇2φ. (2.27)

In order to uniquely define the above decomposition, boundary conditions have to be
chosen for φ on the solid walls. In order for f∗s to be closest to the identified forcing fopt,
we would like to set ∇φ = 0 at the no-slip walls. Yet, for a Poisson equation, we cannot
prescribe simultaneously the tangential and normal components of ∇φ to be zero on the
no-slip walls and it is only possible to impose the normal component to zero:

∂nφ = ∇φ · n = 0, (2.28)

with n as the outward normal to the domain. Solving equation (2.27) with this ho-
mogeneous Neumann condition then allows us to find φ and therefore to fully identify
the projected forcing f∗s from equation (2.26). The normal (with respect to the no-slip
boundary) component of f∗s therefore vanishes on the no-slip walls, but its tangential
component does not. Hence, the divergence-free part of f∗, i.e. f∗s , is not expected to be
exactly equal to fopt, since on the no-slip walls their tangential component is not equal.
Yet, we will see below (see section 4.1 in the case of full-state information identification),
that these fields are nearly identical in the whole space except in the vicinity of the solid
walls. Also, we will check that the iterative process converges toward a very small value
of E(ũopt).

The reconstructed pressure will also be different from the real pressure p. In fact, since
fopt ≃ f∗ −∇φ, it is seen that

p̃opt ≃ p− φ, (2.29)
where p̃opt is the pressure recovered by our algorithm and p is the true pressure as defined
in equations (2.1). The reconstructed pressure p̃opt is therefore an augmented pressure
which includes the potential part of the forcing φ. We will discuss the possibilities of
pressure reconstruction in section 5.3.

It may appear striking to the reader to look for an optimal solution fopt in a space
which, by definition, does not contain the true forcing f∗. However, in the case of a
kernel based on incompressible equations, the sole knowledge of velocity measurements
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h=10

l = 30

d = 1

Symmetry:

Inflow: Outflow:Cylinder:

Figure 1. Sketch of the geometry of two-dimensional flow around an infinite cylinder. The
full computational domain, the characteristic lengths and the applied boundary conditions are
shown. The cylinder’s diameter, the height and length of the domain d, h and l are given in
nondimensional units.

automatically induces that the gradient of the error E with respect to the forcing f is
divergence-free. Therefore, an optimization procedure based on a gradient with an incom-
pressibility constraint can only find an optimal solution in the space of the divergence-free
functions.

In order to obtain some gradient information in a wider space (containing non divergence-
free functions), we can, along with velocity data, consider pressure measurements as input
variables to the data-assimilation algorithm. In that case, the adjoint field is no longer
incompressible, since the cost functional now depends also on p̃; we then have

∇ · ũ† = −δE
δp̃

. (2.30)

The gradient ∇fE (see equation (2.17)) and consequently the identified forcing are no
longer divergence-free, and therefore matching both the solenoidal and irrotational com-
ponents of the forcing becomes possible.

In this study, we restrict ourselves to a target field exclusively composed of velocity
variables, as it is of both experimental and theoretical interest.

3. Flow around a cylinder
We apply the data-assimilation method described above to a simple test case: the

two-dimensional flow around an infinite circular cylinder. Even though the theory was
presented for a general three-dimensional flow, it applies straightforwardly to a two-
dimensional case. The geometry, as well as the corresponding boundary conditions are
presented in figure 1. We restate the boundary conditions of the direct system (2.4) for
clarity:

ũ = 1, ṽ = 0 at the inlet,
ũ = 0, ṽ = 0 on the cylinder’s surface,
∂yũ = 0, ṽ = 0 on symmetry boundaries,
Re−1∂xũ− p̃ = 0, ∂xṽ = 0 at the outlet.

(3.1)

The boundary conditions of the adjoint system (2.13) are obtained via the integration-
by-parts step as explained in 2.4. These conditions read:

ũ† = 0, ṽ† = 0 at the inlet,
ũ† = 0, ṽ† = 0 on the cylinder’s surface,
∂yũ = 0, ṽ = 0 on symmetry boundaries,
Re−1∂xũ† + p̃† = −ũũ†, Re−1∂xṽ† = −ũṽ† at the outlet.

(3.2)
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This flow has been shown (see Jackson (1987)) to undergo a first transition (more
precisely, a supercritical Hopf bifurcation) at a critical Reynolds number of Rec ≃ 46,
above which the base flow (solution of the system (2.4) with f = 0) is no longer stable.
Beyond this threshold, the flow becomes time periodic, and vortices are shed from the
back of the cylinder. After this transition, we can define any mean quantity by averaging
its instantaneous value over a finite number of periods in. By doing so, we can compute
the mean-velocity field u as well the different components of the Reynolds stress tensor
u′iu

′
j , defined in (2.2).

As we mentioned earlier, the optimization method employed in the remainder of this
article requires the definition of an initial guess fg for the forcing. We choose fg = 0,
which means that the first computed flow ũ is the base flow ub.

For our simulations, we choose a Reynolds number of Re = 150 and compute the base
flow ub (using a classical Newton method), the mean flow u (using time-averaging) and
the various components of the Reynolds stress tensor. These fields are computed with high
accuracy using a finite element method, using FreeFem++ software (see www.freefem.org),
on a mesh of N ≃ 1.7 × 105 degrees of freedom. The base flow is represented in fig-
ures 2(a),(b); the mean flow is displayed in figures 2(c),(d) and finally the initial error is
plotted in figures 2(e),(f).

4. Navier-Stokes-driven field reconstruction
To validate the presented data-assimilation method, several measure operators M are

considered, each of them chosen to demonstrate the efficacy of the method in various
reconstruction scenarios. In the two following sections the considered measure is the full
velocity vector and the error on both components of the velocity is estimated. Spatial
interpolation and extrapolation are investigated. In a further section, we consider a more
challenging and realistic case where only the velocity magnitude is measured, on a rel-
atively coarse mesh. We demonstrate the ability of the method to not only reconstruct
the measured quantity but also to identify the full velocity vector. The robustness of the
identification algorithm when the measure is corrupted by noise is also assessed.

4.1. Full-state information identification
As a starting point, we will choose the operator M to be the identity operator on V , such
that the assimilated field is the full, continuous velocity field (in practice, it is a discrete
field, evaluated on the finite-element grid). In this case, we choose 〈·, ·〉M ≡ 〈·, ·〉 and
‖·‖M ≡ ‖·‖2 . We present the convergence curves for the case M = I for both the cost
functional E and the norm of the gradient ∇fE in figure 3. It is seen that both quantities
decrease by several orders of magnitude, indicating that the error E becomes extremely
weak in the case of full-state information identification.

We plot in figures 4(a) and (b) both components of the true forcing f∗ (computed via
a direct numerical simulation) and in figures 4(e) and (f) those related to the identified
forcing fopt. There exists a strong correlation for the streamwise component, but no
similarity can be found for the cross-stream component. This was expected because the
identification algorithm yields a forcing fopt which is divergence-free while f∗ is not. The
divergence-free component of the latter forcing, f∗s , is computed following the procedure
explained in section 2.6 and we plot the results in figures 4(c) and (d). We can see that
the identified forcing fopt is indeed matching the projected forcing f∗s . However, some
discrepancies appear on the cylinder’s surface, which are due to the different tangential
values of these two fields on the cylinder surface.
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Figure 2. Flow around an infinite cylinder at Re = 150. (a) and (b): Base flow ub, (c) and (d)
time-averaged flow u; (e) and (f): Difference (evaluated on both components) ∆u, measuring
the error committed when approximating the mean flow by the base flow. The left column
represents the x-component of the corresponding vector field, while the right column displays
the y-component. The dashed-lines refer for each vector-field to the extent of the recirculation
bubble. In figures (e) and (f), the dashed lines of figures (a), (b), (c), (d) have been reproduced
for comparison.

Differences between fopt and the projection of f∗ over the space of divergence-free fields
are best analysed by comparing the curl of these two fields, since the curl of a potential
field is zero. We can observe in figures 4(g) and (h) that the z-component of these fields is
nearly the same everywhere except in the vicinity of the cylinder boundary. We therefore
have fopt = f∗s almost everywhere, which validates our optimization procedure.
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Figure 3. Convergence curves for full-identification case (M = I). The solid line represents E ,
and the dashed line represents ‖∇fE‖2.

4.2. Partial-state information identification
In the case of a partial-state information identification, we still minimise E as defined
in (2.5), expecting that this minimization results in a decrease of the real error ∆u (see
equation (2.6)). We therefore need to decide how to measure the real error ∆u. We choose
to use two norms: the L2-norm (normalised by

√
VΩ to remove any dependence on the

chosen area of integration) and the L∞-norm. The first will give information about the
average error while the second will yield the error at the worst reconstructed location.
We therefore define the following residuals (measuring the real errors):

r2 =
1√
VΩ

‖∆u‖2 =
√

1
VΩ

∫

Ω

|∆u|2 dΩ,

r∞ = ‖∆u‖∞ = lim
p→+∞

(∫

Ω

|∆u|p dΩ
)1/p

.

(4.1)

4.2.1. Interpolation
Interpolation consists of reconstructing the field in-between the available, measured

data points. In what follows, the measure (as defined in (2.21)) is an average over each
element of a rectangular mesh (called measurement mesh) and is reconstructed on the
computational mesh which has a very high resolution. Here, Q is the identity operator,
i.e., the two components of the velocity vector are measured:

Q (ũ) = ũ. (4.2)

In order to characterise the efficacy of the field reconstruction method, the discreti-
sation projection operator P defined in (2.21) is considered, with the bi being the basis
functions of a mesh composed of squares paving the whole computational domain. The
different measurement meshes have different line-density (density per unit length) of
points n ∈ [2, 20]. For instance, the case n = 2 corresponds to 60 × 20 measurements
meshes. An integrated measure is performed on each of the elements composing the
measurement mesh, according to the expression (2.21). The identification algorithm is
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Figure 4. Averaged forcing term f∗ displaying the x and y components, respectively, in figures
(a) and (b). Projected forcing f∗s (see 2.6 for its definition) for both components, in figures
(c) and (d). Optimally identified forcing fopt for both components, in figures (e) and (f). Note
that the colour scales are identical for all streamwise components, but vary for the cross-stream
components. Figures (d) and (f) have however the same colour scale to allow comparison. Figures
(g) and (h) respectively represent the z-component of ∇ × f∗ and ∇ × fopt. The difference is
mainly located close to the cylinder’s surface. The dashed-lines refer for each vector-field to the
extent of the recirculation bubble.
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Figure 5. Results for the interpolation case. The norm of the error is plotted against the
line-density of nodes n. Circle symbols represent the spline interpolation case (näıve approach)
and square symbols represent the data-assimilation results. The error of approximating the mean
flow by the base flow is represented with a dashed line. For n ≃ 10, the reconstruction of the
field is efficient and a further increase of resolution yields only little improvement. (a) r2 error,
(b) r∞ error as defined in (4.1).

applied to all the above measurement meshes and, for each optimum found, the errors
r2 and r∞ as defined in (4.1) are plotted against the line-density of points n in figure 5.

First, it is encouraging that even for the worst case considered (n = 2), the recon-
structed mean flow corresponds to a relatively low error. The measure M(u) performed
in a particularly under-resolved case (n = 2) as well as the corresponding reconstructed
field ũopt and error ∆u are plotted in figure 6. From this figure, we can confirm that
the data-assimilation algorithm successfully identifies the mean field. Indeed, for this
extremely coarse case, the L2 error is r2 = 0.012, which is very small considering the
amount of information initially given. However, the maximum error is r∞ = 0.297. We
have found an average error of 1.2%, and of 29.7% at the worst reconstructed location.
Both these errors are relative to the unit inflow velocity. We see in figure 6(e) and 6(f)
that the error is mainly located in the near-wake of the cylinder. The worst-reconstructed
area corresponds to the end of the recirculation bubble whose reattachment point loca-
tion does not exactly match the real one (extracted from the mean flow u); its length is
underestimated by the identification algorithm. For more accurate measures (increasing
n), the error decreases: the more information is available initially, the more accurately
the field is reconstructed. For the finest meshes, we can reduce the errors to 6.36 10−3%
in L2-norm and 0.17% in L∞-norm.

Spline interpolation is a non-physical, but common way to obtain highly refined fields
from measurements on a coarse grid. To assess the improved quality of data-assimilation
interpolation, figure 5 also presents the interpolation error for a classical spline inter-
polation reconstruction. We notice that this simple interpolation technique is producing
better results than a base-flow approximation, but is far from being as accurate as the
presented algorithm. The data-assimilation method always outperforms spline interpola-
tion and can lead to more accurate results by two orders of magnitude.

4.2.2. Extrapolation
In this section, the operator defining the measured quantity is still the identity (Q = I),

i.e., the full velocity vector is assimilated on a given measurement mesh. However, the
projection operator P is now designed to investigate the extrapolation capabilities of
the method. The used mesh is the finer one from the previous section (the line-density
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Figure 6. Measures of the two velocity components: (a) M (u), (b) M (v). The measurement
corresponds to a rectangular mesh of line-density of points n = 2, and the measurement window
is the full flow field. Reconstructed fields: (c) ũ, (d) ṽ. Error fields: (e) ∆u and (f) ∆v. The
dashed-lines in figures (c) and (d) refer to the extent of the recirculation bubble of the recon-
structed field. In figures (e) and (f), these dashed lines have been reproduced along with those
of the true mean-flow.

of points is n = 20), but locations, where measurements are performed, are limited in
space. More precisely, the assimilation (or identification) window has the height of the
computational domain but varies in length. For a given abscissa x0, we consider two
different identification windows: the first starting at x = 5 and ending at x = x0, and
the second starting at x = x0 and ending at x = 25. The two identification windows are
thus W1 = [5, x0] and W2 = [x0, 25].

The results are presented in figure 7. The first series of simulations for the identifi-
cation window W1 = [5, x0] shows that the error is decreasing with the length of the
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Figure 7. Results for the extrapolation case. The error ‖∆u‖ is plotted against the streamwise
coordinate x0 defining the extent of the identification window. Right oriented triangles are asso-
ciated with the measurement window W1 = [5, x0], while the left oriented triangles correspond
to the identification window W2 = [x0, 25]. The error of approximating the mean flow by the
base flow is represented by a dashed line. (a) r2 error, (b) r∞ error as defined in (4.1). The grey
rectangle represents the location of the cylinder.

identification window. The algorithm starts to produce accurate results as soon as the
zone around the cylinder is included in the assimilation window (from x0 = 11). In par-
ticular, if the data-assimilated does not contain any measures where the mean flow and
base flow are different (unsteady zones), the identification will not be able to match the
mean flow, since hardly any information is provided. However, as soon as some unsteady
zones are assimilated, the algorithm is able to reconstruct not only the identified zone,
but the full flow field. This demonstrates that extrapolation is a true capability of the
presented data-assimilation method. The second series of simulations corresponds to the
identification window W2 = [x0, 25]. In this case, even for small identification windows
(starting from x0 = 23), the mean and base flows are different in the considered zone.
Therefore, the extrapolation is relatively effective, even with little information, as we can
see by considering the L2-norm plot of the error (figure 7(a)). However, the L∞ residual
r∞ remains rather large (see figure 7(b)).

The results of the extrapolation for the identification window W2 = [13, 25] (corre-
sponding to x0 = 13) are presented in figure 8. We can see that only limited information
is available downstream of the cylinder; in particular, the location of the reattachment
point of the recirculation bubble is outside the identification window. Despite this lack of
information, the reconstructed field ũ is very similar to the mean flow u. However, some
non-negligible errors in the reconstruction appear immediately upstream of the identifi-
cation window (nearly no error can be found within the identification window). Interest-
ingly, the incoming flow field has been modified from a uniform flow to a y-dependent
flow field (the uniform inflow boundary condition is still satisfied further upstream), as we
can see in figure 8(c), illustrating that several types of solutions can be found depending
on the quality of the measure. In fact, it is likely that the cost functional is multimodal
(several local minima may exist), associated with different flow fields, one of which is the
physical solution of the problem. There is however no guarantee, as demonstrated here,
to find this physical solution. Nevertheless, even if the mean flow is not exactly matched,
the reconstructed field yields far more information about the nature of the flow than is
contained in the initial information we measured.

The results of the extrapolation procedure indicate that the field is best reconstructed
as long as the recirculation bubble is part of the measurement window. This finding is
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Figure 8. Measures of the two velocity components: (a) M (u), (b) M (v). The measurement
corresponds to a rectangular mesh of line-density of points n = 20 and the measurement window
is W2 = [13, 25] (x0 = 13). Reconstructed fields: (c) ũ, (d) ṽ. Error fields: (e) ∆u and (f) ∆v.
The dashed-lines in figures (c) and (d) refer to the extent of the recirculation bubble of the
reconstructed field. In figures (e) and (f), these dashed lines have been reproduced along with
those of the true mean-flow.

reminiscent of the results by Marquet et al. (2008) and Pralits et al. (2010) who showed
that the recirculation bubble is the most sensitive region regarding the overall dynamics
of the flow field.

4.2.3. State vector reconstruction

In order to approach real cases for which this method is likely to be employed, we
proceed from the full two-component velocity matching to a scalar-field matching based
on the velocity magnitude. The operator defining the measured quantity is therefore
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Figure 9. (a): Velocity magnitude measures on a mesh corresponding to n = 6. (b) and (c):
Reconstructed field uopt. (d) and (e): Two components of the error ∆u. The dashed-lines in
figures (b) and (c) represent the extent of the recirculation bubble for the reconstructed field. In
figures (d) and (e), these lines have been reproduced along with those of the true recirculation
bubble.

Q(u) =
1
2
|u|2 =

1
2

(
u2 + v2

)
, (4.3)

The projection operator P is chosen such that the measure domain is the entire domain
and the line-density of points of the measures is n = 6. The measured field m̃ is plotted
in figure 9(a). The reconstructed field from data-assimilation of the measurements is
presented in figures 9(b) and (c).

We observe that even though only velocity magnitude on a rather coarse mesh has
been used as an input to our data-assimilation algorithm, it is possible to retrieve a
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Figure 10. Results for the noise reduction case. The error (measured relative to the base flow
error) ‖∆u‖ is plotted (square symbols) against the noise strength η in the measured signal.
The error made by approximating the mean flow by the base flow is represented with a dashed
line. (a) r2 error, (b) r∞ error as defined in (4.1).

good approximation of the full component-wise mean-velocity field. Both the stream-
wise and normal velocity components have been recovered accurately, with a small error
concentrated around the recirculation zone in the near-wake of the cylinder.

4.3. Noise reduction
Experimental measurements are often contaminated by noise, and for an application of
data-assimilation to experimental data the ability of the technique to deal with measure-
ment noise must be studied. We consider the same measure operator M as presented
in the previous section: velocity magnitude measured on a mesh of line-density n = 6.
We thus have m∗ = M (u) where the star indicates a noiseless quantity. We add to this
measure a noise component

m = m∗ + ηξ, (4.4)
with ξ a random N -dimensional vector and η a real number controlling the amplitude of
the added noise. The vector ξ is constructed with a uniform distribution chosen such that

|ξi| <
√
‖m∗‖M

2
/N . The level of noise is governed by the real number η; for example,

η = 0.1 corresponds to a noise-to-signal ratio of 10%, while for η = 1 we have a 100%
noise-to-signal ratio. These ratios depend on the norm used to define the noise, in our
case, the L2-norm. We present in figure 10 the results of data-assimilation as a function of
the noise level η. The error is, as expected, an increasing function of the noise level. The
algorithm however captures the flow features very well, even for large noise amplitudes.
The measure, the reconstructed field and the error are plotted in figure 11 for η = 1. The
identified field ũ is also relatively noisy, but the flow has been remarkably reconstructed
from a low-resolution, scalar and noisy measure. Moreover, the recirculation bubble is
accurately reconstructed, together with the main features of the flow.

The evolution, during the iterative process, of both the cost functional E and the real
L2 residual r2 for the two cases, η = 0 (no noise) and η = 1 (noise level of 100%),
are plotted in figure 12. We can see that for both cases, the cost functional E decreases
monotonically (due to the gradient descent), but reaches an asymptote at a higher value
for the noisy case, confirming that it is not possible to match the measurement noise
with a solution of the Navier-Stokes equations. The Navier-Stokes operator thus acts as
a filter and cannot provide a fit matching the noise-corrupted measurement. Analyzing
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Figure 11. (a): Velocity magnitude measures on a mesh corresponding to n = 6. The noise level
has been set to η = 1, i.e., we have a 100% noise-to-signal ratio according to our definition. (b)
and (c): Reconstructed field uopt. (d) and (e): Two components of the error ∆u. The dashed-lines
in figures (b) and (c) refer to the extent of the recirculation bubble of the reconstructed field.
In figures (d) and (e), these dashed lines have been reproduced along with those of the true
mean-flow.

the evolution of r2, we see that in the noiseless case the real error monotonically decreases,
while it starts to decrease and then increases again, after approximately 200 iterations,
for the noisy measurements case. This means that after the turning point, the algorithm
tries to match the measurement noise, which drives the solution away from the physical
solution u. In a real situation, this convergence curve is not accessible, and we therefore
cannot terminate the iterative identification when the error is lowest. It is however useful
to evaluate when to stop the reconstruction based on a comparison between the norm of
the gradient of the cost functional and an estimation of the measurement noise level.
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Figure 12. (a) Convergence curves for the noiseless case (η = 0) and (b) for the noisiest case
(η = 1). We notice that for the case without noise, both the cost functional E and the real
residual r2 are monotonically decreasing. For the noisy case, however, even though E decreases
as a result of the optimization, around the 200th iteration, the real residual r2 starts to increase
again, signifying that from this point forward the optimization actually leads to a deterioration
of the identified optimal mean flow ũ.

5. Additional flow reconstruction
5.1. Drag evaluation

Another way to assess the quality of the reconstructed fields is to compare the cylinder
drag of the mean field with the drag of the reconstructed field. The drag coefficient CD

induced by a field (u, p)⊤ on the cylinder is defined as

CD = 2
∫

C
Re−1

(
∇u +∇u⊤

)
n · ex dl

︸ ︷︷ ︸
CV

+2
∫

C
−pn · ex dl

︸ ︷︷ ︸
CP

, (5.1)

where C represents the cylinder’s surface and dl the integration element along this con-
tour. The factors 2 stem from the normalization by the dynamic pressure 1

2ρU2, which
simplifies to 1

2 in the non-dimensional variables. As seen in equation (5.1), we can divide
the drag force into two components: the viscous drag CV and the pressure drag (or form
drag) CP . We expect the CV -component to be accurately predicted (as it only depends
on the velocity vector which is properly reconstructed), and the CP -component to exhibit
a more appreciable mismatch (as the true pressure field p̄ is only recovered up to a scalar
field φ linked to the potential part of the Reynolds stress term, as explained in (2.29)).

We display in table 1 the different drag coefficients obtained for the true mean flow
(ū, p̄)⊤ and for several reconstruction scenarios. We notice that, as expected, the viscous
drag is accurately predicted whereas the relative error on the pressure drag is always
greater than 10%. Note that for larger Reynolds numbers, the viscous drag is expected
to decrease and, therefore, the relative total error to increase.

5.2. Unsteadiness characterization
In the previous sections, we have exploited the reconstruction abilities of the data-
assimilation technique by analyzing the reconstructed state vector for several cases of
interest. In this section, we explore the possibilities of unsteadiness characterization of-
fered by the identified forcing fopt in the case of full-state information identification,
where the global optimal has been reached.
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Viscous drag (CV ) Pressure drag (CP ) Total drag (CD)
Mean flow 0.30 (-) 1.13 (-) 1.43 (-)
Base flow 0.25 (18.3%) 0.86 (23.3%) 1.11 (22.3%)
Full state identification 0.30 (1.3%) 1.00 (11.0%) 1.30 (9.0%)
Interpolation (n = 2) 0.29 (3.7%) 0.95 (15.7%) 1.24 (13.1%)
Extrapolation (x0 = 13) 0.30 (2.2%) 0.98 (12.6%) 1.28 (10.4%)
Velocity magnitude (η = 0) 0.30 (2.9%) 1.00 (11.2%) 1.30 (9.4%)
Velocity magnitude (η = 1) 0.29 (5.4%) 1.00 (10.7%) 1.29 (9.6%)

Table 1. Drag coefficients for the mean flow obtained through DNS simulation, for the base
flow, for the full-state identification and for several reconstruction scenarios corresponding to
the cases displayed in figures 6, 8, 9 and 11. The relative error with respect to the mean flow is
displayed in parentheses for each case.

As covered in section 2.6, the algorithm only identifies the solenoidal part of the true
forcing f∗ = −∇ ·R. However, it is the full Reynolds stress tensor R, rather than the
components of its divergence, that would be most valuable. In a two-dimensional setting,
this tensor can be expressed as

R =
(

α β
β −α

)
+ kI, (5.2)

with α = 1
2

(
u′2 − v′2

)
, β = u′v′ and k = 1

2

(
u′2 + v′2

)
denoting the fluctuating kinetic

energy. These quantities vanish on the cylinder’s surface due to the no-slip boundary
condition.

It should then be possible to optimally reconstruct a tensor of this particular structure
from the identified forcing fopt. As we explained in section 2.6, the forcing f∗ can be
decomposed into a solenoidal part and a potential component as f∗ = f∗s + ∇φ. Fur-
thermore, we also have f∗s ≃ fopt (strict equality is not true because of the boundary
condition issue discussed in 2.6). In summary, we have:

f∗ = −
(

∂xα + ∂yβ
∂xβ − ∂yα

)
−∇k (5.3a)

≃ fopt +∇φ (5.3b)

Then taking the curl of this expression, the gradient terms drop and we are left with one
equation relating α, β and the the identified forcing fopt. Such an identification, however,
is under-constrained as we have only one equation for two unknowns. If we further assume
that −∇k ≃ ∇φ (see next section for justification in the cylinder case), we obtain:

−
(

∂xα ∂yβ
∂xβ −∂yα

)
= fopt. (5.4)

This yields two equations for two unknowns, along with the boundary conditions α = 0
and β = 0 on the boundaries. Yet, recalling that the optimal forcing is divergence-
free (∇ · fopt = 0), we obtain a constraint on α and β, which is non-physical so that the
identified α and β obtained by solving (5.4) will, in general, not match their experimental
values. Instead, we propose a weaker constraint to relate the left and right-hand-sides of
equation (5.4). We decide in the following to minimise the cost functional

I (α, β) =
∫

Ω

(
(−∂xα− ∂yβ − fx)2 + (−∂xβ + ∂yα− fy)2

)
dΩ, (5.5)
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Figure 13. (a) α and (b) β (respectively, left and right column) of the real reduced Reynolds
stress tensor , and reconstructed tensor components (c) αopt and (d) βopt. The dashed-lines
indicate the extent of the recirculation bubble of the true mean-flow.

where fopt = (fx, fy) . This minimization problem is solved by setting the gradient of this
cost functional to zero. This leads to the two independent equations

∇2α = −∂xfx + ∂yfy, (5.6)
∇2β = −∂yfx − ∂xfy, (5.7)

which have to be solved subject to the boundary conditions stated above. The results
are presented in figure 13.

We see in this figure that the reconstruction of the coefficients which characterise the
unsteadiness of the flow fails for α but yields relatively good results for β.

5.3. Pressure reconstruction
The component of the reconstructed field that we have not yet analysed, is the pressure
p̃opt. We know that the optimally identified pressure p̃opt is the difference between the real
mean-pressure p and the potential φ (see equation (2.29)). It is interesting to compare
the reconstructed pressure field p̃opt to the base-flow pressure pb (for sake of comparison),
to the real mean-pressure p and to the total pressure pT = p + k (sum of the real mean-
pressure and the fluctuating kinetic energy k). This is achieved in figure 14.

Analysing the base-flow pressure pb and the real mean-pressure p, we notice that the
pressure drop is centred on the respective recirculation bubbles. However, the real mean-
pressure also displays a constant pressure drop in the wake of the cylinder. If we consider
the total pressure pT , we can see that this wake effect disappears, and the pressure drop
appears to be mainly located within the recirculation bubble. When compared to the
reconstructed pressure p̃opt, we can see that the two pressure fields pT and p̃opt are very
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Figure 14. (a) Base-flow pressure pb, (b) mean flow pressure p, (c) total pressure pT = p+k, (d)
reconstructed pressure p̃opt. The dashed-lines indicate the extent of the recirculation bubbles,
(a) in the case of the base-flow, (b,c,d) in the case of the true mean-flow.

similar, even though the reconstructed pressure is slightly overestimated near the end of
the recirculation bubble, around the stagnation point. The difference between these two
pressure fields is weak, so that −k ≃ φ, therefore justifying the assumption −∇k ≃ ∇φ
of the previous section. It is remarkable that the pressure reconstructed from velocity
measurements only p̃opt, is rather close to the total pressure pT , and also not that far
from the real pressure p. In order to improve the identification of the real mean-pressure
field, it is mandatory to incorporate pressure measurements within the data-assimilation
algorithm. This is briefly discussed below.

6. Concluding remarks and extensions
Despite recent progress in experimental measuring techniques, many data from exper-

iments are still limited in terms of resolution, in terms of access to specific regions of
interest, and in terms of quantities that can be measured reliably. We have developed
and introduced a data-assimilation technique for the recovery of mean flow fields that
are solutions of the Reynolds-Averaged Navier-Stokes (RANS) equations and match the
available data-points. The algorithm, based on an iterative, direct-adjoint optimization
approach, has been validated on two-dimensional flow past a circular cylinder at a su-
percritical Reynolds number (Re = 150). The method has been used in an interpolatory
mode (recovering mean-velocity fields from much coarser measurements), in an extrap-
olatory mode (extending the mean-velocity field into domains where no measurements
have been taken), and in a state-vector reconstruction mode (determining mean-velocity
components from measurements of only the magnitude). In all cases, we have observed a
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satisfactory recovery of the mean-velocity field that proves substantially more accurate
than more näıve approaches based on higher-order interpolation that disregard physical
constraints on the mean fields. Moreover, the influence of noise in the input data fields
has been assessed, and the method has been found to be robust, even in the face of a
noise-to-signal ratio of 100%.

Together with the assimilated mean-velocity field, we also obtain the forcing vector
field that renders the error between the available measurements and the recovered mean-
velocity field minimal. From this forcing, information about the unsteadiness and the
pressure field can be extracted. However, this information is limited to the solenoidal
part of the Reynolds stress tensor and the non-kinetic part of the pressure. Despite
this limitations, it has to be kept in mind that only steady (averaged) information has
entered the data-assimilation algorithm. Yet, we were able to gain insight — albeit partial
and incomplete — on the second-order moments of the unsteady flow. This is quite
remarkable, given the limited input information.

Various extensions and variations of the presented algorithms are conceivable. For large
Reynolds number applications, the current numerical technique can be adapted to aid
in the solving of equation (2.4) (which can be challenging for large Reynolds numbers
when using Newton’s iteration method). Due to the averaging, we know that the mean
flow will be similar to a base flow at a lower Reynolds number. We therefore propose
to artificially decrease the Reynolds number in equation (2.4). Ideally one would choose
the Reynolds number yielding a base flow as close as possible to the measured mean
flow. We therefore have Re = Re∗ − ∆Re with Re∗ as the real flow Reynolds number
and ∆Re (0 < ∆Re < Re∗) as the adjustment performed. We can start with a zero
initial guess (fg = 0) and identify the optimal forcing fopt. The identified total forcing
(for the Navier-Stokes equation with the given Reynolds number Re∗) takes the form
f∗opt = fopt + ∆Re

ReRe∗∇
2ũopt, where we have added the contribution due to the artificial

decrease of Reynolds number. We notice that this method does not violate the divergence-
free forcing condition. This technique can be thought of as a preconditioning method
allowing to bypass the problem of solving the Navier-Stokes equations for high Reynolds
numbers. It can also be interpreted as a preconditioning step for the optimization. The
initial guess fg could also be obtained by a RANS model (based, for example, on an eddy-
viscosity closures or more elaborate Reynolds stress models). Indeed, by so proceeding
we avoid the costly (and probably ill-posed) computation of a high Reynolds-number
base flow. Moreover, it is also possible to compare the Reynolds stresses issued from the
turbulence model with those of the optimal solution compatible with the experimental
observations. This approach would be interesting and useful in assessing the performance
of turbulence closures in more complex flow configurations.

The cost functional, i.e., the error between measured and the model-predicted data can
be augmented by a weight function which directs more emphasis towards regions that
are of more relevant. For example, shear layers or regions close to walls can be singled
out as more important and as having a larger contribution to the cost functional. Also,
pressure measurements could be considered, leading to a more well-posed optimization
problem as explained in section 2.6. Some of these extensions will be pursued in a future
study. In its current form, the data-assimilation method is a very valuable tool for the
experimentalist to recover more information about the flow than is directly measurable.
In this sense, it takes the measured data beyond their intrinsic information content and
extends the scope of current measurement capabilities.
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Measurements taken from experiments or from numerical simulations can often be thought
of as spatially undersampled representations of a high-dimensional flow field. Data-assimi-
lation is a methodology that recovers non-measured components of the high-dimensional
flow field by matching a parameterized model to the measured data. Flow around an
idealized airfoil at a Reynolds number of Re = 12500 is measured using time-resolved
particle image velocimetry (TR-PIV). Subsequent averaging over a sequence of snapshots
produces the mean velocity field and allows the computation of the fluctuations about
it. The mean flow is then sampled at a limited number of points in the flow domain, and
the Reynolds-Averaged Navier-Stokes (RANS) equations are used, together with a data-
assimilation strategy, to recover the mean flow in the entire domain from these limited
data points. The recovered and measured mean flows are compared to assess the po-
tential and effectiveness of data-assimilation techniques in providing pertinent flow-field
information from restricted measurements.

1. Introduction
Available information about a flow field is often limited to spatial regions of the flow

domain or to specific measurable quantities. This is particularly true in experiments
where access to wall-regions is often constrained by the size of the probe or where certain
quantities can only be measured with great difficulty or not at all. Nevertheless, flow in-
formation from the wall-region, beyond what is accessible through direct measurement,
is often desirable when comparisons of experimental results with models or computations
are made. Data-assimilation is a technique that aims at reconstructing flow information
from a limited number of input data. In its most general form, it optimally fits a pre-
scribed model equation to the observed data, which then allows the evaluation of the flow
field, via the model, at spatial locations off the original data set and the computation of
composite or derived field quantities.

Data-assimilation originated and took its roots in weather forecasting, where a pre-
dictive model for the temporal evolution of the atmospheric flow had to account for
unequally distributed weather data from around the world. From applications in this
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field, two types of estimation problems can be distinguished (see Lewis et al. 2006). In
the first type, state variables such as, e.g., the velocity field, temperature or atmospheric
pressure, are estimated at a given time using available, but incomplete, measurements
at this same time; this type is referred to as off-line or fixed-sample estimation. The
second type is concerned with an estimation of the future state-vector trajectory, while
constantly correcting with data as they become available; this type is known as on-line,
recursive or sequential estimation. We will concentrate on the first, off-line type: the
recovery of time-averaged (and thus time-independent) flow information from limited
data.

Data-assimilation techniques for off-line state estimation make use of either a history
of measurements (without any constraints given by a physical model), or take into ac-
count a physical model using a weak or strong formulation. When accounting for noisy
data, statistical approaches are taken, and the most widely used techniques are based
on Wiener filtering, such as the optimal interpolation (OI) method or the Kriging algo-
rithm. Many examples can be found in the atmospheric flow-prediction literature (see
Ghil & Malanotte-Rizzoli 1991; Kalnay 2002). Within the fluid mechanics community,
data-assimilation is a far less common tool. Related techniques have been used to repair
gappy data-sequences in PIV-measurements (see Bui-Thanh et al. 2004); however, the full
potential of gaining flow information from limited data, while respecting an underlying
model, has not yet been realized or explored.

In this article, we use data-assimilation techniques to extract a mean-flow field and
information about the turbulent shear stress from a limited number of mean-velocity
values. As our underlying model, we postulate the Reynolds-Averaged Navier-Stokes
(RANS) equations and enforce this model as a strong constraint. Consequently, the esti-
mated state is a solution of the RANS equations. In general, strong constraints require
a parameterized (tunable) model in order to fit the data; the set of parameters, also re-
ferred to as the model compliance, could, for example, be an initial condition, as in Apte
et al. (2010) or Tissot et al. (2011), or a material property, as in Avril et al. (2008)
or Bukshtynov et al. (2011). In our case, the model compliance is a part of the unknown
Reynolds stress tensor, while the state is the mean-velocity field (see Foures et al. 2013).
Data-assimilation problems with strong constraints are most conveniently formulated as
a variational problem, leading to an iterative optimization scheme.

The mathematical background and algorithmic details of the RANS-based data-assim-
ilation technique has been developed in Foures et al. (2013), where “measurements” were
taken from a two-dimensional direct numerical simulation of flow around a cylinder at a
supercritical Reynolds number of Re = 150. In a subsequent study Dovetta et al. (2013),
the measurement data came from an experimental turbulent pipe flow at a Reynolds
number of Re = 39000 and matched to a one-dimensional RANS equation. This latter
case resulted in a linear optimization problem, and the wall-shear stress, pressure drop
and Reynolds number could be accurately recovered from a few mean-flow measurements,
without resorting to semi-empirical models. In this present case, the reconstruction of
a two-dimensional mean-flow field, together with the matching Reynolds shear stress,
is attempted. Additional difficulties arise from the nonlinear nature of the optimization
problem and, more importantly, from uncertainties in the processed data, which require
modifications of the original algorithm. In this respect, the present configuration repre-
sents most realistic operating conditions, commonly encountered in experiments at high
Reynolds numbers. In particular, we will address the challenges of the algorithm, the
fidelity of the recovered field and the correlation between errors in the input data and
output fields. Despite imperfections in the assimilated flow field, the proposed technique
is nonetheless able to furnish qualitative and approximate information on first-order and
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Figure 1. Cross-sectional sketch of the idealized airfoil profile (from Gonzalez et al. (2010)).

second-order turbulence statistics from a relative small number of mean-flow measure-
ments.

2. Experimental set-up
Experiments have been performed on an idealized airfoil (shown in figure 1) with a

chord-length of 15.86 cm, a width of 3.43 cm and a spanwise extent of 50.8 cm. The
airfoil is symmetrical and consists of a cylindrical leading edge followed by two plane
surfaces connecting at the trailing edge. At a zero angle of attack and a chord-based
Reynolds number of Rec = 12500, the flow separates at the transition point between
the cylinder and the plane surfaces and forms recirculation bubbles on both sides (see
Wallace & McKeon 2012). The flow is above the critical Reynolds number for the onset of
von-Karman vortex shedding (Rec ≈ 2000); in addition, the shear layers forming around
the separation bubbles are convectively unstable, giving rise to the formation of Kelvin-
Helmholtz vortices. These two instabilities ensure a dynamics that is reminiscent of the
behavior of separated flows at far higher Reynolds numbers (see Prasad & Williamson
1997) — a fact that makes this configuration an attractive choice for studying unsteady
flow dynamics on aerodynamic geometries.

Experiments have been performed in a free-surface water facility (see Norman & McK-
eon (2008); Wallace & McKeon (2012)). The test section measured 1.6 m in length,
0.46 m in width and 0.5 m in depth. The flow is conditioned by a perforated plate, a
honey-comb mesh, three turbulence-reducing screens and a 4-to-1 fifth-order-polynomial
contraction (see Gharib 1983). The free-stream velocity is 7.4 cm/s and the water tem-
perature is 23◦C, which results in a chord-based Reynolds number of Rec = 12500.

A LaVision time-resolved 2D-PIV setup is used, with two Photron Fastcam APX-
RS high-speed cameras with Nikon lenses of 50 mm focal length and 1 :1.2 aperture.
The cameras are synchronized with a high-speed controller; at a framerate of 83 Hz,
their resolution is 1024× 1024 pixels; they are calibrated at 5.25 px/mm. The camera’s
frequency is chosen to guarantee a particle displacement between 5 and 7 pixels between
any two consecutive snapshots. The seeding particles are hollow glass spheres (reference
110P8 with an average diameter of 11.7 µm and a specific gravity of 1.1), and the seeding
density is about 0.1 particles per square pixels. The particles are illuminated by a 2 mm-
thick laser sheet provided by a Photonics DM20-527 solid-state laser. In an effort to
avoid large uncertainty near the illuminated profile due to surface reflection, the image-
intensity is calibrated using white-image subtraction (normalization of the image intensity
using the average light distribution) and background-image subtraction. The white and
background images are taken before each run and averaged over 100 snapshots. The
camera view covers the flow from 3 cm upstream of the leading edge to 12 cm downstream
of the trailing edge with a 30% overlap (see figure 2 for a sketch) in order to include a
large area of mean-flow and fluctuation measurements. Finally, 20480 instantaneous flow
fields are taken per position over 10 runs (2048 snapshots per run, limited by the camera
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PIV fields

Measurement
location

Airfoil

Figure 2. Experimental setup of the flow around an idealized airfoil, showing the spatial cov-
erage of the flow by the cameras. The measurements taken from the flow and used in the
data-assimilation are indicated by green square symbols.

memory), which represents approximately 115 times the chord-based convection time-
scale.

The computation of velocity vectors is performed using Davis software. A cross-cor-
relation technique is applied to each sequential image with a window-size reduced from
32×32 px2 to 16×16 px2 over three passes (with 50% overlap and a 2:1 elliptic weight).
Lastly, the data are post-processed, single missing vectors are interpolated, and the final
field is filtered with a 3 × 3 smoother. This results in a total of 15067 two-dimensional
velocity vectors per instantaneous flow field, once masked areas have been deleted. The
averaged mean flow from the PIV-snapshots is shown in figure 3.

To evaluate the data-assimilation procedure, a data-set that contains 20 measurement
points (see figure 2) is extracted and used as input to our assimilation algorithm. The
full mean-velocity field is used as a reference to assess the quality of the mean-field
reconstruction. In addition, the Reynolds stresses are derived from variations about the
mean-velocity field and compared to the identified Reynolds stresses.

3. Basic elements for data-assimilation

Only an abridged exposition of the data-assimilation procedure, as deemed neces-
sary for the subsequent recovery of the mean-velocity field from experimental PIV-
measurements, will be presented below. For a more general, theoretical framework, the
reader is referred to Foures et al. (2013). In essence, three ingredients are needed for
a strongly-constrained data-assimilation: a data-set, a compliance model, and a fitting
criterion. This section provides details on these three components, while the following
section will describe the numerical particulars and the optimization procedure.
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Figure 3. Mean-velocity field from averaging time-resolved PIV measurements, visualized by
color contours of the velocity magnitude and by streamlines.

3.1. Model

The measured mean flow is assumed to comply with the incompressible, two-dimensional
Reynolds Averaged Navier-Stokes (RANS) equations, given as

u · ∇u +∇p− 1
Re
∇2u = ∇ ·R,
∇ · u = 0. (3.1)

The mean velocity is denoted by u, the mean pressure by p. The 2 × 2 Reynolds stress
tensor R is defined in a standard manner as

R = −
(

u′2 u′v′

u′v′ v′2

)
, (3.2)

with u′ and v′, respectively, representing the fluctuating component of the streamwise
and wall-normal velocities. The divergence of the Reynolds stress tensor is taken as a
tunable parameter in the data-assimilation procedure and thus represents our model
compliance. It is expressed in terms of a vector-valued forcing term ∇ ·R = f .

The unknown pressure is not part of the model compliance and thus cannot be recov-
ered by data-assimilation of the mean-velocity field. This is apparent from (3.1) which
shows that the part of f that can be expressed as the gradient of a scalar potential is
indistinguishable from the unknown pressure gradient. Mathematically, the forcing term
f can be split according to

f = ∇φ︸︷︷︸
fi

+∇× ψ︸ ︷︷ ︸
fs

, (3.3)

where fi and fs, respectively, represent the irrotational and solenoidal part of f . This
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decomposition is unique with fs · n = 0. The model (3.1) can now be recast as follows

u · ∇u +∇p′ − 1
Re
∇2u = fs,

∇ · u = 0, (3.4)

with p′ = p + φ. This final form of the model is composed of the forced RANS equa-
tions (3.4), with the model compliance parameter fs, and will serve as the underlying
model of our assimilation procedure.

3.2. Data set

Figure 2 shows the locations in the flow field where measurements are taken for the data-
assimilation. Each green square symbol represents an area over which the mean velocity
is spatially averaged. The resulting values are then taken as input to the assimilation
algorithm. To enable a comparison between this data-set and the velocity field recovered
from our model, this velocity averaging is formulated as a scalar product. We take as
Ωi the area of the i-th square over which the velocity measurements are averaged. The
scalar mask bi, defined as bi = 1 on Ωi and bi = 0 elsewhere, then allows the expression
of the i-th measurement mi as

mi '

∫

Ω

biutrue dΩ
∫

Ω

bi dΩ
(3.5)

with mi representing the two-component measurement vector (with the streamwise and
normal mean-velocity) associated with square Ωi. In the above expression, Ω stands
for the entire domain, and utrue is the measured mean-velocity. From (3.5), we define
m = (mi)i∈(1..N) with N the number of measurements, together with the corresponding
mapping M,

m = M (utrue) . (3.6)

This final expression represents a mathematical formulation of the measurement process
and allows a compact formulation of the fitting criterion, defined in the next section.

3.3. Fitting criterion

The fitting criterion is a scalar function that quantifies the distance between predicted
M (u(fs)) and measured m mean-velocity. Defining em as the difference between the two
quantities, we can write

em = m−M (u(fs)) . (3.7)

For our computations, the fitting criterion is taken as the Euclidean norm of em, i.e.,

E (u(fs),m) =
1
2
‖em‖22. (3.8)

An L2-norm has been chosen here, but another type of norm or an entirely different fitting
criterion can be readily adopted for the data-assimilation problem. The fitting criterion
above serves as the objective functional of a variational formulation, presented in the next
section. This formulation then yields an iterative optimization scheme that will render
the fitting criterion minimal and ensure an optimal match of the model-predicted and
measured data.
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4. Optimization and data-assimilation
The minimization of the fitting criterion subject to the constraint given by the model

leads to an optimization problem that is best formulated variationally. Below we give an
outline of the optimization steps. Again, additional details and generalizations can be
found in Foures et al. (2013).

4.1. Problem formulation and optimization algorithm

The assimilation problem consists of finding the mean velocity and model compliance,
i.e., (u, fs) , that satisfy the model equation (3.4) and minimize the fitting criterion (3.8).
This constitutes a nonlinear optimization problem, since the fitting criterion does not
depend linearly on the forcing term. We choose a variational approach, yielding a direct-
adjoint optimization algorithm, to solve this problem. An augmented Lagrangian has to
be formulation, consisting of the objective functional (our fitting criterion) and the con-
straints (our model equations) which are enforced in a weak form by Lagrange multipliers
or adjoint variables. We have

L(fs,u,u†, p′, p†) = E (u)−
〈
u†,u · ∇u +∇p′ − 1

Re
∇2u− fs

〉
−
〈
p†,∇ · u

〉
. (4.1)

The scalar product, denotes by 〈., .〉 , is associated with the Euclidian norm for vector and
scalar fields on the domain Ω. The Lagrange multipliers, or adjoint variables, are denoted
by (u†, p†) and have been introduced to enforce the model equations. The augmented
Lagrangian (4.1) can be expanded using first variations with respect to all independent
variables (direct and adjoint), leading to three sets of equations: the direct equations (3.4),
the adjoint equations (4.2) and the optimality condition providing the steepest descent
direction, equation (4.3). We have

−u · ∇u† + u† · ∇u> −∇p† − 1
Re
∇2u† =

δE

δu
,

∇ · u† = 0, (4.2)

and

∇fsE = u†. (4.3)

From these three sets of equations, a direct-adjoint optimization scheme can be devised
for the iterative solution of the nonlinear assimilation problem. The procedural steps can
be summarized as follows:

1. Take an initial guess for fs (e.g., fs = 0)
2. Solve direct equations (3.4) to obtain u(fs)
3. Evaluate the fitting criterion E using (3.8)
4. While E exceeds a user-specified threshold

4.1. Solve the adjoint equations (4.2) to obtain u†

4.2. Find the steepest-descent direction using (4.3)
4.3. Use a line search along the steepest-descent direction evaluating the direct equa-
tions (3.4)
4.4. Compute the optimal E using (3.8)

5. End

The right-hand side of the momentum part of the adjoint equation (4.2) needs further
explanation. The first variation of the fitting criterion E with respect to u can be derived,
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Figure 4. Base flow for Rec = 12500 from the solution of the RANS equations with fs = 0.
The color contours display the velocity magnitude; streamlines are indicates as black lines. This
flow field acts as the starting point of the iterative data-assimilation algorithm.

starting from its definition (3.8), as

〈
δE

δu
, δu
〉

=
N∑

i=0

emi

∫

Ω

biδu dΩ
∫

Ω

bi dΩ
. (4.4)

After rearranging the integral and the sum, we obtain (invoking the Lax-Milgram theo-
rem)

δE

δu
=

N∑

i=0

emi
bi∫

Ω

bi dΩ
. (4.5)

This final expression (4.5) is used in lieu of the driving term in the momentum part of
the adjoint equation (4.2).

4.2. Numerical details
The differential equations in the direct-adjoint optimization algorithm are solved nu-
merically on a two-dimensional finite-element, triangular mesh using a P2-basis for the
velocity and a P1-basis for the pressure. The resulting discretized system has approxi-
mately 2 · 106 degrees of freedom. The base flow, i.e., the solution of (3.4) for fs = 0, at a
chord Reynolds number of Rec = 12500 is computed using a Newton-Raphson algorithm;
it is used as the initial guess in our data-assimilation algorithm and shown in figure 4.
The computations have been non-dimensionalized, yielding a unit input velocity and a
unit cylindrical diameter of the idealized airfoil. All subsequent comparisons with the
experimental data will be performed with this non-dimensionalization.

5. Results
5.1. Mean-flow

The data-assimilation algorithm is applied to flow around the idealized airfoil. The input
to the algorithm is composed of the mean velocity value at twenty selected locations,
represented by square symbols in figures 6 and 2. The goal of the assimilation procedure
is to reconstruct the full mean-velocity field as well as the solenoidal part of the divergence
of the Reynolds stress tensor. The algorithm is initialized by fs = 0, which yields to the
the base flow solution shown in figure 4. The iterative optimization scheme terminates
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Figure 5. Mean velocity field from averaging the flow fields from TR-PIV measurements. The
color contours visualize the velocity magnitude; streamlines are shown as black lines.

Figure 6. Assimilated mean-flow field from a limited number of locally-averaged measurements,
i.e., solution of the RANS equation with optimal forcing. The modeled flow is matching the
experimental data, with the fitting criterion at 1% of its initial value. The color contours visualize
the velocity magnitude; streamlines are shown as black lines.

when the fitting criterion is reduced to one percent of its initial value. The mean velocity
recovered in the process is depicted in figure 6 and can be compared to the mean velocity
measured in the entire domain (see figure 5). The discrepancy between the first guess
(the base flow in figure 4) and the true mean flow (figure 5) is quite perceptible: the
shear layer thickness is half the size of the true shear layer, and the separation bubble of
the base flow is still expanding while the measured recirculation bubble closes near the
trailing edge.

Once the selected mean-velocity data-measurements have been assimilated by the
RANS model (see figure 6), the recovered shear layer thickness is more representative of
the true shear layer thickness, and the extent and shape of the recirculation bubble are
accurately estimated by the assimilated mean flow. Moreover, the recovered flow field
does not show strong variations and is qualitatively consistent with the true mean flow
between two neighboring measurement locations, thus confirming a satisfactory interpo-
latory capability of the assimilation algorithm. A similar statement can be made about
the extrapolatory ability, by observing the flow field away from the selected measurement
points.

5.2. Forcing
Besides the recovered mean-velocity field, the data-assimilation also produces the forcing
vector necessary to match solutions of the model to the selected measured data. As argued
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earlier, the identified forcing approximates the solenoidal part of the divergence of the
Reynolds stress tensor. The quality of the assimilation results can be assessed by a direct
comparison of the rotational, out-of-plane component of the Reynolds stress tensor for
the original PIV fields and the assimilated forcing vector field. The results are plotted in
figure 7. This comparison is less straightforward than the comparison of the mean-velocity
fields, since the computation of the rotational component of the Reynolds stress tensor
divergence from TR-PIV fields poses challenges. The convergence of higher statistical
moments is slower than the convergence to mean values; and with our estimate of the
relative variance error during the computation of the mean fields between 0.1% and 10%
(see appendix for details), the relative error in computing the Reynolds stress tensor
is at least of the same order. Even assuming the lower error bound for our estimate,
the Reynolds stress tensor has to be spatially differentiated twice, an operation that
requires pre-filtering steps (in our case, two successive iterations of a Laplace smoother;
see Pletcher et al. (2012)). When evaluating the Reynolds stress tensor divergence and
comparing its rotational part to the optimal forcing vector, these difficulties have be kept
in mind.

The out-of-plane component of the rotational part of the Reynolds stress divergence
is plotted in figure 7(a). We observe structures of rather constant value and alternating
sign that are elongated in the streamwise direction; these structures are formed near
the separation point and appear to be following the mean-flow streamlines. This general
shape is expected since the Reynolds stress tensor is quite small in the free-stream, but
more significant in regions of stronger fluctuations (caused by shear-layer instabilities
and von-Karman vortex shedding).

The reconstructed rotational part of the forcing is plotted in figure 7(b). Similar to the
previous plot, longitudinal structures can be observed which arise near the separation
point of the airfoil. As a consequence of the direct-adjoint optimization, the reconstructed
forcing is assumed accurate in regions of the flow where the flow is particularly sensitive to
small changes. In our case, the region near the separation zone is one of the most sensitive
areas in the flow, which has also been demonstrated experimentally by Wallace & McKeon
(2012). This observation explains the large magnitude of the rotational part of the forcing
between the leading edge and the half-chord of the airfoil. Finally, in order to satisfy
the fitting criterion the algorithm constructs a forcing term with localized values near
the measurements squares. This is particularly noticeable near the trailing edge where
distinct features appear just before the averaging area of some measurement locations.
Nevertheless, the reconstruction of the rotational of the divergence of the Reynolds stress
tensor is satisfactory.

6. Limitations and extensions
Figure 6 shows non-physical structures near the upstream part of the recirculation

bubble. These structures can be attributed either to measurement uncertainties or to
three-dimensional effects that are not accounted for in the present approach. Since the
forcing in the optimization scheme promotes the model to match either corrupted data
or a flow that is not truly solenoidal (or both), the appearance of non-physical structures
should not come as too much of a surprise.

6.1. Measurement uncertainties
In appendix A, we give a detailed discussion of various sources of uncertainty, locate their
peaks and estimate their impact on the recovered field. The total error is a function of
the mean shear, the velocity magnitude and the amplitude of the velocity fluctuations.
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Figure 7. Out-of-plane component of the rotational part of the divergence of the Reynolds
stress tensor over the airfoil. Top, values derived from time-resolved PIV flow fields; bottom,
field identified during the assimilation procedure. Measurement locations are shown as black
squares.

Figures 8 and 9 show the relative and absolute measurement error estimated using the
expressions from the appendix. The relative error is rather small throughout the far-field
(less than 5%), but quite significant in the recirculation bubble (more than 30%). The
non-physical structures inside the recirculation zone that were recovered by the data-
assimilation algorithm can certainly be ascribed to the substantial uncertainty of the
mean velocity in this location.

A modification of the data-assimilation algorithm that accounts for data uncertainty
suggests itself. Error bounds on the data may be incorporated into the fitting criterion.
We define a general, real-valued function N that accounts for measurement uncertainty.
We can then recast the fitting criterion as

E (u(fs),m) = N (em) . (6.1)

We assume that the total measurement error (from all known sources) can be bounded
by E. The derivative of N with respect to measurement discrepancies can be defined as
follows,

N′(x) =





x + E for x < −E
0 for |x| 6 E
x−E for E < x

and N(0) = 0. (6.2)

With this definition, the function N is constant for all measurement discrepancies em if
|em| 6 E. As a consequence, the modified fitting criterion (6.1) will cause the algorithm
to produce a solution that matches the measurements up to their uncertainties. Equa-
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Figure 8. Color contours of the measurement error in m/s for flow around an idealized airfoil.
For comparison, the freestream velocity is 7 · 10−2 m/s. Streamlines are shown in black.

Figure 9. Color contours of the relative measurement error in percentage of the local velocity
magnitude for flow around an idealized airfoil. Streamlines are shown in black.
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tion (6.2) is a hard-bound approach to account for uncertainty in the data-assimilation.
Alternatives include the implementation of a soft-bound expression for the fitting cri-
terion or a standard Tikhonov regularization approch combined with weight functions
proportional to error bounds (see Flemming 2011; Bukshtynov et al. 2011). The modified
fitting criterion (6.1) impacts the optimization algorithm, and the expression (4.5) has
to be slightly adjusted to allow uncertainty measures in the algorithm. We have

δE

δu
=

N∑

i=0

N′(emi
)bi∫

Ω

bi dΩ
. (6.3)

Since N only appears as its derivative, it seems more suitable to define N by its derivative,
as in equation (6.2). The above expression replaces the right-hand side of the momentum
part of the adjoint equation (4.2) during the optimization procedure.

6.2. Effects of three-dimensionality
The nature of the experimental data motivated us to use the two-dimensional Navier-
Stokes equations as the underlying model for data-assimilation. In our case, three-dimen-
sional (out-of-plane) velocities are not captured in the measurements and the processed
data. While this approximation seems justified in the freestream of our chosen config-
uration, the flow inside the recirculation region will certainly exhibit three-dimensional
components in the mean flow. As a consequence, ∂xu+∂yv 6= 0 and the enforcement of a
two-dimensional solenoidal velocity field, represented by the right-most term in (4.1), is
not strictly correct throughout the flow domain. Unphysical recovered flow fields inside
the separation bubble may thus result.

As with measurement uncertainties, a modification to the algorithm can account for
this potential source of incorrect mean-flow recovery. We may introduce an additional
compliance parameter d = −∂zw = ∂xu + ∂yv and replace the divergence-related term
in (4.1) by 〈p†,∇·ū−d〉, which for genuinely two-dimensional flow (d = 0) reverts back to
the previous augmented Lagrangian (4.1). Other non-zero three-dimensional mean-flow
effects, contained in the momentum equation, will be compensated for by the driving
term fs, as before.

7. Conclusions
Building on past successes of mean-flow recovery by data-assimilation applied to nu-

merical simulations of flow around a cylinder at a Reynolds number of Re = 150 (see
Foures et al. 2013) and applied to one-dimensional, experimental data from a turbu-
lent pipe flow at a Reynolds number of Re ≈ 35000 (see Dovetta et al. 2013), we have
extended the assimilation algorithm and employed it to time-resolved PIV-data of flow
over an idealized airfoil at a Reynolds number of Re = 12500. A nonlinear optimiza-
tion scheme, using direct and adjoint information derived from the Reynolds-Averaged
Navier-Stokes equations, iteratively matches the model-based mean-velocity field to a
few selected measurement points. Even though only 20 data points have been used, the
mean-velocity field is recovered in a satisfactory manner. Moreover, the rotational part
of the Reynolds-stress tensor divergence is identified, which represents the driving term
that gradually forces the modeled mean-flow field towards the selected data points.

Despite complex instability mechanisms present in the flow, the data-assimilation pro-
cedure is able to reconstruct, in a satisfactory manner, the mean-velocity field around the
airfoil from only 20 data points. Moreover, the rotational part of the divergence of the
Reynolds stress tensor is identified qualitatively. An application of this technique could

4.4. Article : Data-assimilation of a 2D PIV measurement over an
idealized airfoil 141



14 N. Dovetta, D.P.G. Foures, B.J. McKeon, P.J. Schmid and D. Sipp

concern the recovery of mean-velocity fields from limited measurements, which could be
accomplished by interpolation between measurement points (for a more highly resolved
flow field) or by extrapolation beyond the measurement points (for extending the flow
fields past the interrogation window). PIV measurements, as in this article, or any other
velocity-measuring technology (e.g. Pitot-tubes or anemometry probes) can be used. The
recovery of part of the Reynolds stress tensor can provide qualitative information about
regions of the domain where turbulent fluid motion is most active.

The impact of measurement uncertainties and weak three-dimensionality on the recon-
structed flow cannot be entirely neglected. A variation of the algorithm that accounts
for error bounds in the processed data as well as for three-dimensional effects via an ad-
ditional compliance parameter would ultimately result in more accurate estimates of the
mean-velocity field and aid in the convergence behavior of the optimization algorithm.
Any development in this direction would increase the robustness of the technique and
open a wider range of applications for this data-assimilation procedure. Further work in
this direction is left for a future effort.

Appendix A. Sources of measurement error
In this appendix we give estimates for the uncertainty from various sources in order to

quantify the precision of data entering the assimilation algorithm; special attention will
be directed to the recirculation bubble.

We begin by decomposing the uncertainties into different components, each associated
with a particular aspect of the experimental setup, data acquisition or data-processing. In
particular, we consider as sources of uncertainty: the calibration of the cameras (Ecalib),
the experimental set-up assumptions (Eset−up), the sequential-correlation computations
of the PIV-velocity vectors (EPIV), the mapping from the experimental to the numerical
coordinate system (Emap) and, finally, the variance-error from the averaging procedure
(Evar). The combined measurement error E is taken as the sum of these components,
i.e.,

E = Eset−up + Ecalib + EPIV + Emap + Evar. (A 1)
Two notations are adopted: E denotes the relative error, while δu stands for the absolute
error of the assimilated velocity u; consequently,

E =
δu
u

(A 2)

expresses the link between relative and absolute error.

A.1. Experimental set-up
The extraction of velocity-vector fields using particle-image velocimetry (PIV) makes
assumptions about several geometric characteristics. The laser sheet and the calibration
plate are taken as parallel to the streamwise and spanwise coordinate directions.

With a laser sheet of 1 mm thickness and of about three airfoil chords in length, we
expect an error in parallelism on the order of 20 minutes of arc. A non-aligned laser sheet
poses a problem only if a significant amount of particles traverse from the illuminated to
the shaded (or reverse, from the shaded to the illuminated) areas between two consecutive
camera snapshots. Particles in our flow move up to 0.8 mm between two images (based
on the free-stream velocity). Additionally, in the free-stream, about 99% of the particles
are illuminated by the laser sheet during two successive snapshots. For the smallest
correlation window (16×16 pixels), there are thus between 10 and 25 particles, resulting
in a 10% to 25% probability for one particle to leave (or enter into) the illuminated region
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Figure 10. Example of velocity error due to calibration error. For the first snapshot the particle
is in position 1, for the second snapshot the particle has moved to position 2 on the physical
plane. The camera calibration suggests that the particle is in positions 1′ and 2′, respectively. The
measured velocity is biased due to the angle between the two planes (left figure) and unbiased
(right figure), even though the least-squares residual error is the same in both cases.

and to influence the sharpness of the correlation peak. This estimates show that errors
stemming from the non-parallelism of the laser sheet are expected to be very small and
generally negligible in view of other errors.

In contrast, the calibration plate may also be tilted by 20 minutes of arc with re-
spect to the streamwise-spanwise plane. This angle uncertainty directly translates into a
0.01% measurement uncertainty. In general, a total error of about 0.01% in the measured
velocity should be attributed to geometric factors in the experimental setup.

A.2. Camera calibration

Calibration of the cameras is performed by using a calibrating plate placed at the laser
sheet location. This plate consists a grid of known dimensions which allows the extraction
of a mapping between the camera-sensors’ coordinate system and the physical domain.
Typically, this mapping has a finite number of degrees of freedom (e.g., a pinhole model
with eight parameters) and is computed using a least-squares fit. The non-zero RMS
error, i.e., the residual of this fit, can be taken as the error committed during camera
calibration. In our case, this error is between 0.45 and 0.5 pixels for both cameras, or 0.1
millimeters.

Thus, when the velocity is evaluated based on the position of the correlation peak,
we must assume that the position of this peak is known, on average, up to half a pixel,
causing a velocity error of δu = 6 mm/s. However, this argument does not yield accurate
estimates of the velocity errors due to camera calibration. In figure 10 different examples
of estimating the physical plane are suggested; in these cases, it can be shown that the link
between the residual and velocity error is given by the slope between the identified and
physical plane. The least-squares residual error between the two planes is not sufficient
to accurately estimate velocity uncertainty associated with calibration. For this reason,
this component of the velocity error is omitted later.

A.3. PIV correlation-peak position

The bias error stemming from the PIV correlation computations is a source of error that
can be readily estimated. Even though the displacement of the correlation peak can be
induced by a variety of physical phenomena, for the sake of simplicity, we will considered
only effects due to particle size and due to velocity variations within the interrogation
window. The bias ε of the correlation peak (in pixels) can be explicitly expressed for
the case of simple shear and under the assumption of a Gaussian correlation function.
We introduce the dimension DI of the interrogation window, the image magification M
and the time interval ∆t between two consecutive images. Particles are assumed to be
identical of diameter dτ (see Westerweel 1997, 2008). We then can state
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ε

DI
=

1
FI(sD)

(
d2
τ

8D2
I

+
(M |∆u|∆t)2

12D2
I

)
(A 3)

with FI(sD) as the in-plane loss of correlation function, which depends on sD, the position
of the correlation peak within the inter-rogation window; we have

FI(sD) =





(
1− |sx|

DI

)(
1− |sy|

DI

)
for |sx| < DI , |sy| < DI ,

0 otherwise.
(A 4)

The velocity bias error δuPIV due to PIV correlation peaks may be expressed in term
of correlation peak displacement, leading to the quantification of the PIV-measurement
error as

δuPIV =
ε

M ∆t
. (A 5)

This error varies spatially, since it depends on the velocity gradients.

A.4. Coordinate-system bias
The origin of either coordinate system is the center of the airfoil leading edge. The center
of the airfoil is estimated in the calibrated plane using the background snapshot in which
the airfoil is illuminated. The airfoil’s position cannot be determined more precisely than
a pixel (0.2 mm). This error will change the velocity at a given point, depending on the
velocity gradient. Consequently, the associated error δumap is of the order of the velocity
gradient ‖∇u‖ multiplied by the position error Ce. Mathematically, we have

δumap ' ‖∇u‖Ce. (A 6)

A.5. Variance error during averaging
The mean velocity is computed by taking the average over all measurement snapshots.
Because of a limited number of snapshots, an error arises which can be estimated by
considering the convergence of the mean quantities. If the convergence rate of the mean
u is assumed to be similar to the mean of a random variable, the variance error of the
mean may be simply estimated using the standard deviation of the velocity. We obtain

Var(u) = Var

(
1
N

N∑

n=1

u + u′
)

=
σ2

N
. (A 7)
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Chapter 5

Conclusions and outlook

Throughout this thesis two data-based techniques for the analysis and control of
fluid systems have been studied, a system identification procedure that identifies
model parameters from temporal input-output from data-sequences, and a data-
assimilation algorithm which extracts physical quantities from measured data-set
by matching the measurements to predictions from a prescribed model. Even if
these two techniques are conceptually similar at some mathematical level, their
results, field of application and level of maturity to address flow analysis and control
problems are sufficiently different to warrant two different conclusions.

5.1 System identification

Chapter 2 demonstrated the capability of a data-based method to control shear flows
that exhibit complex behavior. This has been accomplished using a feed-forward
controller and a Multiple-Input Multiple-Output (MIMO) set-up. The design based
on a finite impulse response formulation led to a simple, efficient and robust con-
troller that successfully compensated perturbations in subcritical flow past a cylinder
(modeled by the complex Ginzburg-Landau equation), and two-dimensional flow in
a doubly obstructed channel. In the past, these types of flow control problems have
been treated within the framework of linear quadratic Gaussian (LQG) control, a
framework that does not account for the specific nature of convection dominated
flows, but rather provides a generic solution that consequently suffers in robustness
and efficiency. In contrast, the proposed identification and control design algorithms
based on a finite impulse response (FIR) model are more appropriate for controlling
convectively dominated flows, while still being significantly easier to implement, and
equivalently optimal with respect to LQG.

The important contributions made through the extensive use of state-space for-
mulations and LQG compensators, however, is not to be neglected as it establishes
a performance standard to which data-based controllers have to be compared. Fur-
ther work is needed to make connections between a large diversity of identification
and control design algorithm from the general literature, and nature and needs of
flow control conditions for each specific applications.

In Chapter 3, an experimental configuration of flow over an idealized airfoil at
a Reynolds number of Re = 12500 is considered, with the intent of controlling the
flow by a disturbance-rejection technique. To this end, controllability of the flow has
first been established by demonstrating the decoupling of the noise amplifier from
the oscillatory behavior. Despite this separation the linear identification step of the
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full procedure failed to establish a correlation between upstream and downstream
fluctuations in the shear layer. Without this connection, a proper model for the flow
dynamics could not be found and therefore the control ultimately failed. This failure
is attributed to the non-linear behavior of the flow as further investigations revealed
that the estimation error from the upstream sensors was exceedingly large.More
complex models that can accommodate non-linear behavior such as, non-linear auto-
regressive models, or Hammerstein-Wiener models, should be considered instead of
a finite impulse response before disturbance rejection control is again attempted for
this flow.

As mentioned before, the data-quality plays an important role during the iden-
tification and control design step. Noise impacts not only the identified model pa-
rameters but also the controller robustness, stability and performance. To quantify
this impact, an uncertainty propagation technique has been developed in the second
part of chapter 2 which estimates the effect of measurement noise on the controller
characteristics. Data uncertainties are propagated through the an ARMarkov/Least-
Squares identification algorithm, after which they impact the stability margins of
any given controller. This chapter also shows that quantifying model uncertainty is
essential to quantifying a priori the performance of a controller. With this informa-
tion, the model structure can be chosen to maximize the performance, robustness
and stability of the controller even under the influence of corrupted data.

Further promising research directions include an analysis of the impact of data-
uncertainty on the control design process. While in this thesis the uncertainty
propagation has been limited to the identification step of the data-based controller
design, it is desirable to also pursue uncertainty propagation through the control
design process in order to determine which control algorithm is the most robust un-
der the given data-uncertainty (see Appendix A for uncertainty propagation within
realization algorithms and an LQG-controller).

Many sophisticated algorithms have been developed and presented in the general
control literature to solve a large variety of guidance and control problems, but
have not found their way into flow control applications. A first research direction
that seems promising is the integration of control-relevant identification procedures
already at the identification step (see Mäkilä et al., 2001). For example, in chapter 2,
the objective functional for the model identification has been based on a least-squares
distance between the data-sequences and the model predictions. Control-relevant
identification applied in this case would formulate an objective functional based
on the final controller performance which is expected to lead to better controller
performance. Furthermore, the cost functional is not the only parameter that can
be optimized to increase the ultimate controller performance; the nature of the input
sequence can also be optimized to not only decrease the model estimation error, but
also to maximize the final control efficiency for the compensated problem.

In high-speed flow control experiments, the time needed to compute the control
law is often a limiting factor, as it influences the delay of the controller response
with respect to the time-evolving flow system. Reducing the cost of computing
the control law is an important component in approaching real-time flow control
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applications in high-speed flows. Judiciously simplified control laws, even stemming
from complex identification schemes, together with recursive and on-line algorithms
would constitute an interesting research direction for high-speed flow control.

5.2 Data-assimilation

Chapter 4 presents a framework for data-assimilation of mean flows. The technique
makes use of the Reynolds-Averaged Navier-Stokes equations, together with local-
ized mean-velocity measurements, to reconstruct a mean-velocity field for the entire
domain and information about second-order turbulence statistics. Mathematically
this problem leads to a non-linear optimization problem which can be solved by
a direct-adjoint gradient-based method developed for this purpose. The quality of
data-assimilation is difficult to estimate theoretically; this led us to apply the devel-
oped algorithm to three different test cases in order to demonstrate the performance
and limitations of mean-velocity data-assimilation. The three cases are: a turbulent
pipe flow, the flow around a cylinder, and the flow over an idealized airfoil.

For the turbulent pipe flow, the mean-velocity profile and the single associ-
ated shear-stress component are reconstructed from 15 mean-velocity measurements.
The reconstructed shear stress shows the same spatial shape and amplitude as the
one computed numerically by Wu & Moin (2008). The assimilation produces the
Reynolds number and pressure drop in the pipe which compares favorably to results
from matching a semi-empirical Spalding-profile to the full 57 measurements. The
interpolation, extrapolation, and variable-reconstruction capabilities are demon-
strated on this example.

The cylinder flow is more challenging due to its two-dimensional nature, which
makes the numerical procedures, mostly coming from the optimization, more expen-
sive. On the other hand, there is negligible uncertainty in the numerical data since
geometry, domain and boundary conditions are exactly known. This two dimen-
sional test case is intended to demonstrate the ability of the assimilation procedure
to reconstruct a mean-velocity field from scattered measurements. As shown in the
study, the quality of the reconstructed field is highly encouraging and thus suggests
an application to two dimensional experimental data as a next step in complexity.

The last test case is the flow over an idealized airfoil at a Reynolds number of
Re = 12500. This example contains many difficulties: the data are corrupted by
measurement uncertainties, the boundary conditions are only approximately known,
and due to the high Reynolds number computational costs for resolving all relevant
scales are considerable. In light of these challenges, the results appear promising. An
additional analysis of the origin of measurement uncertainty gives first indications
on how to improve the data-assimilation process.

Despite its potential, data-assimilation of mean velocities from scattered mea-
surements based on the RANS equations has not been applied to the best of our
knowledge. Unlike data-assimilation of time-resolved data, which is prohibitively
expensive, the recovery of mean-velocity fields from localized measurements may
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be performed as a post-processing step, for example in parallel to other spec-
tral or energy-based analysis of time-resolved PIV flow fields. RANS-based data-
assimilation may give information that is valuable for the evaluation and quantifi-
cation of turbulence statistics, as it does not rely on any additional empiricisms but
is rather based on the equation governing the shape of the turbulent mean velocity.
As has been shown in the last chapter, the Reynolds stress tensor is not fully recon-
structed, but nevertheless second-order statistical moments can be recovered from
a few first-moment (averaged) measurements.

An important issue of mean flow data-assimilation is the uniqueness of the com-
puted solution. The problem by definition is highly overparametrized (i.e., we have
more parameters than constraints: for example the airfoil assimilation has 4 · 104

parameters for 42 constraints), which makes it highly unlikely to find a unique so-
lution. Experimentally, we expect only one distribution of Reynolds stresses for a
given mean flow. This contradictory situation encourages more investigations to
construct data-assimilation formulations that are well-posed (i.e. only one unique
solution of the assimilation problem).

Two approaches for improving well-posedness of the mean-velocity data-assimilation
procedure seem promising: the regularization techniques that, for example, would
penalize the norm of the forcing term or the norm of its spatial derivatives, and
closure assumptions that would limit the size of the domain of admissible-forcing
terms (i.e. reducing the overparametrization).

Regularization techniques are the most straightforward to implement, as by de-
sign a very small penalization is usually present in all optimization algorithm (for ex-
ample convergence threshold for non-linear problems, or numerical Thikhonov penal-
ization for linear least-squares minimization). Thus, modifying a data-assimilation
algorithm in order to increase this penalization might be simply performed by in-
creasing its corresponding built-in penalization. More generally, regularization may
also be achieved at the objective functional level, where a specific constraint on
the forcing term can be enforced. This way, different types of regularizations can
be implemented such as, a penalization of the spatial derivative of the forcing or a
penalization of its infinite norm. In all cases, the regularization approaches applied
to compensate the overparametrization of data-assimilation are generally increasing
the convexity of the optimization, and are thus leading to a well-posed problem.
However, because the objective functional is changed to include penalization terms,
the data-set and the ultimate-model predictions will certainly differ. More investiga-
tion on the insertion of regularization terms within mean-velocity data-assimilation
algorithm would enable the user to choose a balance between well-posedness of the
problem and the model fidelity to the data-set.

Closure assumptions tackle the overparametrization problem using physical hy-
potheses that reduce the number of degrees of freedom. Indeed, by imposing ad-
ditional constraints on the model-parameters, the dimension of the admissible set
of forcing is diminished. Unfortunately, the validity of the closure underlying as-
sumptions impacts significantly the convergence of the corresponding assimilation
procedure. For example an algorithm for mean-velocity data-set assimilation un-
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der the Boussinesq closure hypothesis has been developed and applied, to both the
cylinder and the idealized airfoil corresponding data-sets. The resulting models were
not able to properly match the respective data-set, preventing any satisfactory data
reconstruction from this algorithm. Despite the lack of convergence of Boussinesq-
based mean-velocity assimilation, we believe that a significant amelioration of the
well-posedness, without a prohibitive degradation of the convergence property, can
be accomplished using more complex, and less constraining, closure hypotheses.

In order to be an attractive experimental post-processing tool, mean-velocity
assimilation has to have the ability to cope with measurements corruption. It has
been particularly revealed in chapter 4, where the mean-velocity measured in the
recirculation bubble were significantly biased, leading to a reconstructed flow that
presented non-physical structures. To increase the algorithm robustness towards
data-uncertainty, a modification of the objective functional that includes measure-
ment error-bounds was presented (often called epsilon-intensive loss function, see
Azamathulla & Wu (2011)). This modified algorithm, once the measurement error-
bounds has been estimated, could be applied to mean-velocity data-sets regardless
of the measure-quality.

To conclude, an enhancement of the well-posedness and robustness of the data-
assimilation algorithm would most likely lead to an attractive post-processing tool
that extracts and reconstructs valuable information from any mean-velocity mea-
surements.





Appendix A

Uncertainty propagation within
the control design algorithm

Within the MPHC control-design framework Dovetta et al. (2013), the optimal con-
trol is found by minimizing a least-squares problem; consequently, a simple Taylor
expansion of the least-squares linear optimization problem (presented chapter 2)
may be used to assess the propagation of uncertainty through the entire control
design procedure. However, if the control-design algorithm consists of the classical
Linear Quadratic Regulator (LQR) framework, the optimal control law is found by
the formulation of a state-space representation of the system and by the solution
of its corresponding Riccati equation, in which case a separate uncertainty prop-
agation framework has to be developed. First, this appendix briefly recalls the
LQG control-design framework applied to a model that has been identified using
the ARMarkov/Least-Squares identification procedure; a partial uncertainty prop-
agation method is then developed.

A.1 LQG control-design procedure

From Markov parameters to a state space representation: ERA Orig-
inally proposed by Juang & Pappa (1985), the algorithm constructs state-space
matrices from impulse-response coefficients (Markov parameters). It starts with the
construction of Hankel matrices H(j) following

H(j − 1) =




Hj Hj+p1 · · · Hj+ps

Hj+q1 Hj+q2 · · · Hj+ps+q1
...

...
. . .

...
Hj+qr Hj+qr+p1 · · · Hj+ps+qr


 , (A.1)

where Hi is the ith Markov parameter of the impulse response, and (qi)i∈[1,r] and
(pi)i∈[1,s] are arbitrary sequences of integers. First, the Hankel matrix is decomposed
in its singular vectors and singular values.

H(0) = UTΣV, (A.2)

with the matrices U and V containing the singular vectors of H(0), and Σ stand-
ing for the diagonal rectangular matrix with the singular values along its diagonal.
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Subsequently, the matrices of the identified state-space representation for LTI sys-
tems {Ak, Bk, Ck, Dk}, after truncation of the lowest singular values in (A.2), can
be written as

Ak = Σ−1/2
k UkH(1)V T

k Σ−1/2
k , (A.3)

Bk = Σ1/2
k VkEno , Ck = EniU

T
k Σ1/2

k , Dk = H1. (A.4)

where Eno and Eni are rectangular identity matrices. The matrices Ak, Bk, Ck,
and Dk form the state-space representation of the system whose impulse response
is the sequence (Hi) . Note that (qi)i∈[1,r] and (pi)i∈[1,s] are arbitrary sequences of
increasing integers, often set to qi = pi = i, but different sequences can be taken in
order to reduce the size of the Hankel matrices and the computational cost of the
algorithm (e.g., in case of very long impulse responses).

From a state-space representation to optimal control design: LQG-control
LQG and LQR control-design algorithms may be found in Zhou et al. (1996). If the
objective functional is as follows

J(u) =
∞∑

k=1

x(k)TQx(k) + u(k)TRu(k) + 2x(k)TNu(k), (A.5)

its minimization is achieved via the control law

u(k) = −Kx(k), (A.6)

with K defined by
K = (BTXB +R)−1(BTXA+N) (A.7)

where X is the positive definite solution of the algebraic Riccati equation

ATXA−X − (ATXB +N)(R+BTXB)−1(BTXA+NT ) +Q = 0. (A.8)

A.2 Uncertainty propagation through controller design

Propagation of Markov-parameter uncertainty to state-space uncertainty
Small perturbations of the Markov parameter are considered. We denote by Ak

the unperturbed matrix (computed with the true Markov parameters), take Ãk as
the perturbed matrix, and δAk as the corresponding perturbation. We thus have

Ãk = Ak + δAk. (A.9)

Let δHi be a perturbation of the ith Markov parameter. The perturbed jth

Hankel matrix may then be written as

δH(j) =
µ−1∑

0

P (i+ 1 + j)δHi (A.10)
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with P (i) a r× s rectangular canonical matrix with elements P (i)k,l = δk+l−1,i and
δ as the Kronecker symbol; µ denotes the number of Markov parameters.

Using the small-perturbation assumption ‖δH(0)‖/H(0)� 1, the expression for
δAk is, to first order, given by

δAk ≈ δΣ−1/2
k UkH(1)V T

k Σ−1/2
k

+ Σ−1/2
k δUkH(1)V T

k Σ−1/2
k

+ Σ−1/2
k UkδH(1)V T

k Σ−1/2
k

+ Σ−1/2
k UkH(1)δV T

k Σ−1/2
k

+ Σ−1/2
k UkH(1)V T

k δΣ
−1/2
k

. (A.11)

The perturbed operators are made explicit in what follows. The variation of the
singular values operator δΣ−1/2

k is,

δΣ−1/2
k(i,j) =

{
−1

2
δσi

σ
3/2
i

if j = i

0 elsewhere
, (A.12)

with (see Stewart, 1990),
δσi = uTi δH(0)vi. (A.13)

Under the assumption that ‖δH(0)‖/∆σ � 1 where ∆σ is the minimum of the
difference between two singular values of H(0) (true for sufficiently small perturba-
tions), the perturbed singular vector can be expressed, using the work of Vaccaro &
Kot (1987); Vaccaro (1994),

δui =
1
σi


I −

k∑

j=1

cjuju
T
j


 δH(0)vi −

k∑

j=1,j 6=i

cj
σj
uju

T
i δH(0)vj , (A.14)

δvi =
1
σi


I −

k∑

j=1

cjvjv
T
j


 δH(0)Tui −

k∑

j=1,j 6=i

cj
σj
vjv

T
i δH(0)Tuj , (A.15)

where

ci =

{
1 if j = i
σ2

i

σ2
i−σ2

j
if j 6= i

(A.16)

from which the matrices δUk and δV T
k can readily be computed.

The uncertainty propagation towards Ck and Bk is derived in a similar fashion.
We have

δC = EniδU
T
k Σ1/2

k + EniU
T
k δΣ

1/2
k , (A.17)

δB = δΣ1/2
k VkEno + Σ1/2

k δVkEno (A.18)

where

δΣ1/2
k =

{
1
2
δσi√
σi

if j = i

0 elsewhere
. (A.19)

And finally, δDk = δH0. In this manner, perturbations of identified Markov param-
eters have been propagated to the state-space matrices that describe the system
{Ak, Bk, Ck, Dk}.
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Propagation of state-space uncertainty to controller uncertainty The final
step in the uncertainty-propagation procedure is not formulated in this appendix; a
related analysis may be found in Kenney & Hewer (1990); Konstantinov et al. (1993)
that would lead to the formulation of controller uncertainty from perturbations of
the state-space system.
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