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« The spectre showed a spectre’s ordinary caprice: it gave no sign of being. »
Emily Brontë, Wuthering Heights, Chap. III, 1847

« Le spectre a témoigné de l’ordinaire caprice des spectres : il n’a donné aucun signe
d’existence. »
Emily Brontë, Les Hauts de Hurlevent, Chap. III, 1847
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Introduction

Context

Acceleration of electrons to high energies is of major importance for several fields in the scientific
community. High energy electrons can for instance be used for studying collisions with positrons
or for generating intense x-ray beams. In these cases, electrons are generally accelerated to high
energies using conventional radio-frequency (RF) accelerators. Whereas the electron beam has
a very good quality (low energy spread, low emittance, high charge), these costly devices are
constrained by the maximum amplitude of the oscillating electric fields in RF cavities (a few
dozens of MeV.m−1), thus requiring several kilometers of acceleration distance to achieve very
high energies. For instance, in the Stanford Linear Accelerator (SLAC, the longest linear accel-
erator in the world), electrons are accelerated over 3.2 km to reach the 50 GeV range.

Alternatively, Laser Wakefield Acceleration (LWFA) is a process allowing for the acceleration
of electrons in laser-driven relativistic plasma waves in which electric fields are 103 - 104 times
larger than in RF accelerators. This induces a considerable reduction of the accelerator length
(and hence the cost) to produce high energy electron beams. The concept, first introduced
by Tajima and Dawson [1979], relies on the generation of an accelerating structure by focusing
an ultra-intense femtosecond laser pulse in a gas target, in which electrons can be trapped and
accelerated.

Since the first experimental demonstration of quasi-monoenergetic electron beam in the
bubble regime in 2004 [Faure et al., 2004; Geddes et al., 2004; Mangles et al., 2004], several
major steps in LWFA development were achieved. The 1 GeV barrier was broken down two
years later [Leemans et al., 2006]. The highest electron energy from LWFA to date is around
4.2 GeV [Leemans et al., 2014], with several other experimental demonstration of multi-GeV
beams [Kim et al., 2013a; Wang et al., 2013] made possible thanks to the development of Petawatt
laser systems. LWFA experiments suffer from a lack of stability due notably to a non perfect
control of electron injection in the accelerating cavity. A lot of work has been dedicated over the
past few years towards controlling this injection and thus improving the quality and stability of
electron beams, specifically in terms of energy spread and charge. Several methods for controlling
injection were developed, either by shaping the plasma density profile [Geddes et al., 2008; Faure
et al., 2010a; Schmid et al., 2010; Buck et al., 2013], by using additional laser pulses [Umstadter
et al., 1996; Esarey et al., 1997; Faure et al., 2006a; Davoine et al., 2009; Lehe et al., 2013]
or by using different gas compositions [Pak et al., 2010; McGuffey et al., 2010; Pollock et al.,
2011a]. The improvement of these injection techniques to obtain an electron beam with the
better quality and stability is one of the major axis developed in this thesis.

Many potential applications of LWFA electron beams require low energy spread, low di-
vergence and high charge electron beams with a good stability. For instance, LWFA based
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Introduction

Free-Electron Lasers (FELs) [Maier et al., 2012; Couprie et al., 2014] require further improve-
ment of the beam quality to achieve efficient lasing. Other applications such as high-resolution
gamma radiography [Glinec et al., 2005] or radiobiology experiments [Malka et al., 2010; Lundh
et al., 2012] would benefit from a charge increase while conserving a good overall quality.

Objective and outline
In this context, the principal objectives of my thesis were to study different injection techniques
and to better understand the physical dynamics of Laser-Wakefield Acceleration in order to
improve the electron bunch quality and reproducibility. This work mainly focuses on the experi-
mental comparison of a whole set of different injection techniques to improve important electron
beam parameters (charge and energy spread). Furthermore, several experimental demonstra-
tions were performed to have a better control of the beam during the acceleration, notably by
monitoring the longitudinal phase-space or the divergence thanks to density-tailored plasmas.
These experimental studies are supported by Particle-In-Cell simulations and analytical mod-
els to have a better insight of the physics undergoing in these processes. The structure of the
manuscript is as follows :

• Chapter 1 presents the theory of laser propagation in an underdense plasma and the main
principle of Laser-Wakefield Acceleration. Experimental bunch parameters and injection
issue are particularly developed and referred to in the rest of the manuscript.

• Chapter 2 deals with the density transition injection technique. The formation of sharp
transitions in shock fronts is particularly studied numerically. These shocks are used in
experiment to generate good quality, quite stable electron beams with low charge and
tunable energy.

• The ionization injection method is studied in detail in chapter 3. First, experimental
acceleration of electrons in pure high Z gases is presented as a way to produce heavily-
charged beams. By combining ionization and density transition methods, it is possible to
obtain very stable, high-quality tunable electron beams.

• Chapter 4 proposes a new technique to overcome the dephasing limit in laser-wakefield
accelerators by using a tailored plasma density profile. A first experimental demonstration
presents the technique to manipulate the electron longitudinal phase-space. This method
is used in a second experiment to rephase monoenergetic electron beams and enhance their
energy.

• Chapter 5 focuses on the origin of the beam angular momentum and its evolution during
the acceleration. This important effect has to be taken into account in measurements of
the transverse quality of the beam relying on the properties of x-ray emitted by electrons.

• Finally, the beam divergence may be important for various applications. A new method
using a second gas jet to reduce the divergence is proposed in chapter 6 : the laser-plasma
lens. The experimental demonstration of this technique allows for an important reduction
of the beam divergence.

• In addition, Appendice A details the calculations of phase-locking and phase-resetting of
electrons presented in chapter 4 and Appendice B lists my publications in peer-reviewed
journals.

2



Chapter 1

Physics of laser-plasma acceleration

This chapter covers the main theoretical foundations behind laser-wakefield acceler-
ation which are needed to understand the experimental results. I first discuss the
theoretical description of laser propagation in an underdense plasma. In a second part
is detailed the principle of plasma wave generation and electron injection and accelera-
tion in the linear and bubble regimes. The accelerated bunch properties are presented
in the third section. Finally, the last section is focused on the experimental facility
"Salle Jaune" on which the work presented in this thesis has been performed.
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Chapter 1. Physics of laser-plasma acceleration

1.1 Laser pulse propagation in an underdense plasma

1.1.1 Laser formalism

Electromagnetic fields

A laser pulse is an electromagnetic wave confined with a spatio-temporal envelope Eenv and
Benv that can be described by the following equations :

E(x, t) = Eenv(x, t) cos[ω0t− kx + ϕ0(t)] (1.1)
B(x, t) = Benv(x, t) cos[ω0t− kx + ϕ0(t)] (1.2)

Here, E and B are the electric and magnetic field respectively, Eenv and Benv define the
envelope amplitude and the polarization direction of the laser, ω0 is the angular frequency, k is
the wave vector with |k| = k0 = ω0/c (c the speed of light in vacuum) and ϕ0(t) is the absolute
phase of the pulse. The angular frequency of the field ω0 is related with the laser wavelength
λ0 as ω0 = 2πc/λ0, considering a monochromatic pulse. The propagation of an electromagnetic
wave is described by Maxwell’s equations :

∇.E = ρ

ε0
(1.3)

∇.B = 0 (1.4)

∇×E = −∂B

∂t
(1.5)

∇×B = 1
c2
∂E

∂t
+ µ0j (1.6)

where ε0 and µ0 are the vacuum permittivity and permeability, ρ is the charge density of the
medium and j is the current density of the medium. The electric and magnetic fields fulfill the
wave equations defined as :(

∂2

∂t2
− v2∇2

)
X(x, t) = 0 with X = E,B (1.7)

where v represents the propagation velocity of the wave in the medium (v = c in vacuum). The
energy flux carried by the electromagnetic wave in vacuum is defined by the Poynting vector :

S = ε0c
2(E ×B) (1.8)

The intensity I of the laser pulse in vacuum is calculated by averaging the modulus of the
Poynting vector (eq. (1.8)) over one oscillation period of the field T. The intensity of the laser
is the physically important parameter which is easily measured experimentally.

I = 〈|S|〉T = ε0c〈|E|2〉T (1.9)

In the frame of ultra-short lasers, a laser pulse is typically defined as an electric field E at a
frequency ω0 with a Gaussian temporal envelope Eenv as

Eenv(t) = E0 e
−t2/τ2

e (1.10)
E(t) = Eenv(t) cos[ω0t+ ϕ0(t)] (1.11)
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1.1. Laser pulse propagation in an underdense plasma

where E0 is the amplitude of the envelope and τe represents the pulse duration as the half width
at 1/e of the electric field envelope. It is related to the duration at Full Width at Half Maximum
(FWHM) τ0 of the intensity envelope as τ0 =

√
2ln(2)τe, which is the useful parameter in the

experiment. The intensity in vacuum is thus I = (ε0c/2) |Eenv|2. Figure 1.1 shows the temporal
profile of electric field and intensity of a gaussian laser pulse with τ0 = 28 fs.
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Figure 1.1: Electric field E, gaussian envelope Eenv and intensity profile I of a laser pulse with
a wavelength λ0 = 800 nm, a zero absolute phase and a duration τ0 = 28 fs FWHM.

The electric and magnetic fields E and B can also be represented by a vector potential A
and a scalar potential Φ :

E = − ∂

∂t
A−∇Φ (1.12)

B = ∇×A. (1.13)

These potentials are not defined in a unique way, as it is possible to find other solutions to
Maxwell’s equations with a gauge transformation. In the Lorenz gauge, the potentials solve the
wave equation

∇.A + ε0
∂

∂t
Φ = 0. (1.14)

A solution of this equation in vacuum (ρ = 0, j = 0) is

A(x, t) = −Aenv(x, t) sin[ω0t− kx + ϕ0(t)] (1.15)
Φ(x, t) = 0 (1.16)

with A0 = E0/ω0 the amplitude of Aenv(x, t) (considering a monochromatic laser pulse).

Gaussian beams

In order to easily describe the propagation of a laser pulse, it is convenient to approximate it by
a 3D gaussian beam profile (which is valid only close to the focal point of the beam). For such
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Chapter 1. Physics of laser-plasma acceleration

a monochromatic beam with a FWHM duration τ0 and a transverse spot size w propagating in
the z direction, the amplitude is denoted as

A(r, z, t) = Aenv(r, z, t)Re[ei(k0z−ω0t)eiϕzepol] (1.17)

= A0e
− r2
w(z)2 e

−2ln(2) (z−ct)2

c2τ2
0 Re[ei(k0z−ω0t)eiϕzepol]

where epol is the unit vector describing the laser polarization in the (x, y) plane. For a linear
polarization in the y direction, epol = ey, and for a circular polarization, epol = 1/

√
2(ex± iey).

The waist w0 of a gaussian beam propagating in free space is defined as the minimum transverse
radius of the beam at 1/e where the spot size is the smallest (as seen in fig. 1.2), located in the
focal plane z = 0. Note that the waist of the beam w0 and the FWHM spot diameter at focus
Φspot,FWHM are related through Φspot,FWHM =

√
2ln(2)w0. The Rayleigh length is defined as

the distance from the focal plane after which the intensity is divided by two and is given by

ZR = πw2
0

λ
. (1.18)

The depth of focus of the beam can be defined as twice the Rayleigh length. The transverse
radius of the beam evolves along the propagation as

w(z) = w0

√
1 +

(
z

ZR

)2
. (1.19)

The transverse size w(z) increases linearly with z for z � zR. Far from the focal plane (when
z � ZR), one can define the total divergence of the beam (see fig. 1.2) as

θ = 2λ0
πw0

(1.20)

w0

w(z)

z

ZR

p
2w0

✓

Figure 1.2: Diagram of a gaussian beam showing the waist w0, the Rayleigh length ZR and the
divergence θ.

From these parameters, one can define the peak intensity of the laser pulse in the focal plane
z = 0 as

I0 = 2
√
ln(2)√
πτ0

2U0
πw2

0
≈ 2U0
τ0.πw2

0
[W.cm−2] (1.21)

with U0 the energy contained within the pulse.
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1.1. Laser pulse propagation in an underdense plasma

1.1.2 Basic interaction with a single electron

The relativistic motion of an electron (charge qe = −e, mass me) in an electromagnetic field
(E,B) is described by the Lorentz force :

d

dt
(meγve) = −e(E + ve ×B) (1.22)

where γ is the relativistic factor defined as γ = 1/
√

1− β2 with β = ve/c. In the non-relativistic
case (ve � c, γ ≈ 1), B = E/c � E then the equation reduces to d(meve)/dt = −eE.
Considering an electric field as defined in eq. (1.1), one can integrate the equation and obtain

ve(x, t) = − e

me

∫
Eenv(x, t) cos[ω0t− kx + ϕ0(t)] + v0. (1.23)

Considering a zero initial velocity for the electron and an amplitude E0 for the envelope, one
can derive the maximum velocity an electron can reach in a light field as

ve max = e |E0|
meω0

. (1.24)

When this maximum velocity approaches c, the electron reaches relativistic energy and the
magnetic component of the Lorentz force cannot be neglected anymore. A normalized laser
vector potential a0 can be defined as a limit between the classic and relativistic regimes :

a0 = e |E0|
mecω0

= e |A0|
mec

= 0.854
√
I0[×1018 W.cm−2] λ0[µm]. (1.25)

a0 = 1 defines the relativistic threshold : for a0 < 1, the electron has a classical behavior within
the electric field of the laser, whereas a0 > 1 corresponds to relativistic regime. An electron
interacting with a typical Ti:Sa laser system (λ0 = 800 nm) reaches this regime for a laser
intensity of I0 ≈ 2× 1018 W.cm−2.

The maximum kinetic energy of a non-relativistic electron can reach in the electric field of
a laser pulse is defined as Ee laser = me |ve|2 /2 (from eq. (1.24)). By averaging over one optical
period T , one can derive the so-called ponderomotive potential

Up = 〈Ee laser〉T = e2

4meω2
0
|E0|2 ∝ I0λ

2 (1.26)

which is proportional to the laser intensity, and then larger at the center of the pulse than on
the sides. Non-relativistic electron experience the ponderomotive force defined as the spatial
derivative of the ponderomotive potential :

F p = −∇Up = − e2

4meω2
0

∇E2
0 . (1.27)

Electrons are pushed away from the regions of strong laser intensity because of this force. The
ponderomotive force is proportional to the intensity gradient. Note that this simple expres-
sion is valid only for non-relativistic electrons and allow for understanding the physics of the
ponderomotive process. In the relativistic case, by separating the electron motion into a fast
oscillating component (following the vector potential A) and a slow component, the relativistic
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Chapter 1. Physics of laser-plasma acceleration

ponderomotive force can be derived under some assumptions (a detailed derivation can be found
in [Mora and Antonsen, 1997]) :

F p, relat = − e2me

2 < γ >
∇ < A2

0 > . (1.28)

While the electron motion is only transverse for small laser intensities, the magnetic term of
the Lorentz force plays an important role for larger laser intensities, leading to a more complex
electron motion and allowing for a longitudinal motion of particles. It is predominant in the
generation mechanism of very large amplitude wakefields in the LWFA frame.

1.1.3 Ionization mechanism

High intensity laser pulses have the ability to ionize the matter, forming a partially or even fully
ionized plasma. Indeed, the electric potential of a high-power laser pulse is similar to the binding
potential of electrons to the nucleus of their atom. Two ionization regimes can be observed
depending on the laser pulse intensity, and the limit between these regimes is determined by the
Keldysh parameter γk [Keldysh, 1965] defined as

γk = ω0

√
mecε0
e2

√
Eion
I0

. (1.29)

It is calculated from the laser electric field which is required to equal the binding electric field
Eion of a hydrogen atom.

�

r

Binding potential

�

r

Disturbed potential

Laser potential :
�laser = �e|E|r

�Eion,1

�Eion,2

�Eion,3

0 0

(a) (b)

Figure 1.3: Two ionization mechanisms : (a) Multi-photon ionization of the electron at Eion, 1
for γk > 1. (b) Tunnel ionization at Eion, 2 and barrier-suppression ionization at Eion, 3 for
γk < 1.

For small laser intensities, γk > 1 the ionization mechanism is dominated by multi-photon
ionization [Mainfray and Manus, 1991]. In this case, the binding potential of the electron is
weakly disturbed by the laser field and the energy of one photon is not sufficient for direct
photo-ionization (Ephoton@800nm = ~ω0 = 1.5 eV < Eion, 1 = 13.6 eV). However, the total energy
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1.1. Laser pulse propagation in an underdense plasma

brought by N = Eion,1/Ephoton@800 nm simultaneously absorbed incident photons can trigger
the multi-photoionization of the atom (as seen in fig. 1.3(a)).

For γk < 1, the laser electric field strongly disturbs the potential well that binds the electron
to the nucleus, and the dominant ionization mechanism is tunnel ionization. Electrons in the
state −Eion,2 can tunnel through the potential barrier, all the more so as the barrier width is
smaller (as seen in fig. 1.3(b)). If the electric field is strong enough, the mechanism of barrier
suppression ionization can happen : the electron in state −Eion,3 is freed spontaneously under
the laser potential. The threshold laser intensity for this mechanism to happen can be estimated
by considering the disturbed potential equal to the ionization potential [Gibbon, 2005] :

Iionizaton [W.cm2] = 4× 109 (Eion[eV ])4

Z2 (1.30)

where Z is the atomic number and Eion the ionization energy of the considered electron. In
the following table are computed the intensity threshold to reach different ionization states with
typical species used in laser-plasma experiments :

Ionization state Eion [eV] Iionizaton [W.cm2]
He+ 24.59 1.4× 1015

He2+ 54.42 8.8× 1015

N5+ 97.89 7.5× 1015

N6+ 552.1 7.6× 1018

N7+ 667.1 1.6× 1019

Ar8+ 143.5 5.2× 1015

Ar9+ 422.5 3.9× 1017

Ar18+ 4426 4.7× 1021

For focused laser intensities greater than 1018 W.cm−2, helium atoms are completely ionized
through barrier-suppression ionization almost two order of magnitude below the peak intensity
: the plasma is formed by the leading edge of the laser pulse. Hence, the laser pulse is assumed
to interact with a fully ionized plasma. For heavier atoms as nitrogen or argon, the plasma is
not fully ionized, which is a very important aspect for a particular injection technique discussed
in chapter 3.

1.1.4 Propagation in an underdense plasma

Plasma parameters

A plasma is a state of matter formed with a mixture of free electrons and partially or fully ionized
ions. In all the following study, we consider a globally neutral, cold (initial electron velocity is
neglected) non-collisional plasma. Considering a non-relativistic electron in the plasma shifted
away by a small distance from its equilibrium position (then generating an electrostatic field
E), the restoring force F = −eE pulls it back. Due to the kinetic energy gain, the electron
exceeds its initial position and starts an harmonic oscillation with a characteristic pulsation
often referred as the plasma frequency :

ωp =

√
nee2

ε0me
(1.31)

where ne is the initial electron density of the plasma. On the time scale corresponding of the
electron motion, the ions are considered as a stationary motionless background due to their
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Chapter 1. Physics of laser-plasma acceleration

larger mass. The plasma wavelength is defined as λp = 2πc/ωp, and depends only on the
electron density ne. It can be easily estimated with

λp [µm] = 3.34× 1010√
ne [cm−3]

. (1.32)

To understand the propagation of a laser pulse in a plasma, the plasma frequency ωp has to be
compared with the laser frequency ω0. If ωp < ω0, the characteristic response time of the plasma
is longer than the optical period of the incoming laser pulse, which can propagate : the plasma
is called underdense. Conversely, if ωp > ω0, the density is too high for the laser to propagate
(the electrons can move quickly enough to adapt to the incident laser oscillations and reflecting
it) : the plasma is overdense. The limit between these two domains (when ωp = ω0) is defined
by the critical plasma density nc [cm−3] = ω2

0meε0/e
2 ≈ 1.1× 1021/λ2

0 [µm]. The experimental
electron densities presented in this thesis range between 1018cm−3 and 1020cm−3, corresponding
to an underdense plasma for λ0 = 800 nm.

Dispersion relation in a plasma

By combining Faraday’s (1.5) and Maxwell’s (1.6) laws, the usual wave equation is found :

(
c2k2 − ω2

0

)
E = − nee

2

ε0me
E (1.33)

where we recognize the plasma frequency in the right-hand-side. The dispersion equation for an
electromagnetic wave in a cold plasma is

ω2
0 = ω2

p + c2k2. (1.34)

In an underdense plasma, ωp < ω0 then the laser pulse can propagate. One can define the phase
and group velocity vph and vg for the laser in the plasma thanks to η the index of refraction

vph = ω0
k

= c

η

vg = dω0
dk

= ηc (1.35)

η =
√

1−
ω2
p

ω2
0

=
√

1− ne
nc

< 1.

The refraction index of a plasma is always smaller than one, so the group velocity (resp. the
phase velocity) of the laser is smaller (resp. larger) than the speed of light in vacuum c. One can
also define the relativistic factor associated with the group velocity of the laser as γg = ω0/ωp.
In laser wakefield experiments, the final velocity of electrons is related to the group velocity of
the driving laser pulse : to get large electron energies, the pulse must propagate as quick as
possible, η must be close to unity, then the electron density be as low as possible.

Self-focusing and guiding

A high intensity (a0 > 1) laser pulse propagating in an underdense plasma experiences self-
focusing. This effect, as well as the self-compression of the pulse, increases the laser intensity
along the propagation and allows for the generation of large amplitude wakefields up to a regime
where a cavity free of electrons is created in the laser wake. Non-linear mechanism can also guide
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1.1. Laser pulse propagation in an underdense plasma

the pulse over longer distances than the Rayleigh length and increase the acceleration length to
get higher electron energies.

The ponderomotive force of the laser expels electrons from the high intensity regions, gen-
erating a density gradient with low electron density, thus high refractive index, on the optical
axis. This creates a transverse density and refractive index profile, with high η on axis and lower
η off-axis, acting as a lens for the pulse. As the laser self-focuses, intensity on axis increases,
enhancing the ponderomotive force effect and lowering the electron density, thus raising the
focusing power. The laser self-focusing counter-interacts the diffraction, enabling the laser to
self-guide beyond the Rayleigh length.

The refraction index (1.35) of a plasma with local density variations n̄e(r, z) can be rewritten
as [Esarey et al., 1996]

η(r, z) =
√

1−
(
ωp
ω0

)2 n̄e(r, z)
γ0ne(r, z)

≈ 1− 1
2

(
ωp
ω0

)2
(

1 + δne(r, z)
ne

− a2
0(r, z)

4

)
(1.36)

where δne(r, z) = n̄e(r, z)− ne is the density variation due to ponderomotive force of the laser.
The relativistic self-focusing term a2

0(r, z)/4 is predominant to the ponderomotive self-focusing
term δne/ne [Hafizi et al., 2000]. This correction term is due to the mass increase of electrons
at relativistic energies. Note however that these two effects happen roughly at the same time.
For relativistic self-focusing to happen, the laser power must be larger than a critical power Pc
that when reached, the diffraction of the laser is balanced by self-focusing.

The critical power for self-focusing (concerning only the relativistic term a2
0) is [Sun et al.,

1987]:

Pc[GW] = 17ω
2
0
ω2
p

. (1.37)

If P < Pc, diffraction dominates and the laser pulse cannot be self-guided. For P > Pc, the
laser is focused until other non-linear processes (as ionization induced diffraction in the case
of a partially-ionized plasma) balance self-focusing. The focal spot size evolves during the self-
focusing process as [Esarey et al., 2009] (note that this description is very simplistic and only
allows for the understanding of main physical processes)

w(z)
w0

= 1 +
(

1− P

Pc

)
z2

Z2
R

. (1.38)

Typical experimental parameters presented in this thesis (ne = 1019 cm−3, λ0 = 800 nm)
lead to an estimation of the critical power Pc ≈ 3 TW, which is easily accessible with the "Salle
Jaune" laser system used in all presented experiments.

For high intensity ultrashort laser pulses with τ0c < λp, the ponderomotive self-focusing term
δne/ne can become important. Indeed, the ponderomotive force at the front of the laser pulse
pushes the electrons forward and generates a large density region, thus a low refractive index zone
[Ting et al., 1990; Sprangle et al., 1990]. The leading front of the laser diffracts and compensates
relativistic self-focusing : the pulse is not guided. However, if the power is high enough (P > Pc),
the diffracting leading edge of the pulse transfers its energy to accelerated electrons [Decker
et al., 1996a]. If the pulse front depletes more quickly than it diffracts, the extracted energy is
coupled to the plasma wave, generating an electron-free cavity behind which can guide the rear
of the pulse [Bulanov et al., 1992a; Decker and Mori, 1994; Decker et al., 1996b]. Moreover, the
ponderomotive term δne/ne is also responsible for temporal self-compression of the pulse during
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Chapter 1. Physics of laser-plasma acceleration

propagation. Indeed, the local density variation induces a group velocity modulation in the
pulse : the back of the pulse finds itself in an upward density gradient and goes faster than the
front of the pulse, resulting in a temporal shortening as well as self-phase modulation creating
new frequencies in the pulse and front pulse steepening [Ren et al., 2001; Malka et al., 2002;
Faure et al., 2005; Gordon et al., 2003; Schreiber et al., 2010]. This is a useful phenomenon if
the laser pulse duration is too long to resonantly excite a wakefield at a given density. Note
that it is also possible to externally form a specific plasma density profile to guide the pulse
over longer distances with various techniques such as preionized plasma columns [Rowlands-Rees
et al., 2008] or capillary discharges [Leemans et al., 2006; Karsch et al., 2007a; Leemans et al.,
2014].

1.2 Acceleration of electrons

1.2.1 Excitation of plasma waves

When a high intensity laser pulse is focused in an underdense plasma, the ponderomotive force
of the pulse expels large amount of plasma electrons and can excite large amplitude plasma
waves in the wake of the laser. The plasma wave excitation theory described in the following
section rests upon several assumptions : we consider a cold, collisionless underdense fully-ionized
plasma in one dimension in which a linearly polarized ultra-intense laser pulse propagates with
a group velocity vg < c. Recombination of electrons with ions are neglected on the considered
time scale. The ions are considered motionless in the plasma. Normalized physical quantities
are used for easier understanding : normalized laser amplitude a = eA/mc, normalized scalar
potential of the plasma ϕ = eΦ/mc2 and normalized electron velocity u = γve/c. The derivation
of the one-dimensional wakefield excitation done in the following pararagraphs are more detailed
in [Kruer, 2003] and [Gibbon, 2005].

The relativistic equation of motion of an electron described in eq. (1.22) can be written as

1
c

du

dt
= 1
c

∂a

∂t
+ 1
c

∇ϕ− 1
γ

u×∇× a. (1.39)

From this equation, one can derive the γ factor of the electrons of the plasma wave (with z the
wave direction of propagation) :

γ =
√

1 + a2√
1− β2

z

=
√

1 + a2 + u2
z (1.40)

with uz the wave normalized velocity along the propagation direction. From the continuity
equation of electrons is found the equation describing the electron density distribution :

∂δne
∂t

+ ne0
c

γ
∇.u = 0 (1.41)

where δne = ne/ne0 is the density perturbation and ne0 the background electron density. The
plasma scalar potential is formed by the charge separation in the plasma and therefore can be
describes with Poisson’s equation

∇2ϕ =
ω2
p

c2
δne
ne0

. (1.42)
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Equations (1.39), (1.41) and (1.42) form a closed set of equations describing the coupled
system electromagnetic pulse and plasma wave. The equations are solved using the co-moving
coordinates (t, ξ = z − vgt) propagating at the laser group velocity vg. Furthermore, the laser
pulse and plasma wave propagate at a velocity close to c, and can be considered stationary
during the time a plasma electron needs to go through the pulse (quasi-static approximation),
then ∂/∂t � vg∂/∂ξ. From these approximations, one can derive the equation describing the
excitation of a plasma wave with a short laser pulse [Osterhoff, 2009]:

∂2ϕ

∂ξ2 =
k2
p

2

(
1 + a2

(1 + ϕ)2 − 1
)
. (1.43)

The wakefield described by this equation strongly depends on the intensity of the laser pulse
∼ a2 : two different regimes can be highlighted.

1.2.2 Linear regime

In the case with a2
0 � 1, the plasma density is weakly perturbed and then the wave is not

efficiently excited : it is referred as the linear regime. By developing eq. (1.43) with a � 1
(thus developing (1 +ϕ)2 considering ϕ close to zero), one can derive the linear equation for the
plasma wave (

∂2

∂ξ2 + k2
p

)
ϕ =

k2
p

4 a
2. (1.44)

In this regime, the two-dimensional solution in the co-moving coordinate system (t, r, ξ = z−vgt)
can be calculated, with r the transverse coordinate perpendicular to the propagation direction
z. The solution for which the potential is null before the laser pulse is written as

ϕ(r, ξ) = −kp4

∫ +∞

ξ
a2(r, ξ′) sin(kp(ξ − ξ′))dξ′. (1.45)

We now consider a short laser pulse with a gaussian envelope (longitudinally and transversally) as
defined in eq. (1.17), the plasma potential is calculated as (note that the transverse dependance
in r only concerns the laser potential a0) :

ϕ(r, ξ) = −
√
πa2

0
kpl0

4 e−k
2
pl

2
0/4e−2r2/w2

0 sin(kpξ) with l0 = cτ0

2
√
ln(2)

. (1.46)

The wave is a simple sinusoidal oscillation of the plasma electron density behind the laser pulse
: this is the plasma wakefield. The expressions for the longitudinal and transverse electric fields
Ez and Er can be written :

Ez = −∂ϕ
∂ξ

= E0
√
πa2

0
kpl0

4 e−k
2
pl

2
0/4e−2r2/w2

0 cos(kpξ) with E0 = mecωp
e

(1.47)

Er = −∂ϕ
∂r

= −E0
√
πa2

0
rl0
w2

0
e−k

2
pl

2
0/4e−2r2/w2

0 sin(kpξ). (1.48)

The expression of the density perturbation in the plasma is

δne
ne0

= 1
k2
p

∂2ϕ

∂ξ2 = −E0
√
πa2

0
l0
4 e
−k2

pl
2
0/4e−2r2/w2

0 sin(kpξ). (1.49)
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Chapter 1. Physics of laser-plasma acceleration

Note that E0 corresponds to the maximal electric field in the linear regime, when the density
perturbation is total. This critical field can be calculated with the simple formula

E0[GV.m−1] = 96
√
ne0[1018 cm−3]. (1.50)

The linear wakefield is driven more efficiently (the maximal wakefield amplitude ϕmax is ob-
tained) when the laser pulse length is shorter than half the plasma wavelength. More precisely,
the optimal pulse FWHM length to achieve the resonant condition is lres = cτ0,res ≈ 0.26λp.
For a typical laser pulse duration of τ0 ∼ 30 fs as delivered by Ti:Sa lasers, this requires to use
a plasma density of about ne0 = 1018 cm−3 to optimally drive the wakefield.
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Figure 1.4: Linear wakefield quantities for a0 = 0.2 : (a) Normalized laser amplitude a, plasma
potential ϕ, longitudinal electric field Ez/E0 and density perturbation δne/ne0 on axis in the
co-moving coordinate system. Colormaps of the two-dimension plasma density perturbation
δne(r, ξ)/ne0 (b), longitudinal electric field Ez(r, ξ)/E0 (c) and radial electric field Er(r, ξ)/E0
(d).

According to the previous expressions, it is possible to represent the different normalized
quantities. Figure 1.4(a) shows the normalized laser amplitude a, plasma potential ϕ, lon-
gitudinal electric field Ez/E0 and density perturbation δne/ne0 on axis for a0 = 0.2. The
two-dimension plasma quantities can also be depicted considering a 3D gaussian laser pulse.
Figure 1.4(b) shows the colormap of the plasma density perturbation driven by the laser pulse,
and Fig. 1.4(c-d) show the normalized radial and longitudinal electric fields in the wakefield.
Note that for the longitudinal electric field, the red regions are accelerating (negative field) and
the blue regions are decelerating (positive field) for an electron. In the same way, for the radial
electric field, the red regions are defocusing and the blue regions are focusing for an electron.
It is then possible to separate a linear plasma period in four successive regions : decelerating-
defocusing, accelerating-defocusing, accelerating-focusing and decelerating-focusing. Efficient
acceleration of electrons in a linear wakefield can take place only in the accelerating-focusing
part (over a quarter plasma wavelength). However, as the laser intensity a2

0 increases, the plasma
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1.2. Acceleration of electrons

potential rapidly increases. As soon as a0 gets close to 1, the linear approximation is not valid
anymore and the wakefield regime is modified.

1.2.3 Non-linear regime and wave-breaking

For laser intensities such as a2
0 > 1, the linear approximation is not valid anymore : the plasma

wave is described in the non-linear regime. In this regime, eq. (1.43) can easily be solved
analytically in one dimension, and numerically in two or three dimensions. The expressions for
the plasma potential, longitudinal electric field and plasma density on axis can be calculated
by integrating this equation. Figure 1.5 shows the non-linear plasma wave quantities for a laser
amplitude a0 = 3. Note that the non-linear plasma wave is not sinusoidal anymore and presents
a sawtooth longitudinal electric field with a non-linear plasma wavelength λp,NL increasing with
the laser amplitude. Over a large part of one plasma period, the longitudinal electric field
is quasi-linear and the density is almost constant. If an electron is injected around the rear
part of one period with a velocity exceeding the wakefield phase velocity vp (i.e. at ξ ≈ −32
µm in Fig. 1.5), it can be efficiently accelerated up to relativistic energies over half a plasma
wavelength, assuming transverse fields are focusing over this length. Because their velocity
exceeds the wakefield phase velocity, injected electrons catch up the plasma wave and eventually
reach the point when the sign of the electric field changes (i.e. at ξ ≈ −25µm in Fig. 1.5) where
they start to be decelerated
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Figure 1.5: Non-linear wakefield quantities for a0 = 3 : Normalized laser amplitude a, plasma
potential ϕ, longitudinal electric field Ez/E0 and density perturbation δne/ne0 on axis in the
co-moving coordinate system.

The plasma potential slope changes abruptly, which is associated to a maximum slope of the
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Chapter 1. Physics of laser-plasma acceleration

electric field and electron density peaks formation due to the accumulation of plasma electrons
with a velocity close to the phase velocity of the plasma wave vp. If the wakefield is excited with
a very large amplitude, accelerated electrons can go faster than vp : in this case, the electron
density presents a singularity and electron trajectories start to cross each other (this is the
validity limit of the fluid model for plasma electrons). This process is called longitudinal wave
breaking. The maximum electric field supported by the plasma wave before wavebreaking is, for
a cold collisionless plasma, Ew =

√
2(γp − 1)E0 [Teychenné et al., 1993; Schroeder et al., 2005],

where γp = 1/
√

1− (vg/c)2 is the relativistic factor of the plasma wave. This value is lower for
a plasma in which thermal effects are being considered [Esarey et al., 2007].

The dynamics of an electron trapped and accelerated in the wakefield is now presented. The
longitudinal dynamics of an electron is described by combining eq. (1.39) and eq. (1.43). One
can write the normalized Hamiltonian describing the total energy of a single electron in the
wakefield as [Esirkepov et al., 2006]

H(ξ, uz) = γ − βp
√
γ2 − 1− ϕ(ξ) =

√
1 + a2(ξ)/2 + u2

z − βpuz − ϕ(ξ) = H0 (1.51)

with γ =
√

1 + a2/2 + u2
z, βp = vp/c = vg/c and uz the longitudinal velocity of the electron.

The hamiltonian H0 is constant over the particle acceleration. By solving the Hamiltonian for
uz, one can derive the electron trajectories in phase space :

uz(ξ) = βpγ
2
p(H0 + ϕ(ξ))± γp

√
γ2
p(H0 + ϕ(ξ))2 − (1 + a2(ξ)/2). (1.52)

If the laser amplitude a(ξ), the plasma potential ϕ(ξ) and the total energy of the electron H0
are known, all the initial conditions are defined and thus the trajectory of the electron in the
phase space uz(ξ) can be calculated. Figure 1.6 shows the phase space in the co-moving frame
(ξ, uz) deduced from this Hamiltonian. The contour lines represent possible electron trajectories
(ξ(t), uz(t)) of constant total energy.

Looking at the figure, different notable trajectories can be distinguished. The fluid orbit
(black line, trajectory A in Fig. 1.6) corresponds to a electrons initially at rest in front of the laser
and constituting the plasma wave. Despite being pushed forward by the laser ponderomotive
force, they are not fast enough compare to the laser and are caught up by the pulse after a
while, pushed backward again by the ponderomotive force and start to oscillate to generate the
plasma wave. This trajectory is denoted :

ufluid = βpγ
2
p(1 + ϕ(ξ))± γp

√
γ2
p(1 + ϕ(ξ))2 − (1 + a2(ξ)/2). (1.53)

The separatrix (red line in Fig. 1.6) defines the boundary between the electrons circulating in
the plasma wave and the electrons able to gain enough energy to be trapped in a wakefield
period and accelerated [Teychenné et al., 1994; Esarey and Pilloff, 1995]. An electron following
this orbit can gain the maximum energy in the wakefield. Note that in the period just behind
the laser pulse, the electromagnetic field of the laser modifies the plasma potential and thus
the electron trajectories. The closed trajectories in each plasma period (dashed blue lines in
Fig. 1.6) correspond to trapped orbits of electrons that can be accelerated or decelerated in the
wakefield. By moving clockwise in the phase-space (trajectory B), a trapped electron with initial
kinetic energy is accelerated up to the point where the accelerating field turns positive, and is
then decelerated.

In this one-dimensional analytical study, transverse effects and laser evolution are neglected.
However, they play a very important role during the interaction. The multi-dimensional non-
linear study of wakefield excitation cannot be done analytically anymore, and need a numerical
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1.2. Acceleration of electrons

B

A

Figure 1.6: Phase space of a plasma wave in the co-moving coordinates driven by a laser pulse
with a0 = 3, τ0 = 30 fs in a plasma with a background electron density ne = 5×1018 cm−3. The
laser pulse is plotted without vertical scale just to indicate its location. Trapped orbits (dashed
blue lines), separatrix (red line) and fluid orbit (black line) are represented.
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Chapter 1. Physics of laser-plasma acceleration

study. This study can be done using Particle-In-Cell codes (based on kinetic plasma theory)
which allow to describe the full dynamics of non-linear, multi-dimensional wakefields.

1.2.4 Bubble regime

For a2
0 � 1 and the laser pulse transverse and longitudinal dimensions resonant with the plasma

period (kpw0 ≈
√

2a0 and cτ0,res ≈ 0.26λp [Lu et al., 2007]), multi-dimensional effects are
predominant and the ponderomotive force of the laser pulse tends to expel all the electrons from
its wake. This is the so-called bubble (or blow-out) regime [Pukhov and Meyer-ter Vehn, 2002;
Lu et al., 2006; Xie et al., 2007; Lu et al., 2007], represented in fig. 1.7. Plasma electrons are
pushed in front and on the sides of the pulse, creating an ion cavity just behind the pulse. The
expelled electrons form a thin sheath around the cavity. They are then pulled towards the axis
because of the transverse force produced by the ion cavity. Electron trajectories cross behind
the cavity and close it. The ion bubble is a three-dimension accelerating and focusing structure
in which trapped electrons are able to reach high energies.

Figure 1.7: Representation of the bubble regime in the co-moving frame : the laser pulse (in
red) propagates from left to right in the plasma (electron density in blue).

The blow-out regime provides a self-guided accelerating and focusing structure for electrons,
forming a cavity with a radius rb = 2√a0/kp [Lu et al., 2007]. Considering a perfectly spherical
bubble in the quasi-static approximation, one can derive the expression for the normalized
potential and the longitudinal and transverse electric fields as well as their associated forces in
the cavity using the cylindrical coordinates (r, θ, z) [Lu et al., 2006; Xie et al., 2007]

ϕ = −
k2
p

8 (ξ2 + r2) (1.54)

Ez
E0

= kp
2 ξ and Fz = −

meω
2
p

2 ξ ez (1.55)

Er
E0

= kp
4 r and Fr = −

meω
2
p

2 r er (1.56)
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1.2. Acceleration of electrons

with the center of the bubble at (r = 0, ξ = 0) and E0 the cold wavebreaking maximum field.
The expression of the longitudinal force experienced by an electron in the cavity (eq. (1.55))
shows that the first half of the bubble (ξ < 0) is accelerating with a linear force in ξ independent
from r, and the second part (ξ > 0) is decelerating. An electron bunch can be efficiently
accelerated as soon as it does not overtake the center of the bubble. The order of magnitude
of the longitudinal accelerating field can be evaluated by considering the typical length of the
bubble [Lu et al., 2007] as 4√a0/kp, thus Ez[GV.m−1] ≈ 96√a0

√
ne0[1018 cm−3]. On the other

hand, the transverse force is linear in r and independent of ξ (eq. (1.56)), and always focusing :
the electron bunch is transversally confined in the bubble during the acceleration.

1.2.5 Laser-Wakefield Acceleration

Injection of electrons and beamloading

For an electron to be accelerated in the bubble regime, it must have sufficient initial kinetic
energy along the longitudinal direction once it finds itself in the rear part of the bubble (acceler-
ating and focusing region). Thus, an injection process is necessary for an electron to stay a long
enough time in the bubble, be trapped and accelerated up to high energy. During injection, a
fraction of plasma electrons enter the cavity with sufficient initial speed so they can remain in
it and gain energy.

Considering a stationary wakefield, electrons are unable to be injected in the bubble as they
are expelled by the ponderomotive force of the laser and simply go around the cavity. Injection
must then be triggered by another physical phenomenon. A common way for electrons to be
injected is caused by the sudden expansion of the bubble size [Kalmykov et al., 2009a; Kostyukov
et al., 2010a]. Indeed, due to self-focusing of the laser pulse (as described in section 1.1.4) during
the propagation, the waist is not stationary and tends to shrink, increasing the laser intensity
and thus the ponderomotive force. Electrons are pushed further away, resulting in a larger
cavity. Because of this expansion, electrons at the back of the bubble can remain longer in the
accelerating region, reaching a sufficient velocity to be trapped in the cavity. This mechanism
is often reffered as self-injection. Nevertheless, self-injection is not a stable injection technique
and several methods exist to inject electrons in the wakefield in a controllable and more stable
way, which will be explained in more details in section 1.2.6.

When the injected charge is very high, the electron bunch distorts the electric fields of the
wakefield : this is the beamloading phenomenon (represented in Fig. 1.8). Indeed, the charge
forces of the bunch repel the plasma electrons away by creating its own wakefield, altering the
bubble shape and thus the longitudinal accelerating field, which flattens (and can even inverse)
due to beamloading. Eventually, the longitudinal field becomes so weak that electrons do not
gain enough energy to be trapped : the injection process stops.

Electron acceleration and betatron oscillations

Once they are injected, electrons start to be accelerated in the wakefield. As seen in Fig. 1.8,
electrons are accelerated up to the middle of the bubble (red gradient) where the longitudinal
field is negative. The acceleration stops as soon as they reach the decelerating region, when the
field switches sign. Furthermore, electrons can be injected with a non-zero transverse momen-
tum. They oscillate in the transverse focusing fields : these are the so-called betatron oscillations
(as seen in Fig. 1.9). Assuming a perfectly spherical bubble with radius rB, one can write the
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Figure 1.8: Representation of the wakefield in the bubble regime and illustration of the beam-
loading effect. The laser pulse propagating in the z-direction drives a bubble with accelerating
field (red gradient) for z < 0 and decelerating field (blue gradient) for z > 0. Injected electrons
(green dots) distort the electric field in the bubble (in green).

transverse force seen by an electron [Corde et al., 2013a] :

Fx = −1
2meω

2
px for x < rB. (1.57)

Neglecting the initial transverse momentum of trapped electrons, the equation of motion for
betatron oscillations can be written as

d2x

dt2
= − 1

2γω
2
px (1.58)

which is the equation of a harmonic oscillation whose characteristic frequency is the betatron
frequency [Esarey et al., 2002]

ωβ = ωp

√
1

2γ . (1.59)

For adiabatic acceleration, eq. (1.58) can be integrated, leading to the expression of the transverse
oscillation

x(t) = x0

(
γi
γ(t)

) 1
4

cos
[∫ t

0
ωβ(t′)dt′ + ϕ′x

]
with ωβ(t) = ωp

√
1

2γ(t) (1.60)
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1.2. Acceleration of electrons

with x0 the electron initial position and γi the value of γ at injection. During the acceleration,
γ(t) increases, then the betatron frequency and the amplitude of oscillations xβ = x0γ

1
4
i γ
− 1

4

decrease. Note that this amplitude is stronger for electrons injected far from the axis (large x0),
and that electrons can also be injected on axis with a large transverse injection velocity. One
can deduce the angle of the electron trajectory with respect to z-axis during the acceleration

θx(t) = 1
c

dx

dt
= − kp√

2γi
x0

(
γi
γ(t)

) 3
4

sin
[∫ t

0
ωβ(t′)dt′ + ϕ′x

]
with ωβ(t) = ωp

√
1

2γ(t) . (1.61)

The divergence of the electron beam scales as θ ∝ γ−
3
4 .

An inevitable consequence of electron betatron oscillations is the emission of betatron radi-
ation. A relativistic electron oscillating transversally in the bubble emits synchrotron radiation
collimated along the trajectory with a critical frequency ωβrad ≈ 2γ2ωβ (as seen in Fig. 1.9). It
produces a synchrotron-like broad spectrum emission in the range of a few keV. The characteris-
tic critical energy of betatron radiation estimated for usual experimental parameters (ne0 = 1019

cm−3, 250 MeV electrons) yields Eβrad = ~ωβrad ∼ 2 keV, in the X-ray range. The characteristic
divergence of betatron radiation from an electron is θbet = 1/γ.
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Figure 1.9: Representation of the focusing transverse fields (blue gradient) in the bubble regime
and illustration of betatron motion (green trajectory) and radiation (in orange) of electrons
during the acceleration.

1.2.6 Injection of electrons in the wakefield

From previous section, it is clear that laser-produced wakefields constitute an efficient accelerator
for electron bunches. Nevertheless, the process of injection of electrons into the accelerating
phase of the plasma wake is one of the most important aspect in LWFA. Indeed, the bunch has
to be injected into a small accelerating structure (∼ λp ≈ 10 − 50 µm) with an adapted initial
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Chapter 1. Physics of laser-plasma acceleration

velocity and a length smaller than the plasma wavelength, which is far from being trivial. If the
initial electron velocity is too small, electrons cannot be trapped in the wake. They follow the
fluid orbit (as seen in section 1.2.3) and slip through successive accelerating and decelerating
regions of the plasma wake. Furthermore, the injection process determines not only the charge
of the electron beam, but also its duration, energy spread and emittance properties. A crucial
challenge in the LWFA community is to find new and efficient injection techniques to improve
the quality of laser-accelerated electron beams.

External injection

The first experimental demonstrations of laser-plasma acceleration were performed by injecting
an external electron beam from a conventional accelerator [Clayton et al., 1993; Nakajima et al.,
1995; Amiranoff et al., 1998]. In these experiments, a few MeV electron beam is injected into
plasma waves. Due to the fact that the accelerating structure was much smaller than the injected
bunch length (λp ≈ 100 µm � lbunch ≈ 3 cm), the beam quality was not satisfactory (especially
the energy spread, close to 100 %). Electrons are indifferently injected in accelerating and
decelerating phases of the plasma wake, leading to a large energy dispersion.

In order to get good quality electron beams with small energy spread, one has to externally
produce beams with a duration much lower than λp/c ≈ 100 fs. Such electron beams are difficult
to obtain with conventional accelerators at the moment, because of space charge problems
potentially important at these low energies. Using an external beam injected in front of the laser
pulse [Khachatryan, 2002; Lifschitz et al., 2005] is a promising way to achieve low duration, low
energy spread electron beams. However, the synchronization between the injected bunch and
the laser remains a challenging issue.

Transverse self-injection

An easier way to inject electrons in the wakefield is to directly use the electrons from the plasma
itself by delivering them the necessary initial velocity to be trapped in the accelerating structure.
The so-called self-injection scheme is based on this technique.

When the maximum velocity of the plasma electrons is larger than the phase velocity of the
plasma wake, some electrons move faster than the wave itself and can be injected and further
accelerated. This wavebreaking of the plasma wave [Katsouleas and Mori, 1988; Bulanov et al.,
1997] happens when the separatrix and the fluid orbit overlap (see Fig. 1.6). This phenomenon
occurs only at ultra-high intensity when highly non-linear waves are excited. First experimental
demonstrations of self-injection [Modena et al., 1995; Gordon et al., 1998] were performed with
long laser pulses (few hundreds of femtoseconds) and relatively high density (ne > 1019 cm−3).
The plasma waves were excited through self-modulation, with a non-localized wave-breaking,
leading to Maxwellian electron spectra. With the rise of Ti:Sa laser systems (with pulse durations
around 30 - 40 fs), it became possible to reach a regime where the laser pulse can be guided
through self-focusing in the plasma, enabling to accelerate electrons at higher energies [Malka
et al., 2002]. Finally, by reducing the plasma density, it was possible to generate the first quasi-
monoenergetic electron spectra in the bubble regime by self-injection [Mangles et al., 2004; Faure
et al., 2004; Geddes et al., 2004].

As seen in section 1.2.4, an ultra-intense laser pulse propagating through an underdense
plasma pushes the electrons out of its path via ponderomotive force. The blown-away electrons
are then attracted back to the axis due to the positively charged cavity behind the driving
pulse. The trajectories of these electrons cross the laser propagation axis after approximately
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(a) (b) (c)

Figure 1.10: Transverse self-injection in the bubble regime : while the laser pulse is self-focusing
(a), the non-linear process trigger fluctuations in the spot size leading to a sudden expansion
of the bubble (b). Electrons are then trapped in the cavity and accelerated further as the
pulse propagates in the plasma (c). The blue colorscale represents the plasma electron density.
Courtesy of R. Lehe

one plasma period, enclosing an ion bubble. This bubble is thus surrounded by this dense layer
of electrons flowing backwards, with a radius rb. According to [Lu et al., 2007], a bubble radius
as low as rb ∼ 0.64λp leads to a high enough longitudinal velocity for some electrons at the
back of the cavity to be trapped. Transverse self-injection of an electron depends on its initial
distance r0 from the laser propagation axis [Kostyukov et al., 2010a]. Electrons close to the
center (r0 < rb) see a strong ponderomotive force and are pushed too far away by the laser to
be part of the bubble layer, while electrons with r0 > rb cannot be injected into the back of the
bubble because of an insufficient velocity. For r0 ≈ rb, the electrons can flow down to the back
of the cavity and feel the strong fields pulling them towards the center of the bubble. They enter
the bubble but are usually not trapped because their velocity is lower than the phase velocity
of the cavity.

A way to facilitate injection is by a sudden expansion of the bubble cavity [Kalmykov et al.,
2009b; Kostyukov et al., 2010b]. In this case, electrons that are already inside the accelerating
phase of the bubble can remain for a longer time and reach a sufficient velocity to be trapped
(as shown in Fig. 1.10). The sudden expansion of the bubble spontaneously occurs because of
the strong self-focusing of the laser : as the laser pulse evolves to reach the matched spot size,
the laser intensity increases and the bubble widens accordingly (as its length scales as 4k−1

p
√
a0

according to [Lu et al., 2007]). While transverse self-injection is easily achieved with current
setups, the method lacks stability (as it is triggered by the self-focusing of the pulse, which is
highly non-linear) and inject electrons far from the axis (leading to strong betatron oscillations,
thus a large beam divergence). Moreover, it is not temporally limited and can happen during
the whole acceleration process, leading to electron beams with large energy spread.

Longitudinal self-injection

Self-injection can also be obtained from longitudinal wave-breaking. In this case, the electrons
initially close to the laser propagation axis (r0 < rb) can be trapped due to the wakefield elonga-
tion. Longitudinal wave-breaking occurs if the maximum electron longitudinal velocity is larger
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Figure 1.11: PIC simulation results of transverse self-injection. (a) Evolution of a0 along the
laser propagation in the plasma. Several self-injection process occur each time a0 increases
as it self-focuses. The first process is longitudinal self-injection (b), followed by transverse self-
injection for larger laser amplitude (c). The green plots show the typical trajectory of an injected
electron in each case. Figure from [Corde et al., 2013b]

than the wakefield phase velocity. Electrons can then be injected without a substantial trans-
verse motion if the laser waist is large enough so that electrons stay close to the axis (as seen
in Fig. 1.11). Longitudinal injection was experimentally demonstrated by [Corde et al., 2013b],
producing electron beams with a relatively low divergence (as betatron oscillations are much
weaker than in transverse injection), low charge (a few pC only) and a good shot-to-shot stabil-
ity (as longitudinal injection happens at the beginning of the self-focusing process, which is less
fluctuating than the intensity oscillations during the propagation and less sensitive to radial inho-
mogeneities due do transverse filtering). In principle, it is more difficult to longitudinally inject
an electron than transversally, because an electron initially on-axis experience a decelerating lon-
gitudinal field before entering the accelerating phase of the wakefield. Longitudinal self-injection
is then possible when the bubble expands suddenly (the plasma wavelength increases, thus the
wake phase velocity suddenly drops). This is the case when the pulse strongly self-focuses at
the beginning of the propagation : a0 steeply increases, the cavity expands and electrons close
to the axis are trapped. Usually, longitudinal self-injection is favored with low electron plasma
density, as transverse self-injection is predominant at high density. The pulse self-focuses at the
beginning of the low-density plasma, triggering longitudinal self-injection, then diffracts without
being self-focused again if the density is too low, preventing the transverse self-injection to occur.
The density threshold between transverse and longitudinal self-injection allows to easily choose
the desired regime.The existence of this transverse wave-breaking threshold is of great interest
to obtain high quality beams through a controlled injection method without being disturbed by
self-injection.

Although longitudinal self-injection produces more stable electron beams than transverse
injection, the charge is very low and the energy spread quite high. In order to improve the
electron bunch quality, more control over the injection process is desirable. In the following,
several controlled injection methods are presented.
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1.2. Acceleration of electrons

Density transition injection

As explained in the previous section, a sudden expansion of the bubble tends to trigger injection
of plasma electrons. One way to control this expansion is by forming a downward density
transition in the gas jet [Bulanov et al., 1998]. The length of the bubble scales as 4k−1

p
√
a0 ∝

n
−1/2
e , thus the cavity expands as the pulse propagates in the longitudinally decreasing plasma

density.
If the density downramp length is long compared to the plasma wavelength λp, the local

phase velocity of the plasma wave is slowed down until it equals the fluid velocity of plasma
electrons, which can then get trapped in the wakefield. The local phase velocity is expressed
as [Esarey et al., 2009]

vp,ϕ = c

(
1− ξ

2ne
dne
dξ

)
(1.62)

with ξ the longitudinal coordinate in the co-moving frame (ξ = 0 at the peak of the laser pulse,
ξ < 0 behind the pulse). For a density downramp, dne/dξ < 0, thus the phase velocity of
the back of the bubble is lower than the one of the bubble front, leading to the expansion of
the bubble during the propagation. This method was demonstrated experimentally using the
natural downward gradient at the end of a gas jet to produce a low energy electron beam [Geddes
et al., 2008; Gonsalves et al., 2011], or using a plasma density depletion created by a second
beam transversely focused in the plasma, few nanoseconds before the main beam [Faure et al.,
2010b; Brijesh et al., 2012]. While a long downramp can trap many electrons in the wakefield,
it presents some issues. Firstly, the continuous trapping along the density gradient can lead to
large energy spread. Moreover, as the bubble expands and the electron bunch accelerates, it
quickly reaches the center of the bubble where the longitudinal field switches sign. The electron
bunch dephases and cannot reach high energies.

If the density transition is sharper, with a scale length smaller than the plasma wavelength,
the injection mechanism is slightly different. At the density transition, λp increases steeply,
which causes a large amount of electrons just behind the bubble to be instantly loaded in the
accelerating phase of the wakefield. The phase velocity of the plasma wave is essentially frozen
during the sharp transition, thus the injection is caused by the sudden plasma wavelength
increase rather than the reduced phase velocity in this case. This scheme has been extensively
studied numerically [Suk et al., 2001; Kim et al., 2004a; Brantov et al., 2008]. Up to now, the
density transition was formed with a second laser pulse propagating transversely to the main
interaction pulse, locally depleting the electron density but also strongly changing the density
ahead of the pulse, thus generating broad energy spectra [Chien et al., 2005; Faure et al.,
2010a]. More recently, experimental injection in a sharp density transition formed by a shock
in a supersonic gas flow (either with a razor blade [Schmid et al., 2010; Buck et al., 2013] or a
wire [Burza et al., 2013]) has been demonstrated, producing high quality electron beams. By
correctly tailoring the density transition, the injection process is stabilized and leads to tunable,
high-quality electron beams. An extensive study of this injection technique is presented in
chapter 2 of this manuscript.

Ionization injection

Ionization injection is a recent technique based on the fact that some electrons can be stripped
from their atom later than others. A small percentage of a high-Z gas (for instance argon or
nitrogen) is mixed with the usual low-Z gas (hydrogen or helium) used in the gas jet. Electrons
from the low-Z atoms, as well as the electrons from the outer shells of the high-Z atoms, are
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Chapter 1. Physics of laser-plasma acceleration

released far ahead from the pulse peak intensity and preform the plasma. However, the electrons
from the inner shell of the high-Z atoms have a much higher ionization potential and are ionized
near the peak of the pulse, directly in the bubble. When this happens, electrons can be in the
accelerating phase of the wakefield and be accelerated [McGuffey et al., 2010; Pak et al., 2010;
Pollock et al., 2011a]. An other way is to accelerate electrons in a pure high-Z gas [Singh and
Sajal, 2009; Mori et al., 2009; Kotaki et al., 2011; Mo et al., 2012; Guillaume et al., 2015a],
leading to highly-charged electron beams. This technique is extensively discussed in 3.

Although ionization injection is easily implemented, it suffers from the fact that electrons
are continuously injected during the laser propagation, thus leading to electron beams with
high charge but also large energy spread (because the electrons ionized at the beginning of the
propagation are accelerated for a longer time than those ionized at the end of the jet). One way
to overcome this issue is the use of two stages accelerators, with a first injection stage based
on ionization injection followed by an accelerator stage with a low-Z gas [Pollock et al., 2011a;
Bourgeois et al., 2013].

Optical injection

Another way to trigger electron injection in the wakefield below the transverse wave-breaking
threshold is the use of a second laser pulse in order to uncouple injection from the acceleration.
In optical injection, the interaction between the two laser pulses creates a beat wave confined in
space and time where electrons can be injected in the wakefield. The first configuration to be
studied, with two perpendicular pulses, gave mitigated results [Umstadter et al., 1996; Zhang
et al., 2003]. A scheme with counter-propagating pulses was then implemented, providing a very
good control over the injected charge and energy gain [Faure et al., 2006b].

With this method, a beat wave with half the wavelength of the driving laser is formed where
the two pulses cross each other [Esarey et al., 1997]. The large ponderomotive force accelerates
locally some electrons which are able to catch up with the wakefield and be accelerated. By
varying the delay between the two pulses, the overlap position can be longitudinally shifted in
the gas jet, thus the acceleration distance changes and the electrons final energy can be easily
tuned. The bunch charge and energy spread are determined by the intensity and polarization
of the injection pulse [Rechatin et al., 2009]. Usually, the injection pulse has a much lower
intensity than the main pulse and is unable to drive its own large amplitude wakefield. For
easier experimental implementation, the interaction and injection laser beams do not have to
be perfectly counter-propagating at 180 degrees, but instead at 135 degrees for instance [Kotaki
et al., 2004; Fubiani et al., 2004].

Another colliding laser pulse scheme was recently proposed with a similar experimental
geometry, the so-called cold optical injection [Davoine et al., 2009, 2010; Lehe et al., 2013]. In
this scheme, the longitudinal motion of electrons is frozen by the injection pulse and the electrons
dephase up to be trapped in the wakefield with no net velocity gain. This method has been
numerically studied and is potentially interesting to produce lower energy spread electron beams
but has not been experimentally demonstrated so far.

Although this method can generate high quality, stable electron beams, the main drawback of
optical injection is the scheme experimental complexity. A second laser pulse has to be perfectly
overlapped (both spatially and temporally) with the main pulse for optical injection to happen.
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1.2. Acceleration of electrons

1.2.7 Limitations

Acceleration of electrons can stop due to several processes limiting the maximum attainable
energy. These effects are described in the following paragraphs.

Laser diffraction : The laser focused at the entrance of the gas target progressively
defocuses along the propagation, and its intensity becomes too weak to efficiently drive an
accelerating wakefield. The diffraction length Ldiff is governed by the Rayleigh length ZR :
Ldiff = 2ZR. For a focal spot size matching the plasma wavelength (w0 ≈ λp), then :

Ldiff = 2πω0
ωp
λp. (1.63)

Outside this range, the laser spot size grows quickly, reducing the intensity. This effect is
mitigated by self-focusing, yet it typically extends the acceleration length over a few Rayleigh
lengths only. An external guiding is thus mandatory to maintain the acceleration over a distance
which is not limited by laser diffraction, for example by using a preformed plasma column or a
capillary waveguide [Leemans et al., 2006; Karsch et al., 2007b; Leemans et al., 2014].

Laser energy depletion : Another important limitation for the maximum energy gain is
the energy depletion of the laser pulse. Once the laser has lost a substantial amount of energy,
the plasma wave amplitude decreases and thus the acceleration terminates. The pump depletion
length Ldepl [Bulanov et al., 1992b; Shadwick et al., 2009] can be estimated by comparing the
energy contained in the laser pulse with the energy transferred to the wakefield. For linearly
polarized laser pulses, the depletion length can be estimated as [Esarey et al., 2004b] :

Ldepl =
(
ω0
ωp

)2

λp ×
{ 2

a2
0

for a0 ≤ 1.
1 for a0 � 1.

(1.64)

Pump depletion is bound to happen, but its limiting effects can be avoided by increasing the
initial energy contained in the driver pulse and decreasing the plasma density.

Electron dephasing : Although relativistic electrons can reach velocities extremely close
to the speed of light in vacuum, the plasma wave is bound to the group velocity of the laser pulse
vl,g. As electrons are faster than the plasma wave, they can reach the point where the accelerating
field is zero, enter the decelerating part of the wave and start to lose energy. The dephasing
length Ldeph can be estimated by calculating the acceleration distance (in the laboratory frame)
it takes for electrons to travel quarter a plasma wavelength

(c− vl,g)
Ldeph
c

= λp
4 (1.65)

Ldeph =
λ3
p

4λ2
0
∝ n−

3
2

e . (1.66)

This simple calculation is valid only if a0 ≈ 1 : for a0 � 1, the effective plasma wavelength
increases and the point where electrons start to dephase depends on the laser intensity. Esarey
et al. [2004a] derive a more detailed analysis considering linear and non-linear regimes :

Ldeph =
(
ω0
ωp

)2

λp ×
{

1 for a0 ≤ 1.
4
3
√
a0 for a0 � 1. (1.67)
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The dephasing length increases when background electron density gets lower whatever the laser
intensity. Although electrons dephasing cannot be avoided, relatively low electron densities can
be used to overcome dephasing and reach higher electron energies.

1.3 Electron bunch properties in a Laser-Plasma Accelerator
Electron beams generated from Laser-Wakefield Accelerators are promising candidates for vari-
ous applications such as Free-Electron Lasers (FEL) [Nakajima, 2008; Schlenvoigt et al., 2008]
or compact high-energy colliders [Schroeder et al., 2010] which require high-quality electron
bunches. Currently, many researchers investigate new ways to further improve the beam prop-
erties, for example by using different plasma sources (capillary waveguide [Leemans et al., 2014],
tailored density profiles [Gonsalves et al., 2011]). To date, electron beams from LWFA suffer
from quite large energy spread (in the order of a few percents [Wiggins et al., 2010; Pollock et al.,
2011b], in comparison with conventional accelerators reaching 10−4 percent energy spread) and
divergence (down to almost 1 mrad [Plateau et al., 2012]). The best way to quantify the beam
transverse quality is its emittance, which is defined in section 1.3.1. The beam charge is another
important property, as many applications require a large number of electrons (as radiobiology
or radiotherapy). Electron bunches from LWFA are intrinsically short, leading to high peak cur-
rents when coupled with a relatively high charge. Finally, the energy distribution of electrons
in the beam is of major importance : to reach capabilities of conventional accelerators, the peak
energy must be increased and the energy spread strongly reduced.

1.3.1 Transverse quality of an electron bunch

A single electron has a well-defined mass, charge, position and energy, but the situation is more
complex for electron beams. At any time t, each electron is represented by a single point in the
six-dimensional phase space (x,y, z,px,py,pz) of the beam. The phase space can represent the
beam distribution as a continuous particle density with a well-defined volume V or an ensemble
of discrete particles. An ensemble of particles is considered as a "beam" if the longitudinal
mean momentum pz is much larger than the transverse momenta px, py. As electrons move in
time, the orientation and shape of the phase space changes. According to Liouville’s theorem
[Goldstein, 1980], the phase space volume V remains constant for a conservative system. The
emittance of the beam, denoted ε, is a measure of the phase-space volume, directly related to
the beam quality. It combines the bunch length and energy spread as well as its transverse
size and divergence. The emittance is conserved under propagation of the bunch in vacuum or
through linear focusing systems.

The six-dimensional phase space is usually decomposed in three phase space areas by pro-
jecting the volume V onto the orthogonal planes (x,px), (y,py) and (z,pz), where x and y
are the transverse coordinates and z is the propagation direction. In fact, the term "emittance"
is frequently used to refer to transverse emittance alone (εx, εy). Furthermore, it is more con-
venient to use the trace space quantities x′ = px/pz and y′ = py/pz as a measure of angular
deviation from straight motion along the propagation axis, thus relating to the beam divergence
directly (in the paraxial approximation px, py � pz, true for relativistic bunches). For simplicity,
we limit the discussion to the x-dimension, however, similar relations will hold for y-dimension.

It is convenient to describe the beam distribution in trace space as an ellipse (as shown in
Fig. 1.12) with equation

γx2 + 2αxx′ + βx′2 = ε (1.68)
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Figure 1.12: Trace space ellipse representing the distribution of electrons in (x, x′) space. The
ellipse area is the emittance ε multiplied by π. The yellow ellipse represents a bunch at waist
while the blue ellipse represents a bunch drifting in free space, diverging from the waist.

where α, β and γ are the Twiss parameters and ε the emittance of the beam. These parameters
are related through βγ − α2 = 1. β and γ quantify the projected bunch size and divergence
respectively while α is a measure of whether the bunch is converging towards the waist (α > 0)
or diverging away from it (α < 0, as exemplified by the blue ellipse in Fig. 1.12). As the beam
propagates, the Twiss parameters vary accordingly, and the trace space ellipse changes in size
and orientation as well. The projected bunch size is X =

√
βε (β has the dimension of a length),

and the beam divergence is X ′ = √γε (γ has the inverse dimension of a length). The angle
ϕ (see Fig. 1.12) depends only on the Twiss parameters and fully defines the bunch evolution
during a drift in free space (rotation of the ellipse in the trace space, as seen in Fig. 1.12). The
emittance is calculated from the area occupied by the ellipse in the trace space :

ε = 1
π

∫
ellipse

dxdx′ (1.69)

This defines the geometrical emittance of the beam. Real electron beams have complex shapes :
one has to find the best fitting area of the particle distribution and deduce the emittance value.

During the propagation of the beam in a free space of length L, the ellipse evolves (keeping
a constant area, as emittance is conserved during the drift) and the Twiss parameters change
according to the following

α′β′
γ′

 =

 1 0 −L
−2L 1 L2

0 0 1


αβ
γ

 (1.70a)

Primed Twiss parameters are those after the drift space. Figure 1.13 shows the evolution of
the trace space ellipse diverging away from the beam waist (at z0, with a bunch size x0 and
a divergence x′0). After a given propagation length L = z2 − z0, the divergence x′2 =

√
γ′ε =
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Figure 1.13: Transverse trace space evolution of an electron beam propagating in a drift space.
The beam waist is at z0.

√
γε = x′0 stays the same, and the bunch size evolves as

x2 =
√
β′ε =

(
1 +

√
L

β
(γL− 2α)

)
x0. (1.71)

In practice, electron beams do not have a well-defined shape, it is then difficult to fit the
phase space distribution with an ellipse. Emittance can also be defined using the root mean
square (rms) values for the first and second momenta of the distribution. The first momenta 〈x〉
and 〈x′〉 represent the mean size and divergence of the electron distribution, while the second
moments 〈x2〉 and 〈x′2〉 are the standard deviation from the mean. The rms emittance is defined
as

εrms =
√
〈x2〉〈x′2〉 − 〈xx′〉2 (1.72)

where the term 〈xx′〉2 expresses the correlation between the bunch size x and divergence x′
(close to zero at the beam waist). This definition of emittance is not limited by geometrical
boundaries and defines the statistical transverse quality of the beam. Usually, εrms > ε. In
laser-wakefield accelerators, the longitudinal momentum of electrons increases while the trans-
verse momenta stay roughly the same, resulting in a divergence reduction and therefore a rms
emittance decrease. A useful quantity in such a system is the normalized rms emittance which
is invariant during acceleration :

εn = γ0εrms (1.73)

with γ0 the mean relativistic Lorentz factor of the bunch. The main advantage of representing an
electron bunch by its normalized rms emittance is the concatenation of all transverse properties
in a single quantity invariant during acceleration in the wakefield and during drifting in free
space.

So far, the smallest transverse normalized rms emittance directly measured in a laser-
wakefield accelerator is about 0.2 π.mm.mrad for a 250 MeV electron beam [Weingartner et al.,
2012] (similar than in conventional accelerators). Small emittance implies high focusability and
the potential of generating high quality radiation sources. Moreover, emittance is a conserved
quantity in linear systems, thus it is a useful figure to describe the quality of the electron beam
throughout a full system (accelerator, beam transport line and synchrotron for example). How-
ever, in reality, electron beams experience nonlinear forces that can increase the emittance, such
as chromatic aberration of the focusing magnetic optics or transport line misalignment.
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1.3. Electron bunch properties in a Laser-Plasma Accelerator

1.3.2 Bunch properties : duration, charge and peak current

The longitudinal length of the electron bunch is related to the time scale over which electrons
are trapped in the wakefield. The characteristic length of the accelerating cavity is the plasma
wavelength λp. In order to be in the accelerating part of the bubble, the electron bunch maximum
duration is limited to λp/2. The temporal structure of an electron bunch is often assumed to be
Gaussian with a FWHM pulse duration τbunch. Experimental measurements of laser-accelerated
electron bunches revealed typical durations of only a few femtoseconds [Lundh et al., 2011, 2013;
Bajlekov et al., 2013].

As more and more plasma electrons are trapped at the back of the ion bubble, the total charge
of the bunch Qbunch increases. As the cavity is loaded, the longitudinal field Ez is screened and
eventually electron trapping ceases (beamloading effect, see section 1.2.5). One can define a
peak current for the electron bunch as

Ipeak = Qbunch
τbunch

(1.74)

Typical laser accelerated electron bunches have a total charge of 50 pC and a FWHM duration
of 5 fs, leading to typical peak current values of 10 kA.

Some injection techniques (as ionization injection) are favorable for generating heavily-
charged electron beams up to a few hundreds of picocoulombs (see chapter 3), but it usually
goes along with worse transverse properties because of space-charge effects.

1.3.3 Energy distribution of electrons

�E

Epeak

Qpeak

Figure 1.14: Typical experimental spectrum of a laser-accelerated quasi mono-energetic electron
beam at LOA
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Electron energy distribution in the beam is a major property to study when defining the beam
quality. Although it is still a long way for laser-plasma accelerated beams to be as mono-energetic
as beams from conventional accelerators, recent breakthroughs made this goal foreseeable (see
section 1.4 for details on the experimental setup). A typical experimental spectrum of a quasi
mono-energetic electron beam is shown in Fig. 1.14. In all the manuscript, the quantities are
specified as the following, unless stated otherwise. The peak energy of the beam Epeak is defined
as the energy where the charge per MeV is maximum. The energy spread of the bunch ∆E is
the FWHM of the peak, not necessarily centered on Epeak. The charge of the peak Qpeak is
defined as the charge contained between Epeak − 3∆E and Epeak + 3∆E, and may be slightly
different from the total charge of the beam Qtot (for instance if there is a large low energy tail
in the spectrum).

1.4 Experimental study of Laser-Wakefield acceleration

1.4.1 "Salle Jaune" laser system

The experiments reported in this manuscript were performed with the "Salle Jaune" laser system
at Laboratoire d’Optique Appliquée. The system is a 5-stages Ti:Sa laser producing 28 fs pulses
with peak powers up to 60 TW at a carrier wavelength of 810 nm and 1 Hz repetition rate. Such
ultrashort pulses can be produced thanks to Chirped Pulse Amplification technique [Strickland
and Mourou, 1985], consisting in stretching the pulse temporally before amplification and com-
pressing it down once it is amplified. This method allows to avoid the damaging of transmission
optics occurring at high laser intensities. A layout of the laser system is shown in Fig. 1.15.

The commercial front end starts with a Ti:Sa oscillator producing 9 fs pulses at the nJ-level
at a repetition rate of 88 MHz. The spectrum is broad with a full width at half-maximum of
150 nm and centered around 800 nm (as shown in Fig. 1.16(a)). Those pulses are then stretched
out temporally up to a duration of 20 ps and amplified up to 2 mJ at a rate of 10 Hz. A
diffractive prism based compressor is then used to reduce the duration down to 20 fs. The
femtosecond pulses go through a XPW (Cross-Polarized Wave) filter in order to enhance the
temporal contrast (which is the ratio between the main pulse peak power and the pedestal),
reaching up to 1010 at 100 ps and 107 at 10 ps at the end of the laser chain. The efficiency of
this contrast-enhancement technique is about 15 %, reducing the energy of the pulse down to
35 µJ. The energy loss is compensated in the following amplification stages.

The laser pulses are stretched up to 500 ps by a second stretcher and enter an acousto-
optic modulator, or Dazzler, to precisely control the spectral phase of the laser [Verluise et al.,
2000]. The spectral phase control is very important as it allows to pre-compensate the spectral
shortening due to the amplifiers’ gain. Furthermore, the spectral phase properties of the laser
have a substantial influence on the pulse propagation in the plasma. The pulses are then
amplified by a series of five Ti:Sa multi-pass amplifier stages pumped with frequency-doubled
(532 nm) Nd:YAG commercial lasers, as seen in Fig. 1.15. The first and second amplifiers
increase the pulses energy up to 1 mJ and 20 mJ. The pulses are then spatially filtered by
traveling through an afocal system and a few tens of microns holes to clean out the focal spot.
They are finally amplified by the third, fourth and fifth amplifiers up to 600 mJ, 3 J and finally
6 J. After each amplification stage, the beam size is increased with an afocal system to keep
the fluence below the Ti:Sa crystals damage threshold of around 1 J.cm−2. The repetition rate
of the full system is limited to 1 Hz because of thermal disturbances which can be induced at
higher repetition (thermal lens in amplifier crystals for example).

At the output of the fifth amplifier, the beam is separated into three beams : P1 and P2
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P1 
1.5 J, 30 fs

P2
1.5 J, 30 fs

P3 (probe beam) 
50 mJ, 30 fs
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« Salle Jaune » laser room

« Salle Jaune » experimental room

Figure 1.15: Layout of the "Salle Jaune" laser system from the oscillator to the experimental
vacuum chambers.

are the main interaction beams while P3 which has much less energy is used as a probe beam
in most of the experiments. The laser spectrum after amplification is slightly red-shifted, with
the laser central wavelength at full-power measured around 810 nm. The laser beam exits the
amplification stages with an almost "top-hat" spatial profile (as seen in Fig. 1.16(c)) and a linear
polarization along the p-polarization in the horizontal direction.

The three beams are transported to the compressor chamber by afocal systems of lenses
in oder to adapt the transverse beam size to the gratings damage threshold and dimensions.
The beam diameters are almost 60 mm FWHM for P1 and P2 (as seen in the transverse cut
of the beam profile in Fig. 1.16(d)) and 30 mm FWHM for P3. The three beams are then
compressed independently with three systems of double gratings down to 30 fs. The resulting
temporal shape of the pulse is shown in Fig. 1.16(b), with a duration of 28 fs FWHM. After
compression, two deformable mirrors (DM) are used to improve the wavefront spatial quality of
the two main interaction beams P1 and P2. The latter is measured by imaging the deformable
mirror surface onto a HASO device (a Shack-Hartmann type wavefront sensor). It measures
the phase aberrations of the beam and reconstruct the wavefront by decomposing it over the
orthogonal base of Zernike polynomials. Each of these polynomials correspond to a well-defined
optical aberration which can be compensated by using the deformable mirror, leading to an
improvement of the laser focal spot quality. After correction, typical focal spots have 50/60 %
of the energy contained in the first Airy disk. Figure 1.17 shows two pictures of the laser system
and the chamber containing the deformable mirrors.
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Figure 1.16: Output parameters of the "Salle Jaune" laser system. (a) Laser spectrum at the
output of the oscillator. (b) Temporal shape of the main interaction beam P1 after compression
measured with a FROG system. (c) Beam spatial profile at the output of the amplification
stages. (d) Transverse cut of the beam spatial profile at Y = 0 mm. The "top-hat" shape allows
for a homogeneous distribution of energy on optics, reducing hot spots appearance and material
damaging.

1.4.2 Basic experimental setup

The electron acceleration experiments presented in this manuscript were performed in a dedi-
cated experimental chamber in the "Salle Jaune" experimental room at LOA. The basic setup in
general is evolved from the one presented above, with various configurations of off-axis parabo-
las, gas targets and diagnostics. A photograph of the inside of the experimental chamber can
be seen in Fig. 1.18, and a general schematic drawing of the setup is shown in Fig. 1.19.

The main interaction beam P1 is focused with an Off-Axis Parabola (OAP) onto the target
medium. OAP with different focal lengths and off-axis angles were used for different experimental
campaigns : they are specified in the different chapters of the manuscript. A typical focal spot
size obtained with a 780 mm focal length OAP has a diameter (FWHM) of 12 µm, leading to
a peak intensity of I0 ≈ 9 × 1018 - 1 × 1019 W.cm−2 depending on the pulse energy. The focal
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Figure 1.17: Pictures of the "Salle Jaune" laser system (left) and the vacuum chamber containing
the two deformable mirrors for P1 and P2 and the compressor for P3 (right).

Magnet

Lanex

Nozzle

Figure 1.18: Photograph of the basic experimental setup for electron acceleration in the "Salle
Jaune", presenting the gas nozzle, the magnet and the Lanex screen composing the electron
spectrometer.

spot was characterized for each experiment using a microscope objective and a CCD camera
(as shown in Fig. 1.19). Its quality was manually optimized by setting the adaptive mirror to
correct for the residual aberrations. The laser polarization is horizontal (parallel to the chamber
floor).

The gas target used in the presented experiments is provided by a pulsed gas jet. Nozzles
with different kinds (subsonic or supersonic) and sizes were used depending on the desired plasma
density profile. The density was measured in situ for each shot using the probe beam P3 going
through the plasma and a Nomarski interferometer (see section 1.4.3). The plasma emission
(essentially Thomson scattering) was imaged through a top-view imaging line by a 16 bit CCD.

The electron energy distribution was measured by an electron spectrometer composed of
a permanent magnet and a scintillating screen (Kodak Lanex) imaged with a CCD camera.
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Figure 1.19: Basic experimental setup drawing for electron acceleration : the main interaction
beam P1 is focused onto a gas nozzle with an Off-Axis Parabola (OAP1), coupled with a camera
for focal spot optimization. The electron spectrum is measured with a spectrometer (magnet
+ Lanex + CCD) and the divergence with a second Lanex screen. The plasma density is
characterized with the probe beam P3 going into a Nomarski interferometer. Top view imaging
enables for side scattering analysis. The second beam P2 can have different role depending on
the experiment (for instance colliding injection).
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More details about the spectrometer are given in section 1.4.3. The electron beam profile and
divergence were measured with another scintillating screen placed at the end of the chamber
by pulling the magnet out of the electron beam path. This additional Lanex screen was also
useful to detect X-ray beams emitted during electron acceleration (betatron radiation). For
more precise measurements of the X-ray beam profile and spectrum, a X-sensitive CCD camera
was used, placed at the end of the chamber with the second Lanex flipped out.

1.4.3 Diagnostics

The laser-accelerated electrons are significantly fluctuating shot-to-shot, thus single-shot diag-
nostics are crucial to get a good insight into electron and plasma characteristics. The different
basic diagnostics used for the experiments presented in this thesis are detailed in the following
section. The most specific diagnostics will be presented in the corresponding chapters.

Electron Spectrometer

A major diagnostic in LWFA experiment is the electron spectrometer, allowing to measure the
energy distribution of electrons in the beam. It has to be able to measure a large parameter
range both in energy (a few MeV to hundreds of MeV) and charge (from a few hundreds of fC
to a few nC). The electron spectrometer (ESM) is the combination of a permanent dipole, a
scintillating screen and an imaging system.
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Figure 1.20: (a) Sketch of the electron spectrometer used in the experiments. The electrons are
deflected energy dependently by the permanent magnet and detected onto a Lanex screen imaged
with a CCD camera. The calibration of the spectrometer is calculated from the position of the
electron source (xj , yj), the position of the Lanex (xd, yd, θla) and the position of the laser beam
(xl, yl) corresponding to the non-deflected electron trajectory. All positions are considered in
an orthonormal coordinate system with the origin 0 in the center of the magnet. (b) Dispersion
curve (in blue) and resolution (dotted black) of the spectrometer function of the position of
the electron hitting the Lanex. The grey area represents the Lanex screen, and the red line
corresponds to the position of the laser (trajectory of an electron with an infinite energy).

In most of the experiments, a 10-cm long, 1.1 Tesla permanent magnet was used to disperse
the electrons depending on their energy (the one seen in Fig. 1.18). Such a magnet was suitable
to disperse electrons with energies in the range 30 - 500 MeV. To analyze less energetic elec-
trons, a smaller magnet (2-cm long, 0.76 T) was employed. The magnetic map on the center
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Chapter 1. Physics of laser-plasma acceleration

plane for both magnets were measured in order to compute the electron trajectories when going
throughGlinec et al. [2006a].

Electrons are then dispersed onto a 35-mm large, 170-mm long scintillating screen (Kodak
Lanex fine) placed behind the magnet. The screen is covered with a black aluminum foil to
prevent stray light from the laser to disturb the measurements. It is imaged on a 16 bit CCD
camera (Andor) with a telephoto lens and an interference filter (centered on the emission main
wavelength of the Lanex).

A drawing of the electron spectrometer is presented in Fig. 1.20(a). The energy calibration
of the ESM is computed considering its geometry defined in the orthonormal coordinate system
(0, x, y) with 0 at the center of the magnet. The electron source is considered to be at the center
of the nozzle (xj , yj). Electrons dispersed by the magnet hit the Lanex at a position Llanex
depending on their energy. The Lanex position is defined by its side (xd, yd) closer to the laser
beam (this point also corresponds to the position Llanex = 0, defining the maximum electron
energy measurable with the screen) and its angle θla measured from the x-axis. The position
where the laser beam crosses the Lanex plane (xl = xj , yl) is the point where an electron with
infinite energy would hit this plane. It serves as reference to set the dispersion curve of the
spectrometer (electron energy function of the position on the screen). The dispersion curve
of the ESM calculated for a typical configuration is shown in Fig. 1.20(b). The resolution of
the spectrometer is estimated considering a mean beam divergence of 3 mrad over the whole
spectrum. This configuration allows for the detection of electrons between 50 and 400 MeV,
with an energy resolution better than 2% in this range. In the transverse direction, the beam
divergence is measured (with a resolution of about 0.5 mrad in this configuration). In order
to get a more precise value of the electron beam divergence, an additional Lanex screen placed
directly in the beam path is used (by removing the magnet from the beam path). The absence
of magnetic dipole plus the increased propagation length allows for more precise divergence
measurements (with a resolution below 0.1 mrad).

In order to obtain absolute charge values, we use the calibration of the Kodak Lanex screen
done a few years ago by Glinec et al. [2006a]. The global transmission factor (chamber window,
interference filter and camera window) as well as the total collection angle are considered to
deduce the charge per pixel count on the CCD.

Side view interferometry

Pulsed gas nozzles (Parker Hannifin) opened during a few milliseconds are used as gas targets
for LWFA experiments presented in this thesis. The gas density at the nozzle output is modified
by varying the backing pressure. The shape of the nozzle (the evolution of the diameter from
the entrance hole to the exit) determines the radial gas profile at the nozzle output. Cylindri-
cally shaped nozzles presenting a subsonic gas flow produce Gaussian-like density distributions,
whereas supersonic nozzles (accelerating the gas above the speed of sound) create profiles with
sharp gradients. In order to characterize the plasma density profile created by the laser prop-
agating in the gas flow, a single-shot interferometry diagnostic is used. The plasma has to be
placed in one of the arms of the interferometer. A 30-femtoseconds probe beam (in the presented
experiments, the low energy beam P3 is used, as seen in Fig. 1.19) penetrates the plasma and
experience different refractive indexes depending on the crossed electron density (the plasma
refractive index evolves as η =

√
1− ne

nc
, as seen in eq. (1.36)). When the probe interferes with

a reference beam, the accumulated phase shift leads to a modified fringe spacing depending on
the refractive index. A two-dimensional phase map of the plasma is measured, and the corre-
sponding map of the electron plasma density can be obtained using the Abel inversion technique
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Figure 1.21: Basic scheme of a Nomarski interferometer

with the hypothesis of a cylindrically symmetric plasma column [Kalal and Nugent, 1988].
Although it is common to use a Michelson or a Mach-Zehnder interferometer, we use a No-

marski interferometer in our experiments. The Nomarski interferometer employs a Wollaston
prism as a beam splitter, the main advantages being the relative simplicity and the absence of
alignment problems. The principle scheme of the Nomarski interferometer is shown in Fig. 1.21.
The probe beam is polarized at 45 degrees from the vertical with a first polarizer and propagates
through the plasma. A converging lens is used after the plasma to image the plasma plane onto
the detector with a sufficient magnification to correctly resolve the potentially interesting struc-
tures in the density profile (density transitions for instance). The laser goes through a Wollaston
prism, splitting it into two beams (respectively with vertical and horizontal polarizations) with
an angular separation of a few degrees. A second polarizer, oriented parallel to the first one, is
placed after the prism so that the two polarizations are projected onto a 45 degrees axis and
can interfere. The two beams interfere in the CCD plane, conjugated with the plasma plane by
the lens. Note that the Wollaston prism can be placed before the lens to reduce aberrations on
the final image.

The Nomarski interferometer creates two partially overlapped images of the region of interest,
thus two images of the object are visible in the CCD plane. The key idea is to place the plasma
column on a side of the probe beam, so that a non-perturbed part of the first beam coming out of
the Wollaston (the reference) can interfere with the part of the second beam which went through
the plasma. The fringe separation in the detector plane is given by δ = λ0D/αd, with D the
distance between the prism and the CCD, α half the separation angle induced by the Wollaston
prism and d the distance between the prism and the lens. It can be easily adjusted by moving the
Wollaston prism. From the measured interference pattern (an example si shown in Fig. 1.22(a)),
the Abel inversion technique allows for the calculation of the two-dimensional plasma density
map (presented in Fig. 1.22(b)). Usually the Abel inversion technique can be used only for a
perfectly cylindric plasma column, which is not necessary the case. By considering that the
plasma is created by the laser, which is axisymmetric by neglecting the optical aberrations, the
cylindrical symmetry can be reasonably assumed. Note that the imperfect cylindrical symmetry
of the plasma is partly responsible for the non perfect reconstruction of the plasma density.

Specific diagnostics and PIC simulations

The previous diagnostics are common to all LWFA experiments presented. However, some
experiments require more advanced diagnostics. For instance, X-ray beams created by laser-
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a)

b)

Figure 1.22: (a) Example of a recorded interferogram of a plasma column with a Nomarski
interferometer. (b) Corresponding electron density map reconstructed with the Abel inversion
technique.

accelerated electrons (via betatron radiation, Thomson scattering or Compton radiation) have to
be measured (transversally and spectrally) to characterize the quality of the considered radiation
source. Moreover, the precise characterization of transverse quality of the beam (divergence
for instance) require more specific diagnostics. These diagnostics are presented in the specific
sections when used in an experiment.

In this manuscript, every experimental result is supported with PIC simulations to have
more insight in the physical process at stake. Most of these simulations were performed by A.
Lifschitz using the quasi-cylindrical 3D PIC code CALDER-CIRC [Lifschitz et al., 2009], which
solves Maxwell equations using Fourier decomposition along the poloidal direction with respect
to the laser propagation axis. Only the lower modes of the Fourier expansion are calculated,
thus strongly reducing the computational time while being sufficient to simulate laser interaction
with low density plasma as the physics stays quasi-axisymmetric. The simulation parameters
are given in each chapter depending of the performed calculation.
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Chapter 2

Controlled injection in sharp density
transitions

This chapter presents a detailed study of controlled electron injection in sharp density
transitions. In a first part, the principle of electron trapping in a density transition is
presented. The second part is focused on the generation of hydrodynamic shocks in a
supersonic gas jet: theoretical elements are reminded, followed by a numerical study
of shock formation. Finally, the third part shows the experimental study of shock
injection of electrons, presenting the influence of the shock position (transverse and
vertical) with respect to the nozzle.
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Chapter 2. Controlled injection in sharp density transitions

2.1 Injection in a density transition

λp1 λp2 λp3

Laser

ne

z

λ’p1 λ’p2

Laser

ne

z

(a) (b)

Figure 2.1: Schematic representation of downramp electron injection in a long (a) and sharp (b)
density transition.

Injection of electrons in a density transition is based on the idea to control the bubble
expansion. Indeed, the bubble size scales as 4k−1

p
√
a0 ∝ n

−1/2
e , thus the cavity expands as the

laser travels through a longitudinally decreasing plasma density.
As explained in section 1.2.6, for a long density downramp, the phase velocity of the back of

the bubble is lower than the one of the bubble front, leading to the expansion of the bubble during
the propagation, as seen in Fig. 2.1(a). The bubble half-size before downramp is denoted as λp1.
In this region, the wake phase velocity is too large for electrons inside the cavity to be trapped
: they slip across the bubble without being injected. Once it enters the downramp, the back of
the bubble experiences a larger plasma density than the front, and is thus locally decelerated,
leading to an increase of the bubble size during the propagation (λp2 > λp1). Electrons inside
the cavity are then able to stay a longer time in the accelerating gradients, gaining more energy
up to the point where they are eventually trapped in the wake.

Long downramp injection of electrons present some drawbacks. Firstly, electrons may enter
the bubble and be trapped continuously in the density gradient, leading to rather high charges
but also large energy spread. Furthermore, the cavity slows down during the electron bunch
acceleration, and the bunch quickly reaches the center of the cavity where the accelerating field
switches sign. The energy gain of the electron bunch is then quickly limited by dephasing.

With a sharper density transition, the injection mechanism is slightly different, as seen
in Fig. 2.1(b). When crossing the downramp, the cavity half-size λp increases steeply, causing
electrons just behind the bubble to be instantly loaded in the accelerating phase of the wakefield.
The phase velocity of the bubble is frozen in the sharp transition, thus the injection is caused
by the sudden plasma wavelength increase rather than the reduced phase velocity in this case.
Electron injection in a sharp density transition formed by a shock in a supersonic gas flow
(either with a razor blade [Schmid et al., 2010; Buck et al., 2013] or a wire [Burza et al., 2013])
has been experimentally demonstrated in the past few years, producing high quality electron
beams. In the following section, a complete study of sharp density transition generation and
experimental injection of electrons in such a transition are presented. The topic of the shock
position is notably discussed in details.
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2.2. Hydrodynamic shock generation in a supersonic gas jet

2.2 Hydrodynamic shock generation in a supersonic gas jet
In order to achieve good experimental conditions for laser-wakefield acceleration (LWFA), a
spatially confined gas target is needed so that interaction happens only at the laser focal spot. A
gas jet positioned close to the focus of the laser is a common method for producing an underdense
plasma for LWFA experiments. Supersonic gas jets are employed to produce reproducible flat-
top density profiles with steep upward and downward gradients. Tailoring the gas density
profile flowing out of a supersonic nozzle can be very useful to control electron injection and
acceleration. The formation of a hydrodynamic shock into a supersonic gas jet in order to create
a sharp density transition to assist electron injection is explained in the following section.

2.2.1 Theoretical elements of compressible fluid flow

The thermodynamic properties of an isotropic and homogeneous medium are fully defined by
three state variables : temperature T (K), pressure P (Pa) and density ρ (kg.m−3). They depend
on each other, and are linked by the equation of state of the medium. For a perfect gas, the
well-known equation of state is

P = ρRT (2.1)

where R [J.kg−1.K−1] is the specific gas constant. The medium is also defined by its specific
heats cv for constant volume and cp for constant pressure. The ratio between the specific heats
is called the Poisson constant κ = cp/cv, which is 5/3 for perfect monoatomic gases.

A flow of a perfect monoatomic gas is considered in the following. Such a medium is assumed
to be ruled by an isentropic transformation of state when flowing through a nozzle. State
variables in an isentropic transformation between state 1 and state 2 are linked by :

ρ2
ρ1

=
(
T2
T1

) 1
κ−1

(2.2)

P2
P1

=
(
T2
T1

) κ
κ−1

(2.3)

P2
P1

=
(
ρ2
ρ1

)κ
. (2.4)

The following equations describe the evolution of state between two spatial positions (1) and
(2) of a flowing compressible medium in steady state. It is determined by two thermodynamic
state variables and an additional variable which is the flow velocity v.

ρ1v1 = ρ2v2 Mass conservation (2.5)
P1 + ρ1v

2
1 = P2 + ρ2v

2
2 Momentum conservation (2.6)

v2
1
2 + E1 + P1

ρ1
= v2

2
2 + E2 + P2

ρ2
Energy conservation (2.7)

with E the internal energy of the system, depending only on the temperature T for a perfect
gas. From eq. (2.1) and eqs. (2.5) to (2.7), one can derive an implicit relation between P and ρ
describing a general evolution of state :

P2 − P1
ρ2 − ρ1

= κ
P2 + P1
ρ2 + ρ1

. (2.8)
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Evolution of states where large pressure ratios P2/P1 are at stake can be described by the
previous relation, which is the Rankine-Hugoniot relation, plotted in light blue in Fig. 2.2. For
very large pressure ratios, the density ratio tends asymptotically towards (κ+ 1)/(κ− 1), which
is 4 for a perfect monoatomic gas. This means that the density ratio between two positions along
a stream line of a gas flow cannot be larger than 4 whatever the pressure ratio and whatever
the distance between the two points. The Rankine-Hugoniot equation can be used to describe
supersonic compression shocks, such as the one happening in a supersonic nozzle when the gas
flow encounters the walls.
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Figure 2.2: Rankine-Hugoniot curve (light blue) for a perfect gas with constant specific heat. It
tends asymptotically towards (κ+ 1)/(κ− 1) (dark blue).

The sound velocity in a compressible perfect gas is defined as :

c =
√
κRT =

√
cp(κ− 1)T . (2.9)

The Mach number of a gas flow is defined as the ratio between the flow velocity and the sound
velocity :

M = v

c
. (2.10)

For a subsonic gas flow (M < 1) encountering an obstacle in its path, the flow can smoothly
adapt well ahead of the position of the obstacle because the shock information (going at the
speed of sound) is able to travel faster than the flow velocity. This leads to a smooth transition
between the unperturbed upstream flow and the adapted downstream flow. For a supersonic gas
flow however (M ≥ 1), only strong perturbations can travel fast enough upstream, eventually
forming a steady-state shock front. From eqs. (2.5) to (2.7), one can derive the relations for an
evolution of state in a shock front for a perfect gas, with the state (1) before the shock and the
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Figure 2.3: Change of variables ρ (a), P (b), T (c) and M (d) in a normal shock in a perfect
gas (Helium) as a function of the initial Mach number of the flow M1.

state (2) after [Von Mises et al., 2004]:

ρ2
ρ1

= v1
v2

= 1
1− 2

κ+1

(
1− 1

M2
1

) (2.11)

P2
P1

= 1 + 2κ
κ+ 1(M2

1 − 1) (2.12)

T2
T1

= 1
M2

1

(
1 + 2κ

κ+ 1(M2
1 − 1)

)(
1 + κ− 1

κ+ 1(M2
1 − 1)

)
(2.13)

M2 =

√√√√1 + κ−1
κ+1(M2

1 − 1)
1 + 2κ

κ+1(M2
1 − 1)

. (2.14)

As can be seen, all the variables changes in a shock depend only on the initial Mach number M1
of the flow before the shock, and are only valid for supersonic flows (M1 ≥ 1). These relations
are plotted in Fig. 2.3 for Helium. It shows that the density ratio (Fig. 2.3(a)) converges towards
an asymptotic value of 4 (maximum value reachable for a Rankine-Hugoniot transformation for
a monoatomic gas) while the pressure (Fig. 2.3(b)) and temperature (Fig. 2.3(c)) ratios grow
consistently. Fig. 2.3(d) shows that the gas flow is always subsonic after the shock, with M2
decreasing as M1 increase. In summary, for high initial Mach number, the flow is compressed,
heated up and decelerated.

In order to form a nice density transition, the gas flow Mach number must be high enough
at the output of a nozzle without any obstacle. In the following is studied how to form such a
flow with a supersonic nozzle by considering a continuous gas flow with no discontinuous shock
occuring. The subsequent analysis of the gas flow is quasi-1D along the flow direction, as the
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Figure 2.4: Schematic of a converging - diverging supersonic nozzle.

nozzle walls bound the gas flow. A schematic of a simple nozzle is drawn in Fig. 2.4, with D0
the throat diameter, De the exit diameter and L the distance between throat and exit.

The governing equations of the gas flow can be derived by considering the cross section of the
nozzle S normal to the flow propagation axis z. In 1D, all the describing variables (ρ, P, T,M)
are constant over each vertical section S. From eqs. (2.2) to (2.4), one obtain the following
differential equations for a continuous, isentropic flow in a nozzle :

dρ

ρ
+ dv

v
+ dS

S
= 0 Mass continuity equation (2.15)

−SdP = (Sρv)dv Momentum continuity (2.16)
dP

dρ
= c2 Isentropic transformation (2.17)

dT

T
= −(κ− 1)M2dv

v
Energy conservation. (2.18)

From eqs. (2.16) and (2.17), one can derive the relation :
dρ

ρ
= −M2dv

v
. (2.19)

Thus, for Mach numbers smaller than one, the relative variation of density is smaller than the
relative variation of velocity. A flow with a very low Mach number is then almost incompress-
ible. For high Mach number (hypersonic flow), the maximum velocity is almost constant (with
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the density) and density, pressure, and temperature vary strongly. By combining eqs. (2.15)
and (2.19), the relation between Mach number variation and the flow cross section variation is
given by :

dS

S
= (M2 − 1)dM

M
. (2.20)

The flow kinetic in the nozzle is ruled by this equation. For a subsonic flow (M < 1), the flow
velocity increases with shrinking cross section and for supersonic flows it increases with growing
cross section. This effect is exploited in converging-diverging nozzles (as depicted in Fig. 2.4) in
order to obtain millimeter scale supersonic gas flows.

First, in the converging section (in green in Fig. 2.4), the gas flow leaves the reservoir
with the parameters (ρ∗, P ∗, T ∗,M∗) and accelerates up to M close to 1, which is reached in
the throat (in blue). When the flow cross section reaches a minimum, the flow changes from
subsonic to supersonic : it is the so-called critical plane, for which the flow parameters are
(ρ0, P0, T0,M0 ∼ 1). Then, the flow can expand further in the diverging section of the nozzle
(in red in Fig. 2.4) and thereby acquires supersonic velocity M > 1. The length L over which
the gas flow accelerates is directly linked to the surface ratio S/S0. The final Mach number M
of the flow accelerated up to the surface S from the critical surface S0 is given by :

S

S0
= 1
M

(
2 + (κ− 1)M2

κ+ 1

) κ+1
2(κ−1)

. (2.21)

The Mach number at the exit of a supersonic gas nozzle thus depend only on the surface ratio
between the exit surface Se = πD2

e/4 and the throat surface S0 = πD2
0/4. Figure 2.5 shows the

evolution of Mexit function of the surface ratio for a converging - diverging nozzle. Note that
typical supersonic nozzles can easily have surface ratios up to Se/S0 = 25, leading to high Mach
numbers, up to Mexit = 7.
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Figure 2.5: Mach number at the exit of a supersonic converging-diverging nozzle function of the
surface ratio S/S0, with κ of a monoatomic perfect gas.
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The density and pressure of the gas at the nozzle exit depends on the gas parameters
(ρ∗, P ∗, T ∗,M∗) in the reservoir and on the exit Mach number as :

ρ = ρ∗
(

1 + (κ− 1)M2

2

) −1
κ−1

(2.22)

P = P ∗
(

1 + (κ− 1)M2

2

) −κ
κ−1

. (2.23)

These quantities are shown in Fig. 2.6 as a function of the surface ratio S/S0, with S the surface
in the diverging region of the nozzle where the density is calculated. The larger the surface ratio,
the more supersonic the gas flow, and the lower the density and pressure. The pressure at the
nozzle exit for a surface ratio S/S0 = 20 (corresponding to an exit Mach number Mexit = 6.5)
drops by almost three orders of magnitude (Fig. 2.6(b)) compare to the throat pressure.
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Figure 2.6: Mach number at the exit of a supersonic converging-diverging nozzle function of the
surface ratio S/S0.

The nozzle geometry (through the surface ratio Sexit/S0) directly fixes the Mach number of
the gas flowing out of the nozzle. The relation between the pressure and density in the reservoir
and the output pressure and density depends only on this geometry. Thus, by tuning the backing
pressure in the reservoir, one can change the output gas density with a well-known factor linking
the two quantities, depending only on the nozzle geometry. Using a strongly supersonic nozzle
allows for the generation of high velocity gas flow with sharp gradients (as the gas is highly
collimated in the flow direction) but needs a strong backing pressure (a few dozens of bar) to
reach typical pressure we need in LWFA experiments (a few hundreds of mbar, corresponding
to a gas neutral density in the range 1018 − 1019 cm−3).

To conclude, in order to generate strong shocks to get sharp density gradients, the gas flow
Mach number must be high enough to get maximum compression of the gas, thus the use of
highly supersonic gas nozzle (with a large surface ratio Sexit/S0) is desirable.

2.2.2 Computational Fluid Dynamics of a supersonic gas flow

In order to correctly design a working setup to generate a sharp density transition in a supersonic
gas jet, the flow formation was studied by resolving the Navier-Stokes equations. To this end, I
used the commercial code ANSYS FLUENT to numerically predict the gas flow parameters.
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Figure 2.7: (Left) Typical mesh used in the 2D-planar simulations. The gas enters the pressure
inlet (blue), propagates in the nozzle (dark grey, defined as walls in the simulation) along the
axis and extends in vacuum through the pressure outlets (red). (Right) Magnified portion of
the mesh along the walls. The radial mesh resolution is increased towards the wall by adding
twenty boundary layers (light green).

In the following section, the computed fluid is helium (which is assumed to be a perfect
gas) in a converging - diverging nozzle (as schemed in Fig. 2.4) with the following geometrical
parameters : D0 = 0.5 mm, De = 1.5 mm and L = 4 mm. From the previous section, the
corresponding exit Mach number should be analytically Me = 4.8, and the factor linking the
reservoir density to the output density is 0.4.

The numerical problem is set up in 2D-planar geometry, as shown in Fig. 2.7. The mesh is
generated with the built-in generator and is refined up to a point where the solution is not mesh-
dependent anymore. Full 3D simulations and 2D-axisymmetric simulations are also performed
and it is verified that the axisymmetric or 2D-planar hypothesis give identical results in this
case. The near-wall meshing is of major significance for the quality of Computational Fluid
Dynamics (CFD) numerical solutions, because the walls are the main source of flow turbulence.
Thus, the boundary layers must be sufficiently resolved for the simulation turbulence models to
correctly compute the flow behavior close to the walls. The boundary layers can be seen in the
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(a) (b)

Figure 2.8: 2D gas density (a) and Mach number (b) maps of the simulated gas flow.

zoomed mesh presented in Fig. 2.7.
The boundary conditions are defined as the following : a pressure inlet on the reservoir

side (P ∗ = 11 bar) and a pressure outlet outside the nozzle exit (Pvacuum ∼ 0 bar). It is also
considered that the gas does not exchange any energy with the walls. After the gas flow exits
the supersonic nozzle, it emanates into an extremely low pressure medium (as perfect vacuum
cannot be correctly simulated) and leaves the simulation box through the pressure outlets. The
simulation is run up to it converges on a steady-state with a high enough stability. In order to
achieve fast and stable convergence, the simulation is initialized with the hybrid initialization
function of FLUENT, which defines an initial state which approaches the final solution, though
with extremely poor accuracy.

Figure 2.8 shows the 2D maps of the neutral gas density ng (a) and the Mach number
(b) of the simulated gas flow. The gas expands in the diverging part of the nozzle, with the
flow being guided by the walls into the forward direction. The gas flow is well confined with a
rather large kinetic energy in the forward direction when exiting the nozzle. Thus, the transverse
acceleration of the gas is much smaller than the forward velocity when leaving the nozzle, leading
to low divergence gas jet with rather sharp density gradients. Far away from the exit (a few
millimeters), the divergence is approximately the same. Indeed, due to the low pressure at
the nozzle exit, the gas flow is essentially collisionless and the particles follow almost ballistic
trajectories, roughly maintaining the divergence of the jet. The faster particles are those at the
edge of the jet forming the density gradients, since they can expand freely in vacuum without
being perturbed by the gas flow pressure (as seen in Fig. 2.8(b)). Indeed, in the center of the
flow, the pressure experienced by a fluid element is the same whatever the direction, so the
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2.2. Hydrodynamic shock generation in a supersonic gas jet

velocity is constant. On the flow edges however, the pressure is weaker on the sides and the
fluid is accelerated away from the center, leading to the formation of density gradients (which
are larger when getting away from the nozzle as the transverse velocity becomes larger).
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Figure 2.9: Transverse density profiles for different heights z from the nozzle exit.

The transverse density profiles depend on the height after the nozzle exit, as shown in
Fig. 2.9. Directly at the nozzle exit (z = 0 mm, darker blue), the density profile consists in a
1 mm long plateau at ng = 3.6 × 1019 cm−3 with 250 µm long gradients. It keeps roughly the
same shape up to z = 0.5 mm. Higher than that, the plateau shape starts to transform into
a more parabolic shape with smoother gradients and a lower peak density. At z = 1.5 mm,
the peak density decreases down to ng = 3 × 1019 cm−3 with 2 mm long gradients. Note that
these long gradients consist of particles with much higher velocity than the center of the gas jet
(as seen in Fig. 2.8(b)) : maximum Mach number is found on the gradients. The peak density
evolves slowly with the height, as well as the FWHM diameter of the flow (which is observed to
be roughly equal to 1.5 mm from z = 0 mm up to z = 2 mm).

Figure 2.10 shows the Mach number profiles for the same heights. As explained, the gas flow
velocity is much higher on the sides than in the center of the jet once the gas has expanded.
Close to the exit, the jet is still very collimated and cannot expand yet, thus the velocity is
maximum at the center. Higher from the nozzle output however, the gas flow is able to expand
freely in vacuum and can accelerate further, especially on its sides where no gas pressure restrain
it. At z = 2 mm, the particles in the jet gradients can reach Mach numbers up to 6, forming a
very supersonic flow in these regions. Neutral density and Mach number line-outs at this height
are shown in Fig. 2.11(a), while Fig. 2.11(b) represents pressure and temperature line-outs. The
peak pressure of the gas flow (0.24 bar) is much lower than the backing pressure in the reservoir
(11 bar). Indeed, the gas expanded both in the diverging section of the nozzle and in vacuum.
The fast expansion of the gas also lead to a strong cooling down to roughly 60 K.
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Figure 2.10: Mach number transverse profiles for different heights z from the nozzle exit.

x [mm]
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

N
eu

tra
l g

as
 d

en
si

ty
 [c

m
-3

]

×1019

0

1

2

3

M
ac

h 
nu

m
be

r

3

4

5

6

x [mm]
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Pr
es

su
re

 [b
ar

]

0

0.1

0.2

0.3

Te
m

pe
ra

tu
re

 [K
]

0

25

50

75
(a) (b)

Figure 2.11: (a) Density and Mach number transverse line-outs of the gas flow at z = 2 mm.
(b) Pressure and temperature transverse line-outs of the gas flow at z = 2 mm.

In order to understand the evolution of the gas flow parameters from the reservoir to the
vacuum chamber, Fig. 2.12 represents the neutral gas density and Mach number (a), the pressure
and temperature (b) along the flow propagation axis z (for x = 0 mm, in the center of the jet). In
the converging region of the nozzle (in green), M < 1 and the jet is subsonic, with the pressure
and temperature dropping quickly. In the diverging section (in red), the jet becomes more and
more supersonic while the density and pressure decrease slows down. In the exit plane, Mach
number is around 3, forming a well-collimated supersonic gas jet. The pressure is much lower
than at the nozzle throat (0.3 bar compared to 5 bar, divided by a factor of 15) for a not so
different density (which is only divided by 3), as well as the temperature (around 75 K at the
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Figure 2.12: (a) Density and Mach number line-outs along the the gas flow direction at x = 0
mm. (b) Pressure and temperature line-outs along the the gas flow direction at x = 0 mm. The
green (resp. red) area represents the converging (resp. diverging) section of the nozzle.

exit compared to 300 K in the reservoir). Since the main cause for gas transversal spread is
the pressure, such a supersonic gas jet with low exit pressure allows for the flow to maintain its
divergence over a significantly large propagation distance while expanding in vacuum.

2.2.3 Simulations of shock front generation in a supersonic gas jet

Electron injection in a density transition requires the generation of sharp shock fronts. The
supersonic properties of the gas flow can be used in order to easily obtain shocks by placing
a solid obstacle in the way of the gas jet (up to now, these were the nozzle walls but can
also be another object, for instance a sharp edge of a blade). This idea was mainly developed
in [Schmid et al., 2010; Buck et al., 2013], and is studied in details in the current section. It
has been explained in section 2.2.1 how shock fronts are generated in supersonic gas flows when
encountering a solid obstacle. It was determined that the relation of gas parameters before and
after the shock front only depend on the Mach number of the unperturbed gas flow (as seen in
Fig. 2.3).

The same nozzle presented in section 2.2.2 is considered in 2D-planar geometry, with a
perfectly rectangular blade placed in the path of the gas jet. The position of the right-down
corner of the blade (xblade, zblade) defines its placement in the jet. The mesh is refined from this
point to get a better resolution around the blade where the shock is formed, as shown in Fig. 2.13.
The minimum cell size is 1 µm at the vicinity of the blade corner, with the mesh inflating slowly
up to 50 µm cell size where the flow resolution is less critical. The boundary conditions and
system initialization are the same than in the simulation presented in section 2.2.2.

The blade is first placed at (xblade = −1 mm, zblade = 1.3 mm). The simulated gas density
map is shown in Fig. 2.14(a), with the generated shock front clearly visible when the flow
encounters the blade. The sharp density transition can easily be observed, forming an angle
with the flow direction of θshock = 15◦. Line-outs of gas density and Mach number at z = 3
mm are plotted in Fig. 2.14(b). The density ratio across the density transition is n1/n2 = 1.52
with n1 (resp. n2) the gas density before the shock (resp. after the shock). The zone denoted
as "after" the shock corresponds to the unperturbed region of the gas jet, while "before" refers
to the gas zone the laser encounters prior to cross the shock front (with the laser propagating
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Figure 2.13: (Left) Typical mesh used in the 2D-planar simulations of shock front generation.
The position of the blade is referred as (xblade, zblade), the coordinates of the right-down corner.
(Right) Refined mesh in the vicinity of the blade. The cell size decreases towards the blade
down to 1 µm.

from the left in Fig. 2.14(a)). According to eq. (2.11), and taking into account the shock angle
with the jet direction θshock, one can derive [Schmid et al., 2010] :

n1
n2

= 1− 2
κ+ 1

(
1− 1

(M1 sin(θshock))2

)
(2.24)

with M1 the initial Mach number of the gas flow. From the line-outs, M1 = 3 and θshock = 15◦,
then one can derive n1/n2 = 1.50 which is in good agreement with the computed solution.
Figure 2.14(c) shows that the pressure and temperature also drop after the shock front, with
P1/P2 = 2.15 and T1/T2 = 1.41. From eqs. (2.12) and (2.13), one can compute P1/P2 = 2.19
and T1/T2 = 1.47. The simulation gives very similar relations between parameters before and
after the shock than predicted by the theory explained in section 2.2.1, validating the theoretical
model correctness.

The shock front can be described with two useful parameters for electron injection experi-
ments : the density ratio n1/n2 and the transition width eshock. This width is defined between
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Figure 2.14: (a) 2D gas density map of the simulated shock generation in a supersonic gas flow.
(b) Density and Mach number transverse line-outs of the gas flow at z = 3 mm. (c) Pressure
and temperature transverse line-outs of the gas flow at z = 3 mm.
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Figure 2.15: Density transverse line-out of the gas flow at z = 3 mm. The grey area represents
the width of the shock eshock at that height.
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0.95n1 and 1.05n2. By taking a closer look at the density line-out, these two quantities can be
finely estimated (see Fig. 2.15) at z = 3 mm, which is a typical height at which the laser was
fired in shock injection experiments : n1/n2 = 1.52 and eshock = 55 µm. Note that the shock
width rapidly drops down to around 10 µm closer to the blade. However, in the experiments
presented in this manuscript, the laser was fired about 1 mm from the blade because of me-
chanical constraints due to the blade mount. Hence, all the following shock parameters scan
are considered at height of 1 mm from the blade to efficiently compare with the experimental
results.
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Figure 2.16: Density transverse line-outs at z = 3 mm for different transverse positions of the
blade xblade measured from the center of the gas jet (x = 0 mm).
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Figure 2.17: (a) Remaining gas length (from the shock front to the half height of the downward
gradient) for different transverse positions of the blade xblade. (b) Shock width eshock and density
ratio n1/n2 for different transverse positions of the blade xblade.
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2.2. Hydrodynamic shock generation in a supersonic gas jet

Equations (2.11) to (2.14) determine how the shock parameters are modified as the blade
is moved in and out the gas flow. Indeed, the pressure and density ratio (respectiveley P1/P2
and n1/n2) depend only on the initial local Mach number of the gas, which changes in the
transverse direction for a given height (as seen in Fig. 2.10). Figure 2.16 shows density line-outs
for different values of xblade, corresponding to different transverse positions of the blade. The
shock parameters evolve when the blade enters the flow. As the blade is moved more and more
into the gas jet, a larger part of the flow is blocked and it encounters a lower and lower Mach
number. The gas being less supersonic, the non-negligible transverse velocity tends to increase
the shock width. However, the shock is more efficiently generated and the density ratio tends
to increase. The remaining length of gas after the shock obviously decreases when entering the
blade. These variations are presented in Fig. 2.17(a-b). By moving the blade out, the density
ratio is reduced. However, the encountered Mach number is higher on the flow edges and the
shock width decreases. Once the blade does not encounter enough gas flow anymore, the shock
strongly decays. For electron injection, the sharpest the transition, the lower the energy spread.
Thus, it is better to move the blade as far as possible from the jet center while maintaining a
stable and strong enough shock. By doing this, the transition is as sharp as possible while the
remaining gas length is maximized, allowing for a better energy gain.
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Figure 2.18: Density transverse line-outs at 1 mm height from the blade for different heights of
the blade zblade measured from the exit of the gas jet (z = 0 mm).

The blade height from the nozzle exit is also an important parameter to be taken into account.
Figure 2.18 shows density line-outs at (zblade+1) mm for different values of zblade, corresponding
to different heights of the blade. While the density profile keeps a similar shape whatever the
height, the shock parameters are modified. Indeed, for a same transverse position of the blade,
the Mach number of the unperturbed gas flow increases with the height (as shown in Fig. 2.10).
As explained in the previous paragraph, this leads to the generation of a sharper shock. When
moving the blade up, the length of remaining gas after the shock slightly increases due to the
wider flow, as seen in Fig. 2.19(a), while the shock width is reduced (Fig. 2.19(b)). The density
ratio is however increased, due to the fact that when increasing zblade while maintaining xblade
constant, the local density is higher, forming a stronger shock. In order to form a stable and
strong shock, it is better to increase the blade height as much as possible (to optimize the shock
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Figure 2.19: (a) Remaining gas length (from the shock front to the half height of the downward
gradient) for different heights of the blade zblade. (b) Shock width eshock and density ratio n1/n2
for different heights of the blade zblade at z = 3 mm.

parameters) while maintaining a high enough density in the plateau to efficiently generate a
wakefield in laser-electron acceleration experiments.

In conclusion, the position of the blade edge in the supersonic gas flow is of major importance
to optimize the shock front formation for density transition injection. In order to obtain a sharp
transition with a maximum density ratio, the blade should be placed far enough from the jet
center and from the nozzle exit. This way, the shock width is reduced (which is interesting to
instantaneously change the wakefield properties when crossing the transition), the density ratio
is increased (to trigger electron injection in the shock while shutting it down after the transition)
and the remaining gas length is maximized (to have the maximum energy gain for accelerated
electrons).

2.3 Experimental injection of electrons in a sharp density gra-
dient

In order to obtain better quality electron beams than in the self-injection scheme, a sharp density
transition is used to inject electrons in the wakefield. Indeed, the self-injection process is highly
non-linear and leads to largely fluctuating electron beams. Shock injection allows for more
reproducible and stable electrons as it is less dependent on the laser pulse evolution during its
propagation. A comprehensive experimental study of shock front injection is presented in this
section.

2.3.1 Experimental setup and diagnostics

The main interaction beam P1 from the "Salle Jaune" laser system (linearly polarized, 28 fs
FWHM, 1.8 J) is focused at the entrance of a gas jet using a f/15 Off-Axis Parabola (OAP with
a focal length of 1000 mm). The experimental setup is pictured in Fig. 2.20. The 1/e2 focal
spot diameter is measured to be 26 ± 0.6 µm. An image of the focal spot and its transverse
profile can be seen in Fig. 2.21(a). The energy contained in this spot diameter is 53 ± 2 % of
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Figure 2.20: Drawing of the experimental setup for electron injection in a density transition.

the total energy. The peak laser intensity and the corresponding normalized vector potential a0
are 1.45± 0.5× 1019 W.cm−2 and 2.60± 0.05, respectively.

The helium gas jet is formed with a De Laval supersonic nozzle with an output diameter of
1.5 mm. The laser is fired at a height of 3 mm from the nozzle exit, leading to the formation
of a 3.2 mm long plasma. A low energy probe beam is used to measure a shadowgraph of
the formed plasma (as seen in Fig. 2.21(b)). The electron density is varied by changing the
backing pressure ahead of the nozzle, and its density profile is characterized using a Nomarski
interferometer afterwards. If not stated otherwise, the electron plasma density without shock is
n2 = 7.5× 1018 cm−3.

Shock front

Laser propagation 
axis

Gas flow direction
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front
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Figure 2.21: (a) Experimental laser focal spot obtained with a 1 m focal length off-axis parabola.
(b) Shadowgraph image of the propagation of the laser in a pure helium gas jet. Z = 0 µm
corresponds to the center of the nozzle. The shock is visible at Z = −900 µm.

The shock is produced by introducing a 500 µm thick silicon wafer into the gas flow, forming
a sharp density transition as presented in section 2.2. The shock formed in the plasma is clearly
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visible in Fig. 2.21(b)). The position of the silicon blade (referred as (xblade, yblade)) defines the
position and density ratio n1/n2 of the transition. The blade is moved into the flow at a height
of about 2 mm from the nozzle exit, with the laser fired at about 1 mm above the blade (due to
the blade mount obstructing the beam if focused closer). In this scheme, electrons are injected
at the shock position and accelerated in the remaining part of the gas jet.

2.3.2 Stable generation of electron beams

Firstly, the electron density is set high enough (around n2 ∼ 2 × 1019 cm−3) in order to be
in the self-injection regime with the blade out of the jet, so that the laser focus position can
be optimized. Once the electron signal is maximum, the electron density is lowered down to
the point where self-injection completely stops (around n2 = 7.5 × 1018 cm−3). When moving
slightly the silicon wafer in the flow and creating the shock front, electron acceleration starts
again, with a very bright spot appearing in the top view image at the position of the shock. The
light emitted at this position is due to the very large acceleration of injected electrons from null
velocity at injection to c, leading to a strong emitted radiation [Thomas et al., 2007], supporting
the idea that observed electrons are indeed injected in the bubble at the density transition.

(a)

(b)

Figure 2.22: (a) Experimental spectrum (corrected from the spectrometer dispersion) of shock
injected electrons in a plasma density n2 = 7.5× 1018 cm−3. (b) Spectrum integrated over the
transverse direction.

A typical experimental electron spectrum for the optimized blade position is visible in
Fig. 2.22(a), with the integrated spectrum over the transverse dimension shown in (b). Shock
injection allows to generate a mono-energetic electron beam with a peak energy Epeak = 250
MeV, a FWHM energy spread ∆E = 9.5 MeV (relative energy spread of 3.8 %), a charge in the
peak Qpeak = 3.2 pC and a divergence FWHM of 1.9 mrad. Beams generated from transverse
self-injection are more charged (few dozens of picocoulombs) but the energy spread is typically
larger (in the range of 10 - 20 %) and much more unstable.

Figure 2.23 shows five consecutive shots for the same density and blade position. The beam
parameters are more stable than in the self-injection regime, with an injection probability larger
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Figure 2.23: Experimental spectra of shock injected electrons for five consecutive shots.

than 90 %. It is due to the fact that shock front injection is less dependent on the nonlinear
evolution of the laser pulse (which is responsible for transverse self-injection), with a fixed
injection position as soon as the density transition is generated steadily. The standard error of
the mean is calculated over five shots for each beam parameters :

Epeak = 256.5± 4 MeV
∆E = 15.5± 2 MeV

∆E/E = 6± 1%
Qpeak = 3.2± 0.4 pC

Divergence = 2.0± 0.3 mrad

Density transition injection is an interesting regime to create low divergent mono-energetic
electron beams with a quite narrow energy spread at the cost of a reduced charge (only a few
pC) compare to transverse self-injection (few dozens of pC). The number of low-energy electrons
is however very small, all electrons being trapped at the same time and gaining about the same
amount of energy (therefore leading to low energy spread). Almost all of the charge is contained
in the mono-energetic peak for all the shots.

2.3.3 Beam parameters scaling

An interesting property of shock front injection is the possibility to change multiple parameters
(electron density, blade position) in order to tune the electron parameters. As seen in section 2.2,
the density transition parameters can be modified by changing the transverse position of the
blade xblade while maintaining the blade height zblade. xblade is varied between -2 mm and -0.5
mm, with 0 mm at the center of the gas jet.

The electron energy is tuned by moving the blade in the jet, as shown in Fig. 2.24(a).
When the blade is out of the jet (xblade < −1.6 mm), no shock is generated and only very few
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Figure 2.24: (a) Peak energy (in red) and energy spread (in blue) of the electron beam for
different transverse positions of the blade xblade. (b) Charge (in yellow) and FWHM divergence
of the electron beam for different transverse positions of the blade xblade. xblade = 0 mm
corresponds to the center of the jet. The error bars represent the standard error of the mean
over at least five shots. The laser normalized intensity is a0 ∼ 2.6.

electrons (less than 0.1 pC) are self-injected in the wake. When sufficiently in the jet so that it
generates a shock (xblade = −1.3 mm), electrons are trapped and accelerated. For this position,
the remaining accelerating length is maximum after the transition, leading to the maximum
electron energy with this nozzle. The more the blade is inserted, the lower the peak energy, due
to a reduced accelerating length.

Since the injection is limited in a narrow time window when the bubble crosses the shock
front, the absolute energy spread is defined at injection and does not change much for different
acceleration lengths (staying between 10 and 20 MeV). The divergence of the electron beam
increases significantly from 2 to 5 mrad for lower electron energies (due to the energy dependance
of the divergence), as seen in Fig. 2.24(b). The charge of the peak increases when entering the
gas jet, up to 15 pC. Indeed, it was simulated in section 2.2.3 that the closer the blade gets to
the center, the larger the shock width and the density ratio n1/n2. With a wider shock, the
injection is not as temporally confined as with a sharp transition, thus the electrons are injected
for a longer time (increasing the number of injected electrons). Furthermore, a larger n1 also
tends to increase the number of electrons potentially able to be injected as this position. For
xblade > −0.8 mm, the blade is too close to the center and the shock is not generated finely
(very large width and low density ratio, as seen in Fig. 2.16) and the accelerating length is quite
short. The energy peak and charge drop considerably for such blade positions.

The Helium backing pressure of the nozzle was scanned in order to study the influence of
the background plasma density n2 on shock injected accelerated electrons. A two-dimensional
scan was performed by recording electron spectra while changing the blade position xblade for
different electron densities n2. The mean peak energy (resp. the charge) of five consecutive
shots for different values of (xblade,n2) are shown in Fig. 2.25(a) (resp. (b)). If the electron
density is too low (under 3.0 × 1018 cm−3), no electrons are injected in the transition as the
wakefield is too weak. The larger the electron density, the larger the peak energy for a constant
xblade because of stronger longitudinal electric fields and a longer length over which the bubble
is sustained. As n2 increases, the beam charge is larger when the blade gets out of the gas flow
(as seen in the tilted colored region between -0.6 mm and -1.2 mm in Fig. 2.25(b)). Indeed,
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2.3. Experimental injection of electrons in a sharp density gradient

(a) (b)

Figure 2.25: (a) Peak energy (a) and charge (b) of the electron beam for different transverse
positions of the blade xblade and electron plasma density n2. The white dotted circles represent
the optimum set of parameters to get the highest peak energy and charge.

more electrons are injected in the transition for larger n1, as more of them accumulated at the
back of the bubble before the density transition (as pictured in Fig. 2.1(b)). On the contrary, if
n2 increases too much while the blade is still too close to the center, the local Mach number of
the flow strongly decreases and a shock cannot be generated efficiently (the subsonic flow simply
goes around the blade), thus no electrons are injected (as observed in the right corner of the 2D
maps). If the electron density is too large (1.2 × 1019 cm−3), self-injection is triggered leading
to higher charged lower energy electron beams (upper left corner in Fig. 2.25(b)). An optimum
set of parameters to get the highest peak energy and charge with a0 ∼ 2.6 is (n2 = 7.5 × 1018

cm−3,xblade = −1.1 mm).
Controlled injection in a density transition allows to generate electrons in a very wide and

tunable energy range (between 75 and 250 MeV) and low charge (between 3 and 15 pC) with
an easy implemented experimental setup. The simple tunability in such a regime is particularly
interesting in numerous application experiments.

2.3.4 Tunability with the blade position in the jet

As seen previously, the position of the blade in the jet is of major importance in density transition
injection. Another experimental campaign has been performed to study the influence of this
position. The same setup presented in Fig. 2.20 is used, with slightly lower laser intensity.
The laser pulse contains 1.3 J, with a 1/e2 focal spot diameter of 31 ± 0.7 µm. The energy
contained in this spot diameter is 55 ± 2% of the total energy. The peak laser intensity and
the corresponding normalized vector potential a0 are 7.5 ± 0.5 × 1018 W.cm−2 and 1.9 ± 0.06,
respectively. The background plasma density is set at n2 = 7× 1018 cm−3.

By optimizing the blade position, we obtained the experimental angular resolved electron
spectrum presented in Fig. 2.26(a), with the integrated spectrum over the transverse dimension
shown in (b). The generated mono-energetic electron beam has a peak energy Epeak = 87 MeV,
a FWHM energy spread ∆E = 5 MeV (relative energy spread of 5.7 %), a charge in the peak
Qpeak = 2.1 pC and a divergence FWHM of 2.6 mrad. The beam parameters are overall worse
than in the previous experiment (lower charge and peak energy, larger divergence). This is likely
due to the lower laser intensity (thus a wakefield excitation not as efficient as before), and by
the fact that the laser was fired at 3 mm from the blade (thus leading to wider shock fronts with
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(a)

(b)

Figure 2.26: (a) Experimental spectrum of shock injected electrons in a plasma density n2 =
5 × 1018 cm−3. (b) Spectrum integrated over the transverse direction. The laser normalized
intensity is a0 ∼ 1.9

Figure 2.27: Experimental spectra of shock injected electrons for nine consecutive shots. The
colorscale represents the charge per energy unit and per angular unit (in e−/MeV.sr).

a reduced density ratio).
The stability is also poorer than in the previous study, as shown in Fig. 2.27 which represents

nine consecutive shots with the same density and blade position. A deficient laser wavefront or
inhomogeneities in the laser spot may be the reason for the stability decrease of shock injection
in this experiment. The standard error of the mean is calculated over nine shots for each beam
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Figure 2.28: Experimental spectra for different transverse positions of the blade xblade (a) and
their corresponding integrated electron spectra (b).

parameters :

Epeak = 84.7± 1.3 MeV
∆E = 7.7± 1.7 MeV

∆E/E = 9.1± 2%
Qpeak = 2.9± 0.3 pC

Divergence = 2.1± 0.3 mrad

A second peak with a lower energy appeared in this experimental run. This is likely due to
the fact that the laser being fired further from the nozzle output and the blade, the shock is wider
and electrons can be injected over a larger region (thus with different energy than those directly
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Figure 2.29: (a) Peak energy (in red) and energy spread (in blue) of the electron beam for
different transverse positions of the blade xblade. (b) Charge (in yellow) and FWHM divergence
of the electron beam for different transverse positions of the blade xblade. The laser normalized
intensity is a0 ∼ 1.9.

injected at the very beginning of the downward density transition). A complete study of the
beam parameters dependance with the blade position is presented in the following paragraph.

Firstly, the blade is moved transversally in and out the gas jet: xblade ranges from -1.06 mm
to -0.79 mm, with xblade = 0 mm at the center. As seen in Fig. 2.28(a-b), the electron spectra
depend strongly on the shock position. When the blade is too far away (xblade = −1.06 mm) or
too much inside the jet (xblade = −0.79 mm), almost no electrons are injected. The range over
which shock injection is triggered is much smaller than in the previous experiment, due to the
weaker laser intensity. Figure 2.29(a-b) shows the beam parameters evolution with the shock
position. The same behavior than observed in the previous study is found again, yet with a
reduced tunability range for the peak energy and charge.

The height of the blade zblade is now modified while keeping the same transverse position
xblade = −0.98 mm. zblade ranges from 1.32 mm to 1.99 mm from the nozzle exit, while the laser
is shot at 3 mm above the exit. The effect on electron spectra is shown in Fig. 2.30(a-b). When
the blade is moved up (and closer to the laser), the electron energy does not vary much at the
beginning, then decreases quickly down to a point when electrons are not injected anymore. The
beam parameters are shown in Fig. 2.31(a-b). If the blade is too close from the exit (zblade = 1.32
mm), few electrons are accelerated. Indeed, as seen in Fig. 2.12, the Mach number decreases
quickly when getting closer to z = 0 mm while maintaining a constant x. Thus, the density ratio
n1/n2 of the shock is smaller for small zblade, as shown in Fig. 2.19. The density is not sufficient
enough to trap and accelerate a lot of electrons in this case. Also, the laser is fired too high
from the blade, thus encountering quite a wide shock leading to poorer electron parameters.
When increasing zblade, the acceleration length increases slowly and the shock width decreases
(Fig. 2.19). Experimentally, the beam parameters are not strongly influenced by the blade
height between 1.4 mm and 1.8 mm. Over this range, the shock parameters do not have a clear
effect on electrons. When the blade is too far from the nozzle output however, the peak energy
decreases because of the reduced density n2, leading to weaker accelerating fields.
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(a)

(b)

zblade = 1.32 mm
zblade = 1.36 mm
zblade = 1.40 mm
zblade = 1.44 mm
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zblade = 1.60 mm
zblade = 1.68 mm
zblade = 1.76 mm
zblade = 1.83 mm
zblade = 1.91 mm
zblade = 1.99 mm

Figure 2.30: Experimental spectra for different heights of the blade zblade (a) and their corre-
sponding integrated electron spectra (b).

2.4 Conclusion
In conclusion, we presented in this section a detailed study of shock generation in supersonic
gas jets and controlled electron injection in such sharp density transitions. In this injection
mechanism, instabilities of the electron beam parameters are greatly reduced compared to the
transverse self-injection regime. Tunable electrons up to 250 MeV were accelerated in a stable
and reproducible way with a very good injection probability. The accelerated electrons have a low
divergence around 2 mrad and a small energy spread (down to 4 %). The beam charge however is
relatively small (around 3 pC), but can be increased (up to 15 pC) when moving the blade in (at
the cost of a reduced peak energy due to a reduced acceleration length). Such good quality, lowly
charged beams are interesting candidates for multi-staged laser-plasma accelerators [Schroeder
et al., 2010; Kim et al., 2013a], where the transport between stages require high quality beams.
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Such beams would also be interesting for LWFA-based FEL [Nakajima, 2008] if not the low
charge. An important and useful step would be to enhance the charge while maintaining the
beam quality in shock injected electron beams.
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Figure 2.31: (a) Peak energy (in red) and energy spread (in blue) of the electron beam for
different heights of the blade zblade. (b) Charge (in yellow) and FWHM divergence of the
electron beam for different distances of the blade from the nozzle output zblade.
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Chapter 3

Ionization injection in a laser-plasma
accelerator

This chapter is focused on the ionization injection mechanism in a high Z gas. In the
first part is detailed the injection principle based on tunnel-ionization of inner shell
electrons. The experimental and numerical results of electron acceleration in a pure
high Z gas are presented in the second part, with a detailed study of the physics of a
fully-loaded laser-plasma accelerator. In the third part, the combination of ionization
and shock injection mechanisms is introduced, allowing for the acceleration of stable,
high quality electron beams in a gas mixture with a density transition.
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Chapter 3. Ionization injection in a laser-plasma accelerator

3.1 The mechanism of ionization injection

Injection in a density transition presented in chapter 2 allows for the generation of good quality
electron beams, however with a very low charge of a few pC. In this chapter, we are looking for an
injection technique allowing for increasing the charge while maintaining good bunch properties.
Moreover, a desirable injection technique would lead to electron injection at every shots while
driving such an electron beam while conserving the previous parameters. Ionization induced
injection which is presented below may be a suitable way to match these requirements.

3.1.1 Tunnel ionization of electrons into a LWFA

For large laser intensities, the Keldysh parameter γk is smaller than 1, and the electric field
is strong enough to perturb the binding potential between an electron and the nucleus in an
atom (as presented in section 1.1.3). Therefore, for typical laser intensities used in LWFA, the
dominant ionization mechanism is tunnel ionization. Tunnel ionization not only creates the
plasma, but can also be the mechanism which injects electrons in the wakefield.

Whereas a number of analytical tunneling ionization models exist, the following discussion
uses the Ammosov-Delone-Krainov, or so called ADK, model [Ammosov et al., 1986]. The ADK
model was shown to be in good agreement with Schrödinger’s equation to model the effect of
an external electric field onto the binding potential of a hydrogen atom as long as the electric
field remains smaller than the critical value

Ecrit[GV.m−1] = 514(
√

2− 1)
(
ζi

27.2

)3/2
(3.1)

where ζi is the undisturbed ionization potential of the considered electron in eV [Bruhwiler
et al., 2003]. This critical value comes from the fact that the ionization probability increases
exponentially with the electric field : when it becomes too strong, the approximation is not
valid anymore. The ADK model allows for a good prediction of the ionization rate for atoms
with multiple ionization states while remaining below this critical value. In the following, tun-
nel ionization of nitrogen electrons is particularly studied. Thus, the ADK model accurately
describes the ionization mechanism if the maximum electric field used to ionize K-shell electrons
of nitrogen is lower than Ecrit for these electrons. The ionization potential of N7+ is 667 eV,
therefore Ecrit = 2.6× 104 GV.m−1.

The laser electric field is related to the normalized vector potential through

Emax,laser[GV.m−1] = 10−9mec

e
ω0a0 (3.2)

For typical value of laser intensity before self-focusing (when the plasma is formed) used in the
experiment (a0 ∼ 2.3), we get Emax,laser = 9.2 × 103, which is below the critical value. This
indicates the ADK model is suitable to predict the ionization rates for the plasma formation in
the range of parameters we studied. After self-focusing of the pulse however, this is not true
anymore and the model allows only for understanding the main physics undergoing.

The ADK ionization probability rate for an electron depends on the amplitude of the laser
electric field and the ionization potential of the considered state :

W [s−1] ≈ 1.52× 1015 4n∗ζi[eV]
n∗Γ(2n∗)

(
20.5 ζ

3/2
i [eV]

E[GV.m−1]

)2n∗−1

exp
(
−6.83 ζ

3/2
i [eV]

E[GV.m−1]

)
(3.3)
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with n∗ ≈ 3.69Z/
√
ζi the effective principal quantum number of the electron, Z being the

ionization state level, and Γ the standard Gamma function. The fraction of species which is
ionized during a time ∆t is given by W∆t.

With the ADK ionization probability rate, one can determine the ionization dynamics of
nitrogen when an ultra-intense laser pulse propagates through nitrogen gas, thus the fraction
of each ionization state level as a function of time. Considering a Gaussian laser pulse with
parameters close to what we used in the experiments (λ0 = 800 nm, τ0 = 28 fs FWHM, peak
normalized amplitude a0 = 2.3 in vacuum), propagating in a neutral nitrogen gas with a density
n0 = 1019 cm−3, the ionization process (neglecting self-focusing of the pulse) can be modelled.
The results are shown in the co-moving frame in Fig. 3.1.
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Figure 3.1: Density of the different ionized states of nitrogen (different shades of blue) function
of the position in the co-moving frame. The envelope of the laser pulse is shown in red. The
green area indicates the position where electrons from N6+ and N7+ are ionized.

Ionization of neutral nitrogen starts at the very beginning of the pulse, while a0 is still very
low. All nitrogen atoms are quickly ionized up to the N5+ state when a0 reaches 0.1. Then, a
large step in ionization potentials between N5+ and N6+ leads to a large step in ξ between these
two ionized states. Electrons from N6+ and N7+ are created near the peak of the laser pulse (in
the green region in Fig. 3.1). Thus, the intensity of the pulse, as well as its duration, can be
used to control the relative position within the laser pulse at which K-shell electrons are ionized.
This feature is taken advantage of to inject electrons directly in the wakefield.

3.1.2 Trapping of electrons from ionization in the bubble regime

Tunneling ionization allows for the use of atoms with multiple ionization states to control the
injection in the wake. Indeed, the ionization level of the considered species (in our case, nitrogen)
increases as the electric field of the laser interacts with the ionized gas. As shown in Fig. 3.2(a),
the ionization state of nitrogen atoms on axis rapidly increases up to 5 when the very beginning
of the laser pulse interacts with the neutral gas (note that the laser normalized amplitude is
depicted in logarithmic scale). Indeed, the rising edge of the laser pulse is intense enough to fully
ionize the five electrons from the L-shell of nitrogen (in the case of Helium, the total ionization
state is reached even faster). The ponderomotive force of the laser pushes away these electrons,
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Figure 3.2: Trapping of tunnel-ionized electrons in the wakefield. The laser pulse propagates to
the right, ionizes pure nitrogen and drives a wake. a) Envelope of the laser normalized amplitude
(in red) in logarithmic scale and ionization state of the nitrogen atoms (black line) on axis. b)
Density map of the wake (simulated with the WAKE code [Mora and Antonsen, 1997]), with
two electron trajectories coming from electrons ionized the K-shell (in green). Electron (1) is
freed too early and is not trapped while electron (2) is trapped. c) Normalized laser amplitude
a0, wake potential Φ and longitudinal electric field Ez on axis.
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3.1. The mechanism of ionization injection

forming a wake in the bubble regime. The large difference between the ionization potentials of
the nitrogen 5th electron (98 eV) and the two K-shell electrons (552 eV and 667 eV) leads to a
significant delay before reaching a high enough laser intensity to produce N6+ and N7+. This
step can be matched to the laser intensity profile so that the 6th and 7th electrons of nitrogen
are tunnel ionized close to the peak of the laser pulse, where the wake is already fully formed
(as seen in Fig. 3.2(b)). These ionized electrons appear at rest directly into the bubble, and slip
backwards from the laser pulse and the wake. If they can gain enough energy during their stay
in the accelerating region of the bubble such that they reach the phase velocity of the wake,
they are trapped and will gain more energy while moving forward with the wakefield.

An electron which is ionized too early in the laser pulse (case (1) in Fig. 3.2(b)) travels
through a large region of decelerating phase before entering the accelerating half part of the
bubble, thus it will not gain enough energy to be trapped in the wake. It slips backwards and
leaves the first period of the wakefield without being injected. If the electron is ionized closer
to the peak of the pulse (case (2) in Fig. 3.2(b)), it experiences a shorter decelerating length
before entering the accelerating phase (as seen in Fig. 3.2(c)), gain enough energy to catch up
the wake and is trapped to be further accelerated.

From Fig. 3.2(c), it can be seen that the normalized wake potential difference (between the
potential where the electron is injected, pointed out by the green dashed line, and the minimum
potential at the very back of the bubble, indicated by the red dashed line) varies depending
on the ionization position of the electron. Indeed, electron (1) is ionized before electron (2),
thus the potential difference is smaller. In order to be trapped, this potential difference must
be larger than the minimum potential for trapping. Electrons which are the most likely to be
trapped are those created at the very center of the bubble, where the potential difference is the
maximum. Electrons created at the center only experience the accelerating phase of the bubble,
maximizing their energy gain during the first backwards slippage. If these electrons are not
trapped in the wakefield, no electron ionized at rest can be.

In order to get more insight of the dynamics of an electron tunnel ionized at rest in the wake,
one can calculate its phase space trajectories. We saw in section 1.2.3 that these trajectories
write as the following :

uz(ξ) = βpγ
2
p(H0 + ϕ(ξ))± γp

√
γ2
p(H0 + ϕ(ξ))2 − (1 + a2(ξ)/2) (3.4)

with ϕ the normalized wake potential, a the normalized amplitude of the laser pulse, uz the
longitudinal velocity of the electron and H0 the normalized Hamiltonian describing the total
energy of the electron in the wakefield. The right initial conditions for the Hamiltonian have
to be considered to describe a ionized electron in the wakefield. The electron is assumed to be
ionized at phase ξion at rest, close to the peak of the laser field, thus :

uz(ξion) = 0 (3.5)
u⊥(ξion) = 0. (3.6)

The Hamiltonian of the electron, which is constant over the acceleration, writes as

H0 =
√

1 + u2
⊥(ξion) + u2

z(ξion)− βpuz(ξion)− ϕ(ξion) = 1− ϕ(ξion). (3.7)

By solving the Hamiltonian for uz, one can derive the electron trajectories in phase space.
Figure 3.3(a) shows the phase space in the co-moving frame (ξ, uz) for a maximum normal-
ized laser amplitude a0 = 2.3 and a plasma electron density ne = 5 × 1018 cm−3. An elec-
tron is trapped in the wakefield by ionization injection if, and only if, it is ionized (a(ξion) >
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a0 = 1.3

�E

a0 = 2.3

�E

(a) (b)

Figure 3.3: Phase-spaces of a plasma wave in the co-moving frame for a0 = 2.3 (a) and a0 = 1.3
(b) describing the ionization injection mechanism. The green region points out the ionization
zone of K-shell electrons of nitrogen (as seen in Fig. 3.1). An ionized electron (green point) at
rest gains energy in the wake (following the phase-space trajectory depicted in green). The final
energy spread ∆E depends on a0.

aionization threshold) and its Hamiltonian H0 is smaller than the separatrix one (as seen in sec-
tion 1.2.3). This defines a trapping region in phase space, represented in green in Fig. 3.3(a).
The width of the trapping region is directly related to the energy spread of the trapped electron
bunch at injection : the wider the trapping region, the larger the energy spread. This is a very
interesting feature of ionization injection, since reducing the size of the trapping region would
lead to a smaller energy spread. A way to achieve this is to reduce the laser pulse intensity.
Figure 3.3(b) shows the phase space of an electron ionized by a laser pulse with a0 = 1.3. The
trapping region width is effectively reduced (high ionization state electrons are created around
the center of the pulse), thus the bunch energy spread is much better. Simply by reducing the
pulse energy, one can potentially control the energy spread of an electron bunch trapped thanks
to the ionization injection mechanism. The counterpart of this effect is a reduced charge in the
bunch and a lower electron energy due to smaller laser energy.

3.1.3 General bunch properties in ionization-induced injection

The ionization injection technique is mostly used by adding small concentrations of high Z
dopant gas in the Helium gas typically used in LWFA experiments. The dopant gas is chosen in
a range of noble gases, along with nitrogen and oxygen. Typically, the high Z gas consists of 0.1
% to 5 % of the gas mixture. The effect of the additive gas was found to strongly depend on the
gas type for a certain laser energy [McGuffey et al., 2010]. In this study, certain gas mixtures
were found to significantly increase the bunch charge as well as the injection probability compare
to pure Helium at the same density. Indeed, for a laser pulse of a few dozens of terawatts, the
optical field ionization threshold is not reached for the different species. While K-shell electrons
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of nitrogen are ionized near the peak of the laser pulse with an intensity close to 1019 W.cm−2, K-
shell electrons of xenon or krypton have an ionization threshold about ten times higher. Such gas
additives cannot be used for ionization injection with a limited laser pulse power. Even more,
these heavy species have a large number of outer shells electrons that may cause ionization
defocusing of the pulse and prevent efficient acceleration. The choice of gas additive is thus of
major importance for a given laser system. In the case of the "Salle Jaune" laser system, with
typical intensities on target of 1019 W.cm−2, nitrogen is a suitable gas additive.

As long as the laser amplitude is high enough to tunnel-ionize K-shell electrons of the high
Z gas additive, ionization injection happens, thus leading to highly charged beams but also to
very large energy spread. This effect can be reduced by precisely controlling the laser intensity
in order to limit the distance over which the pulse is intense enough to ionize K-shell electrons
into the wake. If a significant acceleration length remains after the ionization injection stopped,
this can generate electron spectra without a low energy tail [Pak et al., 2010]. The existence
of a sharp intensity threshold in laser intensity to trigger ionization injection for a given gas
composition allows for a good monitoring of the characteristics of the injected bunch, notably
its charge and energy spread.

This effect is the main idea behind the two-stage laser-plasma accelerator presented in Pollock
et al. [2011a]. A first injection stage filled with a mixture of Helium and nitrogen is followed by
a longer stage containing pure Helium. Ionization injection generates a stable electron bunch
with moderate charge, which is further accelerated in the second stage. This methods allows for
the generation of quasi-monoenergetic beams moderately charged (about 30 pC) with a good
energy spread (about 5 %).

Another idea based on ionization injection is to use a pure high Z gas. This technique was
found to be suitable to generate low-charge, high energy electron beams in pure argon [Mori
et al., 2009] or nitrogen [Kotaki et al., 2011; Mo et al., 2012]. While ionization induced defocusing
of the laser actively competes with relativistic self-focusing [Fedosejevs et al., 1997], this effect
can be mitigated with a low enough plasma density. For higher plasma densities, this process
can be capitalized on in order to reduce the effective acceleration length so that the final energy
of the bunch is limited to a few dozens of MeV. In these previous studies however, the beam
charge was limited to a few dozens of picocoulombs with peak energies around 200 MeV.

3.2 Electron acceleration in a pure high Z gas
Several applications for laser-accelerated electron bunches require highly charged beams in the
few MeV range. This is particularly the case in radiobiology [Rigaud et al., 2010], femtosecond
chemistry [Malka et al., 2010] or industrial radiography [Ben-Ismaïl et al., 2011]. In industrial
radiography for example, electrons with low energy can be used to produce bremsstrahlung X-
rays with energy not exceeding few MeV. This prevents the use of expansive radiation shielding,
not suitable in an industrial environment. In the following part, we point out that electron
acceleration in a pure high Z gas coming out of a 700 µm diameter nozzle is a promising way to
produce heavily-charged electron beams with relatively low energy. We present the experiment
we did at LOA to study this acceleration regime [Guillaume et al., 2015a].

3.2.1 Experimental setup and diagnostics

The main interaction beam of the "Salle Jaune" laser system (28 fs FWHM, 2.1 J) is focused
at the entrance of a gas jet using a f/10 off-axis parabola (focal length of 700 mm). The
experimental setup is shown in Fig. 3.4. The focal spot FWHM diameter is measured to be 26
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Figure 3.4: Drawing of the experimental setup for electron acceleration in a pure high Z gas.

µm. An image of the focal spot and its transverse profile can be seen in Fig. 3.5(a). The energy
contained in this spot diameter is 52 ± 2% of the total energy. The peak laser intensity and
the corresponding normalized vector potential a0 are 5.1± 0.4× 1018 W.cm−2 and 1.60± 0.04,
respectively.

The gas jet is formed with a 700-µm-diameter sonic gas nozzle (in order to obtain low electron
energies) and its density profile is characterized using a Nomarski interferometer afterwards. The
laser is fired at a height of 1 mm from the nozzle exit, leading to the formation of a 1.5 mm long
plasma. The low energy probe beam is used to measure a shadowgraph of the formed plasma
column (as seen in Fig. 3.5(b)). The electron density is varied by varying the backing pressure
ahead of the nozzle. Both argon and nitrogen were tested during this experimental campaign.
The electron density is estimated considering the electric field ionization threshold for argon and

Laser propagation 
axis

(a) (b)

Figure 3.5: (a) Experimental laser focal spot obtained with a 700 mm focal length off-axis
parabola. (b) Shadowgraph image of the propagation of the laser in a pure nitrogen gas jet.
Z = 0 mm corresponds to the center of the nozzle.
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3.2. Electron acceleration in a pure high Z gas

nitrogen [Augst et al., 1989]. As explained in section 3.1.1, the ionization threshold for L-shell
(and M-shell in the case of argon) electrons is below 1017 W.cm−2, meaning that the gas can be
considered pre-ionized by the leading edge of the laser pulse up to the ionization states Ar8+ or
N5+.

Electron spectra are measured with a spectrometer consisting of a permanent magnet (760
mT over 20 mm) combined with a Lanex placed 322 mm after the nozzle output. This is a
different electron spectrometer than the one presented in section 1.4.3 as we want to observe lower
electron energies. The Lanex is imaged on a 16 bit CCD camera. In the chosen configuration,
the minimum (resp. maximum) cut-off energy of the electron spectrometer is 7 MeV (resp. 50
MeV). The transverse acceptance angle of the Lanex for this geometry is 110 mrad.

In order to get more insight of the underlying physics of injection and acceleration in this
regime, simulations are performed using the PIC code CalderCirc [Lifschitz et al., 2009]. This
fully electromagnetic 3D code uses cylindrical coordinates (r, z) and Fourier decomposition of
electromagnetic fields in the poloidal direction. The two first Fourier modes of the decomposition
(m = 0, 1) are considered, allowing for the description of the linearly polarized laser pulse and
the quasi-cylindrical fields of the plasma wave.

3.2.2 Experimental results

We first use a gas target composed of pure argon with a plasma electron density of ne = 1.9×1019

cm−3 (considering a plasma of Ar8+). Figure 3.6 shows the electron spectra measured with the
Lanex for five consecutive shots. We observe a very good shot-to-shot stability, at the same time
in pointing, spectrum shape and total charge. Due to the large acceptance angle of the electron
spectrometer, we are able to collect completely the charge of the electron beam between 7 and
50 MeV. The total integrated charge above 7 MeV is 910 pC, which is a rather large value for a
laser-accelerated electron beam with these laser and plasma conditions.
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Figure 3.6: Raw electron spectra for five consecutive shots for an argon plasma with ne =
1.9× 1019 cm−3.

The mean integrated spectrum over the transverse direction is shown in Fig. 3.7(a). Note
that the spectrum is represented in logarithmic scale, thus the charge per MeV is divided by
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Figure 3.7: (a) Experimental electron spectrum obtained in an argon plasma with a plasma
density of ne = 1.9×1019 cm−3. (b) FWHM divergence of the beam function of electron energy.
The signal is too low above 25 MeV to calculate the divergence.

almost a factor 100 between 7 MeV and 20 MeV. The energy distribution has a quasi-Maxwellian
shape, underlining continuous injection of electrons during the acceleration. Indeed, the peak
laser normalized amplitude a0 is likely high enough during the whole propagation to tunnel-
ionize Ar9+ (ionization potential of 422 eV, corresponding to a a0,threshold = 0.9 for the laser
amplitude) and beyond, leading to ionization induced injection over the propagation in the
plasma. Figure. 3.7(b) shows the FWHM divergence of the beam as a function of electron
energy, as measured on the Lanex. Note that above 25 MeV, the charge is too weak to effectively
calculate a divergence. The divergence quickly drops from 20 mrad to 6 mrad between 7 and 8
MeV, and increases again up to 15 mrad at 25 MeV. Ionization injected electrons are supposedly
created close to the propagation axis, producing low divergence electron beams. Indeed, 10 mrad
at 8 MeV is a rather low divergence for such a low energy (typically a few dozens of milliradians
in the self-injection regime).

Laser filamentation can be an issue for laser propagation in a high Z gas. Such a phenomenon
is observed in Fig. 3.5(b), where filamentation induced by ionization defocusing appears mainly
on the sides of the plasma (lower electron density region). In this case, laser filamentation
occurs after around 600 µm after the beginning of the plasma for a plasma density of ne =
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3.2. Electron acceleration in a pure high Z gas

(a)

(b)

Figure 3.8: (a) Variation of the charge above 7 MeV with the laser energy. The black triangles
represent the mean charge over five consecutive shots, with the error bars showing the standard
deviation. The red line is a linear fit of the charge evolution. (b) Experimental electron spectra
for four different laser energies. The width of the colored area indicates the standard deviation
over five consecutive shots. The grey area represents the detection threshold of the spectrometer.
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Chapter 3. Ionization injection in a laser-plasma accelerator

1.9×1019 cm−3. However, as the depletion length of the laser is about 600 µm, the injection and
acceleration are almost finished when the laser starts to defocus and filament. The filamentation
process does not affect the electrons during the acceleration but mainly in the downward density
gradient of the gas jet, where the laser does not play an important role on the physics of the
electron beam anymore.

Electron acceleration in pure argon allows for the generation of highly-charged electron beams
(up to almost 1 nC) with relatively low energies (most of accelerated electrons are below 12
MeV). Very similar results were obtained in a pure nitrogen plasma. These beam parameters
are interesting, as the energy distribution look very stable shot-to-shot.

3.2.3 Energy laser influence : beamloading effect

The laser energy in the focal spot is varied between 1.1 J and 0.2 J (corresponding to a peak
intensity on target of 5.1× 1018 W.cm−2 and 9.7× 1017 W.cm−2) by rotating a half-wave plate
followed by a polarizer in the path of the laser beam before compression. Figure 3.8(a) shows the
evolution of the total integrated charge above 7 MeV (lower limit of the electron spectrometer)
obtained in an argon plasma with an electron plasma density of 1.9× 1019 cm−3 as function of
the laser energy. There is almost no electrons below 0.4 J : the laser energy is not sufficient for
the pulse to self-focus in the plasma, so the intensity is too low to trigger ionization injection of
inner-shell electrons of argon. Above this energy threshold, the total charge linearly increases by
110 pC per 100 mJ, up to 910 pC for the maximum laser energy (1.1 J on target). Very similar
results were obtained with a nitrogen gas jet. The charge is very stable shot-to-shot (standard
deviation is 23 % for the worst case at 0.36 J, down to 1 % at 1.1 J).

Figure 3.9: Neutral density profile used in the simulations of electron acceleration in pure
nitrogen.

Figure 3.8(b) shows the dependency of the electron spectra shape for four different laser
energies, from 0.4 J to 1.1 J (darker to lighter blue). The width of each curve represents the
standard deviation of the spectrum over five consecutive shots. The spectra have a very good
shot-to-shot stability in this laser energy range. For lower laser energy, ionization injection is
not triggered and the measured signal is below the detection threshold (represented in grey in
Fig. 3.8(b)). Note that the vertical axis is shown in logarithmic scale, underlining the stability of
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Figure 3.10: Simulated electron spectra (plasma density of ne = 1.9 × 1019 cm−3) for three
different laser energies.

these spectra. Whereas the total charge varies linearly with the laser energy, the general shape
of the electron spectrum stays roughly the same (the ratio of high energy electrons compare
to low energy electrons is almost the same whatever the laser energy). This is an unexpected
feature, because usually the wakefield amplitude, and thus the amplitude of the accelerating
field, strongly depends on the laser intensity. There should be more high energy electrons when
the laser intensity increases. The straightforward charge tunability of this source with the laser
energy and the constant shape of the spectrum are very convenient to study the charge influence
on the electron beam acceleration and propagation.

To get more insight on this striking effect, simulations are performed using a mesh with
∆x = 0.2 k−1

0 , ∆r = 1.5 k−1
0 (with k0 = 1/λ0). The neutral gas density profile defined from

the experimental characterization can be seen in Fig. 3.9. The peak density is at 900 µm.
Simulations begin with pure neutral nitrogen, which is ionized via tunnel ionization, resulting
in a peak electron density of ne = 1.9 × 1019 cm−3. The number of macro-particles per cell
before ionization is 100, which corresponds to 500 macro-electrons per cell in the region of full
ionization of the L-shell of nitrogen. The other parameters are considered from the experiment.

Figure 3.10 depicts the simulated electron spectra for three different laser energies (0.4, 0.7
and 1.1 J). The very weak dependency of the spectra shape with the laser energy is retrieved.
Indeed, while the integrated charge in the considered energy range is reduced by lowering the
laser energy, the energy distribution remains roughly the same. The ratio of low energy electrons
compare to high energy electrons keeps roughly the same value for energies higher than 0.7 J,
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(a)

(b)

Figure 3.11: Spatial distribution of electron density for laser energies of 1.1 J (a) and 0.4 J
(b) around the middle of the gas jet (background electron density ne = 1.9× 1019 cm−3). The
superimposed plots show the longitudinal electric field on the axis (light blue). The dashed light
blue line represents the theoretical injection threshold for an electron created around the middle
of the gas jet (Esat = 0.47E0).
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and is even slightly lower for the smallest laser energy :

dNe/dE10MeV

dNe/dE40MeV
=


5.5, for Elaser = 1.1 J
5.3, for Elaser = 0.7 J
3.2, for Elaser = 0.4 J

(3.8)

The number of macro-particles over 30 MeV is likely quite low for 0.4 J (the simulation noise
is substantial in Fig. 3.10), thus the different ratio for this laser energy may originate from that.
The electron energy distribution coming out of the laser-plasma accelerator is related to the
longitudinal electric field the electrons experienced during the acceleration. To understand the
dependency upon the laser energy, we show in Fig. 3.11 the accelerating field and the spatial
distribution of electron density around the middle of the gas jet for two different laser energies
from the PIC simulations.

For the high energy pulse (1.1 J, Fig. 3.11 (a)), the laser strongly excites the wakefield,
generating up to seven buckets with similar amplitude, each loaded with electrons. The total
charge of the beam is around 1 nC, very close from the experimentally measured charge (910
pC). Note that electrons with energies under 7 MeV are considered in the simulations. The
accelerating field in each of these plasma periods is almost the same, close to −0.17 TV.m−1.

In contrast, only two periods of the wakefield are loaded behind the low energy pulse (0.4J,
Fig. 3.11 (b)). Behind the third plasma period, the wakefield is completely blurred out and no
electrons are trapped. The charge injected in these two buckets is roughly five times lower than
in the previous case (around 200 pC in the beam). However, the maximum accelerating field
inside the buckets is similar for both cases (Ex = −0.17 TV.m−1).

Figure. 3.11 (a) shows that six periods are fully loaded and the seventh period is partially
loaded with 1.1 J. In contrast, only the first period is fully-loaded and the second is partially
loaded with 0.4 J (Fig. 3.11 (b)). Therefore one can estimate that the increase of the charge due
to the number of loaded periods is about 4.2, whereas the total charge is multiplied by a factor
of 5. The lengthening of the bubble when laser energy is increased can explain the missing factor
in the total charge increase. Indeed, as laser energy is increased, the bubble radius evolves as the
square root of the normalized vector potential as rb ∼ 2k−1√a0 [Lu et al., 2007]. The size of the
first bubble is estimated to increase by a factor around 1.3 from the density map in Fig. 3.11.
Although the main effect of the charge increase is the trapping of electrons into multiple wave
periods, the bubble size increase also plays a role. Furthermore, the higher the laser energy, the
more evacuated the bubble is, allowing to trap more electrons and increasing the charge.

Figure. 3.11 shows that the charge increase goes along more and more loaded buckets, but
does not explain the reason of the spectrum shape. Simulations provide additional explanations
to understand the effect of laser energy onto the electron spectra shape and total charge. As
electrons are ionized at rest in ionization injection [Pak et al., 2010], they must acquire sufficient
energy to be injected in the wakefield. The most favorable ionization position to get injection
corresponds to the point of the bubble where the accelerating field vanishes, towards the center
of the bubble. Electrons resulting from ionization at that position experience the longer acceler-
ating length. In other terms, as ionization injection is the dominant process of injection, if these
electrons are not trapped, no other electron will be trapped (as explained in section 3.1.2).

Simulation shows that electrons ionized in the upward density gradient cannot be trapped
in the first plasma bucket because the phase velocity of the rear of the plasma cavity is very
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Figure 3.12: Phase space distribution (x,γ) of electrons coming from ionization of N5+ at a
position around the middle of the gas jet. The color scale x0 represents the position of ionization
of each colored macro-particle in the plasma. The superimposed plot shows the longitudinal
electric field on the axis (light blue) at that position.

high in the upward gradient, possibly even larger than c. As the laser approches the peak of
the plasma density profile, the bubble slows down and electrons can start to be injected. They
slipped across several buckets while the laser is crossing the upward density gradient, thus they
can be in a bucket which is several periods after the laser when their velocity exceeds the wake
phase velocity (i.e when they are trapped).

To get insight into this dynamics, one can observe the energy gained by electrons depending
on their ionization position, noted x0. The phase space distribution (x, γ) of electrons coming
from ionization of N5+ is shown in Fig. 3.12, at a position around the middle of the gas jet. Each
simulated macro-particle is colored depending on its ionization position x0. Electrons ionized at
the beginning of the upward density gradient are depicted in dark blue, while electrons ionized
almost at the center of the jet are shown in red/grey (as seen in the colorbar). Electrons ionized
in the upward density ramp (between x0 ∼ 400 µm and x0 ∼ 600 µm, corresponding to the
purple/blue dots) are accelerated in the first bubble to relativistic energies, but they are not
trapped because in this density region the wakefield transiently is superlumineous (meaning that
the rear of the cavity shrinks with a local velocity higher than the local group velocity of the laser
pulse). These electrons dephase in the first plasma periods, passing from one bucket to another.
They are eventually trapped in a bucket far from the laser, when the pulse approaches the density
peak (the wakefield velocity around this position is smaller than in the upward ramp, allowing
for electrons to be injected). At this position, tunnel ionization continues in the first bubble,
ionizing electrons depicted in pink in the first bucket. The result is that electrons ionized early
during the propagation are trapped in a wave period far from the laser, and electrons ionized in
the density peak are trapped preferentially in the first bubble (corresponding to red/grey dots
in Fig. 3.12). All these electrons are trapped roughly at the same time.

Due to the beamloading of each plasma period, the accelerating field decreases as more and
more electrons are injected. The longitudinal field decreases down to a point when injection stops
because electrons cannot gain enough energy from the wake to be trapped. The longitudinal
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ne = 8.5 ⇥ 1019 cm�3

ne = 8.5 ⇥ 1018 cm�3

ne = 5.5 ⇥ 1018 cm�3

(a)

(b)

(c)

Figure 3.13: Raw experimental electron spectra for three different electron plasma densities :
(a) ne = 8.5× 1019 cm−3, (b) ne = 8.5× 1018 cm−3 and (c) ne = 5.5× 1018 cm−3.

field is depicted in light blue in Fig. 3.12. It reaches almost the same saturation level whatever
the considered plasma period. As seen in Fig. 3.11, this saturation level is also independent
from the laser energy, and is reached in a bucket once it is fully loaded.

The saturation field can be estimated in the frame of the 1D non-linear plasma wave
model [Esarey and Pilloff, 1995]. The minimum field for injection of an electron initially at
rest at the center of the bubble is Esat = −0.47E0, where E0 is the critical field in the linear
regime defined in eq. (1.50). For the peak density of the gas jet (ne = 1.9 × 1019 cm−3), the
calculation gives Esat = −0.18 TV.m−1, which is in good agreement with the maximum accel-
erating field found in the simulations Ex = −0.17 TV.m−1. As soon as the field is lower than
Esat in a bucket, injection stops because the velocity of electrons never exceeds the wake phase
velocity (as the accelerating field is too low). Electrons go onto the following bucket, and so on.

3.2.4 Electron density influence : spectrum flattening

As presented in the previous section, the laser energy hardly impacts the electron spectral
distribution because the longitudinal field saturates in a plasma period as soon as it is fully loaded
with electrons. Nonetheless, the electron plasma density is found to have a strong influence on
the energy distribution.

The plasma density is varied from 8.5 × 1019 cm−3 to 5.5 × 1018 cm−3 by reducing the
nitrogen backing pressure at the sonic nozzle input. Figure 3.13 shows the electron spectra
measured for three electron densities for maximum laser energy (intensity on target of 8.9×1018
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Figure 3.14: Influence of the electron density on the experimental energy distribution of electrons
for a nitrogen plasma at two electron densities, ne = 8.5× 1019 cm−3 and ne = 5.5× 1018 cm−3.
The colored area indicates the standard deviation over five consecutive shots. The grey shaded
area indicates the detection threshold of the spectrometer.

W.cm−2). The spectrum shape does not vary while the density is decreased by a decade (as
seen in Fig. 3.13(a-b)), and then changes abruptly for 5.5 × 1018 cm−3 (Fig. 3.13(c)). In the
following, a plasma density of 8.5 × 1019 cm−3 is referred to as the high density case while a
plasma density of 5.5× 1018 cm−3 is referred to as the low density case. The electron spectrum
in Fig. 3.13(a) for the high density case has been presented in the previous section. When the
plasma density is reduced, the electron spectrum shape drastically changes, turning into a much
flatter energy distribution from 10 to 50 MeV, as seen in Fig. 3.13(c). The total charge of the
beam is also reduced from 250 pC to 50 pC. Note that the Root-Mean-Square divergence of
the beam drops from 7 mrad to 2 mrad at 20 MeV when the plasma density is reduced. Such
a low divergence at that low electron energy is a very good feature. The divergence does not
depend much on the electron energy in the low density case and stays roughly the same up to
50 MeV. Note that oscillations can be seen in the electron spectrum presented in Fig. 3.13(c) :
they may originate from the multi-bunch structure of the electron beam in several buckets, each
micro-bunch having a different mean energy.

Figure 3.14 shows the average electron spectra integrated over the transverse direction for
five consecutive shots each, at ne = 5.5 × 1018 cm−3 (lighter blue) and ne = 8.5 × 1019 cm−3

(darker blue). Note that the oscillations in the spectrum are not visible anymore due to the
mean). The width of the lines corresponds to the standard deviation of the spectra. For the high
density case, the number of electrons per MeV decreases by roughly four orders of magnitude
from 7 MeV to 35 MeV, with the spectrum shape close to a thermal one. The quasi-Maxwellian
shape of the spectrum is due to the continuous injection of electrons in multiple buckets along the
acceleration, as explained in the previous section. However, as the electron density is lowered,
the electrons undergo a different regime during the acceleration in which the charge per MeV
drops quickly below 12 MeV, but then is much flatter and keeps roughly the same order of
magnitude up to the spectrometer cut-off over 50 MeV.
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Figure 3.15: Simulated electron spectra for a nitrogen plasma at two electron densities, ne =
8.5× 1019 cm−3 and ne = 5.5× 1018 cm−3.

Again, PIC simulations help us to reproduce the main trends of the spectrum dependency
on the plasma density. Simulations are performed using the profile presented in Fig. 3.9, with
the peak density varying between ne = 8.5× 1019 cm−3 and ne = 5.5× 1018 cm−3.

Figure 3.15 depicts the simulated electron spectra for the low (light blue) and the high density
(dark blue) cases. The main trends of the spectrum dependency on the gas density found in
the experiment are retrieved in the simulations. Similarly to the experimental results, at high
density the number of electron per MeV drops by a factor ∼ 100 between 7 and 50 MeV, whereas
at low density the drop is around a factor 10. The second feature retrieved in the simulations is
the particular shape of the spectrum at low electron density compare to the high electron case,
presenting a fast drop below 10 MeV and a flatter region beyond this value.

Simulations also demonstrate that, as expected, the dynamics of the laser propagation
strongly depends on the plasma density. Figure. 3.16 shows the normalized laser amplitude
a0 along the density profile for the two plasma densities. At high density, the relativistic self-
focusing of the laser produces a fast increase of the laser intensity around x ∼ 400 µm. After 300
µm of propagation (x ∼ 700 µm) the pulse energy is depleted (70% of the laser intensity is lost,
either by transfer to the plasma or due to ionization induced defocusing and filamentation) and
self-focusing stops. What remains of the laser pulse propagates towards the end of the plasma
without exciting strong plasma waves. At low density, self-focusing and pulse depletion are
much weaker, therefore the normalized laser amplitude remains lower than 3 over all the plasma
length. Electrons coming from ionization of N6+ and N7+ are injected in several buckets of the
wakefield when reaching the density peak. Whatever the density, the laser has thus little effect
on electron acceleration in the downramp gradient of the plasma density profile. It is either
depleted for high density or weakly focused for low density (with a0 staying under 2, generating
a quite weak wakefield). The strong difference between the two electron spectra must come from
another process.

To get insight of the underlying phenomenon which is responsible for the modification of
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Figure 3.16: Evolution of the normalized laser amplitude a0 along the propagation in the plasma
density profile (in green) coming from simulations, for a high (red) and a low (blue) density
nitrogen target.

electron energy distribution during the acceleration process, Fig. 3.17(a) shows the variation of
the electron energy distribution for two positions in the gas jet for an electron plasma density
of ne = 5 × 1018cm−3. Just after the center of the gas jet (around x = 1200 µm), the electron
spectrum (in red in Fig. 3.17(a)) has a quasi-Maxwellian shape similar to the shape in the high
density case. Towards the end of the jet however (around x = 1700 µm), the spectrum is flatter,
with more high energy electrons and less electrons below 15 MeV. The physical phenomenon
flattening the spectrum taking place between x = 1200 µm and x = 1700 µm (in the downward
density gradient) must mainly originate from something else than the laser evolution.

In the low density case, simulations show that electrons are injected around x = 600 µm. The
ionization injection process leads to the trapping of an electron macro-bunch which is composed
of several distinct sub-bunches, where the separation length is approximately the local plasma
wavelength λp. This multi-bunches structure comes from the beamloading in each bucket, as
explained in the previous section. The multi-bunch structure is visible in the spatial distribution
of electron density around the middle of the gas jet (as seen in Fig. 3.17(b)). When the multi-
bunch propagates through the downward density gradient at the end of the gas jet, its structure
starts to blur up. By the middle of the falling gradient of the gas jet (x = 1200 µm), the
different sub-bunches tend to form a continuous macro electron bunch. Towards the end of the
jet (see the electron density spatial distribution in Fig. 3.17(c)), the electron plasma density is
much lower. The macro-bunch, with a length close to 60 µm, is able to drive its own wakefield
because the bunch length is resonant with the local plasma density (same order of magnitude
than the local λp). Indeed, the leading part of the accelerated electron bunch can create its
own plasma wakefield if the number density of the electron bunch nbunch is larger than the
background electron plasma density [Blumenfeld et al., 2007; Pae et al., 2010; Litos et al., 2014].
In our case, one can estimate the mean electron density in the bunch from the simulations as
nbunch ' 7 × 1017 cm−3. This is larger than the local electron density ne = 5.2 × 1017 cm−3

towards the end of the gas jet around x = 1700 µm, allowing for the formation of a very large
bubble in the wake of the macro-bunch (with its bunch structure still visible in Fig. 3.17(c)).
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(a)

(b)

(c)

Figure 3.17: (a) Electron spectra around the center (red) and the end (blue) of the gas jet, the
center of the gas jet being located at x = 900 µm. (b) Spatial distribution of electron density
close to the center (b) and at the end (c) of the gas jet in the low density case. The local electron
densities are ne = 5.2 × 1017 cm−3 in (b) and ne = 3.5 × 1018 cm−3 in (c). The superimposed
plots in (b) and (c) show the longitudinal electric field on the axis (light blue).
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(a)

(b)

Figure 3.18: Distribution of electron density at the end of the gas jet in the low (a) density case
(local electron density ne = 5.2 × 1017 cm−3) and high (a) density case (local electron density
ne = 3× 1018 cm−3).

The large cavity due to electron wakefield generation at the end of the plasma profile can be
seen with more details in Fig. 3.18(a).

Due to the longitudinal field in this bubble, electrons at the tail of the macro-bunch, those
injected in the last buckets with the lowest energy, are accelerated. Conversely, those at the head
of the bunch are decelerated (the longitudinal electric field is positive, as seen in Fig. 3.17(c)).
The acceleration of low energy particles plus the deceleration of high energy ones produces the
type of spectrum with a steep slope at low energy and a soft slope at high energy observed in
Fig. 3.14. These effects appear in the acceleration of highly charged bunches when the electron
density is low enough so that the electron wakefield can be resonantly excited. This is not the
case for ne = 8.5×1019cm−3 because the electron beam blows up before reaching the downramp
density gradient : no wakefield is observed towards the end of the gas jet (as seen in Fig. 3.18(b)).
Indeed, the macro-bunch length in this case is not resonant and is unable to efficiently excite
its own wakefield. Once the laser is depleted, electrons do not have any coherent effect on the
surrounding plasma and simply propagate towards the end of the gas jet.
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3.3. Shock assisted ionization injection in a gas mixture

To conclude, experiment and simulations underline two important processes occurring when
highly charged beams are accelerated. While the laser energy has direct influence on the number
of cavities formed and loaded behind the pulse, the accelerating fields in each of these buckets
saturate to a critical value independent from the laser energy. In consequence, by simply varying
the laser energy it is possible to change the total injected charge in the beam without modifying
its energy distribution. At low electron density, the electron wakefield effects are important and
strongly affect the spectrum : a quasi-Maxwellian energy distribution turns into a macro-bunch
with more energetic electrons. The good shot-to-shot stability and the straightforward tunability
of beam charge with the laser energy up to almost 1 nC make laser wakefield acceleration in
high-Z gases a promising source for various application experiments.

3.3 Shock assisted ionization injection in a gas mixture
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Figure 3.19: (a) Experimental laser focal spot obtained with a 1000 mm focal length off-axis
parabola. (b) Typical electron density profile obtained via Abel inversion. The shaded area
indicates the standard deviation. Note that the measured shock front is not fully resolved; it
may actually be significantly sharper and denser (the resolution is about 40 µm).

As presented in the previous section, ionization injection technique allows to accelerate elec-
tron beams with high charge but large energy spread. This poor energy spread comes from the
fact that the laser field remains above the threshold for inner shell ionization of the high-Z specie
over a significant length leading to continuous electron injection. In chapter 2, we presented the
shock injection technique, allowing for the generation of low charge, high quality beams. The
idea is to combine the two methods in order to obtain high quality, highly charged electron
beams, which would be be ideal candidate for various applications.

The laser propagates in a gas mixture of low and high-Z gases, with a blade inserted at the
entrance of the gas jet to form a sharp density transition. When the laser crosses the shock
front, the cavity suddenly expands (as explained in chapter 2) and inner-shell electrons ionized
there spend more time in the accelerating field. They can thus be injected below the threshold
for regular ionization injection, leading to localized trapping and low energy spread (assuming
that the laser intensity is below this threshold in the remaining plasma). The principle of shock
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Chapter 3. Ionization injection in a laser-plasma accelerator

assisted ionization injection rests upon the narrow space region where inner shell electrons can be
freed and trapped. This principle is illustrated in Fig. 3.19 : electrons ionized close to the center
of the plasma cavity when the laser crosses the density transition (region (I) in Fig. 3.19(b))
spend a long time in the accelerating field due to the expansion of the cavity in the shock front
(region (II)). Therefore, they are much more likely to be trapped than electrons ionized in the
upramp density gradient (region (III)) which have to catch up a shrinking (accelerating) cavity.
For low enough laser intensity and plasma density, the injection can thus be restricted to the
shock front, potentially allowing for low energy spread electron beams.

3.3.1 Experimental results

The experiment was performed using the same setup as in section 2.3. The laser focal spot
(shown in Fig.3.19(a)) is 12.2× 15.7 µm2 full width at half maximum (FWHM). The peak laser
intensity in vacuum is I = 5 ± 0.4 × 1018 W.cm−2. It is focused at the entrance of a gas jet
using a f/15 off-axis parabola (focal length of 1000 mm). The shock front is formed by putting
a 500 µm thick silicon wafer into the gas flow of a 1.5 mm exit diameter supersonic nozzle,
with the blade at 3 mm from the nozzle exit (as seen in Fig. 2.20). Its position along the laser
propagation axis can be varied in order to tune the electron beam energy. The density profile
is characterized at every shot by plasma interferometry. A typical density profile is shown in
Fig. 3.19(b). Unless otherwise stated, the gas is a mixture composed of 99% of helium and 1%
of nitrogen. Helium is fully ionized in the rising edge of the laser, while nitrogen is ionized to
N5+. Electron spectra are measured with a spectrometer described in section 1.4.3. The spectral
resolution varies between 2.7% and 3.8% for electron energy between 75 and 200 MeV.

Figure 3.20(a) shows ten consecutive electron spectra obtained with a shock and a gas mix-
ture (99% helium, 1% nitrogen). Electrons are injected at every shot (over hundreds of consec-
utive shots). The peak energy is 123 MeV and beam charge is about 1 pC. The mean energy
spread is 14± 2 MeV (11% at 123 MeV), while the energy spread of best shots is about 10 MeV.
This is much smaller than typical energy spread obtained with regular ionization injection in
a pure high Z gas, as seen in section 3.2. This injection mechanism presents a good stability,
as seen on the mean angularly integrated spectrum shown in Fig. 3.20(c), with the standard
deviation shown in blue.

The accelerated beam is elliptic, due to the effect of laser polarization on the tunnel-ionization
mechanism when inner shell electrons are freed [Chen et al., 2012]. The beam has a divergence
of 5 ± 0.6 mrad in the laser polarization direction and 2.6 ± 0.7 mrad in the perpendicular
direction. The injection stability is compared with that of shock front injection in pure helium
(ten consecutive shots in helium are shown in Fig. 3.20(b), with the corresponding integrated
spectrum plotted in (d)). The charge and the energy spread are similar in both cases. In
contrast, the stability is much better in the gas mixture; the standard deviation of the electron
beam energy and charge are 2.5% and 12% respectively, while in pure helium they are 7% and
24%. The use of gas mixture improves also significantly the rms pointing stability; it is 1.5 mrad
in the gas mixture versus 3.2 mrad in pure helium (in other series the rms pointing stability is as
low as 0.7 mrad and it is never larger than 1.8 mrad with the gas mixture). Note the poor beam
quality in pure helium, compared to results from shock front injection experiments presented in
chapter 2. This is likely due to a deficient laser wavefront, to inhomogeneities in the laser spot
or to imperfect shock front generation.

In the gas mixture, ionization injection restricts the injection close to the longitudinal
axis [Pak et al., 2010; Chen et al., 2012]; therefore it produces an electron beam which is less
sensitive to radial inhomogeneities, similar to longitudinal injection [Corde et al., 2013b]. For
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Figure 3.20: Angularly resolved electron spectra of ten consecutive shots, with a shock front and
a gas mixture (a) or pure helium (b). The electron density at the center of the density profile is
ne = 4± 0.1× 1018 cm−3 in (a) and ne = 3± 0.1× 1018 cm−3 in (b). The shock front is located
1.03 ± 0.02 mm from the center of the density profile in (a) and 1.34 ± 0.02 mm in (b). The
small differences in density and shock front position explain the difference in the electron beam
energy between (a) and (b). The spectra are corrected from the spectrometer dispersion. The
color bar goes from 0 (blue) to 83000 electrons per MeV per mrad (red). (c,d) Corresponding
mean electron spectra, with standard deviation in colored area.
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Chapter 3. Ionization injection in a laser-plasma accelerator

whatever reasons, Fig. 3.20(b) shows that for given experimental conditions, the use of a gas
mixture stabilizes the injection compare to pure helium. Accordingly, shock assisted ionization
injection was also observed to depend much less on shock and laser conditions than regular
shock injection; for many conditions, there was no injection with pure helium while electrons
were injected at every shot with the gas mixture.

3.3.2 Numerical study of the injection mechanism
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Figure 3.21: Simulation of ionization injection in a shock front. (a) Density profile (left axis) and
initial radius of trapped electrons (right axis) close to x = −0.7 mm. The color scale indicates
the density of trapped electrons in arbitrary unit. (b) Corresponding electron spectrum.

Particle-In-Cell simulations are used to get some insight into the injection mechanism. They
are performed using the 3D, fully electromagnetic code CalderCirc [Lifschitz et al., 2009]. Two
Fourier modes were used with 70 macro-particles by cell, and mesh sizes z = 0.2k−1

0 and r =
1.5k−1

0 in the longitudinal and radial directions respectively, with k0 the laser wavenumber. The
laser intensity in vacuum is I = 3.3× 1018 W.cm−2 and the focal spot radius is 16 µm FWHM,
close to the experimental parameters. The density profile used in the simulation is shown in
Fig. 3.21(a). Because of moderate plasma density and laser intensity used in this simulation,
the laser weakly self-focuses and its peak intensity does not exceed I = 1.5 × 1019 W.cm−2.
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Figure 3.22: Influence of the shock position, laser energy and electron density on the beam
properties. (a) Peak energy as a function of the shock position (in mm, with 0 the center of the
gas jet), for ne = 5.3 ± 0.4 × 1018 cm−3. (b) Electron beam energy and charge as a function
of the laser energy (normalized to 1.1 J the maximum laser energy), for ne = 5.6 ± 0.3 × 1018

cm−3. (c) Beam charge and energy as a function of the electron density. In (b) and (c), the
shock position is zs = 1.02± 0.02 mm. Error bars indicate the standard deviation.
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A wakefield is efficiently excited over ∼ 1.2 mm only (from x = −0.5 mm). Yet, an electron
beam with a 1 pC charge is trapped and accelerated up to ∼ 110 MeV, as shown on the electron
spectrum in Fig. 3.21(b). This peak is due to ionization injection in the shock front, as it appears
exactly at the same position as shown in Fig. 3.21(a). Note that the peak around 55 MeV is due
to regular ionization injection occurring well after the density transition. Figure 3.21(a) shows
the initial position of trapped electrons (colorscale). Most of these electrons originate from a
short region preceding the density transition, indicating that injection is actually triggered by
the shock.

3.3.3 Tunability of the beam parameters

In addition to improve the stability, shock assisted ionization injection preserves most of the
advantages of shock front injection, notably its simplicity (single stage, single laser beam) and
the possibility to tune the electron peak energy by varying the position of the silicon wafer.
For instance, in Fig. 3.22(a) the energy increases from 70 MeV to 120 MeV when the shock
position is moved from 0.26 mm to 0.9 mm from the center of the density profile. From these
measurements, the mean longitudinal field and the effective acceleration length are estimated to
be about 67.5± 8 GeV.m−1 and 1.65± 0.32 mm respectively. This length is much smaller than
the dephasing length, indicating that acceleration is limited by laser diffraction, as observed
in the PIC simulation. The longitudinal field is also relatively weak, pointing out that the
accelerator is operated in the quasi-linear regime, consistently with the moderate laser intensity
and in agreement with the simulations.

Figure 3.22(b) shows that electrons can be injected even with modest laser energy, down
to ≈ 670 mJ. While the electron beam energy increases slightly with the laser energy EL for
EL . 1.07 (with EL = 1.1 J the maximum laser energy), the rise is most significant for larger
energies, likely because of better laser self-focusing and hence longer acceleration length. The
beam charge (integrated here over two FWHM) increases more steadily with the laser energy,
from 38± 7 fC up to 8.6± 1.5 pC. This increases goes along a growth of the energy spread from
9± 1 MeV up to 25± 4 MeV. These findings are consistent with ionization injection close to the
injection threshold (the injected volume in the phase space increases with the laser intensity).

The charge and the energy of the beam also depend on the electron density ne, as shown in
Fig. 3.22(c). From ne = 3.1×1018 cm−3 to ne = 9.2×1018, the charge and energy increase from
0.5± 0.2 to 14.2± 1 pC and from 98± 4 to 193± 3 MeV respectively. The charge growth arises
likely from the increase of the nitrogen density and of the laser intensity (resulting from enhanced
self-focusing). The beam energy increases because of rising accelerating field originating from
the increase of the density and better laser self-focusing. It confirms that the acceleration is not
limited by dephasing (in the opposite case, the energy would decrease with increasing density).

As the plasma density increases some electrons can be freed after the density transition,
leading to injection over a long length and hence to broad energy distributions. This effect
is illustrated in Fig. 3.23. Whereas all the charge is concentrated in a single peak at low
density (Fig. 3.23(a)), a second peak with a large energy spread is also accelerated when the
density is risen above ne = 5.3× 1018 cm−3 (Fig. 3.23(b-c)). Note that at the threshold density
(Fig. 3.23(b)), a second beam is not trapped at each shot. In contrast, for ne = 9.2× 1018 cm−3

the spectra present always a low energy tail (Fig. 3.23(c)). The energy spread of the tail is very
similar to that of electron beams obtained without shock at the same density (Fig. 3.23(d)),
confirming that this tail is due to regular ionization injection. The total charge is also similar
with or without the shock, about 30 pC, probably because of beam loading. Thus, the drawback
of rising the plasma density to increase the beam charge is that it can also increase the charge
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Figure 3.23: Angularly resolved electron spectra for different conditions. (a) Electron density
ne = 3.7× 1018 cm−3. (b) ne = 5.3× 1018 cm−3. (c) ne = 9.2× 1018 cm−3. (d) ne = 9.2× 1018

cm−3, without shock. (e) ne = 5.3×1018 cm−3, mixture 2% nitrogen, 98% helium. The colorscale
is in arbitrary units.

in the low energy tail. A way to increase the beam charge while avoiding this detrimental effect
is to rise the fraction of nitrogen in the gas mixture. This is exemplified in Fig. 3.23(b,e) which
shows that doubling the proportion of nitrogen (while keeping the same electron density) leads
to the injection of more electrons in the electron beam without changing significantly the energy
distribution nor the divergence.

We demonstrated a controlled injection technique which gathers most of the advantages
of ionization and shock front injections. It is easy to setup and works for a large range of
parameters without requiring complex alignment. Compared to ionization injection, electron
trapping is confined to a small region, leading to the injection of electron beams with rather
low energy spreads (down to 10 MeV). The electron beams were also observed to be much more
stable than those obtained by shock front injection in pure helium. In particular the pointing
stability was as low as 0.7 mrad. Further optimization of the blade type or the blade mechanical
mount may lead to higher charge and to smaller energy spread, down to 5 MeV as obtained with
regular shock injection. These results were published in Thaury et al. [2015b].
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Chapter 3. Ionization injection in a laser-plasma accelerator

3.4 Conclusion
In conclusion, we presented in this chapter a comprehensive study of ionization injection mech-
anism in a pure high Z gas or a mixture of low and high Z gases. The mechanism rests upon the
tunnel-ionization of inner shell electrons of the high Z specie where the laser intensity is above
the ionization threshold. Electrons freed close to the laser axis can be trapped and accelerated in
the wakefield as long as the laser intensity is high enough, leading to highly charged beams (up
to 1 nC) but with a very poor energy spread (about 100 %). In a pure high Z gas, such beams
undergo two important processes. First, by modifying the laser energy it is possible to change
the total injected charge in the beam without changing its energy distribution. Second, self-
generated wakefield allows to turn a quasi-Maxwellian energy distribution into a macro-bunch
with more energetic electrons for a low enough electron density. By combining this process with
the shock injection mechanism, one can gather the advantages of the two techniques, leading
to the acceleration of very stable, high quality electron beams with a correct charge (around 10
pC) and a good energy spread (down to 7 %). Accelerated in a gas mixture, such beams are
adequate candidates for various application experiments such as LWFA-based FEL [Schlenvoigt
et al., 2008].
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Chapter 4

Electron phase manipulation by
tailoring the plasma density

An important limit for energy gain in laser-plasma wakefield accelerators is the de-
phasing length, after which the electron beam reaches the decelerating region of the
wakefield and starts to decelerate. In this chapter is presented a technique to manip-
ulate the phase of the electron beam in the wakefield, in order to bring the injected
electrons back into the accelerating region, hence increasing the final beam energy.
This rephasing is operated by placing an upward density step in the beam path. In
a first experiment, the principle of this technique is demonstrated using a large en-
ergy spread electron beam. Then, the technique is used to increase the energy of
mono-energetic electron beams by more than 50%.
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4.1 Overcome a dephasing limited LWFA

4.1.1 Principle of electron rephasing
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Figure 4.1: Principle of phase matching between the wakefield and electron bunch in an upward
density gradient (a) and phase-resetting in a step density gradient (b). In (a), the bubble
contracts as it propagates and electrons (blue dots) keep the same phase and remain in the
accelerating gradient (in red) instead of dephasing and decelerating in the front half of the
cavity (in blue). In (b), electrons are about to dephase in the first density plateau. The bubble
abruptly shrinks when crossing the density step and electrons find themselves at the back of the
cavity with their phase reset.

The maximum attainable energy for electrons in LWFA is limited by three processes: laser
pulse depletion, laser defocusing and dephasing (as seen in section 1.2.7). Each of theses pro-
cesses occur after a characteristic propagation length and the final electron energy is deter-
mined by the process that sets in first. Laser depletion and defocusing determine the distance
over which the wakefield structure can be maintained. The effect of the diffraction length
(Ldiff = 2π(ω0/ωp)λp) is usually mitigated by self-focusing or external guiding, while the deple-
tion length (Ldepl = (ω0/ωp)2 λp) can be increased with a larger laser energy. Yet, the excitation
of a wakefield is not sufficient to guarantee that the electron beam is accelerated, because of
dephasing. Actually, as the laser group velocity and thus the wake velocity are smaller than the
electron beam velocity, the electron beam outruns the plasma wave during the acceleration and
reaches a phase of the wake where the field is decelerating.

The laser group velocity and hence the dephasing length depend on the plasma density,
getting longer for low densities (Ldeph = (ω0/ωp)2 λp(4

√
a0/3) ∝ n

− 3
2

e as shown in eq. (1.66)).
It has been proposed years ago to use a spatially tapered plasma density profile to increase
this limit and overcome electron dephasing [Katsouleas, 1986; Sprangle et al., 2001]. The idea
behind this method is to use an accelerating medium with an upward density ramp along the
laser propagation. It is the opposite process of downramp injection (sketched in Fig. 2.1). As
discussed in chapter 2, the bubble expands as it propagates in a downward density gradient,
allowing for low energy electrons to remain in the accelerating phase long enough to be further
accelerated and eventually trapped.

Inversely, as the driving laser pulse encounters higher and higher plasma density, the wake-
field period shrinks (λp1 > λp2 > λp3 as seen in Fig. 4.1(a)) and the frontier between the
accelerating and decelerating region can move as fast as the electron bunch itself. Electrons
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can thus remain in the same phase as the cavity length shortens. The phase matching between
wakefield and the electron bunch can be kept much beyond the dephasing length, and therefore
leading to higher electron energies. The required density profile to get perfect phase-locking
is complex, and its experimental realization is not straightforward. The density tapering ef-
fect has been extensively investigated numerically [Suk et al., 2003; Sprangle et al., 2002; Kim
et al., 2004b; Rittershofer et al., 2010; Hur and Suk, 2011], however it has been sparsely studied
experimentally yet [Kim et al., 2013b].

Another method to overcome the dephasing limitation and reach higher energies is to consider
a density step separating two density plateaus. In the first density region, the bunch accelerates
up to the local dephasing length Ldeph1 and is about to dephase. When crossing the sharp
density transition, the bubble shrinks abruptly (λp2 < λp1 as seen in Fig. 4.1(b)). The electron
bunch, initially close to the center of the ion cavity, shifts to the rear part of the contracted
bubble, back into an accelerating region where it gains more energy while accelerating in the
second density plateau.

In this section, we present how the phase of electrons in the cavity can be manipulated by
tailoring the plasma density. Phase manipulation can allow for maintaining electrons phase in
the accelerating gradient and thus increase their energy without being limited by dephasing. It
can also be used to improve the beam quality by rotating electrons in their phase-space hence
reducing their energy spread.

4.1.2 Phase adjustment of the electron beam

Phase locking

In the case of phase-locking, electrons have to keep exactly the same phase inside the ion cav-
ity while it propagates to experience the same maximum longitudinal field during the whole
acceleration. Pukhov and Kostyukov [2008] and Rittershofer et al. [2010] developed the theo-
retical framework of phase locking in the guided linear regime. Here we evaluate the required
density profile for which electron dephasing is mitigated by the wake evolution (see Appendice
A for a more detailed calculation). Be sure to note that the very simple model developed here
demands quite strong assumptions on the influence of laser intensity evolution during propa-
gation. This simplistic view is useful to understand the physical process of phase-locking and
phase-resetting but it cannot be seen as an accurate description of what really happens during
electron acceleration in a tapered plasma.

In order to maintain the electron bunch phase Φ0 constant (Φ0 the normalized phase of
the bunch in the co-moving frame coordinate, with Φ0 = 0 at the very back of the cavity and
Φ0 = 1 in the cavity center), the phase slippage must be compensated by the cavity wavelength λ
modification while propagating at velocity ve−vϕ in an upward density gradient (see Appendice
A) :

dλ

dt
= ve − vϕ

1− Φ0
. (4.1)

The cavity wavelength λ is assumed to depend only on the plasma density ne(t) as λ(t) =
λp
√
n0/ne(t) (with t the time in the co-moving coordinate system), neglecting the influence of

the laser intensity and of self-focusing. Deriving eq. (4.1) gives the following equation for the
plasma density profile ne(z) to obtain perfect phase-matching (see Appendice A) :

ne(z) = n0(
1− z

Linh

) 2
3
. (4.2)
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Figure 4.2: (a) Density profile for perfect phase locking between electrons and the wake (in
red) and constant density profile (in black). (b) Evolution of energy gain for the corresponding
density profiles.

with Linh = 2(1 − Φ0)Ldeph/3 the inhibition length after which phase-matching is not possible
anymore. The fact that the inhibition length in the upward gradient is shorter than the de-
phasing length Ldeph at n0 is related to the fact that the wake velocity decreases as the density
increases [Esarey et al., 2009]. In the upward gradient, the front of the wake slows down while
the rear struggles to reach the light velocity c. When ne approaches the critical density nc, it
is more and more difficult for the wake to accelerate further and catch with the electron bunch.
As the laser propagation in the plasma imposes ne < nc, phase locking of electrons is in fact
limited.

The density profile is plotted in red in Fig. 4.2(a), along with a constant density profile
(in black) at n0. Note again that this model allows only for a rough estimation of the perfect
matching density profile as the laser evolution is neglected for simplicity. Furthermore, a perfect
matching condition of the laser with the plasma and a fully evacuated ion cavity are assumed
(which can be far from experimental conditions). We evaluate now the energy gain of an electron
in a constant density profile n0 in the bubble regime. The calculations are detailed in section A.1
:

∆γ(z) = e

mec2Ez0

(
z − 1

2
z2

Ldeph

)
(4.3)

with a maximum energy gain obtained when z = Ldeph :

∆γmax = nc
n0

√
a0. (4.4)

The normalized energy gain ∆γ/∆γmax in a constant density profile n0 for a0 = 2 is shown
in black in Fig. 4.2(b). Electrons gain energy up to Ldeph, then dephase and decelerate. In a
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Laser
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Decelerating Accelerating

z1
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n1

Figure 4.3: Principle of phase-resetting of electrons in a density step. The electron bunch reaches
the center of the cavity and is about to dephase before the density transition. After the step, the
cavity shrinks and the bunch finds itself located at the rear of the bubble, with some electrons
at the head in the accelerating part of the first cavity (those are rephased). The electrons at
the rear of the bunch are located in the decelerating part of the second wave period.

perfectly matched density profile however, the normalized energy gain calculated in section A.2
(shown in red in Fig. 4.2(b)) increases further, increasing up to a value almost two times larger
when reaching the inhibition length Linh. Such a density profile is however very challenging to
realize experimentally.

Phase resetting

A density step is much more easy to set up in an experiment and can also lead to a significant
increase of the electron energy, via phase resetting. An example of such phase resetting is shown
in Fig. 4.3. An electron is injected at Φ0 = 0 and accelerates over a distance z1, then enters a
higher density region n1 where the bubble shrinks abruptly so that the electron goes back to its
original phase Φ0 = 0, at the back of the cavity. For any transition position z1, there is a unique
density n1 for which the cavity wavelength λ1 shortens so that the electron phase is reset back
to zero. This density is given by (with the calculations detailed in section A.3) :

n1(z1) = n0(
1− z1

2Ldeph

)2 (4.5)

with Ldeph = nc/n0λp the dephasing length in the first density region. The perfect phase-reset
density profile n1(z1) is shown in Fig. 4.4(a) (dashed red line). Note that if the density step is
placed at the dephasing length (z1 = Ldeph), the cavity wavelength has to be reduced by a factor
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of two (λ1 = λp/2). The corresponding density for which electrons are perfectly phase-reset after
one dephasing length is n1 = 4n0 (shown in blue in Fig. 4.4(a)).
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Figure 4.4: (a) Constant density profile (in black) and density profiles required for phase-
resetting at two particular positions : z = Ldeph (in blue) and z = 2/3Ldeph (in magenta).
The dashed red line indicates the evolution of the density n1 required for perfect phase-resetting
function of the transition position z1. (b) Evolution of energy gain over a cavity length for
different phase-reset positions (in green) and for the two previously defined positions (in blue
and magenta).

It is possible to estimate the energy gain after phase resetting the electrons (see details in
section A.3) :

∆γ(z) = e

mec2

[
Ez1
2Ld1

z2 + Ez1

(
1− 1

Ld1

)
z +

(
Ez1
2Ld1

− Ez0
2Ldeph

)
z2

1 + (Ez0 − Ez1)z1

]
. (4.6)

The energy gain for different positions of the density transition z1 are plotted in green in
Fig. 4.4(b). If the density step is placed after one dephasing length (z1 = Ldeph, in blue in
Fig. 4.4(a), the maximum energy gain is :

∆γmax = ∆γmax(n0) + ∆γmax(4n0) = 5
4∆γmax(n0). (4.7)

The maximum achievable gain is obtained when the phase-reset happens at z1 = 2/3Ldeph, with
a corresponding optimum density n1 = 9/4n0 = 2.25n0 (shown in magenta in Fig. 4.4(a-b)). It
leads to a gain of :

∆γmax(2/3Ldeph) = 4
3∆γmax(n0). (4.8)

By setting a density step around 2/3Ldeph with n1 ∼ 2n0, it is possible to achieve electron
rephasing with an energy gain of about 1.33.
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Note that in the phase-locking model, laser evolution during propagation is neglected. In an
upward density gradient however, laser self-focusing is strongly affected, and thus enhances the
relativistic effects causing the cavity expansion. The use of a very sharp density transition can
mitigate this effect. Indeed, the cavity expands abruptly at transition whereas laser self-focusing
needs some propagation distance to develop and affect the bubble expansion. Phase-reset of
electrons in a shock allows for boosting the energy directly after the transition, with a limited
laser evolution, by simply moving the bunch back into the accelerating phase. Moreover, the step
position and density after the transition can be varied quite easily in order to experimentally
optimize electrons rephasing and compensate the effects not taken into account in our simplistic
model.

4.2 Experimental demonstration of electron phase manipulation

500 µm silicon wafer

1.5 mm gas nozzle

(a) (b)

Figure 4.5: (a) Schematic representation of the experimental setup. The blade can move in and
out the gas jet. A schematic density profile is shown in green near the gas jet. The inset shows
a zoom of the shock formation at the rear of the gas jet. (b) Picture of the nozzle and blade
used in the experiment.

In this section, we experimentally demonstrate phase-resetting of electrons with a plasma
presenting a low density region followed by a high density one, separated by a sharp density
jump (as schemed in Fig. 4.1). In this experiment, a large energy spread electron beam is used
to demonstrate the principle of this technique. The density profile is obtained by creating a
shock front in a supersonic gas jet.

4.2.1 Experimental setup and diagnostics

The main interaction beam P1 of the "Salle Jaune" laser system (containing 1.2 J) is focused
at the entrance of a 1.5 mm diameter supersonic Helium gas jet using a f/10 off-axis parabola
(as seen in the experimental setup sketched in Fig. 4.5(a)). The Full Width at Half Maximum
(FWHM) focal spot size is 18±0.6 µm (as shown in Fig. 4.6(a)), with a peak intensity on target
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of I = 1 ± 0.5 × 1019 W.cm−2, equivalent to a normalized vector potential a0 = 2.2 ± 0.06. A
500 µm thick silicon wafer is placed on the leaving side of the gas jet to create a sharp density
transition, by using a setup similar to the one in presented in chapter 2 (note that in chapter 2,
the shock front is created on the entering side of the gas jet to trigger electron injection in
the downward density jump, whereas for now the shock is on the leaving side of the jet and
creates a sharp upward density ramp). The longitudinal position of the shock is adjusted by
moving the blade in and out. Electron spectra are measured with the spectrometer presented
in section 1.4.3.

Shock front
(a) (b)

Figure 4.6: (a) Experimental laser focal spot obtained with a 700 mm focal length off-axis
parabola. (b) Interferogram of the propagation of the laser in a pure helium gas jet. Z = 0 mm
corresponds to the center of the nozzle. The shock is visible at zs = 500 µm.

The probe beam P3 combined with a Nomarski interferometer (presented in section 1.4.3)
are used to characterize the plasma density spatial distribution. A typical interferogram image
with the shock front visible at the rear of the plasma is shown in Fig. 4.6(b). The phase maps
for different positions of the blade are recovered from the corresponding interferograms with
a Continuous Wavelet Transform algorithm, and are shown in Fig. 4.7(a). Plasma density is
then estimated by performing Abel inversion, assuming a cylindrical symmetry around the laser
propagation axis before and after the shock. In the vicinity of the shock, the symmetry is not
perfect, and thus Abel inversion does not give perfectly exact results. Yet, it allows to get an
upper value on the shock front width and position as well as the density before and after the
density transition. It is estimated from phase maps to be smaller than 10 µm, the resolution of
the imaging system. The retrieved longitudinal plasma density profiles are shown in Fig. 4.7(b)
for different positions of the blade. The peak plasma density with the blade out of the jet
is n0 = 8.5 × 1018 cm−3 (black curve). The ratio of plasma densities in front of and behind
the shock front is about 3, and tends to go down when the blade is shifted out of the gas jet.
Beyond the shock, the plasma density gently decreases with a characteristic length of around 1
mm. Note that the position where the laser crosses the shock (referred as the shock position zs)
is different from the blade position, as the laser is fired a few millimeters above the blade. For
instance, a blade position of 1.8 mm corresponds to a shock position of roughly zs ≈ 0 mm.

4.2.2 Experimental results

Firstly a scan of the gas density n0 without the blade is performed in order to determine
the optimum plasma density for which the electron energy cut-off is the highest. The energy
spectrum with a plasma density without transition is shown in the top panel of Fig. 4.8(a)
(angle resolved spectrum) and in red in Fig. 4.8(b) (spectrum integrated over the transverse
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Figure 4.7: (a) Phase maps calculated from the interferometry measurements for different posi-
tions of the blade. (b) Longitudinal plasma density profiles for different positions of the blade.
The blade position is measured from the center of the gas nozzle at z = 0 mm.

direction). The electron energy distribution corresponds to the Forced Laser Wakefield (FLWF)
regime [Malka et al., 2002], with a long plateau feature and a Maxwellian decrease with a cut-off
energy around 230 MeV. The cut-off energy is defined as the electron energy where the charge
of the beam becomes smaller than 18 femtocoulombs per MeV. Such a spectrum indicates the
transverse self-injection of a long bunch [Corde et al., 2013b], which is consistent with an electron
plasma peak density n0 = 8.5× 1018 cm−3 along few millimeters.

When the blade is placed such as the shock is created slightly beyond the center of the gas
jet, the spectrum changes drastically, as shown in the bottom panel of Fig. 4.8(a) (corresponding
to a shock position of zs = 0.7 mm, measured from the center of the gas nozzle at z = 0 mm).
Figure 4.8(b) shows the integrated spectrum for this shock position in dark blue. The number
of electrons between 100 MeV and 200 MeV substantially drops by a factor 20, and a quasi-
monoenergetic peak appears around 300 MeV, with an energy-spread FWHM around 30 %.
The cut-off energy at 18 fC/MeV is around 100 MeV higher (up to 360 MeV) than with the
flat density profile. The high energy peak containing about 7 pC is well-collimated (divergence
lower than 4 mrad FWHM), whereas the low energy branch of the spectrum (between 50 and
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Figure 4.8: (a) Experimental angle resolved electron spectra in logarithmic scale without (top
panel) and with the shock at zs = 0.7 mm after the gas jet center (bottom panel). (b) Angle
integrated electron spectra in logarithmic scale for four positions of the shock.

100 MeV) presents a larger divergence (about 15 mrad FWHM) than for the case without shock
(5 mrad FWHM). Moreover, the number of low energy electrons -with energies lower than 70
MeV- is larger for the density step profile. Note that the total charge without (Q = 181 ± 20
pC) and with (Q = 211± 12 pC) the shock are similar. The energy gain of the electron bunch
is easily tunable by moving the blade in the gas jet. Yet for different shock positions (zs = 0.3
and 0.8 mm), the high energy peak is not as mono-energetic. The cut-off energy decreases when
the blade moves too much into the jet or too far away from the nozzle center. When the shock
is placed close to the optimum found in Fig. 4.4(b), electrons can gain maximum energy.

4.2.3 Simulation results

To get more insight on the details of the rephasing process, simulations of the injection and
acceleration of electrons along the gas jet are performed using the PIC code CalderCirc [Lifschitz
et al., 2009] with a mesh ∆x = 0.3 k−1

0 and ∆r = 1.5k−1
0 (with k0 = 1/λ0), and 2 Fourier modes

(m = 0 − 1). The plasma density profile is defined from the experimentally measured profiles,
with a peak density n0 = 8.5× 1018 cm−3 for the plasma without density transition. The laser
intensity is set to I = 1.0× 1019 W.cm−2 and the laser waist to 15 µm.

Figure 4.9 shows the electron density distribution in the longitudinal phase space (z, E)
resulting from simulations, for a gas jet without (a) and with the shock (b). The simulated
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E
z

E
z

Figure 4.9: Electron density in the phase space (z, E) for a gas jet without (a) and with (b)
the shock. Green curve shows the longitudinal electric field on the laser axis. Simulated spectra
obtained at the exit are shown in (c). The density transition is at zs = 0.900 mm.

109



Chapter 4. Electron phase manipulation by tailoring the plasma density

 0

 50

 100

 150

 200

 250

 300

 950  952  954  956  958  960  962  964  966

E 
(M

eV
)

z (µm)

 200
 300
 400
 500
 600
 700
 800
 900

 0

 50

 100

 150

 200

 250

 300

 350

 2628  2630  2632  2634  2636  2638  2640  2642  2644

E 
(M

eV
)

z (µm)

 200
 300
 400
 500
 600
 700
 800
 900

z 0
 (µ

m
)

z 0
 (µ

m
)

(a)

(b)

Figure 4.10: Phase-space distribution (z, E) of the electrons just after the density transition (a)
and at the end of the gas jet (b). The color scale z0 represents the position of injection in the
wake of each colored simulated macro-particle.

energy spectra of the extracted electrons are shown in Fig. 4.9(c), presenting a distribution
similar to those obtained in the experiment. Self-injection of electrons into the bubble begins
relatively late during the pulse propagation, around the middle of the gas jet (at z = 0 mm).
Without shock, self-injection of electrons will continue up to z ∼ 1.3 mm. Accordingly, this
lengthy self-injection process results in a long, large energy spread electron bunch, as shown in
Fig. 4.9(a). In the case without shock, the head of the bunch reaches the decelerating region of
the bubble after ∼ 0.95 mm of acceleration with an energy around 250 MeV (the limit between
the accelerating and decelerating regions is the point where the longitudinal field sign switches).
As a result, electrons at the head of the bunch dephase and at the end of the gas jet their energy
has decreased below 200 MeV, as shown in Fig. 4.9(c).

In the shock case, the phase space drastically changes when the bunch crosses the density
step. The left side of the plot shown in Fig. 4.9(b) is about 50 µm far from the shock rising edge
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(zs = 0.9 mm). Because of the reduction of the bubble size and the resulting positive shift of
null field point, when the wakefield crosses the sharp density transition, the head of the bunch
shifts back to the accelerating region of the shorten bubble (as pictured in Fig. 4.3). After the
density step, it is located at the tail of the contracted bubble, and is efficiently accelerated by
the extremely large longitudinal field of Ex ≈ 2 TV.m−1. The result is a very fast rotation of the
head of the bunch in the phase-space (z, E), which produces naturally a quasi-monoenergetic
spectrum, as can be seen in Fig. 4.9(c). Beyond the shock, the back half of the bunch is in the
region with decelerating field (as pictured in Fig. 4.3). It experiences also a strong defocusing
field when crossing the rear of the bubble. The corresponding electrons, in the range between
100 and 200 MeV, are both decelerated and defocused, resulting in a divergence growth at low
energy. In a few simulations, it was also observed that some electrons can exit the wakefield if
electrons are too strongly defocused.

The electron phase-space with the longitudinal injection position z0 color-coded is shown in
Fig. 4.10 just after the density step (a) and at the end of acceleration (b). Electrons shown
in black and purple are self-injected around the middle of the gas jet (z = 0 mm) and are
rephased after the transition. At the end of acceleration, the quasi mono-energetic peak, which
has an energy around 300 MeV, consists of these electrons. The few electrons shown in yellow
are injected at the shock position (zs = 900 µm), corresponding to down-ramp injection. In the
final energy distribution, they have energies not exceeding 150 MeV (most of them have energies
below 100 MeV) and blur with the decelerated part of the main bunch. Simulations show
unambiguously that the peak observed experimentally around 300 MeV cannot be attributed to
down-ramp injected electrons, and corresponds to the rephased part of the bunch. Note that
electrons having very low energy (below 50 MeV in Fig. 4.10(a)) represent electrons which are
not trapped in the main bubble and eventually exit the simulation box (in Fig. 4.10(b), most of
them have disappeared). These electrons are filtered in Fig. 4.9(a-b).

Energy enhancement from electron rephasing is stronger than expected from the model
developed in section 4.1.2 (about 50 % compare to 30 %). Although this difference may originate
from the model inaccuracy and strong assumptions, the major reason is the presence of an
extremely strong longitudinal electric field at the back of the bubble after the density transition
(up to ∼ 2 TV.m−1). Indeed, a large number of charge concentrates at the back of the bubble
because of the bubble shrinking when crossing the shock, thus largely increasing the electric field
locally. A theoretical study is currently undergoing at LOA to get more insight on this effect.

4.2.4 Blade position influence in the jet

The peak energy of the quasi-monoenergetic part of the electron beam can easily be varied by
changing the position of the blade in the gas jet. Figure 4.11 shows the influence of the shock
position on the cut-off energy and the peak energy. When the blade is moved so far into the gas
jet that the shock is almost at the center of the nozzle, the energy cut-off is lower than for a
density profile without transition. Indeed, the density transition is far before the position where
the dephasing length is reached. As a result, electrons are less accelerated before the density
transition, and only the very head of the bunch is re-accelerated in the high density plasma. As
the shock is moved towards the end of the gas jet, the cut-off energy increases up to 400 MeV for
zs ≈ 0.65 mm, corresponding to an energy enhancement of 45 % compared to the transition-free
density accelerator. The energy of the quasi-monoenergetic peak is also found to be maximum
for zs ≈ 0.65 mm, where it reaches 360 MeV.

However, if the shock is placed too far away from the nozzle center, the energy of the quasi-
monoenergetic peak decreases. Indeed, the electrons at the head of the bunch (those which
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Shock position zs (mm)

Figure 4.11: Electron cut-off energy at 18 fC/MeV (red dots) and energy of the quasi-
monoenergetic peak (blue triangles) as function of the shock position in the gas jet. The error
bars show the standard error of the mean over 5 to 39 consecutive shots. While the cut-off
energy is measured at every shot, the peak energy cannot be determined on some shots when no
peak can be clearly identified. The fraction of shots with a peak depends on the shock position;
it is between 100% and 80% for 0.1 < zs < 0.65 mm and goes down to 50% for zs > 0.75 mm.

can be accelerated after the density transition) already started to experience the decelerating
region of the bubble in the first density plateau, resulting in a lower final energy. The optimal
energy boost corresponding to the case where the shock is placed close to 2/3Ldeph, the length
in this case may be higher than this value. Moreover, the peak energy may decrease when the
shock is too close to the jet edge due to the remaining acceleration length after the density jump
being too short to reach as large electron energies as before. The plasma density after the shock
also diminishes when the blade is placed close to the jet edge (as seen in Fig. 4.7(b)), leading
to a lower acceleration field, and then lower electron energies, than when the blade is more
inserted. From section 4.1.2, it is clear that optimum rephasing of electrons is obtained when
the transition is placed at 2/3Ldeph with a density ratio of 4. In the experiment however, the
shock position, density ratio and second density region length are strongly coupled. In Fig. 4.11,
the optimal shock position at 0.65 mm (for which the energy is maximum) probably corresponds
to a compromise between these three quantities. Ideally, the density ratio, the step position and
the second plateau length should be varied independently to obtain the optimum rephasing. The
next section presents a method to achieve a better, independent control over these parameters.
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needle

silicon wafer

2nd jet  
(500 µm needle)

1st jet (1.5 mm nozzle)

laser pulse

(a) (b)

Figure 4.12: (a) Schematic representation of the experimental setup. The blade is used to inject
electrons in a sharp transition. The second jet (the needle) is used to form a high density region
at the end of the first jet. The resulting density profile is shown in green near the gas jet. (b)
Picture of the first nozzle and the needle used in the experiment (the injection blade is out).

4.3 Rephasing of mono-energetic electron beams

4.3.1 Experimental setup

While in section 4.2, only the head of a large energy spread bunch is being rephased and
further accelerated, this technique can also be used to rephase and re-accelerate a higher quality,
low energy spread electron beam. Such an electron beam can be generated by using shock
front injection, as detailed in chapter 2. The experimental setup is modified as sketched in
Fig. 4.12(a). The main interaction beam P1 is now focused using a 1 m focal length off-axis
parabola, delivering 1.2 J in a focal spot size of 18 µm FWHM (shown in Fig. 4.13(a)). The
peak intensity on target is I = 1 × 1019 W.cm−2, equivalent to a normalized vector potential
a0 = 2.2. The silicon wafer is placed at the entrance of the jet to generate a sharp downward
density gradient allowing for shock front injection of electrons. A second gas jet formed with a
500 µm diameter needle is placed horizontally at the output of the first supersonic jet (as seen
in Fig. 4.12(b)), creating a region with a higher tunable density ne2. The needle can be moved
relatively to the first jet. Due to the formation of a shock, the sharpness of the transition between
these two density regions is similar to that obtained with the previous setup. The resulting
plasma density profile (pictured in green near the gas jet in Fig. 4.12(a)) is estimated from the
interferometric measurements with the Nomarski interferometer (visible in Fig. 4.13(b)).

4.3.2 Experimental results

The density in the first jet is set so that electrons are injected in the density transition while
avoiding continuous self-injection. Such a regime is reached for n0 = 1.0 × 1019 cm−3. Note
that the density seems quite high for self-injection not to trigger. Looking at the plasma in
Fig. 4.13(b), the laser pulse does not seem to be efficiently self-focused, thus keeping quite a low
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Figure 4.13: (a) Experimental laser focal spot obtained with a 1 m focal length off-axis parabola.
(b) Interferogram of the propagation of the laser in a pure helium gas jet. Z = 0 mm corresponds
to the center of the first nozzle. The shock allowing for injection is visible at z1 = −800 µm,
while the density transition created by the second jet used for phase-reset is located around
z2 = 250 µm.

energy along the propagation. This may be due to a low quality wavefront of the laser pulse.
Shock-injected electrons have a quasi-monoenergetic distribution, as shown in Fig. 4.14(a), with
a peak energy of 125 ± 2 MeV and a charge of 10 ± 2 pC (mean values over ten shots). The
integrated spectrum over the transverse dimension is shown in light blue in Fig. 4.14(b). The
peak energy is quite low for such an experimental setup (electrons were able to reach about 260
MeV in the similar experiment presented in section 2.3). This important discrepancy may come
once again from a low quality laser wavefront inducing a weak self-focusing, hence a low intensity.
Due to the fact that the cavity is certainly not fully evacuated, the generated accelerating fields
may be quite weak in this case.

When the needle is placed so that the transition between the two density regions is close
to zs = 0.55 mm, the electron spectrum drastically changes (as shown in Fig. 4.14(a)). The
mono-energetic electron beam is rephased in the second jet after crossing the density transition
(as explained in section 4.1), it is thus able to be further accelerated up to 220 MeV for an
electron density in the second jet of ne,2 = 2.6× 1019 cm−3. Inversely to section 4.2, the bunch
is mono-energetic enough so that quite a good chunk of electrons remains in the accelerating
part of the first bubble when it shortens. Some electrons at the back of the bunch cross the rear
part of the cavity and are decelerated and defocused, forming the continuous, low-energy tail
visible in the experimental spectrum presented in Fig. 4.14(b). This low-energy tail may also
originate from electron injection in the second gas jet. The mean charge in the rephased quasi
mono-energetic peak is 2.8± 0.6 pC : about 30 % of shock-injected electrons are rephased while
others are decelerated and defocused. Note that the absolute energy spread without (10 ± 2
MeV) and with (12 ± 4 MeV) the second gas jet are very similar. The energy gain in this
case is about 75 %, much larger than expected from the simple phase-reset model presented in
section 4.1.2. While phase-resetting of electrons certainly happens at the transition between the
two density regions, another reason for energy enhancement may be the global increase of the
acceleration length. Indeed, when the second gas jet formed by the needle is triggered, the total
plasma length increases from 1.6 mm to 2.1 mm. However, the corresponding energy gain would
not exceed 30 % (considering a mean density of 2 × 1019 cm−3 over 0.5 mm). Thus, the total
energy gain is certainly a combination of acceleration length enhancement and phase-resetting
at the transition. The energy gain depends strongly on the density in the second gas jet, as
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Figure 4.14: (a) Experimental angle resolved electron spectra (corrected from the spectrometer
dispersion) of shock-injected electrons with no gas (top panel) and gas at optimal density (bot-
tom panel) flowing from the needle. (b) Corresponding spectra integrated over the transverse
dimension.

explained in section 4.1.2. Figure 4.15 shows experimental spectra for different plasma densities
ne2, from 0 (top) to 3.1 × 1019 cm−3 (bottom). The electron beam starts to rephase in the
second jet for an electron density ne,2 = 1.8× 1019 cm−3, with the peak energy increasing up to
154±8 MeV. By further increasing the second jet density, electrons can reach higher and higher
energies. Indeed, the density in the first jet is n0 = 1.0× 1019 cm−3. From the model presented
in section 4.1.2, the energy gain is maximum if ne,2 ∼ 2n0, as it is observed in this experiment.
When the plasma density in the second region is too high however (ne,2 = 3.1 × 1019 cm−3,
bottom panel of Fig. 4.15), the bubble contracts too strongly at the transition and the electron
beam is located behind the cavity, and is thus decelerated and defocused. It may explain that
no electrons are observed in the spectrometer range of measurement.

4.4 Conclusion

In conclusion, we presented in this chapter the experimental demonstration of a simple density
tailored wakefield accelerator. A sharp upward density gradient was used to rephase the electron
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Chapter 4. Electron phase manipulation by tailoring the plasma density

Without needle

ne2 = 1.8 x 1019 cm-3

ne2 = 2.1 x 1019 cm-3

ne2 = 2.6 x 1019 cm-3

ne2 = 3.1 x 1019 cm-3

Figure 4.15: Experimental angle resolved electron spectra of shock-injected electrons with no
gas flowing from the needle (top panel), and for four different plasma densities in the second jet.

beam with the accelerating field and increase its energy. Note that we demonstrate here a proof-
of-concept of phase-resetting, and much remains to be done to achieve quasi phase matching.
Our technique can either be used to select a part of a broad energy spread electron beam and
increase its energy or to enhance the energy of a mono-energetic electron beam. Experimental
results highlight a maximum energy enhancement from phase-resetting of about 50 % compared
with a transition-free plasma density. These results were published in Guillaume et al. [2015b].
A way to improve this phase-resetting setup would be to better control the second density region
parameters so that the total acceleration length would not change when tuning the second jet
density (for instance by using a very supersonic second jet with sharp gradients). Thus, the
observed energy gain would originate from phase-resetting of electrons, with an influence of the
strongest accelerating fields in the higher density region. A more detailed scan of the second jet
position and density would also be necessary in order to study the effects of phase-space rotation
that seems to be observed in electron spectra. Moreover, a more detailed numerical study of the
electron beam separation (a small part is rephased while most of the electrons are decelerated
and defocused) would be quite interesting to perform. It opens a new concept of electron
longitudinal phase-space manipulation which is of major importance for several applications.
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Chapter 5

Angular momentum evolution of
electrons in a laser-plasma

accelerator

In this chapter, we show that the evolution of the electrons angular momentum during
the acceleration can be induced by an asymmetric plasma cavity, probably originating
from a non-perfectly symmetric laser pulse. This explanation for the origin of the
angular momentum is supported by experimental results and simulations. Electrons
angular momentum is an important process to take into account in betatron based
emittance measurement, as it strongly influences the shape and divergence of the x-
ray beam angular and spatial properties.
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Chapter 5. Angular momentum evolution of electrons in a laser-plasma accelerator

5.1 Angular momentum of an electron in a LWFA
The angular momentum of an electron in a Laser-Wakefield Accelerator is related to the rota-
tional motion of the electron in the transverse plane (x, y) around its propagation axis z during
the acceleration in the ion cavity. It can be described with the vector quantity Lz which is
the cross-product of the position vector r of the electron in the plane (x, y) with the linear
momentum p of the particle :

Lz = r × p = (xpy − ypx)ez. (5.1)
The angular momentum of an electron is schemed in Fig. 5.1. In the next section is presented
the impact of the angular momentum of accelerated electrons onto the generation of betatron
radiation and its signature in betatron angular profiles.

x

y

z

Lz

Electron 
(r,p)

(a) (b)

Figure 5.1: Definition of the angular momentum of an electron Lz.

5.2 Correlation between electron bunch and betatron radiation

5.2.1 Betatron oscillation and radiation in the bubble regime

In the bubble regime [Lu et al., 2007], electrons are accelerated and undergo betatron oscillations
in the transverse focusing fields of the cavity (as explained in section 1.2.5). The cavity is
assumed to be perfectly spherical with cylindrical symmetry along the z-axis. The restoring
electrostatic force experienced by a relativistic electron propagating in the cavity is transverse,
directed toward the z-axis, and can be written as:

F⊥ = −1
2meαω

2
pr er for r < rB (5.2)

with α ≤ 1 a coefficient describing a possible deviation from the nominal transverse force of
a fully evacuated ion cavity (α = 1 for a bubble completely electron-free) and rB the bub-
ble radius defined in section 1.2.4. For an adiabatic acceleration, the adiabatic invariant J is
conserved [Corde, 2012] :

J = p2

2meωβγ
+ 1

4ωβ
meαω

2
pr

2 (5.3)
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5.2. Correlation between electron bunch and betatron radiation

Transverse force

(a) (b)

Figure 5.2: (a) Drawing of two electrons experiencing focusing transverse forces in the (x, y)
plane of a spherical ion cavity. (b) Corresponding electron orbits during the acceleration along
z.

with γ the electron relativistic factor, p its momentum along er and ωβ = ωp
√

α
2γ the betatron

frequency defined in section 1.2.5 (now the α coefficient is taken into account). J represents the
normalized modulus of the electron position in the six-dimensional phase space (x̂, ŷ, ẑ, p̂x, p̂y, p̂z).

In this formalism, the expression of transverse motion is [Corde et al., 2013a] :

r̂(t) =
√
Ĵ sin

[∫ t

0
ωβ(t′)dt′ + ϕr

]
(5.4)

p̂(t) =
√
Ĵ cos

[∫ t

0
ωβ(t′)dt′ + ϕr

]
with ωβ(t) = ωp

√
α

2γ(t) (5.5)

where r̂ = (αγ/8)
1
4 kpr and p̂ = p/(2αγ)

1
4mec are normalized variables and Ĵ = kpJ/mec =

r̂2 + p̂2 the squared norm in the phase-space (r, p). The transverse motion consists in sinusoidal
oscillations along er with time-dependent amplitude

√
Ĵ(t) and frequency ωβ(t). They depend

on time only through γ. The betatron amplitude decreases as γ−
1
4 during acceleration, while

the frequency decreases as γ−
1
2 . Figure 5.2(a-b) shows the evolution of the trajectories of

two electrons with zero initial momentum and different initial positions along the acceleration.
Because of a null initial angular momentum, these electrons have planar trajectories. Note that
there is a continuous set of initial conditions for electrons injected in the cavity, potentially with
a non-null initial momentum. In this case, electron trajectories can be helicoidal (if they have a
non-zero momentum perpendicular to er).

Betatron radiation is emitted during this relativistic motion, with a spectrum defined as [Jack-
son, 1998] :

dI

dω
= 1

4πε0
×
√

3q
2
e

c
γ
ω

ωc

∫ ∞
ω/ωc

K 5
3
udu (5.6)
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Chapter 5. Angular momentum evolution of electrons in a laser-plasma accelerator

Experimental 
profiles

Simulated 
profiles Electron orbits

Figure 5.3: Experimental betatron profiles (left), numerical simulation of the beam profiles
(middle) and corresponding electron trajectories (right). Figure from [Phuoc et al., 2006]

with ωc = 3/2γ3c/Rc, Rc the radius of curvature of the electron orbit and K 5
3
the modified

Bessel function. This expression shows that electrons emit more in trajectory sections where
the radius of curvature is minimum. The spatial distribution of betatron radiation is obtained
by calculating dI/dΩ (integration over frequencies) as a function of the direction of observa-
tion. Radiation for an electron having a planar trajectory consists on an elliptical beam with
a divergence θx ∼ px/γ along the oscillating plane and θy ∼ py/γ in the orthogonal direction.
Measurement of the betatron spatial profile can thus provide the mean electron momentum
during the betatron emission in the wakefield cavity. An experimental study of the correla-
tion between betatron profiles and electron trajectories was performed by Phuoc et al. [2006].
This work reveals that electrons in a ion cavity can carry some angular momentum, as shown
in Fig. 5.3. Indeed, betatron profiles observed may be fully elliptical with variable width or
doughnut-shaped in some cases (top panels of Fig. 5.3). These profiles correspond to cases
where electrons have a helicoidal trajectory, with a non-null angular momentum. However, the
origin of electrons angular momentum remains unclear. In this chapter, we propose a possible
explanation for the origin of the angular momentum evolution of electrons during acceleration
in the case where the laser pulse is asymmetric, inducing an elliptical bubble.

5.2.2 Electron trajectories in an elliptical plasma cavity

Laser wavefront aberrations are recognized to impact the properties of accelerated electron
beams [Glinec et al., 2008; Mangles et al., 2009; Popp et al., 2010]. Nevertheless, most numerical
simulations of laser-plasma interaction are performed for perfect gaussian laser pulses, so that
the scope of the phenomenon remains largely unknown. As electron trajectories and thus the
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Figure 5.4: Wakefield excitation by a realistic laser pulse. (a) Experimental laser focal spot. (b)
Ratio of the transverse forces in two perpendicular directions 1− Fy/Fz, and drift of the cavity
center in the transverse plane, obtained from a 3D PIC simulation using the focal spot shown
in (a).

angular momentum are strongly influenced by the shape of the accelerating cavity, 3D PIC
simulations were performed by X. Davoine from CEA/DAM with the code Calder to assess
the influence of a distorted laser wavefront on this shape. The normalized laser amplitude was
a0=1.3, with a focal spot width of 22 µm full width at half maximum (FWHM), a pulse duration
of 35 fs FWHM and the electron density ne = 1019 cm−3. The simulated focal spot is shown
in Fig. 5.4(a); it is elliptical with some energy in the wings. This laser pulse creates a plasma
cavity whose center changes in time (mainly on the y axis) and in which the transverse focusing
force is anisotropic, as illustrated in Fig. 5.4(b). The force is measured at the center of the
plasma cavity at 2 µm from the back of the cavity. The mean absolute ellipticity of the cavity
is ε = 11%. The asymmetry is a function of time because of different self-focusing dynamics in
the two transverse directions.

Electrons in such an asymmetric cavity experience a different force in the two transverse
directions (x and y). For simplicity, the drift of the cavity center is neglected although it may
have a similar effect as the force asymmetry, and the cavity is assumed to be elliptical with x
the minor axis and y the major axis. The transverse forces are then :

Fx = −1
2αme

(
1 + ε

2

)
ω2
px ex (5.7)

Fy = −1
2αme

(
1− ε

2

)
ω2
py ey (5.8)

with ε ≤ 1 the coefficient that quantifies the asymmetry of the transverse forces, thus the
ellipticity of the cavity. In this case, an adiabatic invariant should be defined for each axis :
Ju = p2

u
2meωβγ + 1

4ωβmeα
(
1 + ε

2
)
ω2
pu

2 with u = (x, y). The normalized adiabatic invariants are
(Ĵx = x̂2 + p̂2

x, Ĵy = ŷ2 + p̂2
y) with Ĵ = Ĵx + Ĵy = r̂2 + p̂2. The electron orbit in the 4-dimension
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Chapter 5. Angular momentum evolution of electrons in a laser-plasma accelerator

phase-space (x, y, px, py) is then given by :

x̂(t) =
√
Ĵx sin

[∫ t

0
ωβx(t′)dt′ + ϕx

]
(5.9)

p̂x(t) =
√
Ĵx cos

[∫ t

0
ωβx(t′)dt′ + ϕx

]
(5.10)

ŷ(t) =
√
Ĵy sin

[∫ t

0
ωβy(t′)dt′ + ϕy

]
(5.11)

p̂y(t) =
√
Ĵy cos

[∫ t

0
ωβy(t′)dt′ + ϕy

]
. (5.12)

While this formalism is useful to study the electron orbit numerically, the trajectory can also be
described in non-normalized units for a better understanding :

x(t) = x0

(
γi
γ(t)

) 1
4

sin
[√

1 + ε

2Φ(t) + Φx0

]
(5.13)

y(t) = y0

(
γi
γ(t)

) 1
4

sin
[√

1− ε

2Φ(t) + Φy0

]
(5.14)

px(t) = meγ(t)x0

(
γi
γ(t)

) 1
4
[
ωp

√
α

2γ (1 + ε

2) cos
(√

1 + ε

2Φ(t) + Φx0

)
− 1

4
γ′(t)
γ(t) sin

(√
1 + ε

2Φ(t) + Φx0

)]
(5.15)

py(t) = meγ(t)y0

(
γi
γ(t)

) 1
4
[
ωp

√
α

2γ (1− ε

2) cos
(√

1− ε

2Φ(t) + Φy0

)
− 1

4
γ′(t)
γ(t) sin

(√
1− ε

2Φ(t) + Φy0

)]
(5.16)

with Φ(t) =
∫ t

0
√

α
2γ(t′)ωpdt

′ the time-dependent phase of the electron along its elliptical orbit,
(x0, y0) the initial position, (Φx0,Φy0) the initial phases, γi the initial relativistic factor of
electron when injected in the cavity and γ′ the temporal derivative of γ. Note that the second
terms in the brackets of px and py can be neglected in an adiabatic acceleration, as γ evolves
quite slowly during the acceleration (γ′ � γ).

The angular momentum of the electron is defined as Lz = xpy − ypx, and can be calculated
from eqs. (5.13) to (5.16), with the help of trigonometry identities :

Lz = xpy − ypx = meωpx0y0

√
αγi
2 sin

(√
1 + ε

2Φ(t)−
√

1− ε

2Φ(t)− 2Φ0

)
. (5.17)

For an elliptical bubble (ε 6= 0), electrons oscillate with different time-dependent frequencies
along x and y. As a result, their trajectories which are initially planar for electrons with zero
angular momentum (Φx0 = Φy0 = Φ0), progressively become helicoidal, before reverting to
planar trajectories every time Φ(t) = kπ/(1−

√
1− ε) with k an integer (as shown in Fig. 5.5(a-

b)). In other words the angular momentum Lz changes in time.
Assuming that the ellipticity of the cavity is small enough (ε� 1), eq. (5.17) can be simplified

as :
Lz
meωp

= x0y0

√
αγi
2

(
sin
(
ε

2Φ
)
− ε

4 sin[2(Φ + Φ0)]
)

(5.18)

The first term accounts for slow variations of Lz; it is responsible for the transition from
planar to helicoidal trajectories. The second term corresponds to high frequency oscillations.
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5.2. Correlation between electron bunch and betatron radiation

Transverse force

(a) (b)

Figure 5.5: (a) Drawing of two electrons experiencing focusing transverse forces in the (x, y)
plane of an elliptical ion cavity. (b) Corresponding electron orbits during the acceleration along
z.

It is of low amplitude and can be neglected in a first approximation. This equation also shows
that, for a given initial radius r0 =

√
x2

0 + y2
0, Lz is maximum when x0 = y0, that is when

electrons are initially in a plane at 45◦ to the ellipse axes, whereas Lz remains 0 at all times
for on-axis electrons. Note that the losses of energy and angular momentum by radiation are
negligible and were not considered in the derivation of eq. (5.18). The angular momentum
conservation is ensured by the fact that electrons and ions from the cavity sheath acquire some
angular momentum.

Figure 5.6 shows the trajectory of an electron during its acceleration (a) and the corre-
sponding evolution of its angular momentum (b), with the color varying along z. For a given
(x0, y0), the angular momentum reaches its peak value when Φ(t) = π/ε. Assuming for simplic-
ity γ = γi + κt, we find for ε = 0.2 and typical laser-plasma parameters (γi = 25, κ = 1014 s−1,
ne = 8×1018 cm−3 and α = 0.5), that Lz is maximum after an acceleration of ≈ 600 µm (as seen
in Fig. 5.6(b)). As effective acceleration lengths in experiments are generally about or larger
than 1 mm, the slow oscillations of Lz should be observable, assuming that the acceleration
length can be precisely controlled.

In summary, from the simple model for transverse forces in the cavity from Lu et al. [2007],
we show that the bubble anisotropy (induced by the laser focal spot ellipticity) can change the
trajectories of some accelerated electrons, as they gain angular momentum during the acceler-
ation. It hence modifies the properties of the accelerated electrons and the x-rays they emit.
Information on the angular momentum content of the electron beam is then obtained from the
analysis of betatron X-rays [Rousse et al., 2004; Corde et al., 2013a].
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Figure 5.6: Evolution of the angular momentum in an elliptical cavity. (a) Trajectory of an
electron. (b) Angular momentum as a function of the longitudinal position z (the color is a
function of z). The parameters are ε = 0.2, γi = 25, κ = 1014 s−1, ne = 8 × 1018 cm−3 and
α = 0.5).

5.2.3 Principle of optical injection

In order to have sufficient control on the acceleration length so that the angular momentum of
electrons can be precisely studied, the colliding pulse injection scheme is chosen. With this tech-
nique, exposed briefly in section 1.2.6, the injection is relatively separated from the acceleration.
The accelerating wakefield depends only on the propagation of the main driving pulse and the
plasma density, remaining the same whatever the properties of the injection beam. The driving
pulse generating the wake propagates forward while the injection pulse propagates backward (as
seen in Fig. 5.7(a)). When the two pulses collide, a beat wave with half the wavelength of the
driving laser is formed and can pre-accelerate electrons directly in the bubble (due to the large
ponderomotive force associated with the beat wave), as shown in Fig. 5.7(b). This injection
is triggered very locally, as it happens only during the few dozens of femtoseconds when the
two pulses collide. Once injected, electrons are accelerated in the remaining acceleration length
(Fig. 5.7(c)).

Optical injection is very reproducible, and allows for the generation of high quality, low
energy spread electron beams. Beam parameters can be controlled by varying the injection
pulse intensity, as well as the collision position zcol which is related to the final electron energy
(the sooner the two pulses collide, the larger the remaining acceleration length and thus the
energy). This fine tunability and stability in electron energy allows for performing a precise
experimental study on the betatron profiles dependence as a function of the electron energy.

5.3 Experimental study of the evolution of angular momentum
of electrons

The experiment was performed in the frame of Sébastien Corde PhD thesis in 2009 before the
beginning of my own thesis. My work consisted in the detailed analysis of experimental results
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Figure 5.7: Principle of optical injection. (a) The injection pulse (green) propagate in the counter
direction of the driving pulse (red) generating a wakefield (blue curve) in the bubble regime. (b)
When they collide, the resulting beat wave (orange) triggers a very strong ponderomotive force
and pre-accelerate electrons, which are injected in the cavity. (c) After the collision, the driving
pulse continues to propagate and trapped electrons (blue dots) can accelerate further.

to highlight the angular momentum evolution of electron during acceleration [Thaury et al.,
2013].

5.3.1 Experimental setup and diagnostics

Two synchronized 35 fs FWHM laser pulses of the "Salle Jaune" laser system are used : the
pump pulse that drives the accelerating plasma wave contains 1.5 J and the injection pulse
that triggers the injection into the main pump pulse wakefield contains 200 mJ. The two pulses
have the same linear polarization. They are focused onto a 3 mm supersonic helium gas jet
where they collide at a 135 degrees angle (as seen in Fig. 5.8). The pump pulse (respectively
the injection pulse) has a mean FWHM focal spot size of 18 µm (respectively 22 µm), and a
total energy contained in the focal spot of about 50 % in both cases. The normalized vector
potential amplitude is thus a0 = 1.3 (respectively a0 = 0.4). Electron spectra (measured with
the spectrometer defined in section 1.4.3) and x-ray angular profiles are recorded simultaneously
in a single shot. X-ray profiles are obtained from an x-ray CCD placed on axis at 90 cm from
the gas jet, behind a 25 µm Be filter (used to stop the laser from entering the XCCD). In this
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Figure 5.8: Drawing of the experimental setup used in the colliding injection experiment.

experiment, the electron plasma density is ne = 8 × 1018 cm−3, which corresponds, for these
experimental parameters, to an interaction regime where electrons are not self-injected in the
wakefield. Consequently, electrons and x-rays are observed only when both laser pulses overlap
in time and space.

5.3.2 Optical injection of electrons
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50 100 150 200 250 300

dN
e / 

dE
 [e

- /M
eV

]

×106

0
2
4
6
8

10
12
14
16
18

 zcol = 1.60 mm
 zcol = 1.30 mm
 zcol = 0.85 mm

Figure 5.9: Experimental electron spectra for three different collision positions. The position
zcol = 1.5 mm corresponds to a pulse collision occurring at the center of the gas jet.

Typical experimental electron spectra for three different collision positions are shown in
Fig. 5.9 (with zcol = 1.5 mm from the center of the gas jet). Optical injection allows for the
generation of quasi mono-energetic beams with a variable energy between 100 and 250 MeV. For
a pulse collision close to the center of the gas jet, the energy and charge of the beam are about
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Figure 5.10: Electron beam mean energy as a function of the collision position. The line is a
linear fit and the error bar corresponds to the standard error calculated over 1 to 10 shots.

120 MeV and 30 pC, with an energy spread of about 20 %. The divergence of the electron beam
is typically around 5 mrad FWHM. For an early collision position, the energy increases up to 260
MeV while the charge decreases down to a few pC (for zcol = 0.85 mm, as seen in Fig. 5.9). This
charge decrease is probably due to the fact that pump pulse self-focusing and self-compression
are too weak after such a small propagating length, and thus the wakefield amplitude is weaker
during injection (less electrons can be trapped). The remaining acceleration length is however
larger, leading to larger electron energy. If the collision happens too late in the jet, the pump
pulse is quite depleted and the remaining length is too short to get high energy, thus no electrons
can be visible on the spectrometer (which only collects electrons with energies above 50 MeV).

Experimental results in Fig. 5.10 demonstrate that the electron energy E can be tuned
from ∼ 90 MeV to ∼ 250 MeV, by adjusting the collision position zcol. The linear fit shows
that the relativistic factor γ can be reasonably approximated by a linear function (as shown
in section 5.2.2, γ = γi + κt). This leads to E ≈ −160 zcol[mm] + 481 MeV, and κ = 160 ×
(c/0.511) ≈ 1014 s−1.

5.3.3 Betatron profile measurements

In order to study the evolution of the angular momentum of the electron beam, we now fo-
cus on X-ray profile measurements. Figure 5.11(a-c) shows single-shot X-ray angular profiles
corresponding to electron energies of 120 MeV (a), 160 MeV (b) and 260 MeV (c). The X-ray
divergence decreases when E increases, due to a reduction of the electron beam divergence in
the acceleration (θelectrons ∝ γ−3/4). More interestingly, the X-ray profiles also evolve from
somewhat rectangular and flat shapes to elliptical shapes.

To quantify this evolution, we define three variables : the flatness f , the curvature c and
the ellipticity e. The flatness f of the X-ray profile is given by the ratio of R0.8 to R0.5, with
R0.8 and R0.5 the mean radii at 80% and 50% of the peak intensity (f = 1 for a top-hat beam
and f = 0.57 for a Gaussian beam). The curvature is defined as c = R0.6/R

C
0.6 with R0.6 the

mean radius of the 60% contour line and RC60% the mean curvature radius of the 60% contour
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Figure 5.11: (a,b,c) Experimental X-ray angular profiles for different acceleration lengths, cor-
responding to an electron energy of 120 MeV (a), 160 MeV (b) and 260 MeV (c). A 0.9 mrad
mean filter was applied on the experimental images. Contour lines at 50%, 80% and 95% of
the peak intensity are superimposed on the angular profiles. (d,e,f) Variation of the flatness
(d), the curvature (e) and the ellipticity (f) of the betatron profiles with the electron energy.
Each experimental point represents an average over more than 8 shots obtained for the same
acceleration length. Error bars indicate the standard error of the mean. For E = 120 MeV the
ellipticity cannot be computed accurately because X-ray profiles are cut.
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line (computed using the algorithm described in [Nguyen and Debled-Rennesson, 2007]). Note
that the 60% contour line was chosen as it is always complete for all betatron profiles. It follows
that c = 1 for a perfect circle, while c = 0 for a square. Lastly, the ellipticity is calculated from
an ellipse fit of the 50% contour line. It is defined as the ratio of the major to the minor radii
of this ellipse. Figure 5.11(d-f) shows that c and e increase with E, while f decreases when E
increases. This confirms the trend observed in Fig. 5.11(a-c).

This behavior can be explained by an evolving angular momentum. In the wiggler approxi-
mation (kpr0(γ/2)1/2 � 1), electrons with Lz = 0 radiate an elliptical X-ray beam of divergences
θ‖ = αkpr0/

√
2γ along the oscillation direction, and θ⊥ = 1/γ in the direction orthogonal to the

oscillations [Corde et al., 2013a]. The measured X-ray profile is an incoherent sum of the con-
tributions of all electrons. For an isotropic electron distribution with Lz = 0, all electrons have
planar orbits and emit elliptical x-ray beams, the sum results in a circular profile consisting of a
central peak with a divergence of θ⊥ surrounded by a halo with a divergence of θ‖ (as shown in
Fig. 5.12(a)). Anisotropic electron distributions with a preferential oscillation direction lead to
elliptical profiles with a central peak. These features are consistent with X-ray beams obtained
for the longer acceleration length (E = 260 MeV, shown in Fig. 5.11(c)).
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Figure 5.12: Drawing of the resulting X-ray profiles when the angular momentum is zero (a) or
maximum (b). Insets show the most similar experimental profiles from Fig. 5.11.

In contrast, electrons with a maximal Lz have circular orbits and emit annular X-ray beams
of angular radius kpr0/

√
2γ and thickness 1/γ [Phuoc et al., 2006]. Summing over electrons

of different r0 results in a flatter beam than for Lz = 0 with no central peak. For electrons
satisfying eq. (5.18) with εϕ = kπ (where k is an integer), the orbits are planar with an oscillation
amplitude r0 for electrons initially located on the x and y axes (these electrons do not get any
angular momentum), and circular with a radius r0/

√
2 for electrons such as x0 = y0 (these

electrons gain a maximum angular momentum). More precisely, all trajectories are contained
in a square of side length

√
2r0 with diagonals along the axes of the cavity ellipse, as shown

in Fig. 5.12(a). As a result, the X-ray beam obtained by summing over the contribution of
electrons of different initial positions and velocities has a square shape and a relatively flat
profile, similar to X-ray beams measured for the shorter acceleration length (E = 120 MeV,
shown in Fig. 5.11(a)). This simple analysis thus suggests that the angular momentum, in our
experiment, is maximum for E ≈ 120 MeV and that it decreases as the electron energy increases
further (as shown in Fig. 5.6).
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Figure 5.13: (a) Initial transverse distribution of the electron beam for test-particle simulations.
(b) Electron orbits for 8 particles along 1.5 mm of acceleration.

Assuming that angular momentum variations are due to the cavity ellipticity and that the
electron initial transverse distribution does not depend on the injection position, the results
indicate that the phase difference between the oscillations along the x and y axis reaches π/2
for E ≈ 120 MeV, that is for an acceleration length of 600 µm. According to eq. (5.18), this
implies that the cavity ellipticity is ε ≈ 0.15α−1/2. As electrons are further accelerated, the
difference of phase keeps increasing, which can explain why the angular momentum decreases in
the experiment.

The X-ray beam ellipticity at high energy indicates that the electron distribution is anisotropic
(the ellipticity cannot be due to the interaction of the accelerated electrons with the laser, be-
cause the ellipse major axis is not parallel to the laser polarization). If electrons were mostly
distributed along the x or y axis, they would never develop a significant angular momentum
and only elliptical beams would be obtained.

In contrast, the fact that X-ray profiles with a square shape are measured indicates that
electrons are preferentially injected with amplitudes x0 = y0, because only electrons with a
maximum Lz can lead to non-elliptical emissions. This implies that the ellipse axes at high
electron energy should make a 45◦ angle with the diagonals of the square profiles observed at
low energy (the diagonals should be along the x and y axis).

Accordingly, we experimentally measured, for E ≈ 120 MeV, a mean angle Ψs = 45(+90)±1◦
between the square diagonals and the horizontal axis, and, for E ≈ 260 MeV a mean angle
Ψe = 1(+90) ± 9◦ between the ellipse axes and the horizontal axis (this indicates that in the
experiment the cavity axes are at ±45◦ from the horizontal axis). The angle Ψs was observed to
be very stable shot-to-shot, while Ψe drifted from −13(+90)◦ up to 28(+90)◦. The ellipse axes
were also observed to swap in time. The reason is that Ψs is determined by the orientation of
the elliptical cavity, which should not change significantly shot-to-shot (the focal spot remains
roughly the same), while Ψe depends on the distribution in the transverse phase space of injected
electrons, which is more sensitive to laser propagation and energy fluctuations. Small changes
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in the injected distribution can, for instance, originate from ionization induced refraction of the
injection pulse [Rae, 1993; Chessa et al., 1999], and from the stochastic nature of the heating
process [Sheng et al., 2002].

5.3.4 Simulations
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Figure 5.14: Experimental (a,b,c) and simulated (d,e,f) X-ray angular profiles from the experi-
ment (a,b,c) or the simulation (d,e,f) and typical electron trajectories over one betatron period
(g,h,i) for three electron energies : 120 MeV (a,d,g), 160 MeV (b,e,h) and 260 MeV (c,f,i).

To confirm this analysis, I performed test-particle simulations, using the experimental energy
spread, the longitudinal acceleration force measured in Fig. 5.10, the transverse force from
eq. (5.8) and the electron source size α × σx calculated from the X-ray spectrum [Corde et al.,
2011] (with α the coefficient related to the deviation from a perfectly evacuated bubble : α = 1
for an electron-free cavity). I scanned a large range of ε (coefficient related to the ellipticity of the
cavity) and of initial electron distributions, and I found that an agreement with experimental
data is obtained only for ε ≈ 0.2 and α ≈ 0.55, a matched electron beam (with a phase
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triangles to simulations. Error bars indicate the standard error of the mean.

ϕ0 uniformly distributed between 0 and 2π) and an elliptical initial transverse distribution,
oriented at 36◦ from the x-axis, with an aspect ratio of 0.5 (shown in Fig. 5.13(a)). Typical
electron trajectories obtained in this case are plotted in Fig. 5.13(a). As expected, they are linear
at the beginning, quickly become helicoidal after 0.5 mm of acceleration and go back to planar
after 1.5 mm. The betatron angular profiles are computed using eq. (5.6) for the same electron
energies as in the experiment. They are shown in Fig. 5.14(d-f), with the experimental profiles
shown in (a-c). Figure 5.14(g-i) shows typical trajectories for 8 electrons for each case (note that
only the last betatron period is plotted). They evolve from helicoidal to planar trajectories as
the electron energy increases.

The calculated betatron profiles reproduce accurately the experimental divergence as well as
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the general shape of the beam and the behavior of f , c and e (as shown in Fig. 5.15), except
for the divergence at high electron energy. This discrepancy could be due to the interaction of
the electron beam with the laser pulse at the end of the acceleration. Another limitation of the
model is the assumption of a steady and perfectly elliptical cavity. In particular, because of
different self-focusing dynamics in the two transverse directions, the ellipticity can vary in time.
This can modify the extrema of Lz, as well as the electron energy at which these extrema are
obtained.

Apart from the difference of divergence, the good overall agreement between the experiment
and test-particle simulations indicates that our simple model includes most of the relevant
physics. Simulations can therefore be used to estimate the normalized transverse emittance of
the bunch in each direction. Indeed, as stated in section 1.3.1 :

εx =
√
〈x2〉〈p2

x〉 − 〈xpx〉2. (5.19)

The same formula can be defined in the y direction. From eqs. (5.13) and (5.15) and neglecting
the second term in the bracket of eq. (5.15), it is possible to derive the normalized emittance
depending on the simulation parameters :

〈x2〉 = σ2
x

2

√
γi
γ

(5.20)

〈p2
x〉 = m2

eω
2
pγ

2σ
2
x

2

√
γi
γ

α

2γ

(
1 + ε

2

)
(5.21)

〈xpx〉2 = 0 (5.22)

with σx = 〈x2
0〉 the second order momentum of position distribution. We get :

εx =
√(

1 + ε

2

)
σ4
xm

2
eω

2
p

αγi
2 . (5.23)

The initial electron beam is matched, thus the electron have the same norm along the two axes
of the phase-space (x, px) : Jx = Jpx . From section 5.2.2, we can calculate these norms for the
initial distribution of electrons :

Jx = meα

4ωβ

(
1 + ε

2

)
ω2
pσ

2
x (5.24)

Jpx = 1
2meγiωβ

σ2
p (5.25)

with σp the initial distribution of momentum. By calculating Jx = Jpx , we get σ2
p = m2

eω
2
p
αγi
2
(
1 + ε

2
)
σ2
x.

Thus, the normalized emittance is :

εx = σxσpx (5.26)
εy = σyσpy (5.27)

with the same derivation done for εy.

From the simulation parameters (ε = 0.22, α = 0.55, σx = σy = 0.46 µm), we obtain
εx ∼ 1.5π mm.mrad. Note that the quantity measured in Corde et al. [2011] is ασx, thus
εx ∝ α

3
2 . Since the simulation fits both the measured X-ray spectra and the angular profiles,

they provide both α and the emittance. Estimating these two quantities is essential in betatron
based emittance measurements because the inferred emittance varies as α3/2. Assuming that
the cavity is fully evacuated (α = 1), as done for instance in Plateau et al. [2012], may thus lead
to underestimate the emittance.
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5.4 Conclusion
In conclusion, we demonstrated that the angular momentum content of an electron beam, ac-
celerated in an anisotropic cavity, is time varying, and we provided experimental evidence of
such variations. Such an asymmetric cavity can be formed because of the elliptic shape of the
laser focal spot due to optical aberrations such as astigmatism. These results have important
consequences for several emittance measurement techniques. Neglecting the angular momentum
can in particular result in unreliable estimates of the emittance in X-ray based measurements,
because the spatial properties of X-rays strongly depend on the angular momentum content.
Indeed, neglecting the angular momentum may lead to underestimate the emittance (the trans-
verse size of the beam being distributed over two directions when modified by the angular
momentum). In addition, the angular momentum growth is a source of fluctuations, which can,
for instance, induce large shot-to-shot changes in betatron profiles. To avoid such effects, the
laser pulse should be free of aberration in order to produce an axisymmetric cavity. Conversely,
it could be beneficial to take advantage of an asymmetric cavity to manipulate the shape of
X-ray beams and produce a radiation with a net angular momentum. This would require a
precise control of the transverse distribution of injected electrons.
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Chapter 6

The laser-plasma lens

LWFA electron beams have typical divergence of a few milliradians with a few fem-
toseconds duration. Yet, a suitable magnetic lens to transport and collimate such a
beam is difficult to realize. In this chapter, we propose to use a laser-plasma lens
in which the field gradients are five order of magnitude larger than in conventional
magnet optics. This collimating scheme is first studied analytically, allowing to find
the best suitable set of parameters for the focusing stage to efficiently collimate the
beam. Then, we experimentally demonstrate a reduction of the beam divergence by
nearly a factor of three, which should allow for an efficient coupling of the beam with
a conventional beam transport line.
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Chapter 6. The laser-plasma lens

6.1 Physics of the laser-plasma lens

6.1.1 Motivations

A major potential application of LWFA electron bunches is to inject them into a magnetic
undulator in which they wiggle and produce high-frequency radiation. Indeed, due to their
very large charge density (due to their small duration and normalized transverse emittance εn),
the brightness of this radiation could be extremely high. For high enough charge density, free-
electron laser (FEL) effect can happen, leading to even brighter radiation [Nakajima, 2008].
Furthermore, in the context of multi-stage LWFA [Schroeder et al., 2010], as the beam diverges
at the end of each acceleration stage, it must be refocused into the next stage. The feasibility
of such applications relies upon the ability to transport and focus the electron beam at the
entrance of each acceleration stage.

Particularly, the transverse emittance of the beam εn (as defined in section 1.3.1) increases
during drift in free space because of the beam energy spread : electrons having different energies
rotate with different speeds in the transverse trace-space ((x, θx) as defined in section 1.3.1),
thus increasing the transverse spread of the beam. Indeed, the beam emittance is not constant
due to the correlation increase of the transverse positions of electrons and their longitudinal
momentum. While the drift length satisfies Ld . εn/(γ0σEσ

2
θ), the emittance increase remains

tolerable [Floettmann, 2003] (with γ0 the mean Lorentz factor, σE the RMS relative energy
spread and σθ the RMS divergence). For "Salle-Jaune" like electron bunches, this imposes the
drift length to be smaller than about 1 ∼ 2 cm (for εn = π mm.mrad, a mean energy of 250
MeV, a relative energy spread of 5 % and a divergence of 5 mrad). Consequently, it is essential
to reduce the divergence of the electron beam within a few centimeters after the accelerator exit
for efficient transport.

A common way to focus electron beams is to use quadrupole magnets. Because of the
relatively low field gradients (from 50 to 500 T.m−1), such devices have to be placed several
decimeters behind the accelerator exit [Fuchs et al., 2009] (mainly because of the large focal
length), thus the electrons propagate freely over this large distance. Moreover, electrons are
focused differently in the two transverse directions in quadrupole lenses. A beam transport line
based on quadrupole devices will therefore degrade the quality of a LWFA electron beam [Miglio-
rati et al., 2013]. Ideally, the beam must be focused much closer, before its emittance increases
too much.

Plasmas sustain enormous field gradients, they are thus ideal candidates to radically reduce
the size of the focusing device, avoiding any significant emittance growth. A plasma lens placed
a few millimeters behind the accelerator exit could be the alternative [Chen, 1987]. In a plasma
lens, the electron beam enters a gas jet and forms its own focusing ion cavity by expelling the
gas electrons. This effect was studied extensively for conventional accelerators [Chen et al.,
1990; Su et al., 1990; Rosenzweig et al., 1991; Nakanishi et al., 1991; Hairapetian et al., 1994;
Govil et al., 1999; Ng et al., 2001; Thompson et al., 2010], but is not applicable to focus LWFA
electron beams due to their short duration. Indeed, the head of the bunch creating the wake
erodes quickly and the focusing fields are very weak and non-uniform over a finite length at
the head [Barov et al., 1998; Thompson et al., 2010]. This is an important drawback since for
ultrashort LWFA bunches, this length is similar to the bunch length [Lehe et al., 2014b], which
would therefore not be focused properly.

In this chapter, we propose a new focusing scheme, referred to as the laser-plasma lens. It
has a very short focal length (because of the strong field gradients in the plasma) without the
drawbacks of the regular plasma lens.
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6.1.2 Principle of the laser-plasma lens

The main idea behind the laser plasma lens is to take advantage of betatron oscillations of
electrons in the transverse focusing fields of a laser wakefield to focus the electron beam. A
second, low-density gas jet is placed after a millimeter-scale drift space following the first gas
jet, as shown in Fig. 6.1(a). The first jet is used as the acceleration stage, where electrons are
self-injected and accelerated. They drift freely and diverge over a millimeter distance along with
the laser pulse and enter the second gas jet where the laser drives a wakefield. The focusing
fields of this wakefield focus the electron bunch.

Acceleration stage and betatron oscillations: In the acceleration stage, the electron den-
sity n1 and the laser intensity are high enough for the laser pulse to drive a wakefield in the
bubble regime and inject electrons. Electrons experience betatron oscillations during the accel-
eration because of the focusing fields in the ion cavity. As seen in section 1.3.1, electrons in
the transverse trace space (x, x′) are represented with an ellipse whose area denotes the beam
normalized emittance εn (x′ = dx/dz define in section 1.3.1 is denoted θx in this chapter, as it
directly measures the divergence of electrons). When oscillating in the bubble, the bunch rotates
in the trace space along a given ellipse (blue dotted ellipse in Fig. 6.1(b)). The divergence of
the beam is typically a few milliradians at the accelerator end (plain blue ellipse in Fig. 6.1(b)).

Free drift: When exiting the first gas jet, the laser pulse is not self-focused anymore and
diverges freely. The high divergence electron bunch is also not focused anymore by the wakefield
and expands radially while propagating in the drift space of length Ld. This corresponds to an
horizontal extension (in the x direction) of the bunch ellipse in its trace space while keeping
constant divergence θx and emittance (the ellipse area is conserved), as shown in Fig. 6.1(c).
For a given x, the area in the transverse direction becomes thinner and thinner during the free
drift.

Focusing stage and collimation: In the second, low-density gas jet, the laser drives a
wakefield in the linear regime (the laser pulse intensity quickly decreases as it diffracts in the
free space before reaching the second jet). The focusing fields in this regimes are much weaker
than those in the bubble regime. The electron bunch undergoes weaker betatron oscillations,
and rotates slower and along a larger ellipse in the trace space (as seen in Fig. 6.1(d)). After
a fraction of betatron oscillation, the bunch ellipse major axis is aligned with the x axis and
the divergence is minimized. If the collimation stage length Ll is chosen so that focusing stops
at this point (along with the drift length Ld and the second jet density n2), the electron beam
reaches its minimal divergence. By choosing carefully these three parameters (Ld, Ll, n2), the
final divergence of the beam can be greatly reduced compare to the divergence at the end of the
accelerating stage.

6.1.3 Analytical model

In order to determine the best set of parameters (Ld, Ll, n2) to be used experimentally to get
the smallest beam divergence, an analytical model was developed in the frame of Rémi Lehe
PhD thesis [Lehe et al., 2014a; Lehe, 2014]. This simplified model does not take into account
space-charge effects (considering low charge bunches) and considers the wakefield in the focusing
stage to be in the linear regime. The laser pulse is gaussian and the expression of the gas density
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Figure 6.1: Schematic representation of the laser-plasma lens. The density profiles of the two
jets are represented in green. The driving laser pulse (red) generates a bubble in the first jet
and accelerates an electron bunch (blue). The laser and electron bunch enter the second jet
(length Ll, density n2) after propagating in the drift space (length Ld). Note that the wakefield
in the second jet is in the linear regime although it is represented by a bubble for a clearer
understanding. The evolution of the electron bunch in its transverse trace space is represented
in the lower panel.
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Figure 6.2: Evolution of the transverse position x (a) and propagation angle θx (b) of three
individual electrons with the same energy (250 MeV) with different initial conditions (x0, θ0) :
(0.2 µm ,1 mrad) in lighter blue, (-0.3 µm , -2 mrad) in blue and (0 µm , 3 mrad) in darker
blue. The green area represents the focusing stage (length Ll = 1.5 mm) while the white area
before represents the drift space (length Ld = 1 mm). The laser amplitude is a0 = 4.

depending on the propagation direction z is assumed to be step-like:

n(z) =


n1 for z < 0 (Acceleration)
0 for 0 < z < Ld (Drift)
n2 for Ld < z < Ld + Ll (Focusing).

After exiting the acceleration stage, an individual electron has an initial transverse posi-
tion and transverse angle (x0, θ0). While propagating in the drift space, the electron does not
experience any force and its transverse position x and angle θx evolve as :{

x(z) = x0 + θ0 z

θx(z) = θ0
for 0 < z < Ld. (6.1)

When reaching the second jet (at z = Ld), the electron experiences the focusing forces of
the wakefield. In the linear regime, the gradient of the focusing fields evolves as z−4 [Lehe
et al., 2014a]. However, electrons must be in a focusing phase of the wakefield in order to be
collimated : kpd < π with kp the plasma wavenumber and d the distance between the electron
and the center of the laser pulse. This imposes an upper limit for the focusing stage density
: n2 < π/4red2 (re the classical radius of the electron). Assuming that the drift length Ld is
much larger than the laser Rayleigh length ZR and that the electron is not accelerated further
in the second jet (the accelerating field is relatively weak in the linear regime), one can derive
the expressions of the evolution of x and θx in the focusing stage (Ld < z < Ld + Ll, see Lehe
et al. [2014a] and Lehe [2014] for detailed calculation) :

x(z) = χ θ0 z cos
(
kfocZ

2
R

Ld
− kfocZ

2
R

z
+ ϕ

)

θx(z) = χ θ0

[
cos

(
kfocZ

2
R

Ld
− kfocZ

2
R

z
+ ϕ

)
− kfocZ

2
R

z
sin
(
kfocZ

2
R

Ld
− kfocZ

2
R

z
+ ϕ

)] (6.2)
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Figure 6.3: Evolution of the transverse position x (a) and propagation angle θx (b) for several
electrons of the bunch with the same energy (250 MeV) and with random initial conditions
(x0, θ0). The green area represents the focusing stage (length Ll) while the white area before
represents the drift space (length Ld = 1 mm). The red line represents the optimal length Ll
which minimizes the bunch rms divergence. The other parameters are the same than before.

where χ > 0 and ϕ ∈ [0, 2π[ are the modulus and the phase of the complex number

χeiϕ ≡
(

1 + x0
θ0Ld

)
+ i

x0
kfocZ

2
Rθ0

(6.3)

and kfoc is defined as:

k2
foc =

√
π

4 ln(2)(ckpτ) exp
(
− (ckpτ)2

16 ln(2)

)
a0(0)2

γ w(0)2 sin(kpd), (6.4)

where w(0) and a0(0) are the waist and peak amplitude of the laser pulse at the exit of the
first jet, τ the FWHM duration and γ the electron Lorentz factor. Considering typical "Salle
Jaune" values for electron and laser parameters (w(0) = 7 µm, a0(0) = 4, τ = 28 fs, γ = 128
and d = 10 µm) and realistic values for the laser-plasma lens (Ld = 1 mm, Ll = 1.5 mm and
n2 = 1.5 × 1018 cm−3), the evolution of x and θx for different initial conditions (x0, θ0) are
represented in Fig. 6.2. The absolute value of the propagation angle decreases in the focusing
stage as the electron propagates in the second jet. Indeed, the laser keeps diverging in the second
jet (the density is too low for self-focusing to happen) thus the focusing forces become weaker.
For a given set of initial conditions (x0, θ0), the divergence eventually becomes zero : the second
stage should stop at this point for ideal collimation (θx(Ld + Ll) = 0). This happens when the
length Ll satisfies :

kfocZ
2
R

Ld + Ll
tan

(
kfocZ

2
R

Ld
− kfocZ

2
R

Ld + Ll
+ ϕ

)
= 1. (6.5)

Nevertheless, this condition cannot be fulfilled for all electrons of the bunch simultaneously
(as seen in Fig. 6.2(b), electrons with different initial conditions do not have zero divergence at
the same point). Indeed, ϕ depends on (x0, θ0) and kfoc depends on γ. Physically, this can be
understood because the normalized emittance of the bunch is non-zero, forbidding the bunch to
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Figure 6.4: (a) Evolution of the final RMS divergence of the bunch as a function of the drift
length Ld, with all other parameters fixed (a0 = 4, d = 10 µm, w(0) = 7 µm, γ = 128). The
dashed line represents the initial RMS divergence of the bunch (3.3 mrad). The evolution of the
divergence θx of some electrons of the bunch are represented as a function of z for three different
values of the drift length : Ld = 600 µm (b), Ld = 1000 µm (c) and Ld = 1800 µm (d).

have a zero divergence. Considering that ϕ� 1 for LWFA electrons, a good choice for the lens
parameters is that they satisfy the condition :

kfocZ
2
R

Ld + Ll
tan

(
kfocZ

2
R

Ld
− kfocZ

2
R

Ld + Ll

)
= 1. (6.6)

The focusing stage density n2 (controlling the value of kfoc) and length Ll must be tuned
in relation with the drift length Ld for optimal collimation. The evolution of x and θx are
represented for a given n2 and Ld in Fig. 6.3 for several electrons of the bunch with random
initial conditions. The condition presented in eq. (6.6) is used to find the optimal Ll to have
a minimum final bunch divergence; the result is plotted as a red line in Fig. 6.3. Even if this
condition is satisfied, the bunch still has a non-zero RMS divergence due to its finite normalized
emittance εn. Assuming that εn is conserved during the focusing process, this imposes a lower
bound on the final RMS divergence of the bunch:

σθ > σθ,min = εn
γLdσθ,0

. (6.7)

The drift length Ld is thus a major parameter to improve the beam collimation. Increasing Ld
allows for reducing the achievable divergence; Ld should not be too long however, since the laser
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Figure 6.5: (a) Evolution of the final RMS divergence of the bunch as a function of the electron
density in the focusing stage n2, with all other parameters fixed. The dashed line represents
the initial RMS divergence of the bunch (3 mrad). The evolution of the divergence θx of some
electrons of the bunch are represented as a function of z for three different values of the density
: n2 = 0.75× 1018 cm−3 (b), n2 = 1.5× 1018 cm−3 (c) and n2 = 2.5× 1018 cm−3 (d).

intensity (and thus the focusing fields strength) quickly decreases as it diffracts in the free space.
As a result, there is always a trade-off between low minimal divergence and efficient wakefield
generation in the focusing stage.

It is difficult experimentally to know precisely some of the important quantities as the laser
waist w(0) and the intensity at the entrance of the lens a0(0), as well as the distance between the
laser and the electron bunch d. It is thus mandatory to scan one of the plasma lens parameters
(Ld, Ll, n2) while keeping the others constant in order to reach optimal collimation. The length
Ll is difficult to vary since it is determined by the diameter of the nozzle producing the second
gas jet. The drift length Ld and density n2 are far more easy to change. It is thus interesting to
predict analytically the evolution of the bunch divergence by changing these two parameters.

Drift length scan : Ll is chosen to be 1 mm, and the density n2 = 1.75× 1018 cm−3 so that
electrons are in a focusing phase of the wakefield. The drift length is varied between 500 µm
et 2000 µm. The final RMS divergence σθ depending on Ld is plotted in Fig. 6.4(a), with the
evolution of θx for several electrons of the bunch for three values of Ld shown in Fig. 6.4(b-d).
If Ld is too large (Ld = 1800 µm, Fig. 6.4(d)), the laser diffracts too much and is not intense
enough when reaching the second jet to efficiently drive a wakefield : the focusing forces are weak
and the bunch cannot be focused enough. For a low value of Ld (Ld = 600 µm, Fig. 6.4(b)), the
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6.2. Experimental demonstration of electrons focusing with a laser-plasma lens

bunch is overfocused because the wakefield is too strong (due to a large laser intensity). There
is an optimal value for Ld (close to Ld = 1000 µm, Fig. 6.4(c)) for which σθ is minimal.

Second jet density scan : Ld is chosen to be 1 mm and Ll is 520 µm. The final RMS
divergence as a function of the second jet density n2 is plotted in Fig. 6.5(a) while n2 is kept
low enough so that electrons are in a focusing phase of the wakefield (n2 < π/4red2 so that kfoc
is real). Indeed, for high values of n2, the plasma wavelength is very short and the electron
bunch can find itself in the defocusing part of the linear wakefield. For densities higher than this
limit, kfoc has an imaginary part and the lens is defocusing, which would increase the final RMS
divergence compare to the initial one. This case is not considered here, and should be avoided
experimentally by keeping n2 sufficiently low. The divergence is minimum for two values of
n2, as the condition of eq. (6.6) is not a bijective function of n2. For a density between these
two minimum values, the electron bunch is overfocused : electrons with a positive (respectively
negative) initial θx have a negative (respectively positive) θx at the end of the second jet and
the final RMS divergence is quite high (for n2 = 0.75× 1018 cm−3, Fig. 6.5(b)). For the second
optimal value of n2, the divergence is optimal. For n2 = 1.5 × 1018 cm−3, electrons have their
propagation angle reduced at the utmost while keeping the same sign (as seen in Fig. 6.5(c)).
For n2 larger than 1.5×1018 cm−3 , the bunch is not focused enough and σθ is still high (around
2.1 mrad for n2 = 2.5× 1018 cm−3, Fig. 6.5(d)).

Thanks to this simple model, one can predict the range of values for (Ld, Ll, n2) that need
to be scanned in an experiment to obtain good divergence reduction. Furthermore, the evolu-
tion of the divergence with Ld and n2 is quite smooth, so that these parameters have not to
be tuned with an extremely high precision to reach the optimum divergence value. The model
predicts a divergence reduction up to a factor 3 - 4 with typical parameters for the plasma-lens.
Several PIC simulations were run in order to confirm the model validity, showing good agreement
with the analytical estimations [Lehe et al., 2014a; Lehe, 2014].

6.2 Experimental demonstration of electrons focusing with a
laser-plasma lens

6.2.1 Experimental setup

The laser-plasma lens was experimentally demonstrated with the "Salle Jaune" laser system at
LOA. The interaction beam P1 delivers a linearly polarized, 28 fs FWHM laser pulse containing
1.8 J. It is focused at the entrance of a first gas jet using a f/15 off-axis parabola (focal length of
1000 mm). The FWHM focal spot size is 12± 0.6 µm, containing 50± 2 % of the total energy.
An image of the focal spot and its transverse profile can be seen in Fig. 6.7(a). The peak laser
intensity and the corresponding normalized vector potential a0 are 1.8± 0.6× 1019 W.cm−2 and
3.0 ± 0.05, respectively. The Rayleigh length in vacuum is ∼ 400 µm. It is likely significantly
shorter at the accelerator exit because of self-focusing.

The experimental setup is pictured in Fig. 6.6(a). Helium gas jets were used for both the
acceleration and the focusing stages. The two gas jets were produced by supersonic nozzles.
The first nozzle has an exit diameter of 3 mm and a Mach number of 3, and the second has a
diameter of 0.8 mm and a Mach number of 1.6. The laser was fired at 1.6 mm above the nozzle
exits. The electron density profiles of both gas jets were characterized by interferometry (as
shown in Fig. 6.7(b)). The density profile in the acceleration stage had a plateau of 2.4 ± 0.1
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Figure 6.6: (a) Experimental setup of the laser-plasma lens. (b) Trace spaces at the end of
the acceleration (I), drift (II) and focusing (III) stages. The laser pulse (in yellow) generates
a wakefield (in red) in which electrons (in green) are accelerated (I) and focused (III) after
propagating in free space (II).

mm surrounded by 600±100 µm gradients. The peak electron density was n1 = 9.2±0.5×1018

cm−3. In the second gas jet, the density profile was triangular with 1± 0.1 mm gradients. The
measured density profile can be seen in Fig. 6.7(c). The distance between the two gas jets Ld
was measured at half-maximum. Note that the nozzles have tilted (and not horizontal so that
they can be set close enough without their mount interfering with each other).

The electron divergence was measured, in the vertical direction, from electron spectra mea-
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Ld Ll(a) (b)

(c)

Figure 6.7: (a) Experimental laser focal spot obtained with a 1 m focal length off-axis parabola.
(b) Interferogram image of the propagation of the laser in the two gas jets. Z = 0 mm corre-
sponds to the middle of the downward gradient of the first gas jet. The laser forms a plasma
of length Ll in the second gas jet. The distance between the two gas jets (drift length Ld) is
measured at half-maximum. (c) Measured density profile from interferometry and Abel inver-
sion for Ld ∼ 2.3 mm (measured at half maximum). In the experiment the density of the first
jet was constant, while the density of the second jet was tuned. The filled area indicates the
uncertainty on the measurement.

sured with the spectrometer presented in section 1.4.3. The energy resolution varies between
1% (for 140 MeV electrons with a beam divergence of 1.5 mrad) and 10% (for 300 MeV electrons
with a beam divergence of 4 mrad). The angular resolution is ∼ 0.3 mrad. Two-dimensional
footprints of the electron beam showed that the divergence is very similar in the horizontal
and vertical directions. These footprints cannot be used to estimate the divergence reduction
because of chromatic effects. The principle of the laser-plasma lens explained in the previous
section is illustrated by the trace-space traces in Fig. 6.6(b).

6.2.2 Experimental results

Firstly, electron beam parameters are optimized with only the first gas jet triggered (the sec-
ond jet is turned off). Due to the low density in the first gas jet (n1 = 9.2 ± 0.5 × 1018

cm−3), electrons are likely to be injected in the longitudinal self-injection regime [Corde et al.,
2013b]. Figure 6.8(a) shows ten consecutive experimental angular resolved spectra obtained in
this regime. The mean integrated electron spectrum for these ten shots is shown in Fig. 6.8(b),
with the colored area representing the standard deviation. This spectrum shows a very good
stability. Longitudinal self-injection regime was chosen here because of the very good stability
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Figure 6.8: (a) Experimental angular resolved spectra of longitudinal injected electrons for ten
consecutive shots. (b) Mean electron spectrum over ten shots, with the width of the curve
corresponding to the RMS of the signal. The parameters are a0 = 3.0 and n1 = 9.2± 0.5× 1018

cm−3.

and quite large energy spread. Indeed, in order to potentially observe beam focusing with the
laser-plasma lens, it is mandatory to have stable beams (especially a stable divergence) and
large energy spread (to be sure electrons can be collimated with the laser-plasma lens over a
wide energy range). The standard error of the mean is calculated over ten shots for each beam
parameters (with the FWHM divergence calculated at 270 MeV):

Epeak = 234± 5 MeV
∆E = 92± 10 MeV

∆E/E = 39± 4%
Qpeak = 5.9± 0.6 pC

σθ,270MeV = 4.1± 0.6 mrad

The second gas jet (focusing stage) is now turned on, with a drift length Ld = 1.8 mm and
a electron density n2 = 3.9 × 1018 cm−3. The resulting angular resolved spectrum is shown in
Fig. 6.9(b), while the spectrum without the laser-plasma lens can be seen in (a). The beam
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(a)

(b)

(c)

Figure 6.9: (a) Typical angularly resolved spectrum without laser-plasma lens. (b) Typical
spectrum obtained for Ld = 1.8 mm and n2 = 3.9 × 1018 cm−3. The color scale indicates the
number of electrons per MeV and mrad. (c) Corresponding integrated electron spectra with and
without the focusing stage.

parameters at the output of the focusing stage are :

Epeak = 232± 6 MeV
∆E = 92± 10 MeV

∆E/E = 40± 4%
Qpeak = 6.6± 0.6 pC

σθ,270MeV = 1.6± 0.2 mrad

The beam divergence is strongly decreased by the laser-plasma lens, down to 1.6 mrad
(divergence reduction by a factor of 2.6), while all the other parameters hardly vary. As seen
in Fig. 6.9(c), the integrated electron spectrum does not vary much with the lens. That is an
important advantage of the laser-plasma lens : it modifies the beam divergence without having a
significant effect on the energy distribution of electrons or the charge. The divergence reduction
factor is almost 3, close to the one predicted by the model presented in the previous section.

The divergence reduction factor is not the same for different electron energies (as seen in
Fig. 6.10). Without the second jet, the divergence increases with the electron energy. When the
lens in on, the divergence FWHM of the beam does not vary much with the energy, thus implying
that the divergence reduction factor is larger for higher energies. This effect is explained in more
details in a following subsection.
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Figure 6.10: FWHM divergence of the beam as a function of electron energy with and without
the focusing stage.

6.2.3 Influence of the drift length

As shown in section 6.1.3, the final divergence of the beam depends on the distance Ld between
the end of the accelerator and the lens. This distance is varied experimentally by moving the
second jet away or closer from the first one. The divergence decreases as Ld increases for
Ld < 1.8 mm and increases with Ld for Ld > 1.8 mm, as shown in Fig. 6.11. This evolution of
the divergence with the drift length is governed by two effects. Firstly, the minimum achievable
divergence described in eq. (6.7) depends on Ld. As previously explained, if Ld increases, σθ,min
decreases, thus decreasing the minimum divergence. However, by doing so, the laser intensity
decreases as well and the focusing fields are weaker for longer Ld.

Indeed, the Rayleigh length ZR at the accelerator exit is lower than 400 µm. After Ld = 1.8
mm of propagation (corresponding to the local minimum of the beam divergence), the laser beam
diameter and intensity are thus Φ > 54 µm FWHM and I < 8.3× 1017 W.cm−2. The wakefield
in the lens is in the linear regime and thus, the strength of the focusing fields strongly depends on
the laser beam size and intensity. As explained in section 6.1.3, these fields can be too strong for
short Ld, leading to excessive focusing, and too low for long Ld, leading to insufficient focusing
(as shown in Fig 6.4). In Fig. 6.11, the transverse force seems to vanish for Ld ≥ 4 ∼ 5 mm,
while the lowest divergence is obtained for Ld = 1.8 mm. The experimental dependence with
the drift length is in good accordance with the model described in section 6.1.3, as well for the
divergence reduction factor as for the curve shape. The only discrepancy concerns the value of
Ld for which the minimum divergence is reached. This may come from the difference of other
parameters in the model (d the distance between the laser pulse and the electron bunch or a0
the normalized laser amplitude for instance), from the difference between the perfect density
plateau considered in the model and the experimental density profiles, or with the measurement
method of the drift length. In the model, Ld is considered from the very end of the accelerator
to the beginning of the upward gradient of the lens. In the experiment however, Ld is measured
from the middle of the accelerator downward density gradient to the middle of the lens upward
density gradient (as any other measure would be far less accurate).
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Figure 6.11: FWHM divergence of the beam, at 270 MeV, as a function of Ld (blue diamonds).
The divergence measured without the laser- plasma lens is indicated by the black diamonds on
the right and the dashed line. The peak electron density in the focusing stage is n2 = 3.9× 1018

cm−3. Data points were averaged over 10 shots; the vertical error bars correspond to the standard
error of the mean and the horizontal bars correspond to the precision on the measurement of
Ld. Two series of 10 shots were fired for Ld = 2.3 mm and for the case without lens.

6.2.4 Influence of the plasma lens density

As predicted by the model, both the electron density n2 and the length of the second jet Ll
can impact the lens properties. It is difficult to experimentally vary Ll as it would require to
change the gas nozzle during a scan. The lens electron density n2 is much more easily tunable.
Its influence is illustrated in Fig. 6.12. The divergence of the beam decreases as n2 varies from
0.75×1018 cm−3 to 6.1×1018 cm−3. As described in the model in section 6.1.3, the focusing force
varies as [kpcτ exp

(
−(ckpτ)2/16 ln(2)

)
] sin(kpd) (see eq. (6.4)). The term in brackets corresponds

to the amplitude of the transverse wakefield. It is maximum when the laser pulse is resonant
with the plasma wave, for kpcτ = 1. The strength of the lens depends also on the position of
the electron beam in the wakefield, described by the sine term. Electrons experience the largest
focusing force when kpd = π/2 and are defocused for kpd > π. The combination of both terms
leads to a complex influence of the electron density on the focusing strength.

For low electron densities (n2 . 1 × 1018 cm−3 in Fig. 6.12), the focusing fields are very
weak and the divergence is hardly reduced. As the density increases, the transverse focusing
fields arise, which leads to the desired beam collimation. In Fig. 6.12, the lowest divergence is
obtained for n2 = 4.3 × 1018 cm−3. The fact that the divergence remains almost constant for
higher densities suggests that the focusing force has a local maximum around n2 = 4.3 × 1018

cm−3. For even higher densities (not investigated in the experiment), the divergence should
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Figure 6.12: FWHM divergence of the beam, at 270 MeV, as a function of n2 (blue diamonds).
The drift length is Ld = 2.3 mm. The divergence measured without the laser-plasma lens is
indicated by the black dashed line. Data points were averaged over at least 11 shots; the vertical
error bars correspond to the standard error of the mean and the horizontal bars correspond to
the precision on the backing pressure. The analysis of the interferograms leads to an additional
systematic error on the density of ±5 %.

increase and eventually exceed the initial divergence when the fields become defocusing (for
kpd > π). Note that, for long Ld, the mean density, which is effectively experienced by the
electron beam during the focusing process, may be significantly smaller than the peak density
n2, because the focusing process is likely to occur only in the rising edge of the second gas jet.

6.2.5 Chromaticity of the laser-plasma lens

Up to now, the electron beam was implicitly assumed to be monoenergetic, and in Figs. 6.11
and 6.12, only the divergence at 270 MeV was considered. Yet, Fig. 6.10 reveals that electrons
of different energies are not focused to the same extend. This is also shown in Fig. 6.13, which
displays the reduction factor of the beam divergence as a function of both the electron energy
and the distance between the two stages Ld. The reduction factor can be varied from 1 (no
collimation) up to 2.6 for a given electron energy simply by varying Ld.

A couple of observations can be made from this plot. Firstly, the divergence reduction factor
is larger towards higher energies. This is likely due to the decrease of the minimum achievable
divergence σθ,min (defined in section 6.1.3) at higher energies, both because σθ,min varies as
γσ−1

θ , and because in this particular experiment, the divergence σθ at the end of the accelerator
increases with γ (as seen in Fig. 6.10). Secondly, the optimal drift length Ld decreases as the
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Figure 6.13: Chromaticity of the laser-plasma lens. The colour map shows the factor of reduction
of the divergence, as a function of the electron energy and of the distance Ld between the
accelerator and the lens (for height different values of Ld). The peak electron density in the
focusing stage is n2 = 3.9× 1018 cm−3.

electron energy increases. This is because the amplitude of the transverse fields required to
focus the beam increases with the electron energy. Lengthening Ld tends to lessen the focusing
fields and hence enhances the focusing of low-energy electrons (similar results can be obtained by
decreasing the electron density). Nonetheless, an electron beam with an energy spread exceeding
100 MeV can be strongly focused, as a whole, using a laser-plasma lens, thanks to the quite good
achromaticity of the laser-plasma lens.

6.3 Conclusion

In this chapter, we demonstrated the collimation of a laser-wakefield electron beam with a laser-
plasma lens. The model developed by Lehe [2014] allowed to choose a good range of parameters
for the drift length Ld and the second jet density n2 so that experimental demonstration of
electron beam focusing was possible [Thaury et al., 2015a]. The laser-plasma lens is a new
concept allowing to control and manipulate the transverse momentum quantity of the electron
beam.

An electron beam was accelerated in a laser-plasma accelerator up to 300 MeV before going
through a laser-plasma lens. At the lens exit, the beam divergence was reduced by a factor
of 2 for the whole beam and a factor of 2.6 for its high-energy part. This factor was limited
by the fast decrease of the laser intensity in the lens. Stronger collimation could be obtained
by using a shorter gas jet for the acceleration stage (allowing for a larger laser intensity when
the pulse reaches the second stage), a gas jet with sharper gradients for the lens, or a more
energetic laser pulse. Nevertheless, the demonstrated divergence reduction should already be
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sufficient to transport the electron beam with a quadrupole lens set after the laser-plasma lens.
For state of the art laser-plasma accelerators, the emittance growth should remain negligible
over a propagation distance of ∼ 30 cm, which should be enough to transport the beam with
compact quadrupoles. Alternatively, the collimated electron beam could be sent directly into
an optical [Andriyash et al., 2012] or a plasma undulator [Andriyash et al., 2014] to form a
millimeter scale, possibly coherent, synchrotron source.
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Summary of the results

This section summarizes the main results presented in this thesis.

Firstly, I presented in chapter 2 a comprehensive study of shock front formation in super-
sonic gas jets when encountering a sharp obstacle, supported by several fluid simulations. This
process was used experimentally to create a sharp downward density gradient in order to locally
control injection of electrons into the wakefield. We obtained high-quality electron beams (∼ 5
% energy spread, 2 mrad divergence) with low charge (∼ 1−10 pC) and tunable final energy (up
to 250 MeV). The parameters of these stable electron beams can be easily modified by changing
the properties of the shock (notably its position in the gas jet).

In chapter 3, I showed that accelerating electrons in a pure high Z gas can lead to very stable,
heavily-charged (up to 1 nC) electron beams (however with large energy spread). This method
is based on ionization injection, allowing to trap a lot of electrons ionized directly into the accel-
erating cavity. The physics of acceleration of these highly-charged beams is extensively studied,
underlining two important effects. First, tuning the laser energy allows for modifying the total
charge without affecting the energy distribution. Second, self-generated wakefield allows to turn
a quasi-Maxwellian energy distribution into a macro-bunch with more energetic electrons, for
a low enough electron density. Furthermore, I showed that combining the ionization injection
technique in a gas mixture with the shock front method presented in chapter 2 can lead to very
stable, high quality (7 % energy spread, 3 mrad, 10 pC) electron beams.

Using a sharp density transition similar to that presented in chapter 2, but now reversed
at the end of a gas jet, I showed in chapter 4 the possibility to manipulate the electron bunch
phase in the cavity. This new technique allows for overcoming the dephasing limit which restricts
the maximum achievable energy in several LWFA experiments. I first presented experimental
evidence of this effect by increasing the energy of a small fraction of a broad spectrum electron
beam (obtained via transverse self-injection). I then used this method to enhance the energy
of a monoenergetic electron beam (produced in a sharp density transition) while preserving its
good energy spread and divergence.

In chapter 5, I provided a presumable origin for the angular momentum of an electron beam.
Optical aberrations in the laser pulse can lead to the formation of an anisotropic cavity in which
transverse focusing forces are different depending on the electron position, resulting in the evo-
lution of the beam angular momentum during the acceleration. The signature of this effect is
visible into the betatron x-ray profiles emitted by the bunch, whose shape and flatness signifi-
cantly depend on the angular momentum. Betatron based emittance measurements should take
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angular momentum into account to avoid underestimating the bunch emittance.

Finally, I demonstrate in chapter 6 a new method to collimate laser-wakefield electron beams
with a laser-plasma lens. This setup consists of a second gas jet placed at the exit of the ac-
celerator. The laser pulse drives a wakefield in this second jet whose focusing forces are taken
advantage of to reduce the divergence of the trailing electron bunch. A simple analytical model
describing the principle is presented, underlining the major importance of the second jet length,
density and distance from the first jet. Experimental demonstration of the laser-plasma lens
shows a divergence reduction by a factor of 2.6 for electrons up to 300 MeV, in accordance with
the model predictions.

A major axis of this thesis was to study the pros and cons of different injection techniques
in order to produce high-quality electron beams with interesting parameters (charge, maximum
energy, energy spread and divergence) for numerous applications while achieving a good stability
and reproducibility. While sharp density transition injection, ionization injection and shock-
assisted ionization injection were extensively studied in this work, others injection methods
were used to study other physical effects of the beam (such as colliding injection, transverse and
longitudinal self-injection). A summary of these different techniques, with the beam parameters
and stability characteristics associated to each one of them, is given in Table 1. Note that this
comparison between these injection techniques is valid for a "Salle Jaune"-like laser system (1 J,
30 fs), and that the characteristics of each one of them would be quite different for a Petawatt
class system for instance.

Charge Energy 
spread

Typical energy 
range Divergence Controlability Stability Setup 

simplicity

Transverse self-
injection 50 - 100 pC 10 - 100 % 80 - 400 MeV 5 - 10 mrad - -  - - ++

Longitudinal self-
injection 5 -10 pC 40 % 100 - 400 MeV 4 mrad + ++ ++

Optical injection 20 - 30 pC 5 - 10 % 50 - 300 MeV 6 mrad ++ +  - 
High Z gas 

ionization injection 1 nC Maxwellian 5 - 30 MeV 10 mrad + ++ ++
Shock front 

injection 1 - 10 pC 5 - 10 % 80 - 250 MeV 2 mrad ++ + +
Shock-assisted 

ionization injection 1 - 10 pC 7 - 10 % 80 - 150 MeV 3 mrad ++ ++ +

Table 1: Summary of different injection techniques studied in the frame of my thesis. Longi-
tudinal injection (respectiveley optical injection) beam parameters come from the experiment
presented in chapter 5 (respectively in chapter 6).

Each method has its perks and drawbacks depending on which beam characteristic is the
most important for the considered usage of the electron beam. Several applications are presented
in the following section, with the most appropriate injection process to make use of.
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Perspectives
These results open up several prospects for applications based on laser-wakefield accelerated
electron beams.

Radiography : A first application taking advantage of the micrometer source size and mil-
liradians divergence of laser-wakefield electron beams is non-destructive testing of dense matter.
The simplest way to produce high energy X and gamma radiation is to convert the beam into
bremsstrahlung into a high Z material [Glinec et al., 2005; Ben-Ismail et al., 2011]. The basic
experimental setup is presented in Fig. 1. A tantalum converter is placed at the output of the
accelerator : gamma-rays are produced when electrons are slowed down in this dense material.
The image of a dense object placed in the beam path is then obtained onto an image plate.
The signal must be accumulated over several shots to have a correct signal-to-noise ratio, thus
requiring very stable electron beams with high charge. Electron acceleration in pure high Z
gases produced via ionization injection (presented in chapter 3) meet these charge and stability
criteria, and were used in a recent radiography experiment performed at LOA. Furthermore, the
low energy of these electrons (between 10 and 50 MeV) are interesting to produce X-rays in the
range of 10-50 keV.

We measured the gamma-ray source size using a knife-edge for different distances between
the gas jet exit and the tantalum converter. At 0.5 mm from the exit, the source size is estimated
to be about 65 µm, while it remains below 100 µm at 1.5 mm distance and goes up to 350 µm
at 3.5 mm from the gas jet. Figure 1 shows a radiography of industry standard image quality
indicators (DIN EN 462), with the smallest features resolved having a size of about 200 µm.
Such a micrometrical, femtosecond gamma source is of interest to probe dense structures (in
military or aeronautic industry for instance) or material response to very fast constraints.

Magnet

Interaction beam Tantalum

Gas 
jet

Electrons

Bremsstrahlung 
radiation Image 

plate

Object

1 mm

Figure 1: Drawing of the experimental setup of gamma ray generation via bremsstrahlung of
electrons in a tantalum converter. The tantalum is placed between 0.5 mm and 3.5 mm after
the gas jet, with the object placed at 2 m from the jet and the detector at 2.5 m.

Radiotherapy : High energy electrons (> 200 MeV) are interesting candidates to treat
tumors thanks to the larger penetration depth than low energy electrons from conventional
table-top accelerators [Glinec et al., 2006b; Lundh et al., 2012]. In order to achieve a good dose
deposition with a penetration depth larger than 10 cm, the electron beam needs to be focused.
The laser-plasma lens could be used, taking good advantage of the easy focal plane tunability by
varying the drift length and plasma density in the second jet to reach different depths in tissues.
Furthermore, a medical device based on laser-wakefield accelerated electrons would require a
very good stability and reliability. While there is a long way to go before meeting the same
criteria as conventional medical accelerators (much more stable with a higher repetition rate
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and a charge of hundreds of pC), an interesting step would be to use a controllable and stable
injection technique such as shock-assisted ionization injection (as shown in Table 1).

Multi-stage acceleration : In the context of potential future LWFA-based colliders,
the electron beam is accelerated up to TeV energies in a series of stacked accelerating me-
dia [Schroeder et al., 2010]. Before each stage, a new laser pulse is injected into the correspond-
ing gas target and drives a quasi-linear wakefield in which the incoming electron bunch is further
accelerated. Such a multi-stage accelerator requires a very high-quality injector stage before the
first acceleration stage in order to control the beam parameters carefully. Shock-assisted ioniza-
tion injection or colliding pulse injection would be interesting candidates thanks to their very
good stability and low energy spread (as seen in Table 1). Moreover, it is mandatory to trans-
port the bunch from one stage to another. Indeed, the beam diverges in the free drift between
two stages and must be focused quickly to avoid emittance growth [Mehrling et al., 2012]. The
laser-plasma lens would be very useful in this case as the outgoing laser of a given acceleration
stage could also serve to form the lens and focus the electrons onto the entrance of the following
stage. Furthermore, achieving such high energies would require a very large number of consecu-
tive stages, and thus of laser pulses. This number could be reduced by using longer gas targets
with a tailored plasma density to overcome dephasing and accelerate the beam further in a single
stage. A quasi-phase matching regime may be achievable by considering a multi-step increasing
density profile. The electron bunch would reach dephasing in the first density region, then be
phase-resetted by crossing a first step and accelerate further in the second plateau, and so on.
By combining the laser-plasma lens and a density tailored plasma for quasi-phase matching, it
would be possible to greatly reduce the size (hence the cost) of LWFA-based linear colliders.

Figure 2: Betatron x-ray profiles from ionization injection in a gas mixture of helium with 1%
of nitrogen (top panel, four consecutive shots) and from transverse self-injection in pure helium
(bottom panel, four consecutive shots). The colorscale is the same for the eight images.

Betatron radiation generation : Another major application of electron beams is the
generation of x-ray betatron radiation during the acceleration. While large efforts have been
made in the last few years to enhance betatron radiation brightness, these x-ray beams are
intrinsically not very stable shot-to-shot as their properties rely largely on electron trajectories
during the acceleration, and thus on the initial transverse distribution of the bunch set during
injection. We demonstrated recently at LOA a simple method that allows to produce stable and
bright Betatron beams by taking advantage of ionization injection in a gas mixture (helium with a
few percent of nitrogen). This injection method is less sensitive to the transverse inhomogeneities
of the laser spot and to laser propagation than transverse injection, and leads to the production
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of more stable electrons beams than with transverse self-injection (as seen in Fig. 2). In addition,
electrons gain a net transverse momentum from the laser field along its polarization direction
when ionized close to the peak of the pulse, therefore producing polarized x-ray beams. By
varying the polarization direction of the laser, it is easy to tune the polarization of the radiation
as well. Experimental results show that the pointing stability of the x-ray beam is better than
10% of the beam divergence, with flux fluctuation of the order of 20% and a polarization degree
reaching up to 80%.

LWFA Free Electron Lasers : One of the most ambitious application of electron beams is
the LWFA-based Free Electron Laser (FEL) [Maier et al., 2012; Couprie et al., 2014], combining
an LWFA with a magnetic short-period undulator. The required energy (about 300-500 MeV
for typical undulators) is well within the range of state-of-the-art laser-plasma accelerators.
The great challenges lie in the charge, energy spread and divergence of the bunch. In LWFA,
energy spread and charge are strongly coupled and depend mainly on the injection method
and beamloading dynamics during acceleration. With shock-front assisted injection or optical
injection, relatively low energy-spread, stable beams are generated, yet with low charge (see
Fig. 1). Moreover, the laser-plasma lens could be used as a first element to transport the beam
from the accelerator exit to the entrance of a conventional magnetic transport line to help
keeping the emittance of the bunch unspoiled. A first experiment is planned at LOA in the
frame of the LUNEX5 project in 2016 to demonstrate the feasibility of such a FEL design.

Plasma based undulator : A new type of plasma-based undulator was proposed at LOA
in 2014 [Andriyash et al., 2014] to produce a bright and compact incoherent X-ray source. The
main idea is to insert a periodic array of metallic nanowires directly after the laser-wakefield
accelerator, as schemed in Fig. 3. After exiting the gas jet, the laser pulse hits the wires and
ionize them, creating positively charged columns with very strong space-charge fields (up to 1
TV.m−1 according to PIC simulations). The trailing electron bunch enters this plasma undulator
and starts to wiggle in the periodic field, producing synchrotron emission. In this context, the
experiment is planned to be performed within the next few months at LOA. The laser-plasma
lens may be useful to reduce the divergence of the electron beam and thus the width of the
emitted spectrum, and increase the brightness of the radiation [Andriyash et al., 2014].
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Figure 3: Drawing of the nanowire undulator. (Courtesy of A. Lifschitz)
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Appendix A

Phase locking and phase resetting of
electrons

This section develops the calculations demonstrating the expressions of the energy gain in a
constant density profile (in section A.1), the optimum density profile and energy gain for phase-
locking (in section A.2) and for phase resetting (in section A.3).

A.1 Energy gain in a constant density profile
The energy gain of an electron accelerated in a constant density profile n0 between z0 and z in
the bubble regime can be estimated by [Lu et al., 2007]:

∆γ(z) = e

mec2

∫ z

z0
Ez(z′)dz′. (A.1)

where Ez is the longitudinal electric field in the cavity. Assuming the complete blow-out regime
(Ldeph = nc/n0λp with λp the cavity length and nc the critical density as defined in section 1.1.4)
and the longitudinal electric field to be sawtooth like : Ez(0 < z < 2Ldeph) = Ez0×(1−z/Ldeph),
where Ez0 = (meωpc/e)

√
a0 is the maximum longitudinal field in the blow-out regime (with a0

the normalized amplitude of the laser). The expression of the energy gain becomes :

∆γ(z) = e

mec2Ez0

∫ z

z0
(1− z′

Ldeph
)dz′. (A.2)

Considering z0 = 0, the energy gain is :

∆γ(z) = e

mec2Ez0

(
z − 1

2
z2

Ldeph

)
. (A.3)

The maximum energy gain is reached when z = Ldeph, which is therefore

∆γmax = nc
n0

√
a0 =

(
ω0
ωp

)2√
a0. (A.4)

A.2 Phase-locking of electrons
The initial normalized phase of an electron is Φ0 = 1− ξ0/λp with ξ0 the position of the particle
with respect to the front of the wake in the co-moving coordinate and λp the cavity wavelength.
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In order to keep the same phase Φ0 all along the acceleration in an upward density gradient
ne(z), the phase slippage of the accelerating electron has to be compensated by varying the cavity
wavelength. Assuming that the electron is initially at the very back of the cavity (ξ0 = −λp),
the position of the electron at velocity ve−vϕ in the co-moving coordinate, after an infinitesimal
time dt is :

ξ(dt) = ξ0 + (ve − vΦ)dt. (A.5)

In the same time dt, the cavity must shortens by dλ to compensate electron movement, with
the cavity wavelength after dt :

λ(dt) = λp − dλ. (A.6)

The phase-matching condition Φ(dt) = 1− ξ(dt)/λ(dt) = Φ0 gives the relation :

−(1− Φ0)dλ = (vΦ − ve)dt. (A.7)

The mandatory change for the cavity wavelength λ to achieve perfect phase-locking is thus given
by :

dλ

dt
= ve − vΦ

1− Φ0
. (A.8)

We assume a highly relativistic electron (ve ∼ c) and a laser propagating at the group
velocity in an underdense plasma (vg(t) = c

√
1− ne(t)/nc ∼ c(1 − ne(t)/2nc) with n0 � nc)

with a constant amplitude a0 (self-focusing is neglected). We assume also that the phase velocity
of the wake is equal to the group velocity of the pulse vΦ ∼ vg and that the cavity wavelength
λ depends only on the plasma density as λ(t) = λp

√
n0/ne, then :

dλ

dt
= −λp2

n
1
2
0

ne(t)
3
2

dne(t)
dt

. (A.9)

Combining eq. (A.8) and eq. (A.9), we get :

dne
dt
− αn

5
2
e = 0 with α = c

λp
√
n0nc(1− Φ0) . (A.10)

This equation can be solved considering the initial condition ne(t = 0) = n0 :

ne(t) = n0(
1− 3

2n
3
2
0 αt

) 2
3
. (A.11)

For z = ct and Ldeph = λpnc/n0 (first approximation neglecting the laser pulse intensity
influence on the cavity wavelength, which is a rather strong assumption), the perfectly matching
density profile writes as :

ne(z) = n0(
1− 3

2(1−Φ0)
z

Ldeph

) 2
3
. (A.12)
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We define the inhibition length Linh = 2(1−Φ0)Ldeph/3 after which the plasma density goes to
infinity. Note that this singularity in the phase-matching profile happens at 2/3Ldeph for Φ0 = 0.
The plasma density profile is then :

ne(z) = n0(
1− z

Linh

) 2
3
. (A.13)

Assuming the phase-locking density profile (with Φ0 = 0) and that the electrons remain at
the same phase during the whole acceleration, the electric field is considered to depend only on
the density as :

Ez(z) = Ez0

√
ne(z)
n0

= Ez0
1(

1− z
Linh

) 1
3
. (A.14)

The energy gain of an electron in the phase-locking density profile calculated in eq. (A.13) is
then :

∆γ(z) = e

mec2Ez0

∫ z

0
(1− z′

Linh
)
−1
3 dz′ (A.15)

thus giving :

∆γ(z) = e

mec2Ez0
3Linh

2

(
1− z

Linh

) 2
3
. (A.16)

A.3 Phase-resetting of electrons
An electron is assumed to be injected at phase Φ0 = 0 in a step density profile (low density
region n0 followed by a higher density region n1, separated by a density step at z = z1). When
crossing the density transition, the cavity has to shrink down so that the phase Φ1 just after
the transition goes back to zero. The position of the electron at velocity ve − vϕ (with ve ∼ c)
in the co-moving coordinate after the step (at time t1) is :

ξ1 = (ve − vΦ)t1 = (ve − vΦ)
c

z1. (A.17)

Considering the same strong assumptions that in section A.2 (notably vΦ ∼ vg ∼ c(1−ne(t)/2nc)
with n0 � nc), we get :

ξ1 = 1
2
n0
nc
z1. (A.18)

In order to compensate this phase slippage at z1, the cavity wavelength λp must shortens by ξ1
exactly in the n1 density region :

λ1 = λp − ξ1 = λp

√
n0
n1
. (A.19)

Combining eqs. (A.18) and (A.19), we obtain :

n1(z1) = n0(
1− z1

2Ldeph

)2 (A.20)
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with Ldeph = nc/n0λp the dephasing length in the first density region.
The longitudinal electric field in the cavity after the density transition is sawtooth-like as

Ez(z > z1) = Ez1×(1−(z−z1)/Ld1) with Ez1 = (meωp1c/e)
√
a0 and Ld1 = λ1nc/n1 respectively

the maximum longitudinal field and the dephasing length in the density region n1. The total
energy gain of an electron accelerated in the density plateau n0 up to z1, perfectly rephased and
accelerated up to z in the n1 density region is :

∆γ(z) = ∆γ0(z1) + ∆γ1(z). (A.21)

Since the energy gain in a constant density profile has already been calculated in section A.1,
we directly get from eq. (A.3) :

∆γ0(z1) = e

mec2Ez0

(
z1 −

1
2

z2
1

Ldeph

)
(A.22)

and

∆γ1(z) = e

mec2Ez1

(
(z − z1)− 1

2
(z − z1)2

Ld1

)
(A.23)

thus :

∆γ(z) = e

mec2

[
Ez1
2Ld1

z2 + Ez1

(
1− 1

Ld1

)
z +

(
Ez1
2Ld1

− Ez0
2Ldeph

)
z2

1 + (Ez0 − Ez1)z1

]
. (A.24)
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« La esperienza non falla mai, ma sol fallano i nostri giudizi, promettendosi di lei cose che non
sono in sua potestà. A torto si lamentan li omini della isperienza, la quale con somme
rampogne quella accusano esser fallace. Ma lascino stare essa esperienza, e voltate tale

lamentazione contro alla vostra ignoranzia, la quale vi fa transcorrere, co’ vostri vani e instolti
desideri, a impromettervi di quelle cose che non sono in sua potenzia, dicendo quella esser

fallace. A torto si lamentano li omini della innocente esperienzia, quella accusando di fallacie e
di bugiarde dimonstrazioni. »

Leonardo Da Vinci, Codice Atlantico, 154, 1478-1519

« Experience does not err; only your judgments err by expecting from her what is not in her
power. Men wrongly complain of Experience; with great abuse they accuse her of leading them

astray but they set Experience aside, turning from it with complaints as to our ignorance
causing us to be carried away by vain and foolish desires to promise ourselves, in her name,

things that are not in her power; saying that she is fallacious. Men are unjust in complaining
of innocent Experience, constantly accusing her of error and of false evidence. »

Leonardo Da Vinci, Codex Atlanticus, 154, 1478-1519

« L’expérience n’est jamais en défaut. Seul l’est notre jugement, qui attend d’elle des choses
étrangères à son pouvoir. Les hommes se plaignent injustement de l’expérience et lui

reprochent amèrement d’être trompeuse. Laissez l’expérience tranquille et tournez plutôt vos
reproches contre votre propre ignorance qui fait que vos désirs vains et insensés vous égarent

au point d’attendre d’elle des choses qui ne sont pas en son pouvoir. Les hommes se plaignent
à tort de l’innocente expérience et l’accusent de mensonge et de démonstrations fallacieuses. »

Léonard De Vinci, Codex Atlanticus, 154, 1478-1519



Abstract
Laser-plasma accelerators provide a promising compact alternative to conventional acceler-

ators. Plasma waves with extremely strong electric fields are generated when a high intensity
laser is focused into an underdense gas target. Electrons that are trapped in these laser-driven
plasma waves can be accelerated up to energies of a few GeVs. Despite their great potential,
laser-wakefield accelerators face some issues, regarding notably the stability and reproducibility
of the beam when electrons are injected in the accelerating structure.
In this manuscript, different techniques of electron injection are presented and compared, no-
tably injection in a sharp density gradient and ionization injection. It is shown that combining
these two methods allows for the generation of stable and tunable electron beams.
We also studied a way to manipulate the electron bunch in the phase-space in order to accelerate
the bunch beyond the dephasing limit. Such a technique was used with quasi-monoenergetic
electron beams to enhance their energy. Moreover, the origin of the evolution of the angular
momentum of electrons observed experimentally was investigated. Finally, we demonstrated
experimentally a new method – the laser-plasma lens – to strongly reduce the divergence of the
electron beam.

Résumé
Les accélérateurs laser-plasma, plus compacts, constituent une alternative prometteuse aux ac-
célérateurs conventionnels. Quand un laser ultra-intense est focalisé dans une cible de gaz sous-
dense, des ondes plasma présentant des champs électriques de grande amplitude sont générées.
Les électrons qui sont piégés dans ces ondes plasmas peuvent être accélérés jusqu’à des énergies
de plusieurs GeV. Malgré leur fort potentiel, les accélérateurs laser-plasma font face à plusieurs
difficultés, notamment en ce qui concerne la stabilité et la reproductibilité du faisceau au mo-
ment de l’injection dans la structure accélératrice.
Dans ce manuscript, plusieurs techniques d’injection d’électrons sont présentées et comparées,
notamment les méthodes d’injection dans un gradient raide de densité et d’injection par ionisa-
tion. Nous montrons qu’il est possible d’obtenir des faisceaux d’électrons stables et contrôlables
en combinant ces deux techniques.
Nous étudions également un moyen de manipuler le paquet d’électrons dans l’espace des phases
afin de s’affranchir de la limite de déphasage et d’accélérer un peu plus les électrons. Cette tech-
nique est utilisée pour augmenter l’énergie de faisceaux d’électrons quasi-monoénergétiques. Par
ailleurs, nous analysons l’origine de l’évolution du moment angulaire des électrons, précédem-
ment observé expérimentalement. Enfin, nous présentons la démonstration expérimentale d’une
nouvelle méthode permettant de réduire fortement la divergence du faisceau d’électron, la lentille
laser-plasma.
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