A. Sommaire, 1. Instruments de mesure du vent, p.180

M. I. Ahmad, C. D. Sinclair, and B. D. Spurr, Assessment of flood frequency models using empirical distribution function statistics, Water Resources Research, vol.64, issue.3, pp.1323-1328, 1988.
DOI : 10.1029/WR024i008p01323

S. A. Akda?, H. S. Bagiorgas, and G. Mihalakakou, Use of two-component Weibull mixtures in the analysis of wind speed in the Eastern Mediterranean, Applied Energy, vol.87, issue.8, pp.2566-2573, 2010.
DOI : 10.1016/j.apenergy.2010.02.033

S. A. Akda?, A. Et, and . Dinler, A new method to estimate Weibull parameters for wind energy applications, Energy Conversion and Management, vol.50, issue.7, pp.1761-1766, 2009.
DOI : 10.1016/j.enconman.2009.03.020

M. Andersen, A Review of MCP Techniques. Rapport technique 01327R00022, Renewable Energy Systems, 2004.

I. Antoniou, S. M. Pedersen, and P. B. Enevoldsen, Wind Shear and Uncertainties in Power Curve Measurement and Wind Resources, Wind Engineering, vol.1, issue.5, pp.449-468, 2009.
DOI : 10.1088/1755-1307/1/1/012059

M. P. Baldwin, T. J. Et, and . Dunkerton, Stratospheric Harbingers of Anomalous Weather Regimes, Science, vol.294, issue.5542, pp.581-584, 2001.
DOI : 10.1126/science.1063315

A. G. Barnston, R. E. Et, and . Livezey, Classification, Seasonality and Persistence of Low-Frequency Atmospheric Circulation Patterns, 115<1083:CSAPOL>2.0.CO;2. (Cité en pages 93 et 144), pp.1083-1126, 1987.
DOI : 10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2

J. Bartholy, K. Et, and . Radics, Wind profile analyses and atmospheric stability over a complex terrain in southwestern part of Hungary, Physics and Chemistry of the Earth, Parts A/B/C, vol.30, issue.1-3, pp.32-37, 2005.
DOI : 10.1016/j.pce.2004.08.013

J. A. Businger, J. C. Wyngaard, Y. Izumi, and E. F. Bradley, Flux-Profile Relationships in the Atmospheric Surface Layer, Journal of the Atmospheric Sciences, vol.28, issue.2, pp.181-189, 1971.
DOI : 10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2

C. Carrillo, A. F. Obando-montaño, J. Cidrás, and E. Díaz-dorado, Review of power curve modelling for wind turbines, Renewable and Sustainable Energy Reviews, vol.21, pp.572-581, 2013.
DOI : 10.1016/j.rser.2013.01.012

J. A. Carta and P. Ramírez, Analysis of two-component mixture Weibull statistics for estimation of wind speed distributions, Renewable Energy, vol.32, issue.3, pp.518-531, 2007.
DOI : 10.1016/j.renene.2006.05.005

J. A. Carta, P. Ramírez, and S. Velázquez, Influence of the level of fit of a density probability function to wind-speed data on the WECS mean power output estimation, Energy Conversion and Management, vol.49, issue.10, pp.51-55, 2008.
DOI : 10.1016/j.enconman.2008.04.012

C. Cassou, Du changement climatique aux régimes de temps: l'oscillation nordatlantique, La Météorologie, issue.45, pp.21-32, 2004.

C. Cassou, L. Terray, J. W. Hurrell, and C. Deser, North Atlantic Winter Climate Regimes: Spatial Asymmetry, Stationarity with Time, and Oceanic Forcing, Journal of Climate, vol.17, issue.5, pp.1055-1068, 2004.
DOI : 10.1175/1520-0442(2004)017<1055:NAWCRS>2.0.CO;2

C. Cassou, L. Terray, and A. S. Phillips, Tropical Atlantic Influence on European Heat Waves, Journal of Climate, vol.18, issue.15, pp.2805-2811, 2005.
DOI : 10.1175/JCLI3506.1

J. Cattiaux, R. Vautard, C. Cassou, P. Yiou, V. Masson-delmotte et al., Winter 2010 in Europe: A cold extreme in a warming climate Best Practice Guidelines For Implementation of Wind Energy Projects in Australia. Clean Energy Council. Disponible en ligne https, Geophysical CEC, pp.2015-2021, 2010.

A. N. Celik, Energy output estimation for small-scale wind power generators using Weibull-representative wind data, Journal of Wind Engineering and Industrial Aerodynamics, vol.91, issue.5, pp.693-707, 2003.
DOI : 10.1016/S0167-6105(02)00471-3

T. Chang, Y. Et, and . Tu, Evaluation of monthly capacity factor of WECS using chronological and probabilistic wind speed data: A case study of Taiwan, Renewable Energy, vol.32, issue.12, 2007.
DOI : 10.1016/j.renene.2006.10.010

T. P. Chang, Performance comparison of six numerical methods in estimating Weibull parameters for wind energy application, Applied Energy, vol.88, issue.1, pp.24-50, 2011.
DOI : 10.1016/j.apenergy.2010.06.018

A. C. Cohen, Maximum Likelihood Estimation in the Weibull Distribution Based On Complete and On Censored Samples, Technometrics, vol.5, issue.2, pp.579-588, 1965.
DOI : 10.1080/00401706.1965.10490300

L. Comas-bru, F. Et, and . Mcdermott, Impacts of the EA and SCA patterns on the European twentieth century NAO-winter climate relationship, Quarterly Journal of the Royal Meteorological Society, vol.136, issue.679, pp.95-126, 2014.
DOI : 10.1002/qj.2158

N. J. Cook, Discussion on modern estimation of the parameters of the Weibull wind speed distribution for wind speed energy analysis, 2001.

H. L. Crutcher, L. Et, and . Baer, Computations from Elliptical Wind Distribution Statistics, Journal of Applied Meteorology, vol.1, issue.4, pp.522-530, 1962.
DOI : 10.1175/1520-0450(1962)001<0522:CFEWDS>2.0.CO;2

Z. ?en, A. Altunkaynak, and T. Erdik, Wind velocity vertical extrapolation by extended power law Advances in Meteorology 2012. doi: 10, 1155.

V. Ðuri?i?, J. Et, and . Mikulovi?, A model for vertical wind speed data extrapolation for improving wind resource assessment using WAsP, Renewable Energy, vol.41, pp.407-411, 2012.
DOI : 10.1016/j.renene.2011.11.016

D. Gl, Wind Power Project Performance White Paper Actual versus Predicted: 2014 Update. Document RANA-WP-01-A. Disponible en ligne http://www.gl-garradhassan.com/assets, GL_Wind_Power_Project_Performance_White_Paper.pdf, pp.2015-2021, 2014.

B. Dong, R. T. Sutton, and T. Woollings, Changes of interannual NAO variability in response to greenhouse gases forcing, Climate Dynamics, vol.32, issue.3, pp.1621-1641, 2011.
DOI : 10.1007/s00382-010-0936-6

R. J. Donohue, T. R. Mcvicar, and M. L. Roderick, Climate-related trends in Australian vegetation cover as inferred from satellite observations, 1981.

P. Drobinski, T. Et, and . Dubos, Météorologie et Environnement, 2011.

J. Dufresne, M. Foujols, S. Denvil, A. Caubel, O. Marti et al., Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5, Climate Dynamics, vol.23, issue.13, pp.2123-2165, 2013.
DOI : 10.1007/s00382-012-1636-1

URL : https://hal.archives-ouvertes.fr/hal-00794170

N. Earl, S. Dorling, R. Hewston, and R. Von-glasow, 1980???2010 Variability in U.K. Surface Wind Climate, Journal of Climate, vol.26, issue.4, pp.1172-1191, 1980.
DOI : 10.1175/JCLI-D-12-00026.1

A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Basé en partie sur les manuscripts laissés par Harry Bateman. Disponible à l'adresse http, Higher Transcendental Functions, pp.20140123-104529738, 1953.

S. Faulkner, Quantifying the Uncertainties of Correlation-Prediction (MCP) Présentation lors de la conférence de la NZWEA (New-Zealand Wind Energy Association ), 2010.

E. García-bustamante, J. F. González-rouco, P. A. Jiménez, J. Navarro, and J. P. Montávez, The influence of the Weibull assumption in monthly wind energy estimation, Wind Energy, vol.46, issue.5, pp.50-55, 2008.
DOI : 10.1002/we.270

G. Gualtieri, S. Et, and . Secci, Methods to extrapolate wind resource to the turbine hub height based on power law: A 1-h wind speed vs. Weibull distribution extrapolation comparison, Renewable Energy, vol.43, 2012.
DOI : 10.1016/j.renene.2011.12.022

H. Guo, M. Xu, and Q. Hu, Changes in near-surface wind speed in China, International Journal of Climatology, vol.31, issue.3, pp.1969-2005, 2011.

M. Haeffelin, L. Barthès, O. Bock, C. Boitel, S. Bony et al., SIRTA, a ground-based atmospheric observatory for cloud and aerosol research, Annales Geophysicae, vol.23, issue.2, pp.253-275, 2005.
DOI : 10.5194/angeo-23-253-2005

URL : https://hal.archives-ouvertes.fr/hal-00329353

E. Hanna, T. E. Cropper, P. D. Jones, A. A. Scaife, and R. Allan, Recent seasonal asymmetric changes in the NAO (a marked summer decline and increased winter variability) and associated changes in the AO and Greenland Blocking Index, International Journal of Climatology, vol.23, issue.3, 2014.
DOI : 10.1002/joc.4157

M. Hoerling, J. Eischeid, J. Perlwitz, X. Quan, T. Zhang et al., On the Increased Frequency of Mediterranean Drought, Journal of Climate, vol.25, issue.6, pp.2146-2161, 2011.
DOI : 10.1175/JCLI-D-11-00296.1

M. P. Hoerling, J. W. Hurrell, and T. Xu, Tropical Origins for Recent North Atlantic Climate Change, Science, vol.292, issue.5514, 2001.
DOI : 10.1126/science.1058582

I. Van-der-hoven, POWER SPECTRUM OF HORIZONTAL WIND SPEED IN THE FREQUENCY RANGE FROM 0.0007 TO 900 CYCLES PER HOUR, Journal of Meteorology, vol.14, issue.2, pp.160-164, 1957.
DOI : 10.1175/1520-0469(1957)014<0160:PSOHWS>2.0.CO;2

H. Hueging, R. Haas, K. Born, D. Jacob, and J. G. Pinto, Regional Changes in Wind Energy Potential over Europe Using Regional Climate Model Ensemble Projections, Journal of Applied Meteorology and Climatology, vol.52, issue.4, pp.903-917, 2012.
DOI : 10.1175/JAMC-D-12-086.1

J. W. Hurrell, Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and Precipitation, Science, vol.269, issue.5224, pp.95-97, 1995.
DOI : 10.1126/science.269.5224.676

J. W. Hurrell, Y. Kushnir, G. Ottersen, and M. Visbeck, An Overview of the North Atlantic Oscillation Visbeck, rédacteurs , The North Atlantic Oscillation: Climatic Significance and Environmental Impact, pp.1-35, 2003.

M. Z. Jacobson, Y. J. Et, and . Kaufman, Wind reduction by aerosol particles, Geophysical Research Letters, vol.33, issue.D8, pp.39-103, 2006.
DOI : 10.1029/2006GL027838

R. Jaiser, K. Dethloff, D. Handorf, A. Rinke, and J. Cohen, Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation, Tellus A, vol.43, issue.0, 2012.
DOI : 10.1029/2010GL045698

O. A. Jaramillo and M. A. Borja, Wind speed analysis in La Ventosa, Mexico: a bimodal probability distribution case, Renewable Energy, vol.29, issue.10, p.51, 2004.
DOI : 10.1016/j.renene.2004.02.001

S. Jerez, R. M. Trigo, S. M. Vicente-serrano, D. Pozo-vázquez, R. Lorente-plazas et al., The Impact of the North Atlantic Oscillation on Renewable Energy Resources in Southwestern Europe, Journal of Applied Meteorology and Climatology, vol.52, issue.10, pp.2204-2225, 2013.
DOI : 10.1175/JAMC-D-12-0257.1

P. D. Jones, T. Jonsson, and D. Wheeler, Extension to the North Atlantic oscillation using early instrumental pressure observations from Gibraltar and southwest Iceland, 13<1433::AID-JOC203>3.0.CO;2-P. (Cité en page 97, pp.1097-0088, 1997.

C. G. Justus, W. R. Hargraves, and A. Yalcin, Nationwide Assessment of Potential Output from Wind-Powered Generators, Journal of Applied Meteorology, vol.15, issue.7, pp.673-678, 1976.
DOI : 10.1175/1520-0450(1976)015<0673:NAOPOF>2.0.CO;2

E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deaven et al., The NCEP/NCAR 40-Year Reanalysis Project, 077<0437:TNYRP>2.0.CO;2. (Cité en page 185, pp.437-471, 1996.
DOI : 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

F. Klintø, W. Et, and . Langreder, MCP and long term wind speed pre- dictions. Présentation lors de l'EWEA Wind Resource Assessment Technology Workshop Disponible en ligne http://www.ewea.org, Frank-Klinto-Suzlon.pdf, pp.25-26, 2013.

P. Kriesche, C. A. Et, and . Schlosser, The Association of the North Atlantic and the Arctic Oscillation on Wind Energy Resource over Europe and its Intermittency, Energy Procedia, vol.59, 2014.
DOI : 10.1016/j.egypro.2014.10.377

Z. Li, Z. Yan, K. Tu, W. Liu, and Y. Wang, Changes in wind speed and extremes in Beijing during 1960???2008 based on homogenized observations, Advances in Atmospheric Sciences, vol.50, issue.14, 2011.
DOI : 10.1007/s00376-010-0018-z

A. Luceño, Fitting the generalized Pareto distribution to data using maximum goodness-of-fit estimators, Computational Statistics & Data Analysis, vol.51, issue.2, pp.904-917, 2006.
DOI : 10.1016/j.csda.2005.09.011

M. Lydia, S. S. Kumar, A. I. Selvakumar, and G. E. Kumar, A comprehensive review on wind turbine power curve modeling techniques, Renewable and Sustainable Energy Reviews, vol.30, 2014.
DOI : 10.1016/j.rser.2013.10.030

V. Masson, J. Champeaux, F. Chauvin, C. Meriguet, and R. Lacaze, A Global Database of Land Surface Parameters at 1-km Resolution in Meteorological and Climate Models, Journal of Climate, vol.16, issue.9, 2003.
DOI : 10.1175/1520-0442-16.9.1261

S. Kruger, Y. Rehman, and . Dinpashoh, Global review and synthesis of trends in Bibliographie observed terrestrial near-surface wind speeds: Implications for evaporation, Journal of Hydrology, vol.101, issue.130, p.99, 2012.

T. R. Mcvicar, R. Vautard, J. Thépaut, P. Berrisford, and R. J. Dunn, [Global climate] Land surface wind speed [in " State of the Climate in 2012, Bulletin of the American Meteorological Society, vol.94, issue.8, pp.27-29, 2013.

P. Michelangeli, R. Vautard, and B. Legras, Weather Regimes: Recurrence and Quasi Stationarity, Journal of the Atmospheric Sciences, vol.52, issue.8, pp.1237-1256, 1995.
DOI : 10.1175/1520-0469(1995)052<1237:WRRAQS>2.0.CO;2

G. W. Moore, I. A. Renfrew, and R. S. Pickart, Multidecadal Mobility of the North Atlantic Oscillation, Journal of Climate, vol.26, issue.8, pp.2453-2466, 2013.
DOI : 10.1175/JCLI-D-12-00023.1

N. G. Mortensen and H. E. Jørgensen, Comparison of Resource and Energy Yield Assessment Procedures Présentation lors de l'EWEA Wind Resource Assessment Technology Workshop Disponible en ligne http://www.ewea.org, Session-5.2-Niels-Gylling-Mortensen-Risoe-DTU-v2.pdf, pp.10-11, 2011.

J. Najac, Impacts du changement climatique sur le potentiel éolien en France : une étude de régionalisation, Thèse de doctorat, 2008.

J. Najac, J. Boé, and L. Terray, A multi-model ensemble approach for assessment of climate change impact on surface winds in France, Climate Dynamics, vol.12, issue.24, pp.615-634, 2009.
DOI : 10.1007/s00382-008-0440-4

URL : https://hal.archives-ouvertes.fr/hal-00340756

J. Najac, C. Lac, and L. Terray, Impact of climate change on surface winds in France using a statistical-dynamical downscaling method with mesoscale modelling, International Journal of Climatology, vol.54, issue.24, 2011.
DOI : 10.1002/joc.2075

J. A. Nelder and R. Mead, A Simplex Method for Function Minimization, The Computer Journal, vol.7, issue.4, 1965.
DOI : 10.1093/comjnl/7.4.308

A. R. Perea, J. Amezcua, and O. Probst, Validation of three new measurecorrelate-predict models for the long-term prospection of the wind resource, Journal of Renewable and Sustainable Energy, vol.3, issue.2, 2011.

E. L. Petersen, N. G. Mortensen, L. Landberg, J. Højstrup, and H. P. Frank, Wind power meteorology. Part I: climate and turbulence, 1+<25::AID-WE4>3.0.CO;2-D. (Cité en pages 15 et 24), pp.25-45, 1998.

P. Poli, H. Hersbach, D. Tan, D. Dee, J. Thépaut et al., The data assimilation system and initial performance evaluation of the ECMWF pilot reanalysis of the 20th-century assimilating surface observations only (ERA-20C) ERA Report Series no. 14, ECMWF, 59 pp. Disponible en ligne http, pp.2015-2021, 2013.

S. C. Pryor, M. Nielsen, R. J. Barthelmie, and J. Mann, Can Satellite Sampling of Offshore Wind Speeds Realistically Represent Wind Speed Distributions? Part II: Quantifying Uncertainties Associated with Distribution Fitting Methods, Journal of Applied Meteorology, vol.43, issue.5, pp.739-750, 2004.
DOI : 10.1175/2096.1

P. Ramírez, J. A. Et, and . Carta, Influence of the data sampling interval in the estimation of the parameters of the Weibull wind speed probability density distribution: a case study, Energy Conversion and Management, vol.46, issue.15-16, pp.15-16, 2005.
DOI : 10.1016/j.enconman.2004.11.004

M. Reyers, J. Moemken, and J. G. Pinto, Future changes of wind energy potentials over Europe in??a??large CMIP5 multi-model ensemble, International Journal of Climatology, vol.26, issue.4, 2015.
DOI : 10.1002/joc.4382

M. M. Rienecker, M. J. Suarez, R. Gelaro, R. Todling, J. Bacmeister et al., MERRA: NASA???s Modern-Era Retrospective Analysis for Research and Applications, Journal of Climate, vol.24, issue.14, pp.3624-3648, 2011.
DOI : 10.1175/JCLI-D-11-00015.1

S. Rizzo, A. Et, and . Rapisarda, APPLICATION OF SUPERSTATISTICS TO ATMOSPHERIC TURBULENCE, Complexity, Metastability and Nonextensivity, pp.246-254, 2005.
DOI : 10.1142/9789812701558_0029

M. J. Rodwell, D. P. Rowell, and C. K. Folland, Oceanic forcing of the wintertime North Atlantic Oscillation and European climate, Nature, vol.55, issue.6725, pp.320-323, 1999.
DOI : 10.1038/18648

A. L. Rogers, J. W. Rogers, and J. F. , Comparison of the performance of four measure???correlate???predict algorithms, Journal of Wind Engineering and Industrial Aerodynamics, vol.93, issue.3, pp.243-264, 2005.
DOI : 10.1016/j.jweia.2004.12.002

C. Sinclair, B. Spurr, and M. Ahmad, Modified anderson darling test, Communications in Statistics - Theory and Methods, vol.84, issue.10, pp.3677-3686, 1990.
DOI : 10.1137/1106025

A. Smith, N. Lott, and R. Vose, The Integrated Surface Database: Recent Developments and Partnerships, Bulletin of the American Meteorological Society, vol.92, issue.6, pp.704-708, 2011.
DOI : 10.1175/2011BAMS3015.1

R. B. Stull, An Introduction to Boundary Layer Meteorology, pp.34-35, 1988.
DOI : 10.1007/978-94-009-3027-8

J. Sumner, C. Et, and . Masson, Influence of Atmospheric Stability on Wind Turbine Power Performance Curves, Journal of Solar Energy Engineering, vol.128, issue.4, pp.531-538, 2006.
DOI : 10.1115/1.2347714

E. S. Takle, J. M. Et, and . Brown, Note on the Use of Weibull Statistics to Characterize Wind-Speed Data, Journal of Applied Meteorology, vol.17, issue.4, pp.556-559, 1978.
DOI : 10.1175/1520-0450(1978)017<0556:NOTUOW>2.0.CO;2

K. E. Taylor, R. J. Stouffer, and G. A. , An Overview of CMIP5 and the Experiment Design, Bulletin of the American Meteorological Society, vol.93, issue.4, pp.485-498, 2012.
DOI : 10.1175/BAMS-D-11-00094.1

B. R. Thomas, E. C. Kent, V. R. Swail, and D. I. Berry, Trends in ship wind speeds adjusted for observation method and height, International Journal of Climatology, vol.109, issue.6, 2008.
DOI : 10.1002/joc.1570

M. L. Thøgersen, M. Motta, T. Sørensen, and P. Nielsen, Measure-correlatepredict methods: case studies and software implementation, 2007.

I. Tobin, R. Vautard, I. Balog, F. Bréon, S. Jerez et al., Assessing climate change impacts on European wind energy from ENSEMBLES high-resolution climate projections, Climatic Change, vol.5, issue.1-2, pp.99-112, 2014.
DOI : 10.1007/s10584-014-1291-0

R. M. Trigo, T. J. Osborn, and J. M. , The North Atlantic Oscillation influence on Europe: climate impacts and associated physical mechanisms, Climate Research, vol.20, issue.1, pp.9-17, 2002.
DOI : 10.3354/cr020009

S. E. Tuller, A. C. Et, and . Brett, The Characteristics of Wind Velocity that Favor the Fitting of a Weibull Distribution in Wind Speed Analysis, Journal of Climate and Applied Meteorology, vol.23, issue.1, pp.124-134, 1984.
DOI : 10.1175/1520-0450(1984)023<0124:TCOWVT>2.0.CO;2

R. Vautard, J. Cattiaux, P. Yiou, J. Thépaut, and P. Ciais, Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness, Nature Geoscience, vol.19, issue.11, 2010.
DOI : 10.1038/ngeo979

M. Vrac, P. V. Ayar, and P. Yiou, Trends and variability of seasonal weather regimes, International Journal of Climatology, vol.111, issue.5, pp.95-138, 2013.
DOI : 10.1002/joc.3700

R. Wagner, I. Antoniou, S. M. Pedersen, M. S. Courtney, and H. E. Jørgensen, The influence of the wind speed profile on wind turbine performance measurements, Wind Energy, vol.13, issue.4, 2009.
DOI : 10.1002/we.297

R. Wagner, M. Courtney, J. Gottschall, and P. Lindelöw-marsden, Accounting for the speed shear in wind turbine power performance measurement, Wind Energy, vol.1, issue.8, 2011.
DOI : 10.1002/we.509

J. M. Wallace, D. S. Et, and . Gutzler, Teleconnections in the Geopotential Height Field during the Northern Hemisphere Winter, 109<0784:TITGHF>2.0.CO;2. (Cité en pages 93, pp.784-812, 1981.
DOI : 10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2

M. Xu, C. Chang, C. Fu, Y. Qi, A. Robock et al., Steady decline of east Asian monsoon winds Evidence from direct ground measurements of wind speed, Journal of Geophysical Research, vol.111, issue.D24, pp.10-1029, 1969.

M. Données, 153 7.2.1. Vent sur les périodes historique et future, p.153

. Téléconnections, Figure 26 de Wallace et Gutzler, p.94, 1981.

. Tendances-de-vent-de and . Vautard, Figure 1a (détail), p.100, 2010.

-. Nae and E. , 137 6.14 Premier mode de variabilité (Z500 journ, Similaire pour huit stations du sud, p.138, 1979.