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ABSTRACT

Heat exchangers are widely used in the power generation industries. The cross-flow type of
heat exchangers are more common. The rate of heat transfer is enhanced by operating the
heat exchangers at higher flow rates by means of the increased flow turbulence. Although,
the high flow rate operations are favoured, there are side effects in terms of the flow-induced
vibrations. In the last few decades, the topic (flow induced vibrations in heat exchanger tube
bundles) is studied extensively, especially in order to understand the fluidelastic vibration.
The preventive measures can be taken in other types of vibration mechanisms, such as the
vortex induced vibrations and the acoustic resonance in tube bundles. The turbulence induced
vibrations generally take long term to deteriorate the performance of heat exchangers, hence
it involves a lesser risk of immediate damage to the heat exchangers. The failure due to the
fluidelastic instability occurs suddenly and it can pose a serious risk in the plant operations.
Besides the devastating nature of the fluidelastic instability, it is not well understood yet.

In the first part of this thesis, the fluidelastic instability is explored by means of perform-
ing numerical simulations. The flow induced vibrations in the heat exchanger tube bundles
are reviewed historically. The other mechanisms of vibrations, namely, vortex induced vibra-
tions, turbulent buffeting and acoustic resonance in the tube arrays are briefed. In addition, the
theoretical models of the fluidelastic instability are revised in order to understand the different
approaches used to model the instability. Computational Fluid Dynamics (CFD) simulations
are performed, first by using the Unsteady Reynolds Averaged Navier-Stokes (URANS) ap-
proach of modeling the flow turbulence, in order to verify the capability of URANS models
to predict the instability thresholds dynamically. Secondly, the transient nature of fluidelastic
instability is investigated by means of the Large Eddy Simulations (LES) approach of the tur-
bulence modeling. Although the LES approach is computationally expensive in comparison
with the URANS approach, the dynamic interactions between the interstitial fluid flow and a
single tube from an in-line tube bundle are well captured by the LES. The post-processing of
the LES results is comprised of the dynamics of fluid forces acting on a single cylinder from
an array, transient surface pressure profiles on the cylinder and the interstitial velocity flow



fields as a consequence of the increasing flow velocity until the onset of fluidelastic instability.
A mathematical model for the fluidelastic instability is developed based on the transient in-
teraction between the interstitial flow through an in-line cylinders array and a single cylinder
form the array.

Although there are significant advances in the computers today, the Direct Numerical
Simulations (DNS) of large dynamic systems are infeasible. Model reduction also known
as Reduced-Order Modeling (ROM) has gained an importance in almost all fields of computa-
tional sciences. In the second part of the thesis, firstly, a short introduction to the model order
reduction is provided. The Proper Orthogonal Decomposition (POD) and Galerkin projections
are commonly used in model reduction of the fluid systems. Almost all reduced-order mod-
els derived from the traditional POD-Galerkin ROM require the stability enablers. A novel
Galerkin-free approach for model reduction of the Navier-Stokes equations is proposed in this
thesis. The method uses the periodicity of the POD time coefficients and a linear interpolation
technique in order to construct the off-reference reduced solutions. A test case of the flow past
a cylinder at low Reynolds numbers (Re ∼ 125) is used for the demonstration of the proposed
ROM. In the formulation of the proposed Galerkin-free ROM, the variables of a dynamical
system are treated independently. Therefore, the method can be conveniently extended for
the multi-physics dynamical systems. Lastly, the method of Galerkin-free ROM is applied to
a fluid-structure interaction problem, where the moving mesh is a part of the solution state
vector. A test case of the vortex induced vibration in a cylinder at Reynolds number Re = 100
and the mass ratio as the controlling parameter is considered for the demonstration.

Keywords

Heat exchanger tube arrays, flow induced vibrations, fluidelastic instability, unsteady Reynolds
averaged Navier-Stokes turbulence models, large eddy simulations, reduced-order modeling,
Navier-Stokes equations, fluid-structure interactions
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RÉSUMÉ

Les échangeurs de chaleur sont largement utilisés dans les industries de production d’énergie.
Le type d’échangeurs de chaleur à flux croisés sont les plus fréquents. Le taux de transfert de
chaleur est amélioré en faisant fonctionner les échangeurs de chaleur à des débits plus élevés
au moyen de la turbulence d’écoulement accrue. Bien que, les opérations de débit élevé sont
favorisés, il y des effets secondaires en termes de vibrations induites par l’écoulement. Dans
les dernières décennies, le sujet (débit vibrations induites dans l’échangeur de chaleur des
faisceaux de tubes) a été étudié en profondeur, en particulier afin de comprendre les vibra-
tions fluide-élastique. Des mesures préventives peuvent être prises dans d’autres types de
mécanismes de vibration, comme les vibrations induites par vortex et la résonance acoustique
dans les faisceaux de tubes. Les vibrations induites par turbulence prennent généralement
longtemps à détériorer les structures des échangeurs de chaleur, d’où elle implique un risque
moindre de dommages immédiats aux échangeurs de chaleur. L’échec dû à l’instabilité fluide-
élastique se produit dans une question d’heures et il peut poser un risque grave dans les opéra-
tions de l’usine; alors même que la nature dévastatrice. De l’instabilité fluide-élastique n’est
pas encore bien comprise.

Dans la première partie de cette thèse, l’instabilité fluide-élastique est explorée en util-
isant des simulations numérique. Les vibrations induites par l’écoulement dans les faisceaux
de tubes sont examinés historiquement. Les autres mécanismes de vibrations, à savoir, des
vibrations induites par vortex, et par la turbulente et la résonance acoustique dans les fais-
ceaux de tubes sont bien documentés. De plus, les modèles théoriques de l’instabilité fluide-
élastique sont examinés. Les simulations de Mécanique des Fluides Numérique (MFN) ou en
anglais Computational Fluid Dynamics (CFD) sont réalisées, d’abord en utilisant l’approache
Unsteady Reynolds Averaged Navier-Stokes (URANS) pour la modélisation de la turbulence,
afin de vérifier la capacité des modèles de URANS à prédire les seuils d’instabilité dynamique.
Deuxièmement, la nature transitoire de l’instabilité fluide-élastique est étudiée au moyen de
la Simulation Grandes Échelles (Large Eddy Simulation LES) des structure turbulent. Bien
que l’approche LES est chère en comparaison avec l’approche URANS, les interactions dy-



namiques entre le flux de liquide interstitiel et un seul tube à partir d’un faisceau de tubes
en ligne sont bien capturés par la LES. Le post-traitement des résultats LES composée de la
dynamique des forces du fluide agissant sur un seul cylindre dans un groupe, les profils de
pression sur le cylindre et les champs d’écoulement de vitesse interstitiels en augmentant la
vitesse d’écoulement jusqu’à l’apparition de l’instabilité fluide-élastique. Un modèle mathé-
matique pour l’instabilité fluide-élastique est développé sur la base de l’interaction transitoire
entre le débit interstitiel à travers une gamme de cylindres en ligne et une seule forme de
cylindre du faisceau.

Bien qu’il y ait des progrès significatifs dans les capacités de calcul, la simulation numérique
direct (Direct Numerical Simulation DNS) des grands systémes dynamique sont touhours in-
faisable. La Réduction de modèles aussi connue comme Reduced Order Modeling (ROM) a
acquis une importance dans presque tous les domaines des sciences informatiques. Dans la
deuxième partie de la thèse, d’une part, une introduction à la réduction de l’ordre de modèle
est fournie. La décomposition en modes propres orthogonaux (Proper Orthogonal Decompo-
sition POD) et les projections de type Galerkin sont couramment utilisées dans la réduction
de modèle des écoulement de fluides. Presque tous les modèles d’ordre réduit provenant de la
technique POD-Galerkin exigent des l’introduction de stabilisations. Une nouvelle approche
de type “Galerkin-free" pour la réduction de modèle des équations de Navier-Stokes est pro-
posée dans cette thèse. La méthode utilise la périodicité des coefficients temporelle de POD
et une technique d’interpolation linéaire afin de construire des solutions d’ordre réduit. Le
cas test de l’écoulement autour d’un cylindre à faible nombre de Reynolds (Re ∼ 125) est
utilisé pour la démonstration de modéle d’ordre réduit proposé. Dans la formulation de mod-
éle d’ordre réduit “Galerkin-free" POD, les variables d’un système dynamique sont traitées
indépendamment. Par conséquent, la méthode peut être facilement étendue aux systèmes dy-
namiques multi-physiques. Enfin, la technique de Galerkin-free modéle d’ordre réduit est ap-
pliquée à un problème d’interaction fluide-structure, où la maille mobile fait partie du vecteur
d’état de la solution. Un cas test de vibrations d’induite par vortex d’un cylindre pour un nom-
bre de Reynolds de 100 avec le rapport de masse comme paramètre de contrôle est considéré
pour la démonstration.
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PREFACE

Computational Fluid Dynamics (CFD) is a maturing field with applications in a wide range of
industries. Generally in industrial applications, the physics of problems are often complex. It
involves several phenomena in addition to the flow turbulence such as acoustics, heat transfer,
mass transfer, structural vibrations and so on. In such scenarios, an appropriate coupling
of the multiple physics is important, besides the principal challenge of modeling the flow
turbulence. The number of degrees of freedom involved in such systems grows exponentially,
when it comes to take into account the detailed physics of the system. The requirement of
computing power and time can be huge, while as in several applications, it is necessary to
have a solution within a short amount of time and limited computing resources. The model
reduction techniques attempt to reduce the unnecessary degrees of freedom of the high fidelity
models and keep only the important features of the system.

The objective of this thesis work is twofold. First, investigation of the flow induced vi-
brations in the heat exchanger tube bundles, in particular the fluidelastic vibration. Second,
model reduction of the fluid-structure interaction problems. In the first part, CFD simulations
are performed using both the Unsteady Reynolds Averaged Navier-Stokes (URANS) approach
and the Large Eddy Simulations (LES) approach of modeling the flow turbulence. Only single
phase flows are considered throughout the work. The fluid-structure interactions are handled
by means of an internal coupling between the fluid flow and the solids (the cylindrical tubes of
an array). The structures (heat exchanger tubes) are assumed to be rigid and flexibly mounted
as the mass on a spring system. The coupling between the fluids and structures is achieved
by using the Algebraic Lagrangian Eulerian (ALE) method, which allows large displacements
of the computational grid. In the second part, a new method of model reduction is developed
for the Navier-Stokes equations. The Proper Orthogonal Decomposition (POD) is used to
obtain the basis functions. The method uses a linear interpolation of the reduced basis for
the changing control parameter, which leads to a Galerkin-free formulation. Furthermore the
Reduced-Order Model (ROM) is extended to fluid-structure interaction problems. Although
the test cases considered are in a laminar flow regime, the applicability of the method is in
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wide range of multi-physics problems.

The thesis is composed of a total of eight chapters. The first four chapter are dedicated
to the flow induced vibrations in tube arrays. The next three chapters are dedicated to the
reduced-order modeling. The work is summarized with an outlook in the last chapter. An
itemized description of the chapters is provided below.

Chapter 1 A review on the cross flow induced vibrations and theoretical models of the fluide-
lastic instability in tube arrays
The flow induced vibrations in tube bundles and the theoretical models of fluidelas-
tic instability are reviewed in this chapter. The definitions of relevant parameters are
provided.

Chapter 2 Numerical simulation of the flow in tube arrays by using the Unsteady Reynolds
Averaged Navier-Stokes turbulence modeling
The Unsteady Reynolds Averaged Navier-Stokes (URANS) turbulence modeling ap-
proach is used to simulate the fluid flow through tube arrays at higher Reynolds num-
bers (Re ∼ 60000). The surface pressure profiles on a cylinder from triangular arrays
is obtained numerically and compared with the corresponding experimental data. The
comparison is done in static configuration between three turbulence models, namely,
k− ε Linear Production, k−ω Shear Stress Transport and k− ε − v̄2/k. A dynamic
case of the fluidelastic instability is simulated using the four equation k− ε − v̄2/k tur-
bulence model.

Chapter 3 Analysis of the fluidelastic instability by using the Large Eddy Simulations
The transient interactions between the interstitial flow in tube arrays and the tubes are
simulated by using the Large Eddy Simulation (LES). First, the results are compared
with similar experiments. The results are further analysed in order to study the nature of
fluidelastic forces acting on a single cylinder oscillating in one degree of freedom (lift
direction).

Chapter 4 A theoretical model of the fluidelastic instability in square inline tube arrays
The variation of the fluid damping with increasing flow velocity has an effect on the
stability thresholds. A theoretical model of fluidelastic instability is derived, taking into
account the dynamic interactions between the fluid flow and the array pattern as well as
the cylinder oscillations. A relatively simple model in an implicit form of the critical
flow velocity under fluidelastic forces is formulated.

2



Preface

Chapter 5 Introduction to Reduced-Order Modeling
Model reduction techniques are briefed historically. Mainly, the important definitions
are discussed. In addition, the non-linear method of Proper Orthogonal Decomposition
(POD) is presented.

Chapter 6 A Galerkin-free model reduction approach for the Navier-Stokes equations
A new methodology for building a reduced solution is developed in this chapter. In
contrast with the traditional/commonly used POD-Galerkin ROM, the method does not
involve the Galerkin projections. The chapter also provides a detailed error and stability
analysis of the ROM solution.

Chapter 7 Model reduction of fluid-structure interactions by using the Galerkin-free POD
approach
The method of Galerkin-free reduced-order modeling, developed in the previous chap-
ter, is extended to fluid-structure interaction problems.

Chapter 8 Conclusions and outlook
Finally, concluding remarks and an outlook on the work is provided in the last chapter.

The newly developed Galerkin-free model reduction technique and the results of large
eddy simulations (LES) are under review for the publications in journals. The list of research
articles produced during the thesis work is provided below.

Journal publications

1. Shinde, V., Marcel, T., Hoarau, Y., Deloze, T., Harran, G., Baj, F., Cardolaccia, J., Mag-
naud, J.P., Longatte, E., Braza, M., 2014. Numerical simulation of the fluid–structure
interaction in a tube array under cross flow at moderate and high Reynolds numbers.
Journal of Fluids and Structures 47, 99–113.

2. Vilas Shinde, Elisabeth Longatte, Franck Baj, Yannick Hoarau, Marianna Braza, 2015.
A Galerkin-free model reduction approach for the Navier-Stokes equations. Journal of
Computational Physics. (Accepted)

3. Vilas Shinde, Julien Berland, Elisabeth Longatte, Franck Baj, 2015. Analysis of the
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CHAPTER 1

A REVIEW ON THE CROSS FLOW INDUCED VIBRATIONS AND

THEORETICAL MODELS OF THE FLUIDELASTIC INSTABILITY

IN TUBE ARRAYS

Abstract

The cross-flow induced vibrations in heat exchanger tube bundles are reviewed in this article
with a brief introduction to the major types of cross-flow instabilities. Heat exchanger tube
bundles in cross-flow arrangements are prone to mainly the vortex induced vibrations, turbu-
lence induced vibrations or turbulent buffeting, acoustic resonance and fluidelastic instability.
The later being relatively less understood even though it has a high potential of damage to the
tube bundles. The different mechanisms of the fluidelastic instability and associated theoreti-
cal developments are presented in brief. In general, the critical flow velocity is expressed as a
function of the mass-damping parameter of the tubes in an array. At last, the definitions of the
important parameters, namely, tube array orientation, mass, damping, natural frequency of the
tubes and critical flow velocity are provided.

Keywords

Heat exchanger tube arrays, flow-induced vibrations, fluidelastic instability
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1.1 Introduction

Heat exchangers are one of the indispensable parts of the process industries, mainly, the power
plants, chemical plants and the petroleum refineries. The thermal design of heat exchangers
should permit a maximum heat transfer for the main constraints of the space and pressure drop
across the equipment. The shell and tube heat exchanger designs are the most common, since
they are suited in the high pressure applications (Kakaç et al., 2002). In the shell and tube heat
exchangers, as the name suggests, a bundle of tubes is placed in a shell container. Two fluids,
one passing through the tubes and the other through the outer shell, exchange the heat through
the tube walls. The heat exchange area needs to be maximum for a better efficiency, which
justifies the presence of many tubes. In addition, the arrangement of shellside fluid plays an
important role in enhancing the heat transfer. The cross-flow arrangement of the shellside fluid
results in an increased value of the heat transfer coefficient (film coefficient). Furthermore, it
also reduces the deposition of unwanted debris. Although, the heat exchangers operating at
high cross-flow velocities are efficient, they give rise to flow induced vibrations.
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Flow induced vibrations in heat exchanger tube bundles came into picture in 1960’s, after
widespread failures reported mostly in the power industry (Nelms and Segaser, 1969). A
typical steam generator in a nuclear power plant contains thousands of small diameter tubes
with high pressure fluids on either sides. The demand for high efficiency operations makes
the tube bundle system susceptible to flow induced vibrations, in addition to the other chronic
problems. Since the 60’s, the problem of flow induced vibrations has gained an importance
because the tube bundles’ failure occurred frequently, which has resulted in a huge loss in
terms of the lost production cost. Also there are serious safety measures involved, in particular,
in the nuclear power stations. Several detailed reviews on the steam generator vibrations are
conducted ((Nelms and Segaser, 1969), (Hodge et al., 1974), (Shin and Wambsganss, 1977),
(Pettigrew et al., 1978), (Chen, 1978), (Blevins, 1979b), (Païdoussis, 1983a) and (Weaver and
Fitzpatrick, 1988a)), which has enhanced the understanding of the mechanisms responsible for
the tubes failure. In majority cases, the damage is attributed to the large amplitude vibrations
due to fluid flow. The fretting-wear at the baffle contacts and corrosion locations generally
acted as an initial point of the breakdown. Figure (1.1) shows damaged tubes due to the
excessive flow-induced vibrations. The flow in the parallel (to the tubes axes) configuration is
also reported to produce the instabilities, but the cross-flow components of the flow are often
held responsible (Païdoussis, 1982). In the steam generators, vibrations due to the tubeside
flow are negligible, in comparison with the shellside flow (Shin and Wambsganss, 1977).

(a) Support bar damage (b) Collision damage

Figure 1.1 Enrico Fermi atomic power plant steam generators. Source:(Shin and Wambsganss, 1977)
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instability in tube arrays

1.2 Vibration Mechanisms

The fluid flow through the tube arrays is fairly complex. There exists several excitation mech-
anisms leading to flow-induced vibrations in tube arrays. Broadly, these are classified as,
Vortex shedding, Turbulent buffeting, Acoustic resonance and Fluidelastic excitations. In ad-
dition, there are other mechanisms which may simultaneously exist, such as the parallel flow
turbulent pressure fluctuations, hydraulic noise, structural noise transmitted by the external
vibrations, fluctuations in the flow etc.

1.2.1 Vortex shedding / Strouhal periodicity

The fluid flow past a bluff body generates the low pressure alternate vortices behind the body,
known as the vortex shedding. The flow past a circular cylinder has been extensively studied
physics since a long time. The shedding of vortices results in lift forces in addition to drag
forces on the cylinder. The flow depends mainly on the Reynolds number (Re), which is a
ratio of fluid inertia forces to viscous forces. The frequency of vortex shedding is normalised
by using the flow velocity and cylinder diameter. The resulting dimensionless number is
called the Strouhal Number (Sh). Generally the relationships between the forces (drag, lift),
Strouhal frequency and the Reynolds number are established empirically. The drag and lift
forces beating at Strouhal frequency induce cylinder vibrations in the cylinder. Further, if the
Strouhal frequency synchronises with the cylinder’s natural frequency, the cylinder resonates
and produces large amplitude vibrations, know as vortex-induced vibrations.

The flow through tube arrays forms multiple flow channels passing around the lines (columns)
of cylinders. The presence of Strouhal periodicity in tube arrays also results in high amplitude
vibrations, when it resonates with the cylinders’ natural frequency. The flow instabilities in
the tube arrays are largely disputed for the presence of distinct vortex shedding similar to the
classical vortex shedding behind a single cylinder. The topic is well reviewed by (Païdoussis,
1983b) and (Weaver and Fitzpatrick, 1988b). Until the early 70’s, only the excitations due to
vortex shedding were held responsible for the vibrations in tube bundles. The dispute over
unanimous values of the Strouhal frequency and its existence in tube arrays led to further in-
vestigations of the phenomenon. While summarizing the research work on the existence of
vortex shedding in tube arrays, (Païdoussis, 1983b) stated that, the Strouhal periodicity com-
monly appeared for the first few rows, provided the upstream turbulence had not suppressed
it. The appearance of vortex shedding deep within the arrays is found to be dependent on
the Reynolds number, array geometry, mechanical properties of the tubes and also the ampli-
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tudes of tube vibration. In the later research works, (Weaver et al., 1987), (Fitzpatrick et al.,
1988) observed the presence of vortex shedding, if not a flow periodicity even deep within
the arrays. In an interesting flow visualization study by (Abd-Rabbo and Weaver, 1986), the
development of vortex shedding in arrays is observed similar to the classical vortex shedding
behind a single cylinder. The Strouhal periodicity is observed in the closely placed staggered
array configurations, which is reported to be absent in the in-line array configurations. Further
study on the in-line tube arrays by (Ziada and Oengören, 1992) and (Ziada and Oengören,
1993) has enhanced the understanding of the generation of vortex shedding excitations. The
fluid flowing in lanes forms the jet like structures, while the wakes of the cylinders are con-
fined. The vortex-shedding excitations are generated in the first row due to the jet instabilities
and persist for couple of rows downstream. The tube pitch ratio and the upstream turbulence
has a major impact on the vortex-shedding in the front rows as well as deep in the arrays.
The vortex shedding in the staggered (normal triangular) arrangement is studied in (Polak and
Weaver, 1995) for various pitch ratios and Reynolds numbers. In a comprehensive work by
(Ziada, 2006), the vortex-shedding is shown to be generated by either jet, wake or shear layer
instabilities, depending on the tube spacing, upstream turbulence, Reynolds number and the
array configuration.

(a) Staggered array (b) In-line array

Figure 1.2 Vortex-shedding in tube arrays. Source: (Ziada, 2006)

Figure (1.2) shows vortex shedding patterns in a staggered and in-line tube array arrange-
ments. The sub-figures in Figure 1.2(a) show the influence of increasing Reynolds number on
the flow vorticity. The closely placed cylinders in-line array shown in Figure 1.2(b) shows the
shear layer instabilities as the source of Strouhal periodicities.
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1.2.2 Turbulent buffeting

The flow in heat exchanger tube arrays is turbulent in almost all industrial configurations.
In addition to vortex-shedding / Strouhal periodicity, instabilities due to the flow turbulence
are present separately in the flow. They are present in a wide range of frequencies of the
flow spectra. If the cylinder natural frequency is in the range of turbulence frequencies, the
cylinder is fed with more energy, resulting in high amplitudes of cylinder vibration. The
historical development on the topic is provided in the review articles by (Païdoussis, 1983a)
and (Weaver and Fitzpatrick, 1988b). The very discussed article by (Owen, 1965) questioned
the presence of vortex shedding in the confined arrays. The excitations are attributed to the
range of turbulence frequencies and a dominant frequency from the range. The development
by (Chen, 1968), is based on the similar concept, but the dominant frequency is used as a
vortex shedding frequency. The experimental work by (Weaver and Yeung, 1984) showed the
presence of both, the vortex periodicity and the range of turbulence frequencies. Figure (1.3)
shows separated peaks for the vortex periodicity and the turbulence range of the spectrum. The
experiments were performed in a water tunnel to study the influence of mass ratio on vibrations
in all four standard tube bundles with a pitch ratio 1.5. The figure shows a frequency response
spectrum for a rotated square array of aluminium tubes and the water flow with an upstream
Reynolds number ≈ 1500.

Figure 1.3 Distinct spectral peaks of the vortex shedding and turbulence. Source: (Weaver and Yeung,
1984)

In order to predict the cylinder’s vibrational response to the turbulent buffeting, (Pettigrew

10



1.2 Vibration Mechanisms

(a) (Pettigrew and Gorman, 1978) (b) (Blevins et al., 1981)

Figure 1.4 Turbulent correlation coefficients.

and Gorman, 1978) estimated the turbulence spanwise correlations. The random correlation
coefficients are used to obtain the power spectral density and thereby the cylinder vibration.
On a similar ground, (Blevins et al., 1981) derived an equally simple relation to predict the
vibrational response of a cylinder, in a non dimensional form. Figures 1.4(a), 1.4(b) show
the plots of random correlation coefficients by (Pettigrew and Gorman, 1978) and (Blevins
et al., 1981) respectively. The main difference between Figures 1.4(a) and 1.4(b), as also
addressed by (Païdoussis, 1983b), is the difference between the stability limits for the first
row or upstream cylinders and the downstream cylinders, which is attributed to the upstream
flow turbulence.

In the recent studies on the influence of upstream flow turbulence on the tube array insta-
bilities, (Romberg and Popp, 1998), (Popp and Romberg, 1998) (Rottmann and Popp, 2003)
found that, the increased upstream turbulence has a stabilizing effect on the cylinders response.
The increase of upstream turbulence intensity resulted in a shift in the instability boundaries
of critical velocities to higher values.

1.2.3 Acoustic resonance

The acoustic resonance occurs when the acoustic natural frequencies of the tube bundle shell
resonate with the flow periodicity in the tube array. The heat exchanger shells with water like
fluids and with compact structures are less susceptible to acoustic resonance, since the speed
of sound is relatively high in liquids. On the other hand, the gaseous flows through the tube
arrays can undergo acoustic vibration, which may result in an intense magnitude noise. The
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phenomenon is briefly reviewed in (Païdoussis, 1983b). Similar to the very vortex shedding
and the turbulent buffeting phenomena, the acoustic resonance is also disputed over the source
of acoustic excitations, which is discussed in (Weaver and Fitzpatrick, 1988b). An experimen-
tal study by (Parker, 1978) showed that the effective speed of the sound reduces because of the
presence of tube arrays. Furthermore the acoustic resonance is analysed and compared with
the experiments. In (Blevins, 1984), Blevins (1986), it is reported that the vortex shedding
acted as a dipole source of the sound. A theoretical development based on Lighthill’s analogy
is postulated. The acoustic modes of heat exchangers are identified using the finite element
technique and compared with experimental data. The acoustic resonance strongly modified
the vortex shedding and increased the strength and correlation of the vorticity. In (Fitzpatrick,
1985), the source of acoustic resonance is assumed to be the vortex shedding as well as the
turbulent buffeting, in order to predict the flow induced noise. The various methods for pre-
dicting the acoustic resonance are compared and design guidelines are formulated in (Ziada
and Oengören, 2000) to avoid the acoustic resonance.

Figure 1.5 Illustration of the vortex shedding under the influence of acoustic resonance. (a) with
resonance (b) without resonance. Source: (Ziada and Oengören, 1992)

A comprehensive research work carried out by (Ziada et al., 1989a), (Ziada et al., 1989b),
(Oengören and Ziada, 1992), (Ziada et al., 1998), (Ziada and Oengören, 2000) and (Feenstra
et al., 2005) has led to an enhanced state of knowledge on the acoustic resonance in tube arrays.
The acoustic resonance is studied in both in-line and staggered configurations for different
Reynolds numbers and pitch ratios. It is confirmed in (Oengören and Ziada, 1992), that the jet
instabilities are responsible for the vortex shedding switch to the shear layer instabilities under
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the influence of acoustic resonance. In general, the flow instabilities behind the cylinders are
accounted as the excitation source of the acoustic modes in the system. Figure (1.5) shows a
schematic illustration of the influence of acoustic resonance (lock-in) on the vortex shedding
behind the cylinders. In a recent article, (Ziada, 2006) provided an improved guidelines for
the acoustic resonance in tube arrays, detailing its dependence on the tube layout pattern,
pitch ratio and Reynolds number. The influence of the acoustic sound field on the lift force in
terms of the change in vortex shedding at the onset of acoustic resonance is further studied in
(Hanson and Ziada, 2011).

1.2.4 Fluidelastic excitations

The galloping phenomenon of the ice-laden transmission wires due to the wind and the flutter
in the aircraft wings are closely linked with the fluidelastic instability in tube arrays. Both the
galloping and the flutter instabilities involve either an asymmetry in the associated geometry
or/and the interaction with an incident flow with dynamically changing the angle of attack. The
fluidelastic instability in tube arrays is also classified under the Movement Induced Vibrations
(MIV), since a small movement of the structure (tubes) acts as an origin of the fluidelastic
excitations. A small vibration in a tube array excited by the interstitial flow modifies the flow
itself and thereby the fluid forces acting on the tubes, which results in the increased vibration,
until the array becomes completely unstable. The damage caused by the fluidelastic instability
is within a short term and devastating (Weaver and Fitzpatrick, 1988b). Figure (1.6) shows an
idealized response of a cylinder from an array under the different excitations mechanisms
(Païdoussis, 1983b).

Until the 60’s, the flow-induced vibrations due to the fluidelastic instability were attributed
to the vortex shedding resonance. In its PhD work (Roberts, 1962), discovered the self-
excitation mechanism in a staggered row of cylinders under cross flow, for the vibration in
inflow direction. A theoretical development for predicting the critical flow velocity is pro-
posed, which is based on a jet switching phenomenon (Roberts, 1966). The flow jet, which
is formed due to the cylinders arrangement, oscillates at a relatively lower frequency than the
cylinder natural frequency. Later, in the breakthrough work (Connors, 1970), (Connors, 1978)
proposed a relatively simple dependency of the critical flow velocity on the structural parame-
ters, i.e. on the mass-damping parameter. The model is developed using a single in-line row of
cylinders instead of the staggered arrangement in (Roberts, 1962). (Blevins, 1974) extended
the model of (Connors, 1970) for the tube arrays. Although the extended model incorporated
the changing damping with respect to the flow velocity, the dependence on the mass-damping
parameter remained in the same form. Equation (1.1) is the general form of the fluidelastic
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Figure 1.6 Idealized response of a cylinder in an array under cross flow. Source: (Païdoussis et al.,
2006)

instability criteria. upc is the effective critical flow velocity (also called as gap or pitch or
intertube velocity). fn, m and δ represent the cylinder natural frequency, mass of cylinder per
unit length and the logarithmic decrement of the cylinder free vibration decrease respectively.
Where as D stands for the cylinder diameter. The mechanical variables ( fn, m and δ ) can be
defined in several ways, but generally they are defined with respect to the fluid medium at rest.
K is the constant of proportionality. The exponent a is often taken as 0.5.

upc

fnD
= K

(
mδ

ρD2

)a

(1.1)

A detailed historical development on the topic is reviewed in (Païdoussis, 1983b). The de-
pendence of the critical velocity on the mass-damping parameter is not much disputed, while
the value exponent a and the proportionality constant (K) varies depending on configurations.
Some of the earlier works is concerned about obtaining an appropriate value of the constant
K, e.g. (Pettigrew and Gorman, 1973). (Gibert et al., 1977), (Pettigrew et al., 1978), (Blevins,
1979a). The value of Kmin = 3.3 from the work of (Pettigrew et al., 1978) is widely accepted.

In further investigations for the value of the constant K and in general for the validity
of the model (Equation (1.1)) for a wide range of mass-damping parameters, experimental
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results showed a wide scatter instead of a single instability boundary as per the Equation
(1.1). The experimental work of (Weaver and Lever, 1977) and (Southworth and Zdravkovich,
1975) showed that a single cylinder from an array can become fluidelastically unstable. In the
experiments of (Gorman, 1977) the effect of stiffness on the stability limit is tested. In addition
to the study on whether the open tube lanes serve as a trigger for the fluidelastic instability is
carried out. The results are contradicting with the formulation of (Connors, 1978) (Equation
1.1). Further, in (Weaver and Grover, 1978) the dependence of critical velocity only on the
logarithmic decrement is tested, which resulted in a different value of the exponent a for the δ

(a ≈ 0.21). There are many experimental evidences reported against grouping the mass-ratio
(m/ρD2) and logarithmic decrement (δ ) together. (Weaver and El-Kashlan, 1981) studied
the effect of mass ratio (m∗ = m/ρD2) and damping ratio (ζ ) on the instability limits and
found different values (a = 0.29, b = 0.21 respectively for m∗ and δ ) of the exponents, in
a single oscillating cylinder from a rotated/parallel triangular array configuration. In similar
studies, (Nicolet et al., 1976), (Heilker and Vincent, 1981), (Chen and Jendrzejcyk, 1981),
(Price and Païdoussis, 1989), (Price and Kuran, 1991) obtained different set of values for the
exponents in a single as well as multiple oscillating cylinders configurations. (Tanaka et al.,
2002) suggested that for the mass ratio m∗ = m/ρD2 smaller than 10, mass and damping
should be treated separately.

Figure 1.7 Multiple stability limits for a single cylinder from a triangular normal array. Source: (And-
jelic and Popp, 1989)
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Other set of experiments evidenced the presence of multiple stability limits for a single as
well as multiple cylinders from an array, e.g. (Chen and Jendrzejczyk, 1983), (Andjelic and
Popp, 1989) and (Austermann and Popp, 1995). The multiple stability boundaries are gener-
ally observed for lower values of the mass-damping parameter. This feature of the instability
does not reflect in the model of (Connors, 1978) (Equation 1.1). Figure (1.7) shows the mul-
tiple stability regions for a single cylinder form a triangular normal array, in the multiple sets
of experiments performed by (Andjelic and Popp, 1989).

In attempts to model the fluidelastic instability, several theories have been developed in the
past couple of decades, in addition to the pioneering work of (Roberts, 1966) and (Connors,
1978). The parameter space being large, none of the theories holds good in all circumstances.
The behaviour of the instability largely changes for different values of the mass-damping pa-
rameter. In (Chen, 1983a), the instability is further attributed to the different mechanisms
in place, namely, fluidelastic stiffness controlled mechanism and damping controlled mecha-
nism. It is recommended to use difference stability criteria for the different parameter range
(Chen, 1983b). In the damping controlled mechanism, the fluid forces act in phase with the
velocity of cylinder vibration and there exists a phase lag between the displacement of cylin-
der and the fluid forces acting on it. The dependence of the instability on phase lag is not fully
understood. The finite fluid inertia model by (Lever and Weaver, 1986a) (Lever and Weaver,
1986b), the fluid flow hysteresis effect model by (Price and Païdoussis, 1984), (Granger and
Païdoussis, 1996) consider the phase or finite time lag between the fluid forces and the cylin-
der displacement. In addition to the very clear presence of the multiple stability limits and the
independence of the mass ratio and damping ratio in the formation of the mass-damping pa-
rameter, there are other parameters that greatly affect the fluidelastic stability limits, namely,
orientation of the array, transverse and longitudinal pitch ratios, Reynolds number, position
of the cylinder in an array etc. (Chen and Jendrzejcyk, 1981). Further the authors found that
the fluidelastic instability may interact with the other excitation mechanisms (e.g. Strouhal
periodicity/ Vortex shedding). The flow through tube arrays in steam generators is normally
two-phase flow, an additional parameter that influences the stability limits, which can be a
separate topic of research in itself and not considered in this study.

1.3 The fluidelastic instability models

The mathematical models of fluidelastic instability can be categorized based on the physi-
cal assumptions and methodology used to derive it, namely, jet switch models, quasi-static
models, quasi-steady models, semi-analytical models and unsteady models.
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1.3.1 Jet switch model

The very first model developed for the fluidelastic instability by (Roberts, 1962) is for a single
and a double rows of cylinders in cross flow. It is derived for the instability in the in-flow
direction. A slight staggering in the cylinder rows is necessary in developing the wake dy-
namics and the jet switching instability. Figure 1.8(a) shows the schematic of the jet switch
mechanism. The sudden expansion of the flow jet below the separation locations makes it
highly transient in nature, while the asymmetry in the geometry creates one small and an-
other big wakes downstream the cylinders. The in-flow oscillations of cylinders favour the jet
switching by extracting the energy form the fluidelastic switching of the jet. The author further
suggests that the jet switching is possible only if the frequency of jet switching is lower than
the cylinder frequency. Further, the occurrence of jet switching is constrained to u/ωnD ≥ 2
condition. Where u, ωn, D represent the inflow velocity, cylinder angular frequency and its
diameter respectively.

(a) Schematics of Jet-switch mechanism
(Roberts, 1962) (b) The instability limits by (Roberts, 1966)

Figure 1.8 Schematics of the jet switching mechanism (a) and the instability map of a single cylinder
from a row of pitch ratio p∗ = 1.5 along with the experimental results (b).

The in-flow fluid force as a function of the jet switching mechanism is written as,

Fx =
1
2

ρu2
{

0.717
[
1−Cpb(x,τ)

]
−2
(

ωnD
u

)
(1−Cpb)mean

dx
dτ

}
(1.2)

Where, Cpb represents the theoretical base pressure for the two adjacent cylinders, which is
a function of both the displacement (x) and the dimensionless time τ = (tωn). The solution
of the equation of motion by using the in-flow force in Equation (1.2) leads to the stability
boundaries as shown in Figure 1.8(b). The simplified form of the solution by neglecting the
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damping and unsteady terms from the force Fx leads to,

uc

ωnεD
= K

(
mδ

ρD2

)0.5

(1.3)

Where ε represents the ratio of fluidelastic (jet switching) frequency to the cylinders fre-
quency. The symbols, m, ρ and δ stand for the mass per unit length, density of fluid and
logarithmic decrement of the cylinder vibration respectively. K is the proportionality con-
stant.

The model shows a poor agreement with the experimental results for the cylinder rows in
cross flow (Païdoussis et al., 2010, chap. 5). The model is developed for the motion of cylin-
ders in the in-flow direction, while as the experiments show the dominance of the fluidelastic
instability in the flow normal direction. In the theory, instability can not occur if uc/ωnεD≤ 2.

1.3.2 Quasi-static, quasi-steady models

Similar to Equation (1.3), (Connors, 1970) developed a quasi-static model for the fluidelas-
tic instability in a row of cylinders under cross-flow. The forces (drag and lift) are directly
measured by performing experiments. Mainly two types of (whirling) patterns of the adjacent
cylinders from a row with pitch ratio p∗ = 1.41 are observed during real experiments, which
are either symmetric or anti-symmetric. The force coefficients are obtained by simulating the
dominant patterns of the cylinder oscillations using the static displacement of the adjacent
cylinders. In the analysis, the instability found to be more dependent on the transverse direc-
tion. Also the effect of jet switching on the instability is found to be negligible. The cross-flow
and inflow energy balances based on the measurements led to,

upc

fnD
= K

(
mδ

ρD2

)0.5

(1.4)

Where, upc is the critical pitch velocity, the value of constant K = 9.9. In an extension of the
model (Equation (1.4)) to the tube arrays, the value of K = 3.3 is recommended in (Gorman,
1976) and (Pettigrew et al., 1978). Later, in (Connors, 1978), provided a relation for the value
of constant K, in terms of the transverse pitch ratio (p∗y = T/D) as, K = (0.37+ 1.76p∗y) for
1.41 < p∗y < 2.12. On the same ground, (Blevins, 1974) derived a relation similar to Equation
(1.4). The cylinders from a row as well as from an array are assumed to whirl in interdependent
orbits, mainly, in out of phase to the adjacent cylinders. The quasi-state formulation resulted
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in,
upc

fnD
=

2(2π)0.5

(CxKy)0.25

(
mδ

ρD2

)0.5

(1.5)

Where, Cx = ∂Cx/∂y and Ky = ∂Ky/∂x are the fluid-stiffness terms, provided in the formula-
tion of (Connors, 1970).

In the quasi-steady approach of modeling the interaction between cylinder in motion and
fluid around, the instantaneous velocity vector is repositioned for the lift and drag direction,
while the effective values of the coefficients are kept the same as in the stationary case. Figure
1.9(a) shows the relative change of the drag and lift directions on a cylinder with a change in
the inflow velocity direction. (Blevins, 1979c) used a quasi-steady approach in order to incor-
porate the effect of the fluid dependent damping in the relation. The logarithmic decrement of
the (Connors, 1978) model is given by,

δ = 2π

√
ζxζy (1.6)

where, ζx and ζy are the damping factors in the inflow x and the cross flow y directions respec-
tively. A considerable work was done by (Whiston and Thomas, 1982), in order to take into
account the phase angle between the adjacent cylinders and the details of the intertube flow
physics.

(Gross, 1975) used the quasi-steady analysis for the tube arrays, stating that, the instability
occurs due to two distinct mechanisms, namely, negative-damping and stiffness controlled.
The fluid force is taken proportional to the variation of the lift coefficient linearly with the
relative angle between the incident velocity and cylinder position, as shown in Figure 1.9(a).
The cylinder is expected to be unstable when the effective damping becomes zero. The model
is given as,

upc

fnD
=

mδ

ρD2(−∂C/∂α)
(1.7)

In contrast to the experimental evidences (e.g. (Chen, 1984), (Weaver and Fitzpatrick, 1988b))
the dependence of the critical dimensionless velocity on the mass-damping parameter is linear,
against the low values (less than one) of the exponent (a) in the experiments. In the similar
analysis, (Price and Païdoussis, 1983) developed a quasi-steady relation between the force
and the displacement of a cylinder from the two rows of cylinders. Further, they improved
the model by incorporating the dependency of the fluid coefficients on the displacement of the
surrounding cylinders by using a constrained modal analysis (Price and Païdoussis, 1986a) as
well as importantly, by adding the flow retardation effect in the model (Price and Païdoussis,
1984), (Price and Païdoussis, 1986b). It is suggested that, the instability for the higher values
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of mass-damping parameter (mδ/ρD2) is stiffness-controlled, on the other hand it is damping
controlled for the smaller values of the mass-damping parameter. In an analysis of a single
cylinder from an array, the instability is attributed to the negative effective damping of the
cylinder, which resulted due to the flow retardation or the phase lag effect. The equation
proposed is,

upc

fnD
=

4mδ/ρD2

(−CD −µD ∂CL/∂y)
(1.8)

where, CD, CL are drag and lift coefficients, while µ is the flow retardation parameter. The
resulted instability map for different values of the flow retardation is shown in Figure 1.9(b).

(a) The velocity representation in
quasi-steady analysis (b) The stability map for a parallel triangular

array with p∗ = 1.375

Figure 1.9 The quasi-steady analysis of (Price and Païdoussis, 1984) (a) velocity representations (b)
the stability boundaries for different value of flow retardation parameter.

1.3.3 Semi-analytical models

An analytical approach is adopted in (Lever and Weaver, 1982), in order to model the fluide-
lastic instability for a single cylinder in an array. It is concluded based on the experimental
studies in (Weaver and Grover, 1978) and (Lever and Weaver, 1982) that the instability in a
single cylinder is representative for an array since the value of the critical flow velocity remains
more of less the same. In addition, the model is developed for the cross flow instabilities only.
In the following improvements, (Lever and Weaver, 1986a), (Lever and Weaver, 1986b) incor-
porated the cylinder motion in the in-flow direction as well, although treated independently.
In the model, the authors considered the interactions of the adjacent flow channels with the
cylinder displacement. The flow channels are assumed to be inviscid with a resistance term
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for the frictional losses. The area of the inviscid stream-tubes is preserved, if it is modified
by the movements of the cylinder. The dynamic interaction between the flow tubes and the
cylinder displacement resulted in a finite phase lag between the two, due to the fluid inertia.
An empirical relation is used to model the phase lag. Figure 1.10(a) shows the idealized flow
channels adjacent to the cylinder under consideration.

(a) The unit-cell of the model

(b) The stability map for a parallel triangular array with p∗ = 1.375

Figure 1.10 The semi-analytical model of (Lever and Weaver, 1982) (a) flow tubes representations (b)
the stability boundaries featuring multiple stable-unstable regions.

The fluid force on the cylinder is derived using the surface pressure for a harmonic vibra-
tion in the cylinder, which is decomposed in stiffness and damping terms as,

Fp(t) = Focos(θo)
y(t)
yo︸ ︷︷ ︸

stiffness term

+Fosin(θo)
1

ωyo

dy(t)
dt︸ ︷︷ ︸

damping term

(1.9)

The damping and stiffness terms of the pressure force Fp(t) (Equation 1.9) are subtracted from
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the respective damping and stiffness terms of the motion equation resulting in,

lm
d2y
dt2 +

{
c+

CDρDluo

2
− Fosin(θo)

ωyo

}
dy
dt

+

{
ko −

Focos(θo)

yo

}
y = 0 (1.10)

where, c is measured damping in still fluid medium and ko is the structural stiffness. The
additional terms in the coefficients of the cylinder velocity and displacement accounts for the
flow-induced damping and stiffness respectively. The instability occurs when the effective
damping term becomes zero, which leads to the stability criterion in a non-dimensional form
for a particular array as,

mδ

ρD2 +C1
(
cos(1/u∗p)−1

)
u∗3 +C2sin(1/u∗p)u

∗
p

2 +
(
C3 +C4cos(1/u∗p)

)
u∗p = 0

With
u∗pc =C5u∗p (1.11)

The empirical coefficients C1 to C5 are needed for the estimation of the stability threshold.
Figure 1.10(b) shows the stability plot for a single cylinder from a triangular array with a
pitch ratio p∗ = 1.375. The analytical model in Equation (1.11) shows that the critical re-
duced velocity is linearly dependent on the mass-damping parameter for high values of the
mass-damping parameter, while as the experimental evidence showed the proportionality to
be
(
mδ/ρD2)0.5. The improved versions of the model are proposed in (Yetisir and Weaver,

1988), (Yetisir and Weaver, 1993a), (Yetisir and Weaver, 1993b), taking into account the ef-
fect of the neighbouring cylinders. The improved model leads to the exponent 0.5 of the
mass-damping parameter as observed experimentally. In these works the interaction between
the flow stream tubes and the cylinder are more appropriately taken into account. In a recent
attempt, (Khalifa et al., 2013) provided some improvements in the original model by using an
empirical phase lag relation based on the Computational Fluid Dynamics (CFD) simulations
for a triangular array.

1.3.4 Unsteady models

The unsteady formulation of the fluidelastic models largely depends on the direct experimental
measurement of the fluid force coefficients. The dynamic fluid force on a vibrating cylinder in
an array is expressed as a function of the intertube flow velocity and the force coefficients for
the movements of the neighbouring cylinders. The coefficients are obtained experimentally in
order to establish the stability maps. In (Tanaka and Takahara, 1980), (Tanaka and Takahara,
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1981) such measurements are performed for an in-line array of pitch ratio p∗ = 1.33, while as
for a similar array with a pitch ratio p∗ = 2.00 are reported in (Takahara and Ohta, 1982). Fig-
ure 1.11(a) shows the cylinders monitored to estimate the model coefficients experimentally.
The fluid force on cylinder O (Figure 1.11(a)) is considered to be influenced by the vibrations
in the adjacent cylinders (U, R, L, and R) from the same row and column, in addition to the
vibration in itself. The total fluid force is considered to be the sum of the inertia due to added
mass, damping due to the fluid and stiffness due to the dynamic pressure and displacement.

(a) In-line array with P∗ = 1.33

(b) Stability map for different logarithmic damping (δ )

Figure 1.11 The unsteady model of (Tanaka and Takahara, 1981) (a) cylinder array (b) the stability
boundaries showing critical reduced velocity against mass ratio (µ = m/ρD2) for different values of
logarithmic damping (δ ).
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Further, the fluid force is derived for the steady state motion of the cylinders. The total
force on a cylinder is simply the summation of the forces induced by the individual cylinders,
since the amplitudes of vibration are assumed small. The total fluid force on cylinder O in Y

direction induced by the motion of cylinders O, U, D, L and R is given as,

FY =
1
2

ρu2
p

5

∑
k=1

(CY kX Xk +CY kYYk) (1.12)

where CY kX and CY kY represent the force coefficients in Y direction on the kth cylinder for the
motion in X and Y directions respectively. Thus, a coupled system of equations is solved for
the monitored cylinders by using the force coefficients measured experimentally. The force is
measured experimentally by using the fundamental Fourier coefficients. The measured force
is represented in a dimensionless form given as,

F =
1
2

ρu2
pCXosin(2π f t +φ) (1.13)

where, C is the force coefficient, Xo is the magnitude of imposed displacement, while φ rep-
resents the phase lag between the displacement and fluid force. The stability map shown in
Figure 1.11(b) is established, for a range of mass ratio 1 ≤ m/ρD2 ≤ 104 and different values
of the logarithmic decrement δ . It is also pointed out that there exist a discontinuity in the
stability boundaries for 50 ≤ m/ρD2 ≤ 500, indicating the presence of different mechanisms
of the instability in these two regions.

(Chen, 1983a) further analysed the instability using the unsteady measurements of forces
on the cylinders from a row as well as an array. The presence of two distinct mechanisms of the
instability is confirmed. First, similar to the galloping phenomenon resultant of a negative fluid
damping, hence called damping-mechanism. Second the flutter type mechanism controlled by
the fluid stiffness while the fluid damping is positive. It is called a stiffness mechanism. In
addition, (Chen, 1983b) performed an unconstrained analysis for the row and in-line array
of cylinders. The presence of multiple stability boundaries for the small values of the mass-
damping parameter are uncovered. Also in a discussion on the presence of the discontinuity in
the stability boundaries, (Chen, 1983b) attributed it to the sharp change in the phase difference
between the fluid forces and cylinder oscillations, rather than to the different mechanisms of
the instability. Figure (1.12) shows the stability boundaries and stable-unstable regions as
predicted by (Chen, 1983b).

The unsteady models are more reliable in terms of the instability thresholds and investiga-
tion of the underlying physics of the fluidelastic instability. On the other had the experimental
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Figure 1.12 The instability limits predicted by (Chen, 1983b) for a row of cylinders (p∗ = 1.33).

data required is very demanding. In order to reduce these efforts, inverse methods to estimate
the forces on cylinders under vibration are developed in (Teh and Goyder, 1981) and (Granger,
1990).

1.4 The parameter space and definitions

The cross flow induced vibrations of tube arrays involve several parameters, mainly, the array
orientation, pitch ratio, critical flow velocity, inflow turbulence intensity, tube natural fre-
quency, mass of the tube and damping of the tube vibration. One of the difficulties in com-
paring different results of the fluidelastic instability threshold is the different definitions of
the system parameters. The important parameters and their definitions are discussed in the
following section.

1.4.1 Array orientation

There are four principal configurations in which the tube arrays are classified. The physics
of the interstitial flow differ with the array configuration and so does the behaviour of the
fluidelastic instability. Figure (1.13) shows the four configurations generally used in the design
of heat exchangers. Figures 1.13(a) shows a triangular arrangement of the tubes often denoted
by 30o, called as the triangular normal configuration. Rotating the triangular normal array
or the inflow direction by 90o results into the triangular rotated arrangement (60o), as shown
in Figure 1.13(c). Similarly, Figures 1.13(b),(d) show the square arrangements of the tubes
in the normal (90o) and rotated (45o) configurations respectively. The square arrays Figures
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1.13(b),(c) are also known as the parallel configurations, since the flow passage is more-or-less
in parallel channels, in comparison with the other two configurations (30o and 45o).

D
P

(a) Triangular normal (30o)

DP

(b) Square normal (90o)

P D

(c) Triangular rotated (60o)

DP

(d) Square rotated (45o)

Figure 1.13 Array Configurations.

The diameter is denoted by D in the Figures 1.13 (a),(b),(c),(d), while as the minimum
distance between the two adjacent tubes is called as the pitch distance (P). A non-dimensional
pitch is often used, denoted by p∗ = P/D, also called as a reduced pitch or simply the pitch
ratio.

1.4.2 Natural frequency

The free harmonic oscillations are used to estimate the natural frequencies of the tube. The
tube can oscillate at several frequencies and in different modes-shapes depending upon its
shape and supports. The first natural frequency also known as fundamental frequency is rele-
vant in the cross-flow induced vibration. It is denoted by fn (or ωn for angular representation).
The value of frequency changes with respect to the surrounding fluid medium and also with
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the flow velocity. Although, the value estimated in vacuum (practically in air) remains un-
changed for a tube, the value with respect to the fluid medium is more relevant, hence it is
commonly used. Further, the frequency fn varies with the flow velocity, therefore the value
used in most of the design guidelines is the frequency in still fluid medium.

1.4.3 Mass of the tube

The mass of the tube is comprised of three quantities, namely, tube material mass, mass of
the fluid inside and an additional hydrodynamic mass due to the surrounding fluid medium.
The hydrodynamic added mass due to fluid medium is negligible in gases or light weight
fluids, while as it needs to be taken into account for heavy fluids. The total/effective mass per
unit length m includes the hydrodynamic mass. The motion of the tube in fluid medium is
accompanied by the motion of surrounding fluid, which results in to a force on the tube. The
hydrodynamic force is taken into account as an additional mass or virtual mass of the tube. A
coefficient of the added mass (ma) is given as,

Cm =
ma

ρV
(1.14)

where, ρ , V are the fluid density and fluid volume displaced due to tube motion. In the case of a
cylinder in an array, the hydrodynamic mass is also influenced by the presence of surrounding
tubes. It depends of the pitch ratio (p∗), configuration of the tube array. Figure 1.14(a) shows
the effect of pitch ratio and the configuration on the added mass coefficient. The coefficient
(Cm) is higher for tightly placed tube arrays (Chen and Chung, 1976), which drops the cylinder
natural frequency relatively.

1.4.4 Damping

Damping of the tube vibrations is an important quantity. Also it is the main source of discrep-
ancies in defining the mass-damping parameter. Similar to the mass of the tube, the damping
is also categorized in the structural damping and the fluid damping. The commonly used quan-
tity is damping ratio (ζ ). It can easily be calculated from the logarithmic decrement (δ ) in the
vibration time response,

ζ =
1√

1+
(2π

δ

)2
(1.15)

The values of damping ratio for a tube depends highly on the fluid medium. In addition, the
flow velocity has an additional component contributing to the effective damping, usually re-
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(a) Coefficient of added mass (Moretti and
Lowery, 1976)

(b) Fluid damping parameter (Singh and
Soler, 1984)

Figure 1.14 The coefficients of added mass and damping parameters due to the fluid medium in tube
arrays.

ferred as the fluid damping parameter. The dependence of the fluid damping on the natural
frequency fn is studied in (Pettigrew et al., 1973). It is found that the fluid damping decreases
with increasing tube natural frequency. In (Chen and Jendrzejcyk, 1981), (Chen and Jendrze-
jczyk, 1981), the dependence of the damping on flow velocity is studied. The fluid damping is
found to increase monotonously in the drag direction, while as in a sinusoidal manner in the
lift direction. A general trend of the fractional fluid damping against the reduced velocity is
provided in Figure 1.14(b) (Source:(Singh and Soler, 1984)). The sinusoidal trend of the fluid
damping in lift direction provides a possibility of total damping becoming zero/negative. The
value of effective damping reaching zero is often used as the critical point of the stability limit
in the flow-induced vibrations.

1.4.5 The critical flow velocity

The flow velocity between two cylinders of an array separated by the pitch distance (minimum
distance) is the characteristic velocity used in the design guidelines for the heat exchanger
tube arrays. It is commonly referred as intertube velocity, gap velocity or pitch velocity. The
distance between all adjacent cylinders is not necessarily equal, hence sometimes the term gap
velocity and the pitch velocity may refer to different quantities. In such cases the minimum
gap velocity or the pitch velocity is used. It is denoted by up in this work, which stands for
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the pitch velocity. The non-dimensional reduced velocity is defined as u∗p = up/ fnD using the
tube natural frequency ( fn) and its diameter (D).

In the context of fluidelastic instability, the critical reduced pitch velocity (u∗pc = upc/ fnD)
is a velocity beyond which the tube vibration response increases monotonously and suddenly.
The value is sometimes obtained by plotting a tangent to the tube response curve a the onset of
the fluidelastic instability, as shown in Figure 1.15(a). On the other hand, the critical reduced
velocity can be obtained by using a linear extrapolation of the total damping ratio curve for its
value to be zero (ζ → 0). The vibration response is expected to diverge for the negative values
of the effective damping ratio. Figure 1.15(b) shows a typical damping response curve of a
tube from an array for increasing pitch velocity (up).

(a) u∗pc based on vibration response (b) u∗pc based on effective damping

Figure 1.15 Critical velocity prediction based on the tube vibration response (yrms) and the effective
(total) damping ratio (ζ ).

1.5 Conclusion

The flow-induced vibrations in the heat exchanger tube arrays under cross-flow arrangement
is reviewed in this article. At the beginning, the major vibration types are briefed, namely,
vortex-induced vibration, turbulent buffeting, acoustic resonance and the fluidelastic instabil-
ity. The damage in the heat exchanger due to turbulent buffeting is long term. On the contrary,
the damage due to the fluidelastic instability occurs within a very short time. The fluidelastic
instability is explained in terms of the mathematics models used to predict the instability. The
unsteady models are more accurate, although they require more experimental data. At last, the
definitions of the important parameters for the instability are provided.
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CHAPTER 2

NUMERICAL SIMULATION OF THE FLOW IN TUBE ARRAYS BY

USING THE UNSTEADY REYNOLDS AVERAGED NAVIER-STOKES

TURBULENCE MODELING

Abstract

The unsteady fluid flow through tube arrays is simulated using the Unsteady Reynolds Av-
eraged Navier-Stokes (URANS) turbulence modeling, in 2-D at moderately high Reynolds
numbers (∼ 7×104). At first, a comparison is done between two equation turbulence models
(k−ε Linear Production and k−ω Shear Stress Transport) and a four equation (k−ε −v2/k)
turbulence model. The experimental data published in (Mahon and Meskell, 2009) and (Ma-
hon and Meskell, 2012) are used for the comparison in terms of the azimuthal pressure profile
on the cylinder surface. Secondly, a water flow induced vibration of a single tube from a square
normal array at Re ≈ 6× 104 is simulated using the dynamic Arbitrary Lagrangian Eulerian
method. The flow turbulence is modeled using the four equation k− εv2/k turbulence model.
The tube can vibrate freely in the lift direction only. The value of critical flow velocity shows
a fair agreement with the experimental prediction. Although the cylinder response frequency
and its damping ratio are in the range of experimental values, variation in these quantities for
increasing flow velocities show a poor agreement with the experimental trends.

Keywords

Heat exchanger tube bundles, fluidelastic instability, URANS turbulence modeling
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2.1 Introduction

Cross flow-induced vibrations in heat exchanger tube arrays are investigated since several
decades now. In order to explore the exact nature of the fluidelastic instability, many exper-
imental works have been performed in the past (Weaver and Fitzpatrick, 1988a). The fluide-
lastic mechanism is known to cause a potential damage to the tube bundles in a short span of
time (in a matter of hours). The instability and the underlying mechanisms are studied mainly
by performing experiments and also by theoretical developments based on the experimen-
tal observations. A detailed historical review on the topic is provided in (Païdoussis, 1983a)
and recently in (Païdoussis et al., 2010). In addition, due to the recent advent of computers,
numerical simulations are performed to study the physics of the fluidelastic instability.

In an industrial configuration, the flow through tube arrays is normally at higher Reynolds
numbers. The high Reynolds numbers are also favoured in order to have high rates of heat
transfer due to the presence of turbulence. The Direct Numerical Simulations (DNS) of such
flows are computationally very expensive and also demand very long time computer simula-
tions. Therefore the DNS are usually restricted to low Reynolds numbers and in general for
a small computational domain. The computational efforts are reduced by means of the flow
turbulence modeling. The Large Eddy Simulations (LES) approximate the smaller eddies in
the flow by means of the turbulent (eddy) viscosity of the flow. In the LES approach, the larger
flow turbulence eddies are directly resolved, while the eddies smaller than the computational
grid (or the LES filter) are modeled. The approach is inherently 3-dimensional. In the near
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wall regions, the computational cost is equivalent to the DNS. The Unsteady Reynolds Aver-
aged Navier-Stokes (URANS) can be used to substantially reduce the computational cost and
time. The URANS turbulence models are well suited for the industrial applications, consider-
ing the computational resources available and the time constraint. In URANS models, the flow
turbulence is completely modeled by means of the Reynolds averaging operation, generally
which requires a great deal of validations of the results.

The numerical simulations of the flow through tube arrays are performed using different
turbulence modeling approaches. In most cases, the simulations are performed for static con-
figurations (for example (Barsamian and Hassan, 1997), (Rollet-Miet et al., 1999), (Bouris
and Bergeles, 1999), (Benhamadouche and Laurence, 2003), (Hassan and Barsamian, 2004),
(Liang and Papadakis, 2007), (Li et al., 2014)). The numerical study in (Gillen and Meskell,
2009) carried out to investigate the fluidelastic instability using the quasi-steady modeling
approach, where the unsteady dynamic motion of the cylinder is approximated by the static
displacements along the path of cylinder motion. In the context of dynamic fluid-structure
interaction, the Arbitrary Lagrangian Eulerian (ALE) method is adopted in (Longatte et al.,
2003) and (Berland et al., 2014). The ALE method is used to simulate the dynamic interaction
between a single cylinder oscillating in 1-degree-of-freedom and the surrounding flow fields.
(Kassera and Strohmeier, 1997) performed 2-dimensional simulations using the k−ω turbu-
lence modeling and found good agreements with experimental results. Although the dynamic
interactions are well predicted, there is no clarity on the onset of fluidelastic instability. In
(Shinde et al., 2014), the onset of fluidelastic instability, of a 1-DOF single cylinder in 2-D, is
predicted by means of URANS simulations.

In the present article, firstly, air flow through a triangular normal and a triangular parallel
arrays at Reynolds numbers ∼ 7×104 is simulated by means of URANS turbulence models in
2-D. URANS models considered for the analysis are the two equation k−ε Linear Production
(k− εLP), k−ω Shear Stress Transport (k−ωSST ) and the four equation k− ε − v̄2/k turbu-
lence models. The configurations of the triangular arrays and the corresponding experimental
results used for the comparison are taken from the published data in (Mahon and Meskell,
2009) and (Mahon and Meskell, 2012). The results of different turbulence models are com-
pared mainly in terms of the azimuthal pressure profile on the surface of the cylinder. In the
second part, the dynamic fluidelastic instability in a single cylinder from a square array is sim-
ulated using the four equation k− ε − v̄2/k turbulence model at Reynolds numbers ∼ 6×104

in 2-D. Similar to the experimental setup, the cylinder can oscillate in the transverse to the
flow direction only. The results are compared in terms of the response frequency, effective
damping of the cylinder vibration and critical flow velocity.
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2.2 Surface pressure profiles in triangular arrays

The quasi-steady model of the fluidelastic instability in tube arrays by Price and Païdoussis
(1984) and (Granger and Païdoussis, 1996) assumes that the forces acting on a dynamically
vibrating cylinder are the same as those acting on a statically displaced cylinder (with a cor-
rection to the direction of inflow velocity) on its oscillation cycle. The quasi-steady model
coefficients are measured experimentally for the triangular arrays in (Mahon and Meskell,
2009) and (Mahon and Meskell, 2012). The fluid forces on a statistically displaced cylin-
der are measured for different configurations at different Reynolds numbers. The experiments
also provide a vital data of the azimuthal surface pressure profiles on the cylinder for a realistic
Reynolds numbers (∼ 7×104), which is used here for the comparison.

2.2.1 Experimental and numerical configurations

The experimental data published in ((Mahon and Meskell, 2009), (Mahon and Meskell, 2012))
provide the azimuthal pressure profiles in various configurations. The wind tunnel used for
the experiments is 0.7m long with test cross sections of 0.3m × 0.3m and 0.3m × 0.272m

for triangular normal (30o) and triangular parallel (60o) arrays respectively. In the triangular
normal configuration, various pitch ratios (p∗ = 1.32,1.58 and 1.97) are used for four rows of
cylinders, while as in the triangular parallel arrangement, the pitch ratio p∗ = 1.375 is used.
The cylinder diameter is D = 38×10−3m for both configurations. The tests are performed for
various intertube Reynolds numbers, Re ∼ 10× 104. For further details on the experimental
measurements and validations one can refer to ((Mahon and Meskell, 2009), (Mahon and
Meskell, 2012)).

Numerical simulations are performed for each, the triangular normal and triangular parallel
configurations at Reynolds number Re ≈ 7×104. The pitch ratio used in the triangular normal
test case is p∗= 1.32. The 2D computational domain is about 0.8m long with ∼ 0.2m upstream
and ∼ 0.6m downstream the tube array, in both configurations.

Figure 2.1 shows the geometries of the triangular normal (Figure 2.1(a)) and triangular par-
allel (Figure 2.1(b)) configurations. The computational mesh is shown in Figure 2.2. Figure
2.2(a) shows the details of mesh for the triangular normal configuration, while Figure 2.2(b)
shows the mesh details of the triangular parallel arrangement. The near wall region (bound-
aries of the cylinders) contains high velocity gradients, hence required to mesh appropriately
in order to resolve the Reynolds averaged flow boundary layers. This is achieved by placing
the first layer of grid at a distance for which the non-dimensional y+ value is less 1. The y+

33



Numerical simulation of the flow in tube arrays by using the Unsteady Reynolds
Averaged Navier-Stokes turbulence modeling

(a) Triangular normal array (30o)

(b) Triangular parallel array (60o)

Figure 2.1 The computational geometries.

is defined using the fluid kinematic viscosity (ν), actual wall distance (y) and the friction ve-
locity at the wall (uτ ) as y+ = yuτ/ν . In case of the high Reynolds number turbulence models
(e..g. k− ε Linear Production), the boundary layer region is modeled using wall functions.
The wall functions provide the values of velocity in the near wall regions for y+ ⪅ 30, which
is approximately in the log region of the boundary layers. The k−ω SST and k− ε − v2/k

are the Low Reynolds number models, which means the near wall boundary layer region is
completely descretized by placing the first layer of the mesh below y+ = 1. In addition to the
first mesh points, the gradient in the flow velocity needs to be well captured. Thus the mesh
size increment away from the wall is usually kept less than 20%.

The simulations are performed using Code_Saturne, an open source code developed by
Électricité de France (EDF). The code employs co-located finite volume method to solve the
Navier-Stokes equations in the incompressible formulation. The calculation are performed
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(a) Triangular normal array (30o)

θ

(b) Triangular parallel array (60o)

Figure 2.2 Details of the computational meshes.

using a second order central difference scheme for the space discretization and a Cranck-
Nicolson method of the time marching. The inlet of computation domain is the Dirichlet
boundary condition with a specified constant inflow velocity. The outlet corresponds to a
homogeneous Neumann boundary condition for the velocity, while the Dirichlet boundary
condition for pressure is employed at the outlet such that ∂ 2P

∂n∂τ
= 0 for any vector τ collinear

with the outlet. P is the pressure and n is the normal to boundary face. The side walls with
half wall-mounted cylinder are the no-slip wall boundaries.

Table 2.1 shows the details of the two configurations simulated. T N30 and T P60 stand for
the triangular normal (30o) and triangular parallel (60o) respectively. ‘Mesh1’ and ‘Mesh2’
are the meshes corresponding to the low Reynolds numbers (k− ε − v2/k and k−ω) turbu-
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Array pitch ratio (p∗) u∞ (m/s) up (m/s) Rep Mesh1 Mesh2

TN30 1.32 7 29.2 7.82×104 166370 71792

TP60 1.372 7 25.7 6.88×104 165544 57546

Table 2.1 Simulation details.

lence models and the high Reynolds numbers (k − ε Linear Production) turbulence models
respectively.

2.2.2 Results and discussion

The results are mainly comprised of the time averaged pressure profiles on cylinder surface.
Furthermore, in addition to the drag and lift coefficients, the instantaneous flow fields are
compared between the three turbulence models.

Figure 2.3 shows a comparison of the experimental time-averaged surface pressure profile
on cylinder form the triangular tube array with the pressure profiles obtained by using URANS
turbulence models. The figure also shows the instantaneous flow fields obtained by the three
turbulent models. Figure 2.3(a) shows the azimuthal pressure profiles in terms of the pressure
coefficient Cp(θ) for the three turbulence models in comparison with the experimental data
((Mahon and Meskell, 2009)). The pressure coefficient Cp(θ) is defined as in the experiments,

Cp(θ) = 1− pθmax − pθ

1
2ρu2

p

Where, ρ is air density, up represents the gap velocity, while p stands for static pressure.
Similar to the experiments, the middle cylinder from the third row is used for measuring the
azimuthal surface pressure profile. The convention for the azimuthal position θ on the cylinder
surface is shown in Figure 2.2(b) (top figure). The turbulence models k− ε LP, k−ω SST

and the k− ε − v2/k predict the averaged separation locations at ±90o, which is in agreement
with the experiments. At the locations of flow separation, the pressure coefficient Cp(θ) is
over predicted by the k − ε LP model, while it is underpredicted by the k −ω SST . The
k− ε − v2/k model appears to perform better.

The experimental results show a bistable nature of the flow, which is reported in terms of
the two modes of cylinder surface pressure values. The bistable nature of the flow is observed
for a higher pitch ratio p∗ = 1.58. The bistable behaviour of the flow is generally attributed to
the mechanism of jet switching (Roberts, 1966) in the flow through tube arrays. At pitch ratio
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(a) Azimuthal pressure profiles
(b) k− ε Linear Production

(c) k−ωSST (d) k− ε − v2/k

Figure 2.3 Comparison of the time averaged pressure profiles and the instantaneous velocity fields in
the triangular normal tube array.

p∗ = 1.32 the pressure profiles are still symmetrical. The instantaneous flow fields predicted
by the k −ω SST and k − ε − v2/k represent the turbulent flow structures, when compared
with the flow field obtained with the k− ε LP model (Figures 2.3(b), (c) and (d)).

The cross flow through the triangular parallel array in (Mahon and Meskell, 2012) shows
a dominant presence of the jet switching. The time period associated with the bi-stable modes
(jet switching) is of the order of tens of second. The time averaged surface pressure profiles
in Figure 2.4 are nearly symmetric about θ = 180o. The surface pressure profile obtained by
k− ε − v2/k model shows a slight asymmetry at the attachment locations, indicating the time
50s, used for the time averaging, is probably still not sufficient. The time averaged values
of the separation and attachment locations are in agreement with the experimental data. The
experimental pressure coefficient Cp(θ) profile in the rear of the cylinder (90 ⪅ θ ⪅ 270)
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(a) Azimuthal pressure profiles (b) k− ε Linear Production

(c) k−ωSST (d) k− ε − v2/k

Figure 2.4 Comparison of the time averaged pressure profiles data and instantaneous velocity fields in
triangular parallel tube array.

shows a considerable difference when compared with the pressure coefficient predicted by
the k−ω SST model. Although, the pressure profile (CP(θ)) is more or less well captured
by the k− ε LP model, it underestimates the values by ≈ 20%. The k− ε − v2/k model also
overshoots at the separation locations and underpredicts the pressure coefficient near θ ≈ 180o.

The drag and lift coefficients are estimated respectively as,

CD =
FD

1
2ρDu2

p
=

∫ 2π

0 pDcos(θ)dθ

1
2ρDu2

p
and CL =

FL
1
2ρDu2

p
=

∫ 2π

0 pDsin(θ)dθ

1
2ρDu2

p

Table 2.2 shows a quantitative comparison of drag and lift coefficients estimated using the
three turbulence models for both the triangular normal and triangular parallel tube arrays with
the experimental values. The k−ω SST appears to predict the drag and lift coefficients close
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TN30 CD TN30 CL TP60 CD TP60 CL
Experiments 0.52 0.0125 0.248 0.025

k− ε LP 0.139 0.000 0.209 0.000
k−ω SST 0.449 -0.008 0.54 0.01

k− ε − v2/k 0.287 -0.107 0.319 -0.045

Table 2.2 Drag and Lift coefficients.

to the experimental data. Contrary, in Figures 2.3(a) and 2.4(a), the experimental pressure
profiles are relatively better predicted by the simulations performed using the k − ε − v̄2/k

turbulence model.

2.3 Dynamic simulation of the fluidelastic instability in a
single cylinder of an in-line tube array

A single cylinder from a square array vibrating in only lift direction is simulated using the
k − ε − v2/k turbulence model in 2-D. The interaction between the cylinder and the fluid
flow is simulated dynamically by means of the Arbitrary Lagrangian Eulerian (ALE) method.
The Reynolds number varies approximately from 1.5× 104 to ∼ 5.1× 104 at the onset of
fluidelastic instability. The numerical results are compared with the experimental results in the
same configuration. The results are analysed and compared in terms of the cylinder response
frequency, effective damping, oscillation amplitudes and the critical flow velocity.

2.3.1 Experimental and numerical configurations

The experiments are facilitated by the Commissariat à l’énergie atomique et aux énergies
alternatives (CEA) via its RESEDA mechanical testing platform. The experimental mockup
is shown in Figure (2.5). The tube bundle consists of 5 rows and 5 columns of circular tubes
located in the vertical flow channel. The two outer columns are half wall mounted cylinders
also named dummy cylinders. As shown in the figure, the cylinders are in a square normal
arrangement. All cylinders are rigid and fixed except, the central cylinder, which is flexibly
mounted. The central cylinder is supported on a flexible blade at one end. It is allowed to
move in the flow normal direction only. The blade is flat, thus restricts its motion in the flow
direction. The flexible supporting blade is connected to a strain gauge in order to measure the
displacement of cylinder. The channel depth (the length of cylinders) and width are 100×10−3

m and 180×10−3 m respectively. The tube diameter is D= 30×10−3 m. The pitch ratio (p∗ =
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P/D) of the tube arrangement is p∗ = 1.5 in both (the in-flow and flow normal/lift) directions.
The mass of the tube per unit length in air is m = 0.564 kg/m. The natural frequency ( fn)
and damping ratio (ζ ) of the cylinder in vacuum (practically in air) are 30.78 Hz and 0.334%
respectively.

(a) The experimental apparatus
(b) The mockup with an electromagnetic

exciter

Figure 2.5 The experimental setup and instrumentation measuring flow induced vibrations.

The experiments are carried out for different volume flow rates in the channel, varying
from 9× 10−3 m3/s to 30.6× 10−3 m3/s. The velocity at inflow is also measured directly
using Laser Doppler Velocimetry (LDV). The vibration in the central instrumented tube is
measured for each flow velocity by means of the micro-deformations (µ de f ) at the bottom
of the flexible supporting blade induced due to the water flow. A time response signal for
about 1000s is recorded to perform the time modal analysis, in order to estimate the values
of modal frequency and damping ratio for each flow rate. The experiment is stopped for high
amplitude oscillations in the cylinder response and the corresponding velocity is considered
as the critical flow velocity.

The experimental results are tabulated in Table (2.3). The first three columns of the table
show the volume inflow rate (Q), Reynolds number (Re) and the minimum gap velocity re-
spectively. The Reynolds number Re = ρupD/µ is based on the cylinder diameter (D) and
the pitch velocity (up). ρ and µ are the density and viscosity of water respectively. The
non-dimensional reduced pitch velocity u∗ is defined with respect to the response frequency
of cylinder in the fluid (water) at rest as u∗ = up/( fnD). The values of the reduced velocity
are provided in the next column (the fourth column). The vibration in the tube is recorded
in terms of the strain in the flexible blade, which holds the tube. The root mean square (rms)
displacement in the tube is thus measured in µde f units. The µde f unit deformations are con-
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Q Re up u∗ yrms/D ζt ( f ∗n )t ζh ( f ∗n )h
×10−3 m3/s m/s (%) (%) (%)

9.0 15000 0.5 0.90 0.03 0.78 0.99 1.12 0.99
2.6 21000 0.7 1.26 0.11 1.17 0.99 1.55 0.99

16.2 27000 0.9 1.62 0.30 1.61 0.98 1.74 0.98
19.8 33000 1.1 1.98 0.99 0.42 0.98 0.78 0.98
23.4 39000 1.3 2.34 0.99 2.25 0.98 2.64 0.98
27.0 45000 1.5 2.70 1.48 3.25 0.97 3.43 0.96
30.6 51000 1.7 3.06 2.32 3.08 0.96 3.27 0.96

Table 2.3 Experimental results.

verted in SI units using a gauge factor. The rms displacement yrms is listed in the fifth column
of Table (2.3). The next two columns (the sixth and seventh) are the damping ratio (ζt) and
normalised response frequency (( f ∗n )t) of the cylinder respectively, which are estimated using
the Time Modal Analysis. The frequency of the cylinder in still water fn = 18.5 Hz is used
to non-dimensionalize the cylinder response frequencies. Alternately, the damping ratio (ζh)
and response frequency (( f ∗n )h) of the cylinder vibration is estimated using the Half Power
Bandwidth method. The values are tabulated in the last two column of the Table (2.3). The
results of the Time Modal Analysis and the Half Power Bandwidth method show a fairly good
agreement.

Figure (2.6)(a) shows the computational domain of the square normal array (SN90D).
The flow is in the +X direction. The numerical simulations are performed in 2-dimensions
(2D). The array geometry is similar to the experimental setup (Figure 2.5(a)). The diameter
and pitch ratio for the arrangement are D = 30× 10−3 m and p∗ = 1.50 respectively. There
are 5 rows and 5 columns of tubes. The computational domain is about 5D upstream from
the first row of the tube bundle and about 10D downstream from the last row of the tube
bundle. The computational domain is discretized in 848892 finite control volumes. The mesh
in the near wall regions (i.e. near the cylinders surface and the two side walls) is refined, in
comparison with the mesh in the inflow and outflow regions. The details of the mesh near the
central cylinder is shown in Figure 2.6(b). Thus the non-dimensional distance (y+) at these
Reynolds numbers remains less than 1. The Reynolds number, similarly to the experiments
(Table (2.3)), ranges from 15000 to ≈ 60000. The flow turbulence is modeled using the four
equation turbulence model k− ε − v2 − f .

Simulations are performed with the incompressible flow solver Code_Saturne, an open
source software developed by Électricité de France (EDF). The algorithm is based on co-
located finite volume method to solve the incompressible Navier-Stokes equations. Compu-
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(a) The square normal array (90o)

(b) Details of the computational mesh

Figure 2.6 The computational domain.

tations are performed using second order central difference schemes for space discretization
and a Cranck-Nicolson scheme for time marching. A Dirichlet boundary condition with spec-
ified constant inflow velocity is applied at inlet. At outlet, homogeneous Neumann boundary
condition for velocity and a Dirichlet boundary condition for pressure are employed, such
that ∂ 2P

∂n∂τ
= 0 for any vector τ collinear with outlet. P is pressure and n is normal to bound-

ary face. No-slip wall boundary conditions are prescribed on the side walls with cylinders
half-mounted.

The cylinder movement is coupled with the fluid flow by the method of Arbitrary-Lagrangian-
Eulerian (ALE). The moving mesh (boundary) is considered in flow equations in terms of the
mesh velocity. In response, the forces experted by the fluid flow are used to displace the
cylinder boundary surface. In experiments, the cylinder is rigid and flexibly mounted. An
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equivalent numerical arrangement is shown in Figure (3.3). It is a mass on spring physics,
where, m is the mass of cylinder, k and c are the stiffness and damping coefficients of the
cylinder.

ck

m

Figure 2.7 The fluid-structure coupling.

The equation of motion of the cylinder is,

m
d2y
dt2 + c

dy
dt

+ ky = Fy (2.1)

where, y is the displacement of the cylinder in the flow normal direction. Fy is the fluid force
in same direction. The experimental values of modal mass and damping ratio can be used to
estimate the stiffness and damping coefficients in air, by using the following relations

k = (2π fn)
2m and c = 2ζ

√
km

The ordinary differential equation (Equation (2.1)) is numerically solved using Newmark
HHT algorith, in which the fluid forces are used to estimate the displacement y. The new
position of the cylinder is achieved by solving Poisson’s equation for re-meshing before the
next flow iteration. The deformation of near-wall mesh is controlled by assigning a high value
for an artificial mesh viscosity.

The results of numerical simulations are tabulated in Table (2.4). The first two columns
show the Reynolds number (Re) and the pitch velocity (up) respectively. The pitch velocity
(also the gap velocity) is computed using the inflow velocity. The reduced velocity (u∗) is
listed in the third column. It is based on the cylinder response frequency with respect to the
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fluid medium at rest, which is fn = 18.5 Hz. The rms response of the cylinder vibration is listed
in the fourth column. The cylinder response damping ratio (ζh) and the frequency (( f ∗n )h),
estimated using the Half Power Bandwidth method is tabulated in the last two columns of
the table. The response frequency is normalised by the cylinder frequency in still water. The
numerical simulation is diverged in the response for the reduced pitch velocity (u∗ = 3.06),
which is considered as the critical value.

Re up u∗ yrms/D ζh ( f ∗n )h
m/s (%) (%)

15000 0.5 0.90 0.10 3.58 1.025
18000 0.6 1.08 0.13 1.42 0.931
21000 0.7 1.26 0.28 1.94 1.081
24000 0.8 1.44 0.54 1.09 1.037
27000 0.9 1.62 1.26 2.14 1.022
30000 1.0 1.80 2.12 1.06 0.994
33000 1.1 1.98 2.78 4.33 0.993
36000 1.2 2.16 3.87 2.16 1.038
39000 1.3 2.34 4.37 4.10 1.021
42000 1.4 2.52 5.13 2.65 1.023
45000 1.5 2.70 7.17 2.73 0.991
48000 1.6 2.88 9.83 3.23 1.024
51000 1.7 3.06 15.6 - 1.099

Table 2.4 Numerical results.

2.3.2 Results comparison and discussion

The rms response of the cylinder is compared in Figure (2.8) between the experiments and the
numerical calculations. The cylinder rms response amplitude grows gradually for increasing
reduced pitch velocity (u∗). The critical reduced velocity obtained by the experiments is well
predicted by the URANS calculations. The value of critical reduced velocity is u∗c ≈ 3.06.
There is a factor ≈ 6 in the actual rms values between the experiments and numerical simu-
lations. As discussed in the section on experimental set up, the central tube is mounted on
one end of the tube. In addition, in order to avoid the non-linearity in the strain gauge read-
ings and also to avoid breaking of the instrument, the experiments are stopped before large
displacements are observed (≈ 10−3 m). Therefore, the results of URANS calculations differ
quantitatively with the experiments. Qualitatively, the increase in response of the cylinder
shows a good agreement between the experiments and the URANS simulations. The response
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curve show a flat region near the reduced velocity u∗ ≈ 2 for the experimental data, which is
absent in the numerical data.

Figure 2.8 Comparison of the cylinder rms response.

(a) Normalised response frequency (b) Damping ratio (ζ )

Figure 2.9 Comparison of the response frequency and damping ratio of the cylinder.

The experimental values of the cylinder response frequency ( f ∗) (Table (2.3)) show a con-
tinuous decrease from 1.00 at u∗ = 0.9 to 0.96 at the onset of the fluidelastic instability at
u∗c = 3.06. The Figure 2.9 (a) shows the normalised cylinder response frequency curves for
increasing reduced velocity. The response frequency is non-dimensionalized by the frequency
of cylinder with respect to fluid at rest. The experimental values observe a plateau at about
u∗ = 2. On the contrary, the experimental effective damping (ζ ) increases continuously, except
a decrease at u∗ = 2 (see Figure 2.9(b)). The values of the non-dimensional cylinder response
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frequency ( fn) and the effective damping (ζ ) obtained by numerical simulations (Table (2.4))
are in close agreement with the experimental data. Although the variations in these values for
increasing reduced velocity are not captured by the URANS (k− ε − v̄2/k) simulations.

2.4 Conclusion

One of the objectives of the surface pressure survey on a cylinder from triangular tube arrays
by (Mahon and Meskell, 2009) and (Mahon and Meskell, 2012) is to create a database for the
validation of numerical models. There are numerous models for modelling the flow turbu-
lence at higher Reynolds numbers. The predictions of URANS models are often questioned,
when it comes to investigation of the transient nature of the flow turbulence. In order to study
the dynamic fluid-structure interaction in tube bundles, two two equation models and a four
equation model are chosen for the results comparison. The predictions of the turbulence mod-
els are satisfactory in predicting overall profiles of the time-averaged surface pressures, while
there are discrepancies in actual values, particularly at the separation locations as well as in
the rear part of the cylinder. Although, the k− ε − v2/k model doesn’t do distinctly better in
comparison with the other two (k−ε LP and k−ω SST ) models, it is chosen for the dynamic
simulations, since the formulation contains four turbulent scales and it takes in to account the
near-wall turbulence anisotropy.

In the dynamic case simulations, the prediction of the critical reduced flow velocity is in
agreement with the experimental value of u∗c ≈ 3.06. Although, the actual rms response of
the cylinder differs with the experimental values, qualitatively the response of the cylinder is
well predicted with the increasing flow velocity. The values of the response frequency and
effective damping of the cylinder are compare well with experimental values, but the trends of
variations in these quantities for increasing flow velocity are not well captured by the URANS
calculations.
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CHAPTER 3

ANALYSIS OF THE FLUIDELASTIC INSTABILITY BY USING THE

LARGE EDDY SIMULATIONS

Abstract

Large Eddy Simulations (LES) are performed to study a flow through an array of cylinders
in square normal arrangement. A single phase water under cross flow through a 5× 5 tube
bundle at low intertube Reynolds numbers (2000 to 6000) is simulated in order to investigate
the mechanism of fluid-elastic instability. First, the flow is analysed in static configuration for
to reveal the existence of flow periodicities and the nature of fluid forces acting on a cylinder.
Second, a cylinder is allowed to oscillate in one degree of freedom (1-DOF) in the flow normal
(transverse) direction, which is a replica of the experimental set up. The Arbitrary Lagrangian-
Eulerian (ALE) apporach is adopted to simulate the fluid-structure coupling. The sub-grid
scale turbulence of the LES is modeled using standard Smagorinsky’s eddy-viscosity model.
The LES results show good agreement with experimental results in terms of the response
frequency and damping ratio of the cylinder. The dynamic case simulations are compared with
static cases over the range of Reynolds numbers by means of the probe velocity spectra and
pressure profiles on the cylinder surface. The amplitude of cylinder vibration increases with
the increase in flow velocity. However, it is characterised by a sinusoidal increase-decrease
and followed by a monotonous increase onset of the instability. This typical behaviour of the
fluidelastic instability is elucidated as a consequence of the dynamics of fluid forces exerted
by two adjacent flow streams on the cylinder and in return the deformations in flow streams
produced by the cylinder movement. The time-evolving instantaneous pressure profiles on
the cylinder surface show alternating symmetry and antisymmetry with increasing intertube
velocity, which is correlated with the distortions (high velocity patches) on the flow streams as
well as the variations in the effective damping and natural frequency of the cylinder vibrations.

47



Analysis of the fluidelastic instability by using the Large Eddy Simulations

Keywords

flow induced vibration, heat exchanger tube bundles, fluid-elastic instability, large eddy simu-
lation

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.2 Large Eddy Simulations (LES) . . . . . . . . . . . . . . . . . . . . 53

3.2.3 Fluid-structure coupling . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Results comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Flow analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 The onset of fluidelastic instability . . . . . . . . . . . . . . . . . . . . . 64

3.5.1 Comparison between the static and dynamic case simulations . . . 64

3.5.2 Dynamics of the fluid forces acting on the cylinder . . . . . . . . . 69

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.1 Introduction

Heat exchangers are important components of any power generation industry, while as they
are prone to failures in terms of collision damage, fatigue and fretting wear of the tubes.
The cross flow-induced vibrations in heat exchanger tube bundles may lead to serious con-
sequences, especially in nuclear power plants. The safety measures involved as well as the
tubes replacement cost involved are very high (Païdoussis et al., 2010, chap. 5). Generally,
the vibrations in heat exchanger tube bundles are classified in four types, namely, vibrations
induced by flow vortex shedding, acoustic resonance, turbulence buffeting and the fluidelastic
instability. Turbulence buffeting exists for a large range of interstitial flow velocities and it
causes problems in the long term. The acoustic resonance appears generally in heat exchang-
ers with low density fluids on the shell side of a large container. The excitations generated by
flow jets, wake or shear layer instabilities lead to vibrations are generally categorised under
Vortex-Induced Vibrations (VIV). The fluidelastic instability, as understood up to date, is a
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self excitation mechanism, which comes in play at sufficiently high intertube flow velocities
(relative to the range of Strouhal periodicity). The failures of heat exchanger tubes because of
the flow vortex shedding and fluidelastic instability occur in a short time span (in a matter of
hours). The tubes damage due to fluidelastic instability is severe and devastating. It results in
a high amplitude vibration, collision and eventually sudden breakdown of the tubes.

The flow-induced vibrations in tube bundles were mostly attributed to Strouhal periodic-
ity, until (Roberts, 1966) first reported the phenomenon of fluidelastic instability. Following
the work by (Connors, 1970), (Connors, 1978) on fluidelastic instability, an extensive re-
search work has been carried out by (Weaver and Grover, 1978), (Chen, 1978), (Tanaka and
Takahara, 1981), (Païdoussis, 1981), (Lever and Weaver, 1982), (Price and Païdoussis, 1984),
(Pettigrew and Taylor, 1991) and many others, in order to better understand the mechanism
of fluidelastic instability. Experiments were performed by (Weaver and Grover, 1978) in or-
der to examine the flow vortex shedding, turbulent buffeting and fluidelastic instability in a
large triangular parallel tubes bank. The fluidelastic instability develops at relatively higher
velocities, where no distinct flow vortex frequencies are observed in corresponding static con-
figurations. The interaction between the interstitial flow and the tubes are transient in nature.
(Tanaka and Takahara, 1981) carried out experiments and obtained the unsteady forces on
the vibrating cylinders in order to feed the force coefficients in their theoretical model. Also
the dependence of the critical velocity on the fluid density and damping ratio (mass-damping
parameter) is studied. An extensive experimental work program is carried out by (Chen and
Jendrzejcyk, 1981) to study the influence of different parameters such as mass ratio, pitch ra-
tio, damping ratio and in general the coefficients of the empirical relation, which is developed
for the prediction of fluidelastic stability thresholds. Furthermore, multiple critical velocities
are observed for a single value of the mass-damping parameter. In (Lever and Weaver, 1982) a
simple experimental work is carried with just a single cylinder from an array is used to predict
the fluidelastic instability. A theoretical model is derived under simplifying assumptions such
as the dominance of fluidelastic instability in the transverse direction, the flow redistribution
and the phase lag between the fluid flow and the cylinder motion. A generalized model of
fluidelastic instability is proposed in (Chen, 1987), where the model coefficients demanded
the transient fluid force data from experiments or numerical simulations. The experimental
results by (Païdoussis et al., 1989) showed that in the square rotated arrangement of the tube
bundles, the fluidelastic instability appeared dominantly in the flow direction and the cylinder
remained statistically displaced. The instability appeared only for the cylinders in first few
rows, while as a cylinder from the sixth (second last row) row never became fluidelastically
unstable, at least in the configuration they used. Further experiments ((Price and Païdoussis,
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1989), Price and Kuran (1991)) on the in-line and triangular normal tube arrays with a sin-
gle flexible (flexibly mounted) cylinder configuration led to conclusions in accordance with
most of the earlier works by other researchers, such as the dominance of vibration in the lift
direction, the independence of the onset fluidelastic instability on the Strouhal Periodicity.
(Granger et al., 1994) performed experiments in order to measure the motion dependent fluid
forces on the tubes. A method for the statistical time domain modal analysis is developed
to estimate the transient coupled forces. The low values of mass-damping parameter (m∗δ )
lead to the fluid damping controlled instability ((Chen et al., 1998)), which is characterized
by the presence of multiple stability boundaries. (Tanaka et al., 2002) found that the mass
and damping of the mass-damping parameter must be treated separately for small values of
the mass-ratio (m∗ < 10). The use of a single cylinder and positioning of the cylinder in all
types of tube array, in order to predict fluidelastic instability are critically examined in (Khalifa
et al., 2012).

Although there have been numerous experimental campaigns, which has enhanced our
understanding about the fluidelastic instability to great extent, there remains an unexplained
scatter in the stability thresholds. The number of parameters involved in the instability is large.
Further, the instability appears due to the transient interaction between the interstitial fluid flow
and the cylinder displacements. The non-intrusive accurate experimental simulations of the
instability to fully understand its source of excitation is fairly difficult. Computational Fluid
Dynamics (CFD) simulations provide a possibility of such non-intrusive accurate simulations.
Although the advent of computers has enabled us to perform the high fidelity simulations, the
turbulence in fluid flow at high Reynolds numbers (which is typical in an industrial configu-
ration) further makes the problem intractable. There have been several attempts to model the
cross flow through tube arrays using the potential or semi potential flow theory, but the pre-
dictions of the dynamic fluidelastic instability are not accurate enough (see Païdoussis et al.,
2010, chap. 5, pp. 261-264). The importance of the shear layers or the vortex shedding is
studied in a comparison with the potential flow modeling approach in (Kevlahan, 2011). The
Direct Numerical Simulation (DNS) of the turbulent flow through tube arrays at high Reynolds
numbers is impractical considering the available computing resources today. The Unsteady
Reynolds Averaged Navier-Stokes (URANS) and the Large Eddy Simulations (LES) are nor-
mally adopted to perform the numerical simulations of the flow through tube bundles. A
characterization of the flow through tube arrays by comparing with the experimental flow vi-
sualization data is done in (Barsamian and Hassan, 1997) by using the Large Eddy Simulations
(LES), though not in the context of fluidelastic instability. 2D dynamic simulations are per-
formed in (Kassera and Strohmeier, 1997) by adopting the URANS approach of turbulence
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modeling at reasonably high Reynolds number (Re ∼ 105). Furthermore, in (Schröder and
Gelbe, 1999), (Beale and Spalding, 1999) and (Benhamadouche and Laurence, 2003) numer-
ical simulations (either LES and/or URANS) are performed to study the flow characteristics,
fluid-induced vibrations etc. but with no explicit examples of the fluidelastic instability. The
numerical study in (Gillen and Meskell, 2009) is performed by statically displacing cylinders
in order to obtain coefficients for the quasi-steady modeling approach. The dynamic modeling
of fluid-structure interaction using Arbitrary Lagrange Eulerien (ALE) method is employed in
(Longatte et al., 2003), (Shinde et al., 2014) in order to investigate the dynamic fluidelastic
instability.

In the present work, Large Eddy Simulations (LES) of a flow across cylinders in a square
normal arrangement are performed at low Reynolds numbers for approximately 2000 to 6000.
A single phase water flow through the array of 5×5 cylinders is simulated. The simulations
are performed for a static configuration (all cylinders fixed). The fluid flow is characterized
in terms of the flow periodicity, pressure profile on the cylinder surface, attachment and sep-
aration locations and force coefficients. A single central cylinder is then allowed to vibrate
freely in 1-degree-of-freedom (1-DOF) in the flow normal (transverse) direction. The results
of simulations in the static configuration are compared with the dynamic case simulations for
the corresponding Reynolds numbers. The root-mean-squared (rms) vibration in the cylinder
shows an intermediate peak in the response before it becomes fluidelastically unstable. The
total force on the cylinder is split into two parts acting on each half of the cylinder. Thus each
force component is associated with an adjacent flow stream. The dynamics between these two
forces acting in opposite direction is studied carefully, in order to understand the behaviour of
cylinder vibration at the onset of the instability. The article is organized as follow: first, a de-
scription of the experimental and LES configurations is provided. Second, the LES results are
compared with the experimental results in terms of the cylinder response frequency and effec-
tive damping ratio. Third, the static configuration results are analysed and compared with the
corresponding dynamic case simulations. Lastly, the development of fluidelastic instability is
carefully elucidated by means of several parameters, namely, cylinder displacement response,
fluid forces on the cylinder, effective damping ratio and frequency of the cylinder, surface
pressure profile evolution and the disturbances appearing on the adjacent flow streams due to
cylinder motion.
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3.2 Configuration

3.2.1 Experiments

The experiments were facilitated by Commissariat à l’énergie atomique et aux énergies al-
ternatives (CEA) via its RESEDA mechanical testing platform. The tube bundle (5× 5) is
located in a vertical flow channel as shown in Figure (3.1). The cylinders are in a square nor-
mal arrangement. The two side columns are half wall mounted. Only the cylinder located at
the center is flexibly mounted, while the remaining cylinders are fixed. The channel depth (the
length of cylinders) and width are 100× 10−3 m and 70× 10−3 m respectively. The central
cylinder is supported on a flexible blade at one end. It is allowed to move in the flow normal
direction only. The flexible supporting blade is connected to a strain gauge in order to measure
the displacement of cylinder.

Figure 3.1 Experimental setup.

The tube diameter is D = 12.15× 10−3 m. The pitch ratio (p∗ = P/D) of the tube ar-
rangement is p∗ = 1.44 in both (in-flow and flow normal) directions. The modal mass of the
cylinder per unit length is m = 0.298 kg/m. The natural frequency ( fn) and damping ratio (ζ )
of the cylinder in air are 14.39 Hz and 0.25% respectively.

The experiments are carried out for volume flow rate in the channel from 0.2 ×10−3m3/s

upto 1.1 ×10−3m3/s by increments of 0.05 ×10−3m3/s. The velocity at inflow is also mea-
sured directly with laser doppler velocitimetry (LDV). The vibration in the central instru-
mented tube is measured for each flow rate by means of micro-deformations (µde f ) at the
bottom of flexible supporting blade. A time response signal for 1000s is recorded for the
modal analysis, in order to estimate the values of modal frequency and damping ratio for each
flow rate.
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3.2.2 Large Eddy Simulations (LES)

The computational domain for LES is 70 × 10−3 m wide and 48.6 × 10−3 m deep. The
cylinders length is thus 4D against about 8D in the experimental facility. The domain is
269.5×10−3 m long in in-flow direction. The inflow boundary is 5D upstream the tube bun-
dle, while as the outflow is 10D downstream of the tube bundle. The tube diameter (D), array
pitch ratio (p) and arrangement of the tube bundle (90o) is identical to the experiment. The
geometry of the LES computational domain is shown in Figure 3.2(a).

(a) Geometry

(b) Mesh

Figure 3.2 The computational domain.

The computational domain is descretized in nearly 25.3 million finite volume cells. The
mesh near the cylinder surface region is fine enough to resolve the boundary layers of the fluid
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flow. The first layer of the mesh is placed at a distance of 1.8×10−5 m away from the cylinder
surface ensuring the y+ below 1. The circumference of each cylinder is split in 360 elements.
The mesh is coarser (2×10−3 m) far upstream and downstream the tube array. Figure 3.2 (b)
shows the details of the mesh inside the tube array.

In the Large Eddy Simulations (LES) approach of turbulence modeling, the large eddies
(larger than the size of mesh cells) are resolved directly. It contains most of the turbulent
energy, however the subgrid scale turbulence needs to be modeled in order to balance the trun-
cated turbulence energy spectrum. The filtered (subgrid) eddies are assumed to be isotropic
and they can be modeled by simple Boussinesq type eddy viscosity relations. There exist sev-
eral models for the subgrid scale turbulence. The standard Smagorinsky model is considered
in this work with appropriate value of the model constant. However, the choice of subgrid
scale model has little influence on the results ((Rollet-Miet et al., 1999), (Benhamadouche and
Laurence, 2003)) of interest for the present configuration.

The computations are performed by using Code_saturne, an open-source incompressible
Navier-Stokes solver developed by Électricité de France (EDF). It is based on a co-located
finite volume method. The second order central difference and Crank-Nicolson schemes are
used to perform the space and time descretizations respectively. A time step has a predictor
and a correction steps. In the predictor step all physical properties are calculated along with
the velocity field, while as in the correction step the pressure equation is accounted implicitly.

The LES computations are performed on a supercomputer of EDF R&D (IVANOE). Every
simulation is carried out using 768 MPI-cores, with a memory requirement of about 24 Gb for
each run. The four static case simulations are performed at gap Reynolds numbers Rep = 2124,
Rep = 3186, Rep = 4248 and Rep = 5310, while the dynamic case simulations are performed
at these Reynolds number with additional three intermediate cases at Rep = 2655, Rep = 3717
and Rep = 4779. The dynamic case simulations are run in static configuration until the flow is
established (for about 2 times the flow residence time). Then the cylinder is set free to interact
with the flow. The simulations are carried out for 40s of physical time with a constant time-
step of 2×10−4s. The simulation physical time (40s) corresponds to 400 times the period of
cylinder oscillations and 20 times the flow residence time approximately.

3.2.3 Fluid-structure coupling

The cylinder movement is coupled with the fluid flow by the method of Arbitrary-Lagrangian-
Eulerian (ALE). The moving mesh (boundary) is considered in flow equations in terms of the
mesh velocity. In response, the forces exerted by the fluid flow are used to displace the cylinder
boundary surface. A detailed discussion on ALE in this context is provided in (Longatte et al.,
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2003). In experiments, the cylinder is rigid and flexibly mounted. An equivalent numerical
arrangement is shown in Figure (3.3). It is a mass on spring physics, where, m is the mass of
cylinder, k and c are the stiffness and damping coefficients of the cylinder oscillations.

Figure 3.3 The fluid-structure coupling.

The equation of motion for the cylinder can be given by,

m
d2y
dt2 + c

dy
dt

+ ky = Fy (3.1)

Where, y is the displacement of the cylinder in flow normal direction, while as the fluid force
in the same direction is represented by Fy on the right hand side of equation. The experimental
values of modal mass and damping ratio can be used to estimate the stiffness and damping
coefficients in air, by using following relations

k = (2π fn)
2m and c = 2ζ

√
km

The ordinary differential equation (Equation (3.1)) is numerically solved using Newmark
HHT algorithm, in which the fluid forces are used to estimate the displacement y. The new
position of the cylinder is achieved by solving Poisson’s equation for re-meshing before the
next flow iteration. The deformation of near-wall mesh is controlled by assigning a high value
for an artificial mesh viscosity.
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3.3 Results comparison

Table (3.1) shows selected experimental results for comparison with the Large Eddy Simula-
tion (LES) results. First three columns of the table enlist the values of volume flow rate (Q)
in m3/s, intertube (gap) velocity (up) in m/s and correponding Reynolds number Rep respec-
tively. The Reynolds number is based on gap velocity (up) and the cylinder diameter D. The
reduced velocity is defined as u∗ = (up)/( fnD), where fn = 11.68 Hz is the cylinder response
frequency in the fluid medium at rest. The reduced velocity is listed in the third column of the
results table (Table (3.1)), while as the reduced response frequency of the cylinder vibration
( f ∗n ) is in the fourth column. It is non-dimensionalized by the cylinder response frequency
in the still fluid medium. Last two columns of the results table show the damping ratio of
cylinder vibration in percent estimated by using Time Domain Modal Analysis (ζt) and Half
Power Bandwidth Method (ζh) respectively.

Q (×10−3m3/s) up (m/s) Rep u∗ f ∗n ζt (%) ζh (%)

0.35 0.164 1988 1.16 1.03 2.54 –

0.45 0.210 2556 1.48 1.00 0.90 0.73

0.55 0.257 3124 1.81 0.99 0.02 0.09

0.65 0.304 3692 2.14 1.02 1.56 1.43

0.75 0.351 4260 2.47 1.00 3.12 3.12

0.85 0.397 4828 2.80 0.98 1.42 1.62

0.95 0.444 5396 3.13 0.98 0.13 0.14

Table 3.1 Experimental results.

The Time Domain Modal Analysis (TDMA) of Poly Reference (PR) type is used to iden-
tify the modes and corresponding damping ratios. It is a statistical modal analysis method for
experimental data developed in (Granger, 1990). The method establishes free decays from
a transposed correlation matrix formed by using cylinder time response signal. The statisti-
cal auto-regression is performed by using the approach of maximum-likelihood estimation.
The characteristic modes are predefined by means of characteristic functions. The modal pa-
rameters are treated for optimised values by using a non-linear Quasi-Newton method, with
an initialization provided by Prony’s method. On the other hand, the Half Power Bandwidth
Method (HPBM) for estimation of damping ratio is simple in its formation. The Power Spec-
tral Density (PSD) of the response time signal is obtained by Fast Fourier Transform (FFT).

56



3.3 Results comparison

The quality factor Q for a relevant mode is estimated using relation Q = fn/∆ f , where fn is
a modal frequency and ∆ f is the difference between two adjacent frequencies representing
half power on the frequency ( fn) lobe. The damping ratio is readily calculated by relation
ζh = 1/(2Q). The former method (TDMA) is more suited for experimental signals or suffi-
ciently long time signals in order to perform statistical analysis. The damping ratios estimated
using both methods are in good agreement (Table (3.1)).

up (m/s) Rep u∗ f ∗n ζh (%)

0.175 2124 1.23 1.00 2.19

0.219 2655 1.54 0.95 1.62

0.262 3186 1.85 1.00 0.20

0.306 3717 2.16 1.03 2.83

0.350 4248 2.47 0.92 3.08

0.393 4779 2.77 0.97 0.27

0.437 5310 3.08 0.98 –

Table 3.2 Numerical results.

The LES results are tabulated in Table (3.2). The simulations are performed for increasing
intertube reduced velocity from 1.23 to 3.08, at which the instability occurs. The intertube
velocities, corresponding Reynolds numbers and values of reduced velocities are listed in the
first three columns respectively. Last two columns of Table (3.2) show the response non-
dimensional frequency and damping ratio of the cylinder. The damping ratio is estimated by
the Half Power Bandwidth Method only, since the time response signals of LES calculations
are still short for the statistical time modal analysis.

The the experimental results in Table (3.1) and the LES results from Table (3.2) can be
compared with one-to-one correspondence. The damping ratio of the cylinder vibration de-
creases with increase in reduced velocity up to u∗ ≈ 1.85 (gap velocity upto ∼ 0.26 m/s) in
both the experiments and LES simulations. Further increase in the intertube reduced veloc-
ity velocity from u∗ ≈ 1.80 to u∗ ≈ 0.35 m/s results in increase in the damping ratio upto
≈ 3.1%. The cylinder observes a continuous decrease in its damping ratio for further increase
in intertube velocity and it becomes zero, where the cylinder vibrations become unstable (Fig-
ure 3.4(b)). The experimental value of critical reduced velocity, where the damping ratio of
the cylinder reaches zero is u∗c = 3.30 (upc = 0.468 m/s). The LES computation is already
unstable for the reduced pitch velocity u∗ = 3.08 (upc = 0.437 m/s). The non-dimensional
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response frequency f ∗n shows a general trend of decrease-increase-decrease in both the exper-
imental and numerical results (Figure 3.4(a)). Overall, the results of LES calculations are in a
good agreement with the experimental results.

(a) response frequency f ∗n (b) effective damping ratio ζ (%)

Figure 3.4 The non-dimensional cylinder response frequency and damping ratio vs increasing reduced
velocity.

3.4 Flow analysis

In addition to the dynamic case simulations, the static case Large Eddy Simulations (LES)
are performed in order to understand the flow development in the array. These simulations
are performed at four different values of the pitch Reynolds number increasing from Rep =

2124 up to Rep = 5310. The particulars of the static case calculations are provided in Table
(3.3). The intertube reduced velocities (u∗ = up/ fnD) and corresponding intertube Reynolds
numbers (Rep) are listed in first two columns of the table. In general in tube arrays, the
vortex-shedding phenomenon is not obvious, especially in the closely spaced tube arrays (the
pitch ratio p∗ ⪅ 1.50). The interstitial flow could have the vortex-shedding linked with the
shear layer instabilities, wakes or jet switching mechanisms, which may lead to an acoustic
resonance (Oengören and Ziada, 1992), (Ziada, 2006). In general, in all the four cases listed
in Table (3.3), the turbulence in flow develops as it passes down through the tube rows. Figure
(3.5) shows the vorticity plots at Reynolds number Rep = 3186. The spanwise component (Z)
of the vorticity Ωz on the mid-cross section of the tube array is shown in Figure 3.5(a). The
shear layers are developed behind the first row of cylinders, which are nicely attached to the
second row cylinders. Shortly downstream the second row of cylinders, the shear layers tend
to break into turbulent structures. The two probes P1 and P2 are located along the second row
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of cylinders, in the middle of the flow channels in order extract the flow frequencies. Further
downstream, the shear layers appear more turbulent. The middle cylinder from the third row
is monitored for vibration in the dynamic case calculations. The other two monitoring probes
P3 and P4 are placed in the fourth row of the tube bundle as shown in Figure 3.5(a). There are
two plane L1 and L2 located at upstream and downstream of the middle cylinder respectively.
The streamwize (X) flow vorticity Ωx is compared at these two corss-sectional planes (L1,
L2). The comparison of the stremwize flow vorticity (Ωx) between Figures 3.5(b) and 3.5(c)
indicate the increased level of spanwize flow activity, mostly behind, in the wake region of
the cylinders. Similar observations about the development of flow turbulence for the in-line
cylinder arrays are reported in (Ziada, 2006).

u∗ Rep f ∗sh St Eu Cd Cl Att. Sep.
(rms) (rms) (θ o) (θ o)

1.23 2124 0.56 0.45 0.42 6.28 0.030 64.0 93.6

1.85 3186 0.79 0.43 0.47 2.91 0.028 61.0 92.0

2.47 4248 1.92 0.78 0.55 1.76 0.021 55.0 90.3

3.08 5310 3.30 1.07 0.58 1.22 0.022 54.5 90.0

Table 3.3 Results of the static case LES simulations.

Figure (3.6) shows the flow normal velocity (u2) spectra at the four probe locations for in-
creasing Reynolds number. The flow frequencies are non-dimensionalized by using the cylin-
der’s natural frequency in water at rest, i.e. f ∗sh = fsh/ fn, with fn = 11.68 Hz. The spectra for
intertube reduced velocity u∗ = 1.23 (up = 0.175 m/s) is shown in Figure 3.6(a). It shows a
distinct frequency of f ∗sh = 0.56 at all the four probe locations. There are additional peaks at
1.1 and 1.7 in the spectra at the downstream locations (P3, P4). Generation of such higher
harmonics due to non-linear instabilities in such flow configurations is discussed in (Ziada and
Rockwell, 1982). In all cases, the spectra at the downstream locations P3 and P4 are elevated
compared to the upstream locations P1 and P2, indicating an increase in the turbulence level
as the eater flows downstream. The spectra at locations in the same row (P1 and P2 or P3 and
P4) are nearly the same, except for the reduced velocity u∗ = 3.08 (up = 0.437 m/s) at loca-
tions P3 and P4, where the spectra differ in the frequency range 8.56 to 42.80 (Figure 3.6(d)).
Figure 3.6(b) shows the spectra at an increased reduced velocity u∗ = 1.85 (up = 0.262 m/s).
The dominant first frequency peak is at 0.79, while the second peak is at 1.58. The shapes of
the spectra differ for the downstream locations (P3 and P4) if compared with the upstream lo-
cations (P1 and P2), especially in the frequency range around 8.56. Figures 3.6(c) and 3.6(d)
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P2 P4

P1 P3

L1 L2

(a) Z vorticity (ωz) at mid plane

(b) X vorticity (ωx) at plane L1 (c) X vorticity (ωx) at plane L2

Figure 3.5 Vorticity plots for u∗ = 1.85 (Rep = 3186).

are the velocity (u2) spectra at the intertube reduced velocities u∗ = 2.47 (up = 0.35 m/s)
and u∗ = 3.08 (up = 0.437 m/s) respectively. The spectra at the upstream probe locations
show wider peaks, with almost flat spectra (no peaks) at the downstream locations. The shear
layer frequency peaks in the spectra in Figures 3.6(c) and 3.6(d) are at non-dimensional fre-
quencies 1.93 and 3.3 respectively. The multiple frequency peaks in the spectra at Reynolds
number Rep = 2124 and Rep = 3186 are the higher harmonics of the first frequency peaks.
The frequency peaks at the downstream locations almost disappear, indicating the complete
breakdown of the shear layers at higher Reynolds numbers. This is also observed experimen-
tally for the in-line arrays with small pitch ratios (Ziada, 2006). The non-dimensional shear
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3.4 Flow analysis

layer frequency ( f ∗sh) and the corresponding Strouhal number (St = fsh/(up/D)) of the first
dominant peak at increasing reduced intertube velocity are tabulated in the third and fourth
columns of Table (3.3) respectively.
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(c) u∗ = 2.47, Rep = 4248
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(d) u∗ = 3.08, Rep = 5310

Figure 3.6 Power Spectral Densities (PSD) of Y velocity (u2) at locations P1, P2, P3 and P4 for
increasing intertube reduced velocity (u∗).

The surface pressure profiles in terms of pressure coefficient

Cp(θ) =
⟨p(θ)⟩t −⟨p(θ = 0)⟩t,length

1
2ρu2

p

on the monitored cylinder for different reduced velocities are shown in Figure (3.7). The time
averaged surface pressure profile at reduced velocity u∗ = 1.23 is shown in Figure 3.7(a),
where the symmetry in the profile indicates that the shear layer sheets generated at the first
row of cylinders are probably unbroken upto the third row of cylinders since the Reynolds
is lower (Rep = 2124). Figures 3.7(b), 3.7(b) and 3.7(b) show the profiles at Reynolds num-
bers Rep = 3186, Rep = 4248 and Rep = 5310 respectively. The locations of maximum and
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(a) u∗ = 1.23 (Rep = 2124) (b) u∗ = 1.85 (Rep = 3186)

(c) u∗ = 2.47 (Rep = 4248) (d) u∗ = 3.08 (Rep = 5310)

Figure 3.7 The time-averaged pressure profiles in terms of pressure coefficient (Cp(θ)) for increasing
reduced velocity.

minimum of the averaged pressure indicate the flow attachment and separation regions on the
cylinder surface. The variations of averaged pressure profiles along the length of cylinder for
Reynolds numbers (Rep = 3186, Rep = 4248 and Rep = 5310) in Figures 3.7(b), 3.7(c) and
3.7(d) indicate the spanwize correlation of the flow structures. The spanwize correlation is
approximately ≈ 3D in length.

Figure (3.8) shows the pressure coefficient

Cp(θ) =
⟨p(θ)⟩t,length −⟨p(θ = 0)⟩t,length

1
2ρu2

p

on the cylinder surface for various reduced pitch velocities. The pressure drop across a row
of cylinder increases with an increase in the intertube velocity. The Euler number (Eu) is
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Figure 3.8 The time-length-averaged azimuthal pressure profiles.

provided in the sixth column of Table (3.3). The Euler number is defined as,

Eu = ⟨∆prow⟩t/

(
1
2

ρu2
p

)
. The values of the Euler number are in a good agreement with the heat exchanger design
handbook data in (Coletti, 1983). Figure 3.8(b) shows the change in the attachment and sep-
aration locations due to the increase in the Reynolds number. The values of attachment and
separation locations in degree are listed in the last two columns of the result table (Table (3.3)).
The flow attachment locations are shifted inward (away from the flow streams) with the in-
crease in flow velocity (up). On the contrary, the separation locations are shifted towards 90o

from 93o. The root mean squared (rms) drag (Cd) and lift (Cl) coefficients for the cylinder
(listed in the seventh and eighth columns of the result table) are estimated using relations,

Cd = Fxrms/

(
1
2

ρu2
pDL

)
and Cl = Fyrms/

(
1
2

ρu2
pDL

)
Where Fx and Fy are the forces on cylinder in inflow and transverse directions, while L

represents the length of cylinder.
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(b) Location P3, u∗ = 1.23
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(c) Location P1, u∗ = 1.85

1e-16

1e-12

1e-08

1e-04

1e+00

0.01 0.1 1 10 100 1000

PS
D

f ∗sh, f ∗

u2 static
u2 dynamic

y

(d) Location P3, u∗ = 1.85
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(e) Location P1, u∗ = 2.47
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(f) Location P3, u∗ = 2.47

Figure 3.9 Power spectral densities (PSD) of Y velocity in static and dynamic cases at an upstream (P1)
and a downstream (P3) locations, in comparison with the cylinder response spectrum for increasing
reduced velocity.

3.5 The onset of fluidelastic instability

3.5.1 Comparison between the static and dynamic case simulations

In order to understand the development of fluidelastic instability, the static case Large Eddy
Simulations (LES) results are compared with the dynamic case LES computations. The com-
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parison is done using the spectra of Y velocity (u2) at probe locations P1 and P3 for increasing
reduced velocity (u∗). Furthermore, the velocity spectra at these upstream and downstream lo-
cations are compared with the spectrum of cylinder vibration (y) in Figure (3.9). In the static
case simulations, the red curves in Figures 3.9(a) and 3.9(b), the shear layer frequency at
gap reduced velocity u∗ = 1.23 (up = 0.175 m/s) is f ∗sh = 0.56, which is normalised by the
cylinder natural frequency in still water i.e. fn = 11.68 Hz. There are higher harmonics of
this frequency in the spectra computed at the downstream location P3. In the dynamic case
computations, the green curves in Figures 3.9(a) and 3.9(b), there appears an extra frequency
peak at both at the upstream and downstream locations, which corresponds to the response
frequency of cylinder. On other hand, the response spectrum of cylinder, the blue curve in
Figures 3.9(a) and 3.9(b)) shows a peak at f ∗ = 0.56. Figures 3.9(c) and 3.9(d) show similar
comparison for the intertube reduced velocity u∗ = 1.85 (up = 0.262 m/s). The red curves
of the static case simulations show two frequency peaks, one at 0.79 and its first harmonic at
about 1.63, at both P1 and P2 locations. On the contrary, the velocity spectra in dynamic case
(green curves in Figures 3.9(c) and 3.9(d)) show a distinct frequency at the cylinder response
frequency ( f ∗n = 1). Furthermore, the cylinder response spectrum at this reduced velocity
u∗ = 1.85 is elevated, in terms of the spectral power, compared to the response spectra at
both u∗ = 1.23 and u∗ = 2.47 reduced pitch velocities, which may be due to a possible syn-
chronization between the shear layer frequencies and the cylinder response frequency. The
flow velocity spectra at the gap velocity u∗ = 2.47 show wider peaks at frequency 1.92, at
the upstream (P1) location only. The frequency peak corresponding to the cylinder vibration
are not distinctly reflected in the velocity spectra (Figures 3.9(e) and 3.9(f)). The shear layer
frequencies increase with further increase in the Reynolds number. The fluidelastic instability
in the dynamic calculations occurs at Reynolds number Rep = 5310, where the flow frequen-
cies at the upstream locations (P1, P2) are about 3.3 with no distinct frequency peaks at the
downstream locations (P3, P4). Therefore, the mechanism of the fluidelastic instability must
be different than the classical "lock-in" phenomenon.

The interaction between the single cylinder and its adjacent flow streams can be monitored
at the fluid-solid interface, i.e. the cylinder surface, for the exchange of the momentum by
means of the fluid forces. The pressure force constitutes a major part of the fluid force, even
for these low Reynolds numbers (Rep ≈ 6000). The time evolution of the pressure coefficient

Cp(θ) =
p(θ)−⟨p(θ = 0)⟩t,length

1
2ρu2

p

on the cylinder surface in both the static and dynamic configurations is presented in Figure
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(a) u∗ = 1.23 static case (b) u∗ = 1.23 dynamic case

(c) u∗ = 1.85 static case (d) u∗ = 1.85 dynamic case

(e) u∗ = 2.47 static case (f) u∗ = 2.47 dynamic case

Figure 3.10 Comparison of the time evolving instantaneous surface pressure between static and dy-
namic cases for increasing reduced velocity.

(3.10). The time duration considered (on the y axis) is 0.2 s, which corresponds to approxi-
mately two periods of the cylinder oscillations in water (i.e. ≈ 2/ fn, with fn ≈ 11.68 Hz). In
all static case configurations (Figures 3.10(a), 3.10(c), 3.10(e) and 3.10(g)), the pressure pro-
files evolve in time symmetrically with respect to the azimuthal angle θ = 180o. The pressure
profile in the static case at reduced intertube velocity u∗ = 1.23 (Figure 3.10(a)) shows more
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(g) u∗ = 3.08 static case (h) u∗ = 3.08 dynamic case

Figure 3.10 Comparison of the time evolving instantaneous surface pressure between static and dy-
namic cases for increasing reduced velocity.

or less symmetrical time evolution. The corresponding dynamic case (figure 3.10(b)) shows a
similar time evolution of the surface pressure profile with ≈ 10% higher values of the pressure
coefficient. The time-pressure profiles in the static and dynamic simulations at the reduced
gap velocity u∗ = 1.85 are compared in Figures 3.10(c) and 3.10(d) respectively. The com-
parison shows a considerable difference in the time-evolution and the values of pressure drop
coefficient. The pressure difference in the dynamic case is higher by ≈ 3 times the pressure
drop in the static case. The time-evolution pressure profile is changed from the symmetric to
nearly anti-symmetric profile with respect to θ = 180o. It indicates that, when one flow stream
adjacent to the cylinder (θ = 0o to θ = 180o) exerts a positive pressure on the cylinder sur-
face, at the same time the other flow stream (θ = 180o to θ = 360o) exerts a negative pressure
on the cylinder surface. The increase in the reduced intertube velocity further to u∗ = 2.47
results in the symmetry of the time-evolving pressure profile the dynamic case simulations
(Figures 3.10(f)). Figure 3.10(e) shows the corresponding static case simulation profile. The
value of instantaneous pressure drop is higher in the dynamic case by ≈ 14%. The cylinder
oscillations become unstable at reduced intertube velocity u∗ = 3.08. The transient develop-
ment of the cylinder surface pressure profile in the dynamic case is shown in Figure 3.10(h).
The pressure profile evolution is antisymmetric (alternating) and there is a sudden increase
in the pressure drop value (by ≈ 8 to 10 times) against the symmetrical pressure profile in
the corresponding static case (Figure 3.10(g)). The dynamic interaction between the cylin-
der and the adjacent flow streams result in the variation of the instantaneous surface pressure
profiles for the increasing intertube velocity as shown in Figures 3.10(b), 3.10(d), 3.10(f) and
3.10(h). Furthermore, there is a similar trend in variation of the time-length averaged surface
profiles for increasing flow velocity. The time-length averaged pressure profiles are almost
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equal between the dynamic and static cases, for which the time evolving surface pressure are
symmetric about θ = 180o. On contrary, The time-length averaged surface pressure profiles
for the dynamic and static cases significantly differ, if the dynamic case shows an antisym-
metry in the time evolution of the instantaneous surface pressure profile. Figure (3.11) shows
a comparison of the time-length averaged cylinder surface pressure profiles for the reduced
intertube velocities u∗ = 1.85 and u∗ = 2.47. In Figure 3.11(a), the flow attachment locations
are shifted inwards (away from the flow streams) in the dynamic case, when compared to the
static case profile. The pressure profiles in Figure 3.11(b) are nearly indifferent between static
and dynamic cases.
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Figure 3.11 Comparison of the time-length averaged cylinder surface pressure profiles between the
static and dynamic cases at u∗ = 1.85 and u∗ = 2.47.

(a) yrms/D and ζ (%) Vs. u∗
(b) Fy1, Fy2 and θ (u∗ = 2.67)

Figure 3.12 LES results: (a) Cylinder response amplitude (yrms/D) and damping ratio (ζ ) with increas-
ing reduced velocity (u∗) (b) Force (y component) on cylinder surface split into Fy1(t) and Fy2(t).
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In the development of fluidelastic instability, the increasing intertube reduced velocity u∗

changes the way fluid forces are imparted to the cylinder dynamically. The time-evolving pres-
sure profiles are nearly symmetric for the reduced velocity u∗ = 1.23. The symmetric pressure
profile becomes anti-symmetry until u∗ = 1.84. Furthermore the anti-symmetrical pressure
profile changes back to symmetrical profile until the reduced velocity becomes u∗ = 2.67. A
further increase in the intertube reduced velocity results in the anti-symmetry of the pressure
profiles at the onset of fluidelastic instability. The change in the time-evolving pressure profile
on the cylinder surface is also accompanied by the variations in the damping ratio (ζ ), cylinder
response frequency ( fn) and the amplitude of cylinder vibration (y). The section (Section 3.3)
on results comparison shows the details of the variations in the damping ratio and response
frequency of the cylinder oscillations. The experimental as well as LES results show an initial
decrease of the cylinder response frequency, which is followed by an increase and a decrease
until the instability occurs with increasing flow velocity. The damping ratio (ζ ) exhibits sim-
ilar trend, experimentally as well as numerically. Figure 3.12(a) shows the variations in the
damping ratio (ζ , in green) and the cylinder rms displacement (yrms/D, in red) against the
increasing reduced velocity u∗. The damping ratio of the cylinder decreases gradually up to
the reduced velocity u∗ = 1.84, which results in a gradual increase in the amplitude of cylinder
vibration. Further increase in the reduced velocity results in an increase of the damping ratio,
while as a decrease in the cylinder response rms amplitude. The damping ratio undergoes
a sudden decrease for the higher reduced velocities u∗ ⪆ 2.67, on other hand the vibration in
cylinder increases drastically. The Large Eddy Simulations (LES) computations performed for
the reduced velocity u∗ = 3.14 shows a divergence in its response, indicating that the damping
ratio becomes negative (ζ < 0) for this value of the reduced velocity.

3.5.2 Dynamics of the fluid forces acting on the cylinder

The higher amplitudes of cylinder vibration and the drop in the damping ratio correspond to
the anti-symmetry in the pressure profiles on the cylinder surface. The symmetrical pressure
profile means both the flow streams acting a positive or a negative pressure on the cylinder
at the same time, while as the anti-symmetric pressure profiles indicate that one flow stream
exerts a positive pressure at the same time when other exerts a negative pressure. In order to
study this dynamics of the pressure forces exerted by each adjacent flow stream on the cylinder
surface, the total force on the cylinder surface Fy(t) is split into two parts Fy1(t) and Fy2(t),
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(a) u∗ = 1.23

(b) u∗ = 1.85

(c) u∗ = 2.16

(d) u∗ = 2.77

Figure 3.13 The time response of the forces acting on cylinder at increasing reduced velocity.

as shown in Figure 3.12(b). The forces are estimated as,

Fy1(t) =
∫ 180

θ=0
fydθ and Fy2(t) =

∫ 360

θ=180
fydθ
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where fy is a force on a small elemental surface on the cylinder. The instantaneous time
signals of the forces Fy1(t), Fy2(t) and Fy(t) are compared in Figure (3.13). The forces plot-
ted in Figures 3.13(a), 3.13(b), 3.13(c) and 3.13(d) are for the increasing reduced velocities
u∗ = 1.23, u∗ = 1.85, u∗ = 2.16 and u∗ = 2.77 respectively. The forces Fy1 and Fy2 exerted
by the flow streams adjacent to the cylinder are nearly equal in the magnitude and opposite in
the direction as shown in Figure 3.12(b). Hence the total force Fy(t) on the cylinder, which
is responsible for the cylinder displacement y(t) has a magnitude approximately ≈ 100 times
smaller than the individual forces (Fy1(t) and Fy2(t)). The amplitude of the force increases
with an increase in the reduced intertube velocity from u∗ = 1.23 to u∗ = 1.85, as shown in
Figures 3.13(a) and 3.13(b) respectively. The amplitude of the force Fy(t) observes a decrease
with an increase in the reduced intertube velocity from u∗ = 1.85 to u∗ = 2.16 (Figures 3.13(b)
and 3.13(c)). It is followed by a monotonous increase for further increase in the velocity, a
trend similar to the displacement of cylinder (Figure 3.12(a)). The magnitudes of the individ-
ual forces Fy1(t) and Fy2(t) do not increase much with the increase in the reduced intertube
velocity. The dynamics between these two forces play an important role in the behaviour of
the total force (Fy(t)) change with the increasing reduced velocity. The forces Fy1(t) and
Fy2(t) become synchronized when the reduced velocity increases from u∗ = 1.23 (Figure
3.13(a)) to u∗ = 1.85 (Figure 3.13(b)). The synchronization results in a increase of the total
force on cylinder (Fy(t)). The increase of the reduced intertube velocity from u∗ = 1.85 to
u∗ = 2.16 leads to an unsynchronized time response of these two individual forces, which re-
sults in the smaller values for the resultant total force (Figure 3.13(c)). Consequently, it results
in the smaller displacements of the cylinder (y) at this reduced velocity (u∗p = 2.16). A further
increase in the intertube velocity regains the synchronization between the forces Fy1(t) and
Fy2(2). Thus the resultant force Fy(t) is increased, which eventually leads to the instability.

The dynamic interaction between the cylinder and the flow around is either ways, i.e. the
flow induces vibration in the cylinder and as a consequence of the movement of cylinder, the
flow streams are modified. Contrary to the static case simulations, it is observed that the time-
pressure profiles on the cylinder surface show alternatively the symmetry and anti-symmetry
with increasing the flow streams velocity. The dynamics of the forces exerted by the adjacent
flow streams results in the variations of the total force acting on the cylinder. The variations
in the damping ratio (ζ ), response frequency ( fn) and the amplitude of cylinder vibration (y)
is a consequence of the resultant force (Fy) on the cylinder. The displacement of the cylinder
(y) modifies the flow field abound it, changing the course of the flow streams adjacent to the
cylinder. The displacement of cylinder towards a flow stream, results in an increase of the
local flow velocity because of the decrease in the cross-sectional flow area. The displacement
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(a) u∗ = 1.23, Rep = 2124 (b) u∗ = 1.23, Rep = 2124

(c) u∗ = 1.54, Rep = 2655 (d) u∗ = 1.54, Rep = 2655

(e) u∗ = 1.85, Rep = 3186 (f) u∗ = 1.85, Rep = 3186

Figure 3.14 Correspondence between the time evolving pressure profiles with the velocity field adja-
cent to the cylinder.

of cylinder may introduce a flow retardation or acceleration to the adjacent flow streams. The
distortions on the flow streams are carried with the flow (both downstream as well as upstream
the cylinder). Figure (3.14) shows the flow distortions (in terms of the high velocity patches)
travelling on the flow streams at different reduced velocities. A correspondence between the
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3.5 The onset of fluidelastic instability

(g) u∗ = 2.16, Rep = 3717 (h) u∗ = 2.16, Rep = 3717

(i) u∗ = 2.47, Rep = 4248 (j) u∗ = 2.47, Rep = 4248

(k) u∗ = 2.77, Rep = 4779 (l) u∗ = 2.77, Rep = 4779

Figure 3.14 Correspondence between the time evolving pressure profiles with the velocity field adja-
cent to the cylinder.

appearance of the high velocity patches on the flow streams and the time-evolution of the
instantaneous pressure profile on cylinder surface are also shown for the pitch velocities in-
creasing from u∗= 1.23 to u∗= 3.08. The cylinder vibration for the reduced velocity u∗= 1.23
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(m) u∗ = 3.08, Rep = 5310 (n) u∗ = 3.08, Rep = 5310

Figure 3.14 Correspondence between the time evolving pressure profiles with the velocity field adja-
cent to the cylinder.

results in a symmetrical time-evolution of the surface pressure profile (Figure 3.14(a)). The
corresponding flow field is shown in Figure 3.14(b). The high velocity flow patches due to the
cylinder displacement are not distinct in this particular case, since the amplitudes of cylinder
vibration are small. The time evolving pressure profiles for the reduced velocities u∗ = 1.54
and u∗ = 1.85 are anti-symmetrical (Figures 3.14(c) and 3.14(e)). Therefore the high velocity
regions on the flow streams due to the cylinder displacement appear alternately, which are
marked by circles on the flow streams (Figures 3.14(d) and 3.14(f)). The damping ratio of
cylinder vibration decreases upto this reduced velocity (u∗ = 1.85), while as the amplitude
of cylinder oscillations shows an increase. The cylinder displacements at increased reduced
velocities u∗ = 2.16 and u∗ = 2.47 give rise to a symmetrical appearance of the high velocity
patches on the flow streams adjacent to the central cylinder, as shown in Figures 3.14(h) and
3.14(j). The corresponding cylinder surface pressure profiles show a symmetric time evolu-
tion (Figures 3.14(g) and 3.14(i)). The damping ratio (ζ ) and the cylinder displacement (y)
show an increase and a decrease respectively, when compared to the lower reduced veloci-
ties u∗ = 1.54 and u∗ = 1.85. Further increase in the values of reduced velocities u∗ = 2.77
and u∗ = 3.08 brings back the anti-symmetry in the time-pressure profiles on cylinder surface
(Figures 3.14(k), 3.14(m) respectively) as well as the alternate appearance of the high velocity
patches on flow streams adjacent to the central cylinder (Figures 3.14(l) and 3.14(n)). The
damping ratio and the displacement of the cylinder vibration continue monotonously to a de-
crease and an increase respectively at these reduced velocities. The cylinder becomes unstable
and it observes a diverged vibration response at the reduced velocity u∗ = 3.08.

In figure 3.14(n), the high velocity patches adjacent to the cylinder at center are very clear.
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3.5 The onset of fluidelastic instability

u∗ λ = up/ fn (m) α = λ/P Note

1.23 0.0149 0.85 symmetry

1.54 0.0200 1.12 anti-symmetry

1.85 0.0224 1.28 anti-symmetry

2.16 0.0255 1.46 symmetry

2.47 0.03247 1.86 symmetry

2.77 0.0347 1.99 anti-symmetry

3.08 0.0382 2.18 anti-symmetry

Table 3.4 The perturbation wavelength (λ ) for increasing reduced velocity.

It appears that the stremwise distance between the two high velocity patches nearly equals
the pitch distance (P) of the array. The distance (λ ) between two consecutive high velocity
patches produced on a flow stream due to the cylinder oscillations can by defined as λ = up/ fn.
Table (3.4) provides details of the distance between high velocity patches as well as nature of
their appearance for increasing reduced velocity. The distance (λ ) is normalized using pitch
distance (P), given by α = λ/P. The last column of Table (3.4) provides remarks on the
appearance of the high velocity patches, which also corresponds to the time-evolving pressure
profiles on the cylinder surface.

Understanding the nature of fluid force acting on a cylinder from a tube array is impor-
tant in order to develop a theoretical model of the fluidelastic instability. The theoretical
approach of (Tanaka and Takahara, 1981) and (Chen, 1983a) is probably the more accurate of
all the present theories (Païdoussis et al., 2010). In their approach, the unsteady fluid force
coefficients are measured directly using experiments. Although the numerous requirement of
experimental data makes this approach less feasible, it signifies the necessity to understand
the unsteady interaction between the cylinder and interstitial flow dynamics around cylinder.
The analysis presented above aims to elucidate these unsteady fluid forces acting dynamically
on the cylinder. The theoretical approach of (Lever and Weaver, 1982) and improved models
based on it assume similar interaction between a single cylinder and the adjacent flow streams.
In addition, (Khalifa et al., 2013) considered a phase lag between the cylinder vibration and
fluid response and obtained improved predictions of the instability limits, although the nature
of phase lag was speculated. The nature of total fluid force acting on the cylinder is more
intuitive when the force is divided into two forces each due to an adjacent flow channel. The
symmetry or antisymmetry in the time evolving pressure profile on the cylinder surface in-
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dicates the dynamics of fluid forces imparted by each flow channel for the increasing flow
velocity. These features of the interaction between cylinder and interstitial fluid flow of an
array appear to be essential in theoretical predictions of the fluidelastic instability.

3.6 Conclusion

The onset of fluidelastic instability in a square normal cylinder array is studied by performing
the Large Eddy Simulations (LES) of a single phase water cross-flow through the array. The
fluid-structure coupling is achieved by the Arbitrary Lagrangian Eulerien (ALE) method. A
single cylinder in 1-degree-of-freedom is allowed to oscillate freely and become fluidelasti-
cally unstable in the lift direction. The fluid flow in a static configuration (all cylinders fixed)
is characterized by analysing the presence of shear layer instabilities in the interstitial flow,
providing the coefficients of pressure, drag and lift forces on the cylinder and also variations
in the flow attachment and separation locations with increasing Reynolds number. The dy-
namic LES results are first validated by a comparison with the experimental results in terms of
the cylinder response frequency and the effective damping ratio. The surface pressure profile
in the range of flow velocities in static cases are compared with the dynamic cases in order to
elucidate the nature of dynamic forces acting on the cylinder. It is observed that the pressure
force on the cylinder in the dynamic case simulations evolves either symmetrically or anti-
symmetrically for a particular value of the intertube velocity. The total force on the cylinder,
when split into two components, each associated with an adjacent flow stream shows that the
symmetric or antisymmetric pressure profiles are linked with the dynamic interaction between
the cylinder and adjacent flow streams. It also explains the variations in the response ampli-
tude, effective damping and the response frequency of the cylinder for increasing intertube
velocity. The dynamic interaction between the cylinder and adjacent flow streams also reflects
on the flow streams in terms of the distortions (high velocity patches), which travel along the
flow through the array. The distortions on the flow streams appear simultaneously or alter-
nately for the respective symmetric or anti-symmetric time evolution of the pressure profile on
cylinder surface. Finally, the instability is characterized by the antisymmetric surface pressure
profiles and the alternate appearance of the high velocity regions on the flow streams.
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CHAPTER 4

A THEORETICAL MODEL OF THE FLUIDELASTIC INSTABILITY

IN SQUARE INLINE TUBE ARRAYS

Abstract

An implicit mathematical model to predict the fluidelastic instability in square normal (90o)
tube arrays is presented in this article. The mathematical development is based on the transient
interaction between a single cylinder and the flow streams adjacent to the cylinder. The fluid
flow is assumed in a single phase. The cylinder is assumed to oscillate in 1-degree-of-freedom
in the lift direction only. A small displacement of the cylinder introduces an equivalent pertur-
bation on the surrounding fluid flow. The oscillating cylinder produces timely perturbations,
which are carried by the interstitial flow streams. The waveforms of the flow disturbances are
assumed to interact with the array pattern. The total force on the cylinder is thus modified due
to these interactions. The fluidelastic proportionality constant is obtained as a function of the
pitch ratio and the Euler number. The mathematical development results in an implicit model
for the critical flow velocity. The model predictions of the critical flow velocity are in fairly
good agreement with the experimental results.

Keywords

Flow-induced vibrations, heat exchanger tube arrays, fluidelastic instability, Euler number
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4.1 Introduction

The flow-induced vibrations in the heat exchanger tube arrays exhibit different mechanisms.
The vibrations are generally classified under, vortex-induced vibration, turbulent buffeting,
acoustic vibration and the fluidelastic vibration. The underlying mechanisms in the first three
types of vibrations are more or less well understood, hence the safe operating conditions can
be procured by appropriate design guidelines against these instabilities. The exact mechanism
underlying the fluidelastic instability is relatively less understood. The damages occurred
due to the fluidelastic instability are severe and short term. The phenomenon is given major
attention in the recent decades in order to establish the accurate stability thresholds of the
critical flow velocities for the flow through tube bundles. There are several mathematical
models available for the fluidelastic instability. The presence of the fluidelastic excitations in
the context of cylinders was first reported in (Roberts, 1962). A detailed work in (Connors,
1970) and (Connors, 1978) led to a simplified model for the fluidelastic instability,

upc

fnD
= K

(
mδ

ρD2

)a

(4.1)

Where, upc, fn and D are the critical pitch (minimum gap) velocity, natural frequency and the
diameter of the cylinder respectively. The non-dimensional critical pitch velocity is propor-
tional to the mass m, logarithmic decrement δ of the cylinder vibration in the non-dimension
forms with the exponent a. K is the constant of proportionality. ρ is the fluid density. An
enormous amount of work is carried out in terms of the experiments and the theoretical de-
velopments, since the work of (Connors, 1970), in order to better understand and predict the
phenomenon. The topic is well reviewed in (Païdoussis, 1983a), (Weaver and Fitzpatrick,
1988b), (Pettigrew and Taylor, 1991) and more recently in (Païdoussis et al., 2010, Chapter
5). A detailed review on the mathematical models of fluidelastic instability is provided in
(Price, 1995).
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In this article, a new mathematical model is presented for the fluidelastic instability in
square normal tube arrays. The model is based on the dynamic interaction between a sin-
gle cylinder oscillating in 1-degree-of-freedom (1-DOF) in transverse/lift direction only. The
displacement of the cylinder produces small deformations in the flow streams adjacent to the
cylinder. The flow perturbations are modeled as a waveforms on top of the flow streams. The
flow streams carrying the perturbations interact elastically with the cylinder, especially at the
low values of the mass ratio (m/ρD2). The mathematical development and a procedure to
estimate the critical pitch velocity upc is formulated in the following section. The model pre-
dictions are compared with a set of experimental data reported in (Pettigrew and Taylor, 1991)
for the square normal tube arrays. In addition, a stability map is established for a pitch ratio
p∗ = 1.33, similar to the stability map of (Tanaka and Takahara, 1981) for the square normal
array of pitch ratio p∗ = 1.33.

4.2 Theory

The fluid flow through a square normal tube array under cross flow forms a typical flow pat-
tern of the interstitial flow. The fluid flowing through channels observes a variation in the
flow velocity due to the decrease and increase of the cross-sectional flow area available in the
array. The pitch distance is the minimum distance between two cylinders of the array, where
the flow accelerates. The displacement of cylinder in transverse direction results in either a
decrease or an increase in the adjacent cross-sectional area. Consequently, the flow velocity
observes locally either an increase or a decrease respectively. The perturbations on the flow
streams are conveyed downstream as well as, to a certain extent, upstream on the flow streams.
The change in the flow streams modifies the total force acting on the moving cylinder, which
further results in a modification of the cylinder displacement. The streamwise distance be-
tween two consecutive perturbations is directly proportional to the intertube flow velocities,
assuming the response frequency of cylinder remains more or less constant. In addition to the
increased fluid forces due to the increased energy level, the dynamics of the flow disturbances
travelling through the non-uniform array pattern has an influence on the total force acting on
the cylinder. The mathematical model proposed in the following section is based on these
dynamic interactions between the flow streams and a cylinder of the array.
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Figure 4.1 The kernel of a square normal cylinder array.

4.2.1 Mathematical Model

The kernel of an in-line array is shown in Figure 4.1. The diameter and pitch distances are
represented by D and P respectively. The pitch ratio (p∗ = P/D) is equal in both the longitudi-
nal (in-flow) and transverse (flow-normal) directions. The flow direction is shown by the bold
arrows in the figure. The central cylinder is assumed to oscillate in the flow normal direction
only. The schematic of the mass on a spring physics is shown, where k, c stand for the cylinder
stiffness and damping respectively. The mass of the cylinder per unit length is represented by
m. The mass includes the hydrodynamic mass of the fluid medium at rest. Similarly the stiff-
ness (k) and damping (c) coefficients are defined with respect to the quiescent fluid medium.
Equation (4.2) represents the motion of cylinder in the flow normal direction. y is the instan-
taneous cylinder displacement in the flow normal direction. t represents the time. The right
hand term of the equation is a sinusoidal fluid force with an amplitude fy per unit length of the
cylinder and an angular periodicity (ωsh) associated with the force.

m
d2y
dt2 + c

dy
dt

+ ky = fye−ı̂ωsht (4.2)

Where ı̂ =
√
−1. Using the definitions of the natural angular frequency (ωn) and damping

ratio (ζ ) of the cylinder, ωn =
√

k/m and ζ = c/2
√

km, Equation (4.2) can be written as,

d2y
dt2 +2ζ ωn

dy
dt

+ω
2
n y =

fy

m
e−ı̂ωsht (4.3)
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The general solution can be given as,

y = Ye−ı̂(ωsht+θ) (4.4)

Where, Y is the magnitude of cylinder oscillations, while as θ is the phase difference between
the fluid force and the cylinder response (y). The magnitude (Y ) can be obtained by solving
Equation (4.4) and Equation (4.3).

−Y ω
2
she−ı̂ωsht +2ζ ωnY (−ı̂ωsh)e−ı̂(ωsht+θ)+ω

2
nYe−ı̂(ωsht+θ) =

fy

m
e−ı̂ωsht

−Y ω
2
sh +2ζ ωnY (−ı̂ωsh)+ω

2
nY =

fy

m
eı̂θ

By equating the real and imaginary parts, we can obtain,

(
ω

2
n −ω

2
sh
)

Y =
fy

m
cos(θ) (4.5)

(−2ζ ωnωsh)Y =
fy

m
sin(θ) (4.6)

Thus,

Y =
fy/m√(

ω2
n −ω2

sh

)2
+(2ζ ωnωsh)

2
(4.7)

The unsteady response amplitude (Y ) of the cylinder is directly proportional to the magnitude
of fluid force fy and it is inversely proportional to the mass and damping terms. The phase
difference (θ ), between the fluid force acting on the cylinder and cylinder displacement is
considered as an important component of the fluidelastic instability, particularly in the theo-
retical models based on (Lever and Weaver, 1982). The exact physics of the phase lag (θ ) is
not known. It is approximated by using an expression based on a hydraulic analogy in (Lever
and Weaver, 1982). In Equation (4.7), the phase lag (θ ) is eliminated in the derivation of the
displacement amplitude (Y ), although its effect is incorporated in the square-root term.

The fluid force ( fy) in Equation (4.7) can be expressed in terms of the pitch velocity (up)
by an empirical relation as,

fy = Euy
1
2

ρu2
p D (4.8)

Where, Euy is the component of the Euler number in the transverse direction. The Euler
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number in heat exchanger designs is commonly defined as,

Eu =
∆prow
1
2ρu2

p
(4.9)

Where, ∆prow is the pressure drop across a row of an array. Thus the Euler number in the
flow direction Eux is simply the Euler number Eu. The flow normal component of the Euler
number Euy is assumed to be based on the instantaneous pressure drop in the lift direction
(∆py) across the cylinder. Using Equation (4.8) in Equation (4.7) gives,

Y =
Euy

1
2ρu2

p D

mω2
n

√(
1−
(

ωsh
ωn

)2
)2

+
(

2ζ
ωsh
ωn

)2
(4.10)

The term in the square root acts as a mechanical impedance, which signifies the resistivity of
the cylinder to the imposed harmonic force. Let the mechanical impedance be,

Im =

√√√√(1−
(

ωsh

ωn

)2
)2

+

(
2ζ

ωsh

ωn

)2

(4.11)

Rearranging the terms in Equation (4.10) leads to,

(
m
ρ

)
Y
D

Im =

(
Euy

2(2π)2

)(
u2

p

f 2
n

)
(4.12)

The amplitude (Y ) of the cylinder vibration can be expressed in terms of the fraction (h) of the
minimum distance between two cylinders (P−D) as,

Y
D

=
h(P−D)

D
= h(p∗−1) (4.13)

The expression for the pitch velocity (up) using Equation (4.12) and Equation (4.13) becomes,

up

fnD
=

√
8π2h(p∗−1)

Euy

(
m

ρD2

)0.5

I0.5
m (4.14)
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Figure 4.2 Idealized interactions between the central cylinder and adjacent flow-streams.

Modeling the impedance

The impedance Im represents the dynamics between the flow periodicity (ωsh) and the cylinder
natural frequency (ωn) at a particular flow velocity (up). It also contains the damping ratio
(ζ ). The dynamic interaction between the flow streams and the cylinder oscillations can be
modeled using the impedance Im. The oscillating central cylinder perturbs the adjacent flow
streams. The perturbations, in terms of the local high/low velocities, travel on top of the flow
streams. The perturbations appear on the stream tubes in a timely manner, since they are
generated as a result of the harmonic oscillations of the cylinder. The distance between the
two high/low velocity perturbations (or simply the wavelength of the perturbation wave) λ can
be defined as,

λ = 2π
up

ωn
(4.15)

The interstitial flow with the flow perturbation waves is idealised in Figure (4.2). The flow
direction is shown by the bold arrows. The smaller waves with a wavelength λ represents the
perturbation wave. Similarly the pitch length (P) can be represented in terms of the angular
frequency (ωsh), representing the flow periodicity due to the array pattern as,

P = 2π
up

ωsh
(4.16)

The flow perturbations produced due the cylinder vibration travel with the adjacent flow
streams through the non-uniform cross-sectional areas of the array pattern. The wavelength
λ linearly increases with the pitch velocity up as per Equation (4.15). At a particular value
of the velocity (up), where λ equals the pitch distance (λ ≈ P), the impedance (Im) of the
system becomes minimum. Thus the cylinder experiences less resistance for the vibration.
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The amplitude of oscillations increases as per Equation (4.10), in other words, the effective
damping (damping of the cylinder ζ and the fluid damping coefficient) decreases. In a con-
trary scenario, the increase of impedance results in an increase of the effective damping of the
cylinder. The increase or decrease of the effective damping of cylinder reflects in the respec-
tive decrease or increase of the amplitudes of cylinder vibration (Equation 4.10). Thus the
impedance (Im) varies dynamically with the increasing flow velocity (up). In general, we can
consider nλ ≈ P for λ ≤ P and λ ≈ nP for λ ≥ P, where n is a positive integer multiplier. Let
α be the ratio of the wavelength λ and the pitch distance P of the array. We can write,

α =
λ

P
=

ωsh

ωn
(4.17)

The fluidelastic instability model presented by (Yetisir and Weaver, 1993a), (Yetisir and
Weaver, 1993b) is based on the the semi-analytical model of (Lever and Weaver, 1982). The
unsteady model is improved (in (Yetisir and Weaver, 1993a), (Yetisir and Weaver, 1993b))
by using a decay function for the perturbations away from an oscillating cylinder, in addition
to the phase lag function used in (Lever and Weaver, 1982). In these formulations the flow
disturbances are accounted in terms of the perturbations in the area of the flow streamtube.
Thus the perturbations in the streamtube area introduced by a moving tube are assumed to
decay away from the tube. A simple decay function for the area perturbation is used (refer
Equation 2 in (Yetisir and Weaver, 1993b)). On the same ground, here, the influence of the
perturbation generated by a cylinder is assumed to decay exponentially as it travels away from
the cylinder. The ratio α can be redefined as β , for the multiple synchronizations between λ

and P as well as by taking into account the exponential decay as,

β = 1+ sin(πα)exp(−α) (4.18)

The impedance Im for the tube array can be redefined using β as,

Im =

√
(1−β 2)

2
+(2ζ β )2 (4.19)

Stability criteria and mechanisms

The amplitude of cylinder vibration (Y = h(p∗−1)) increases (or may also decrease depending
on the dynamics between the perturbation wave and the array pattern) with the increasing pitch
velocity (up), as per Equation (4.14). The unsteady and stationary response of the cylinder is
expected to follow stable limit cycles, atleast for h < 0.5. The limiting value of h is 1, for
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which the cylinder strikes the neighbouring cylinders. The critical value of the amplitude of
cylinder oscillations can be taken as half the gap distance (P−D), with hc = 0.5. The Euler
number (Euy) in the lift direction was defined in terms of the flow normal pressure drop (∆Py)
across the cylinder. The pressure drop in the lift direction across the cylinder remains small for
the smaller amplitude oscillations of the cylinder. At the onset of the instability, the cylinder,
which oscillates at higher amplitudes, tends to cross the adjacent flow streams. Thus, the
upper limit for the pressure drop ∆Py is the pressure drop (∆prow) across a row of the array.
The critical value of the flow normal Euler number (Euy) can be used as Euy = Euc = Eu, for
the corresponding Reynolds number (Rec). The Equation (4.14) can be written for the critical
pitch velocity (upc) as,

upc

fnD
= Kc

(
m

ρD2

)0.5

I0.5
m (4.20)

Where the constant of proportionality Kc is,

Kc =

√
8π2hc (p∗−1)

Euc
(4.21)

The fluidelastic instability is usually classified under different mechanisms, mainly, in
the stiffness controlled and damping controlled mechanisms, as predicted by (Chen, 1983a),
(Chen, 1983b) as well as (Price and Païdoussis, 1986a). In the damping controlled mechanism
the fluidelastic forces are in phase with the cylinder velocity, while as in the stiffness controlled
mechanism the forces are in phase with the cylinder displacement. Furthermore, at a low mass
damping parameter (mδ †/ρD2), the instability is said to be damping controlled, while as at
a higher mass-damping parameter the instability is said to be stiffness controlled. On the
contrary, in (Tanaka et al., 2002) the mechanisms are found to assist each other, and hence
the instability is considered to be a combination of both the stiffness and damping controlled
mechanisms.

The phase lag (θ ) between the cylinder displacement and the forces can be approximated
in terms of the modeled mechanical impedance (Equation (4.19)) and the parameter β as,

θ = arcsin
(

2ζ β

Im

)
(4.22)

At the low values of mass-damping parameter, where the critical flow velocities are low, the
parameter β oscillates about 1 with the increasing flow velocity. The phase lag (θ ) thus
oscillates between 0 and π/2, which indicates the presence of both stiffness as well as damping

†δ = 2πζ/
√
(1−ζ 2), for small ζ , δ ≈ 2πζ
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controlled mechanisms, an observation similar to the (Tanaka et al., 2002). On the other
hand, for high values of the mass-damping parameter (or the higher flow critical velocities)
the parameter β converges to 1. It leads to the phase lag value of θ = π/2. Although it
implies that the fluid forces are in phase with the cylinder velocity, the higher values of mass-
ratio (m/ρD2) result into motion dependant forces (Chen, 1983a) (Chen, 1983b), (Price and
Païdoussis, 1986a) on the cylinder. Therefore it is classified under the stiffness controlled
mechanism. The paradox is also discussed in (Païdoussis et al., 2010, chapter 5). Furthermore,
at higher values of the mass-damping parameter (typically for gaseous flows), the mechanical
impedance (Im) simply becomes Im = 2ζ . Thus, Equation (4.20) takes the form of Equation
(4.1) with a value of the exponent a = 0.5, common for both the mass ratio (m/ρD2) and the
damping ratio (ζ ).

4.2.2 Estimation of the critical flow velocity

The derivation for the critical pitch velocity (upc) in Equation (4.20) is in an implicit form.
The terms Euc in the constant of proportionality (Kc) and the wavelength λ in the impedance
Im term are functions of the pitch velocity up itself. The Euler number (Eu) for different
Reynolds numbers and array configurations is generally provided in the heat exchanger design
handbooks in terms of empirical relations. Equations (4.23), (4.24) represent power series
providing the values of Euler number (Eu) at different Reynolds numbers (Re) for the square
normal (90o) and square rotated arrays (40o). The values of empirical constants ci varies with
the array configuration. The table in Figure (4.3) provides the values of empirical coefficients
ci for the in-line square arrays for different pitch ratios (p∗). Figure 4.3 shows the curves
generated using these empirical relations.

Eu =
4

∑
i=0

ci

Rei ∀ in-line and rotated square arrays (4.23)

=
4

∑
i=0

ciRei ∀ in-line arrays, longitudinal pitch ratio p∗ = 2.5 (4.24)

An iterative procedure can be followed in order to solve Equation (4.20) for upc. The
structural parameters (m, fn and ζ ) in quiescent fluid medium, fluid density (ρ), fluid viscosity
(µ) and the geometrical parameters (D, P) are known beforehand. The critical pitch velocity
upc is thus estimated using Equation (4.20) for an arbitrary value of the pitch velocity up,
such that upc = up. Figure 4.4 shows the flow chart of the procedure to estimate the critical
pitch velocity. At first, for an arbitrary value of the pitch velocity (up), Reynolds number
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up

λ

fn
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ρ,µ,D

α
P

β Eu

Im
ζ
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hc, p∗
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u p

<
u p

c
st
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le

m, fn ρ,D

up ≥ upc unstable

Figure 4.4 Flow chart for an estimation of the critical pitch velocity upc.

Re is calculated using the density ρ , fluid viscosity µ and the cylinder diameter D. The Euler
number is estimated using the value of Reynolds number and the appropriate empirical relation
(Equations 4.23 or 4.24). The Euler number (Eu) and the critical value of the fraction (hc) are
used to estimate the critical proportionality constant Kc using Equation (4.21). On the other
hand, the perturbation wavelength λ is obtained using the arbitrary pitch velocity up and the
natural frequency of the cylinder fn as λ = up/ fn. The parameter α and β can be readily
obtained by using Equations (4.17) and (4.18) respectively. The mechanical impedance Im is
estimated by using the damping of cylinder (ζ ) and the parameter β in Equation (4.19). Thus
for an arbitrary pitch velocity up, a critical value of the pitch velocity (upc) can be obtained
using Equation (4.20). The vibrations in cylinder are critical for up = upc.

4.3 Model predictions of experimental results

The experimental results of the fluidelastic instability in square normal (90o) tube arrays are
taken from the review article of (Pettigrew and Taylor, 1991). The results of 11 experiments
and their model predictions are enlisted in Table (4.1). In the second column of the table, the
names of experiment series are listed, which refer to the corresponding data source. Please
refer to Table 2 of (Pettigrew and Taylor, 1991) for further details. The last two data sets,
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named as AMOVI and DIVA, are unpublished results. All the experiments are carried out
with the water flows except the fifth one, which is with the air flow. The pitch ratio (p∗) and
the cylinder diameter (D) in m are listed in the third and fourth columns respectively. The
cylinder mass per unit length m in kg/m, natural frequency fn in Hz and the damping ratio
ζ are listed in the fifth, sixth and seventh columns respectively. These quantities are defined
with respect to the quiescent flow medium. The fluid density ρ in kg/m3 and viscosity ν in
Pa·s is tabulated in the eighth and ninth columns of the table. The values of the mass-damping
parameter (mδ/ρD2) are calculated and listed in the tenth column. The critical pitch velocities
(upc) in m/s for each experiment are provided in the eleventh column of the table. The non-
dimensional critical pitch velocities (critical reduced velocities) u∗pc are listed in the twelfth
column. The remaining columns of the table provide the results of model predictions. The
critical reduced pitch velocity u∗pc and the critical pitch velocity upc in m/s estimated using
Equation (4.20) are listed in the thirteenth and fourteenth columns of the Table (4.1). The cor-
responding Reynolds number (Rec), Euler number (Euc) and the proportionality constant (Kc)
are tabulated in the fifteenth, sixteenth and the seventeenth columns of the table respectively.

It is necessary to note that the experimental results compiled in (Pettigrew and Taylor,
1991) are gathered from different sources. The experimental results can have discrepancies
in terms of some parameters such as size of the array, length of the array, exact value of
the critical flow velocity and so on. In addition to these parameters, the inflow turbulence,
the location of the tube in an array, vibration in all tubes, degrees-of-freedom in vibration are
known to have an influence on the value of critical flow velocity. The configuration of AMOVI
and DIVA experiments contain tube bundles of 5×5 and similar to the assumptions made in
the theoretical development presented in this article, i.e. only the central cylinder is free to
oscillate in the lift direction. The instability criteria used in the theory are, first, the amplitude
of oscillations becomes half the gap between two adjacent cylinders separated by the pitch
and second, the lift component of the Euler number (Euy) takes the maximum value based on
the pressure drop (∆prow) across a row of the array. Therefore the predicted critical velocities
may serve as a general threshold of the instability in the array. The critical reduced velocities
(u∗pc) predicted by the theory are in a fair agreement with the experimental results, especially
considering the different values of the input parameters.

Figure (4.5) shows the variation in the model (Equation (4.20)) parameters for increasing
value of the arbitrary reduced pitch velocity (u∗p). The Figures 4.5(a), (b) show predictions of
the critical flow velocity for a water flow experiment (AMOVI), in which the first plot (Figure
4.5(a)) shows the variation in the critical reduced velocity u∗pc, while the second plot shows
the variations in the impedance (Im), parameter β , the Euler number (Eu) and the fluidelastic
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4.3 Model predictions of experimental results

(a) u∗pc = 2.82 (b) u∗pc = 2.82

(c) u∗pc = 15.96 (d) u∗pc = 15.96

Figure 4.5 Model predictions of the critical pitch velocity (upc) for (a), (b) a water flow and (c), (d) an
air flow experiments.

proportionality constant (Kc) against the increasing reduced velocity (u∗p). Similarly, Figures
4.5(c), (d) are the model predictions for the air flow experiment (Axisa84) listed in the Table
(4.1). It is clear from the Figures 4.5(a), (b) (as well as from (c), (d)) that the main source of
the variation in the critical reduced pitch velocity (u∗pc) is the impedance Im of the system. The
Euler number and the proportionality constant show some variations initially for low Reynolds
numbers, but over the large range their values remain nearly constant.

An important difference between the water flow and the air flow experiments in Figure
(4.5) is the variations in the critical reduced velocity at the onset of the instability. In Figure
4.5(a) the arbitrary reduced velocity becomes greater than the estimated critical reduced ve-
locity after u∗p = u∗pc = 2.82. Although with further increase of the u∗p, the critical reduced
velocity u∗pc becomes smaller than the u∗p, indicating a possibility of the restabilization of the
vibration in cylinder. On the other hand, the critical reduced velocity (u∗pc) in Figure 4.5(c) re-
mains almost constant for u∗p ⪆ 10, providing no possibility of the restabilization. The major
difference between these two experiments is the mass ratio (m∗ = m/ρD2), due the differ-
ence in the fluid mediums. The influence of the mass ratio (m∗) on the fluidelastic instability
thresholds is studied in (Tanaka and Takahara, 1981) for a square normal tube array. In their
approach, the critical reduced velocity is estimated using the measured unsteady fluidelastic
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(a) Influence of the mass ratio on the critical reduced velocity (Source: (Tanaka and
Takahara, 1981))

(b) Model prediction of the critical reduced velocity for the same parameters as in (a)

Figure 4.6 Comparison of the stability thresholds, for various mass ratio and three values of the loga-
rithmic decrement, between (Tanaka and Takahara, 1981) and the proposed model (Equation 4.20).
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Figure 4.7 Theoretical prediction of the instability boundaries for an in-line array with the pitch ratio
p∗ = 1.33 and the logarithmic decrement δ = 0.01.

forces on a cylinder of the array. Figure 4.6(a) shows the continuous stability boundaries for
three values of the logarithmic decrement (δ ) and varying mass ratio (m∗) for a small (2×3)
square array with the pitch ratio p∗ = 1.33. In addition, there are some experimental data
points on the stability map (Figure 4.6(a)), which are obtained for a bigger (4×7) square nor-
mal array with the same pitch ratio (p∗ = 1.33). The labels ‘A’ and ‘B’ indicate the different
modes of vibration. The model (Equation (4.20)) prediction of the threshold boundaries for
the pitch ratio p∗ = 1.33 and for different values of the δ and m∗, similar to that of (Tanaka
and Takahara, 1981) used in Figure 4.6(a), are shown in Figure 4.6(b). The Figures 4.6(a) and
(b) appear to make a match qualitatively and quantitatively, particularly for the higher values
of the mass ratio. Further the nature of the stability boundaries changes for u∗pc ⪆ 10 in both
the stability maps of Figure (4.6).

The stability thresholds predicted in Figure 4.6(b) by using Equation (4.20) are the lower
stability limits for a particular value of the logarithmic decrement (δ ). As discussed above,
the variation in the critical reduced pitch velocity at low mass ratio (low velocities) provide
a possibility of the restabilization (at least theoretically) for velocities higher than the critical
values. The actual stability boundaries predicted by the model include the multiple stability
thresholds. For example, Figure (4.7) show the stability map for a square array with pitch
ratio p∗ = 1.33. A constant value of the logarithmic decrement is used (δ = 0.01). The plot
shows the critical reduced pitch velocity (u∗pc) as a function of the mass-damping parameter
(mδ/ρD2). The red curves represent the unstable boundaries for an increasing value of the
velocity, while the green curves stand for the restabilization boundary. Further investigation
is required for accurate the shapes of the multiple stability boundaries, since it depends on the
modeling of mechanical impedance term (Im) of the implicit model.
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4.4 Conclusion

A theoretical model for the fluidelastic instability is developed. The dynamic interaction be-
tween the interstitial flow streams and the cylinder vibration is modeled by means of the pertur-
bation waveforms on the flow streams due to cylinder displacements. The influence of the flow
perturbations on the cylinder is assumed to decrease exponentially away from the cylinder.
The effective damping of the cylinder vibration varies with the increasing flow velocities, this
effect is attributed to the synchronization of the perturbations travelling on the flow streams
with the non-uniform flow paths of the array geometry. Incorporating these physical aspects of
the fluidelastic interactions lead to an implicit mathematical model for the critical flow veloc-
ity. The constant of proportionality is a function of the array pitch ratio and the Euler number
(which is a function of the Reynolds number). The model predictions show a fair agreement
with several experimental data. The multiple stability regions at lower mass-damping param-
eter are predicted by the model, although there is a need for further investigation in order to
precise the shapes of the multiple instability boundaries.
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CHAPTER 5

INTRODUCTION TO REDUCED-ORDER MODELING

Abstract

An introduction to Reduced-Order Modeling (or Model Order Reduction) is presented in this
article. the model reduction techniques in the field of control theory and analysis of large non-
linear dynamical systems are briefly reviewed. At first, preliminary concepts for the model
reduction are defined. Secondly, the common model reduction methods, namely, Truncated

Balanced Approximation, Krylov subspace approximations and Proper Orthogonal Decom-

position are presented. The ultimate aim of the model reduction methods is to approximate a
complex and large dynamical system by a simpler reduced system, while keeping its essential
features. Thus the insignificant and unwanted parts of the original system are eliminated in
order to reduce the system size and computational time.

Keywords

Reduced-Order Modeling, Singular Value Decomposition, Krylov subspaces, Proper Orthog-
onal Decomposition, Galerkin projection
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5.1 Introduction

Model reduction techniques has its origin in the control theory and applications. The com-
plex input-output relations of a control systems are simplified by using reduced-order models
(ROM) (Benner et al., 2006). In science, mathematical models are regularly used to describe
physics of a system, especially with the development of Newtonian mechanics. Often, exact
solutions of the mathematical models are impossible because of the complexity of mathemat-
ics involved. In such scenarios, model reduction plays an important role in approximating the
behaviour of original system. Prior to the development of the computers and computational al-
gorithms, model reduction was performed by using simple trigonometric functions (Fourier’s
development) and generally using simplified mathematical relations. With the advent of com-
puters and highly efficient algorithms, the complex mathematical models are addressed by
means of numerical simulations. Generally the degrees of freedoms involved in such numeri-
cal simulations are high, typically of the order ∼ 106. The real time and data storage require-
ments by the numerical simulations has also led to the development in the model reduction
techniques. In linear algebra, the tridiagonalization of a matrix was introduced by (Lanczos,
1950). Further, (Arnoldi, 1951) introduced an algorithm to approximate large matrices by
small matrices by means of the concept of Krylov subspaces. (Lanczos, 1950) algorithm deals
with symmetric matrices, which is a simplified case of (Arnoldi, 1951) algorithm.

The two commonly used approaches in model reduction are the method of moments match-

ing based on the Krylov subspaces (Antoulas, 2005) and the Gaerkin projection of the Proper

Orthogonal Decomposition (POD) basis functions (Schilders et al., 2008). The pioneering
and formal method of model reduction was proposed by (Moore, 1981b), which is known as
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the method of Truncated balanced realizations. In this method, a controllable and observable
subspace is formed based on the Principal Component Analysis. In order to retain the impor-
tant features of a control system, (Glover, 1984a) proposed the Hankel-norm reduction. The
Hankel norm provides a measure of the energy of a system state. Thus a reduced subspace
is formed based on the states with higher energy content. The well known method of Padé

Via Lanczos (PVL) was proposed by (Feldmann and Freund, 1995), which showed the rela-
tion between the Padè approximations and the Krylov subspaces. The Arnoldi based method
called PRIMA was developed by (Odabasioglu et al., 1997) in order to deal with the non-
passivity of the control systems. The methods of moments matching are highly efficient and
can easily be extended to higher order systems, although they lack in the exact error estimates.
The method of Proper Orthogonal Decomposition (POD) (or Karhunen-Loève decomposition)
(Aubry, 1991) is used for higher order non-linear dynamical systems and analysis of multidi-
mensional data in several fields. (Sirovich, 1987) proposed an important development in the
POD method, it is known as the method of snapshots. It results in a considerable amount of
reduction of the number of degrees-of-freedom compared to the Direct method of POD.

Reduce-Order modeling is a developing field, hence several new methods as well as ex-
isting methods in modified form are available. The methods Singular Perturbation Approx-

imation, Low-rank Gramian approximants and matrix sign function method are base on the
formulation of Truncated Balanced Approximation. The method of Asymptotic Waveform

Evaluation related to the Krylov subspaces was proposed by (Pillage et al., 1990). It mainly
deals with obtaining the Padè approximation rather than the Krylov subspaces. There exist a
class of model reduction techniques dealing with parametric (Benner et al., 2013) and weakly-
nonlinear dynamical systems (Phillips, 2003). The nonlinear model reduction methods based
on Volterra series representation and harmonic balance are presented, in addition to the POD
based reduced models in (Lucia et al., 2004). The method of Proper Generalized Decompo-
sition (PGD) promises to construct the reduced subspace without a priori knowledge of the
system (Chinesta et al., 2010).

The article is arranged as follow: first, the following section (5.2) is dedicated to the def-
initions of preliminary concepts in reduced-order modeling. Second, the two commonly used
approaches in model reduction based on the Krylov subspaces and POD basis are discussed,
in addition to the pioneering balancing and truncation approach.
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5.2 Preliminary definitions

5.2.1 Dynamical systems

A state variable (or a set of variables) varying in time, which is described by a set of equations
can be termed as a dynamic system. The state vector can be a function of a geometrical
space. Every future time state is predicted by the dynamic equations describing the state.
The mathematical representations are usually differential equations. Many dynamic systems
representing the real world problems are often fairly complicated, for example the Navier-
Stokes equations in fluid dynamics. A simple dynamic system can be written in terms of an
explicit ordinary differential equation as,

dx
dt

= f (x,u)

y = g(x,u) (5.1)

Here, x is the state variable, y is the output, u is the input and functions f , g are the dynamic
equations governing the state variable. The objective of model reduction is to decrease the
number of degrees-of-freedom (DOF) present in the system while retaining essential dynamics
of the system. This can be achieved by reducing the dimension of the state variable x and also
preserving the characteristics of the governing equations f and g. The functions f , g can be
of different type (e.g. linear, non-linear, time dependant, time-varying etc.), accordingly the
dynamical system can be classified.

5.2.2 Transfer functions

In the context of control theory, a transfer function is defined as the ratio of the output of
the system to its input in the Laplace transform domain considering the initial conditions and
the zero equilibrium condition. Lets consider the system in Equation (5.1) in the linear time-
invariant form as,

dx
dt

= Ax+bu

y = cT x (5.2)
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Where, A, b, c are the time-independent coefficients. Applying Laplace transform to the
dynamics system using an initial condition x(t) = 0 at t = t0 gives,

(sI−A)L (x) = bL (u)

L (y) = cT L (x) (5.3)

Where, the parameter s is the ‘complex number frequency’ in the definition of Laplace trans-
form. I is the identity matrix. The symbol L represents the Laplace transform, while the
superscript T stands for the matrix transpose. The transfer function H(s) of the system is then
given by,

H(s) =
L (y)
L (u)

= cT (sI−A)−1 b (5.4)

The transfer functions can be expanded at s = 0 as,

H(s) = M0 +M1s+M2s2 + .... (5.5)

The coefficients M0, M1, M2, ... are called the moments of the transfer function. The time
delay between the input (u) and the output (y) corresponds to the first moment M1. The time
delay is also called as Elmore delay. The dimensions of the transfer function H(s) depends on
the size of input u. The transfer functions of finite-dimensional systems are generally rational
functions of s. The roots of denominator (L (u)) are called poles and that of numerator (L (y))
are the zeros of the dynamical system. The poles and zeros dictate the dynamics of the system.

5.2.3 Controllability and Observability Gramians

Controllability and observability are two important and dual aspects of a control system. In
general, controllability is the ability of the input function (u) to change the state variable (x).
The observability of a control system is the possibility of determining the behaviour of the
system from the system’s output (y). Let E be the eigenvector space with λi as corresponding
eigenvalues of the matrix A of the dynamic system in Equation (5.2). The system can be
transformed in a more intuitive form as,

dz
dt

= E−1AEz+E−1bu =


λ1

. . .

λn

z+


b1
...

bn

u (5.6)
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and
y = cT Ez = (c1, · · · ,cn)z (5.7)

The transformed dynamic system in Equations (5.6) and (5.7) consists n independent transfer
relations. The state variable zi is controllable for bi ̸= 0. If the value of ci is zero, the the
corresponding zi is unobservable. Thus from the model reduction point of view, it is desirable
to eliminate the unobservable and uncontrollable transfer function equations. Thus the reduced
dynamical system is known as minimum realization of the original system.

Let P and Q be respectively the controllability and observability gramians of the dynamical
system in Equation 5.2. The gramians are the solutions of the Lyapunov equations,

AP+PAT =−bbT

AT Q+QA =−cT c (5.8)

5.2.4 Stability and Passivity

A dynamical system is stable if the output of the system is bounded in time domain. The poles
and the eigenvalues of the system are generally used to study the stability of a dynamical
system. For instance, the system in Equation (5.6) is stable for all eigenvalues less than or
equal to zero (Re(λi)≤ 0). Passivity of a dynamic system is its inability to produce anything
that increases the output beyond the input. When a stable system coupled with some non-
linear components, it can go unstable. The passive components are incapable of producing
energy or gaining power.

5.2.5 Subspace projections

Subspace projection is a very important part of many model reduction techniques for large
linear algebraic systems and eigenvalue matrices. Suppose a system of equations Ax = b
with A ∈ Rn×n and x, b ∈ Rn. Here n is the dimension of the problem. The idea is to find
an appropriate subspace Rr such that r << n. The original system of equations Ax = b is
then projected on the reduced subspace Rr. The projection generates a fairly reduced system,
which can be solved with much less computational efforts. The dynamical system in Equation
(5.6) uses the eigenvector matrix E of dimension n×n. It can form a subspace, if we reduce
its dimension to r× r. This can be achieved by eliminating the uncontrollable, unobservable
and insignificant transfer paths from the system. The projection of A on the subspace Er is
Ar = E−1

r AEr, the projection of b is br = E−1
r b and the projection of cT on the subspace (Er)
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can be given by cT
r = cT Er. The projection here is bi-orthogonal since E−1

r Er = Ir. In general
the subspace Er need not necessarily be orthogonal.

5.2.6 Hankel singular values

The stability of a control system can be defined in terms of eigenvalues, whereas the Hankel
singular values represent the energy associate with each state in the system (Glover, 1984a).
The important characteristic properties of a system are preserved with the large Hankel sin-
gular values (i.e. with the large energy states of a system). The important properties can be
stability, frequency dynamics or a time response of the system. The Hankel values are given
by,

σi =
√

λi (PQ) (5.9)

Where, λi are the eigenvalues of the system, while P and Q are the controllability and observ-
ability gramians satisfying the Lyapunov equations (Equation 5.8).

5.3 Model order reduction techniques

5.3.1 Truncated Balanced Realization

In the balanced truncation method (Moore, 1981b), the projection subspace is obtained by
means of the controllability and observability gramians. The balancing transformation can
be performed by using the Square-root method. The unobservable and uncontrollable parts
of the system are truncated in order to obtain a reduced system. The controllability gramian
(P) and the observability gramian (Q) of the dyanmics system in Equation (5.2), which are
the solutions of the Lyapunov equations (Equation 5.8). The dynamical system is balanced if,
P = Q = diag(σ1, · · · ,σn) with σ1 ≥ σ2 ≥ ·· ·σn ≥ 0, where the σi are the Hankel singular
values of the dynamical system.

In the first step of the necessary balancing transformation, the Cholesky factors (L, R) of
the gramians are obtained. The graminas in terms of Cholesky factors are P = LT L and Q =

RT R. In the next step the matrix LRT is decomposed by the Singular Value Decomposition
as, LRT = L0ΣRT

0 . The truncation of the system (matrices L0 and R0) can be performed at
this stage based on the Hankel Singular Values. The subspace matrices for model reduction

101



Introduction to Reduced-Order Modeling

are given as,

WT
r = Σ− 1

2 RT
0 R

Vr = LT L0Σ− 1
2 (5.10)

The reduced-order system is given as Ar = WT
r AVr, br = WT

r b and cr = cVr. The value of
reduced dimension r can be found by formulating an error bound as,

||Σ−Σr|| ≤ 2||u||
n

∑
i=r+1

σi (5.11)

5.3.2 Krylov subspaces

The Krylov subspace is defined for a matrix A and an initial vector b as,

Kr(A;b) = span
{

b,Ab, · · · ,Ar−1b
}

(5.12)

The dimensions of matrix A and b are n×n and n×1 respectively. r is a positive integer. The
subspace vectors b,Ab, · · · are called basis vectors. Let us define Krylov subspace matrices
(V, W) for the dynamic system in Equation (5.2) as,

Vr → Kr(A−1;A−1b) = span{A−1b, · · · ,(A−1)rv−1A−1b} (5.13)

and
Wr → Kr(A−T ;A−T c) = span{A−T c, · · · ,(A−T )rw−1A−T c} (5.14)

Unlike the subspace spanned by eigenvectors (Er) the Krylov subspace matrices (Vr, Wr) need
not be orthogonal. The model order reduction performed using these subspaces can be two-
sided (if both the matrices are specified) or one-sided (if one of the two matrices is specified
while the other left arbitrary). In the Krylov subspace transformations, the resulting dynamical
system is not guaranteed to a stable reduced system. The stability can be ensured by matching
more moments (M0, M1, ...) of the transfer function (H(s)) of the original system with the
reduced model. The Taylor series expansion for the transfer function in Equation (5.4) at
s0 = 0 is,

H(s) =−cT A−1b− cT (A−1)A−1bs− cT (A−1)2A−1bs2 −·· · (5.15)

The first moment M0 = −cT A−1b of the original system should equals the first moment of
the reduced system M0r =−cT

r A−1
r br. Similarly the equality of the higher moments up to 2r
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moments in two-sided methods and r moments in one-sided methods ensure the stability of
the reduced system. The approximation by moment matching can be performed for a non-zero
value of s0. The moments are termed as Markov parameters when s0 →∞. The reduced system
is known as Padé approximation for s0 → ∞. Although the dual (two-sided) method improves
the approximation by considering higher moments, the stability of the reduced system is not
guaranteed in either methods (Antoulas, 2005).

Arnoldi algorithm

The numerical issues in the moment matching approximations can be refined by using orthog-
onal basis instead of any basis matrices forming the Krylov subspace. Thus for a Krylov sub-
space Kr(A;b) formed using Arnoldi algorithm generates a subspace (Vr) such that VT

r Vr =

Ir. The Krylov subspace generation using Arnoldi algorithm is common in one-sided meth-
ods. In an interesting development in Arnoldi algorithm, (Odabasioglu et al., 1997) proposed
the PRIMA method, which deal with the non-passivity of a dyanical system by an explicit
projection algorithm instead of the Hessenberg matrix formation.

Lanczos procedure

Lanczos procedure is well known for two-sided Krylov subspace methods. It generates an ad-
ditional orthogonal Krylov subspace Kr(AT ;c), in addition to Kr(A;b) in Arnoldi method by
forming another orthogonal matrix Wr such that WT

r Vr = I. The Lanczos method is unstable,
in terms of preserving the orthogonality of both matrices (Vr and Wr). A re-orthogonalization
procedure is often used to stabilize the Lanczos algorithm. The algorithm transforms the sys-
tem matrices in the tridiagonal form. The method is improved for the stabilization and efficient
operations over the years.

5.3.3 Proper Orthogonal Decomposition

POD basis

Let us consider a vector space V∈Rn. Let S be a discrete solution set given as S= {s1(t),s2(t), · · · ,sm(t)}.
A solution si(t) ∈ Rn, with i = 1,2, · · · ,m and time t ∈ [0,T ]. The objective of POD analysis
of the solution set is to perform an orthogonal projection Πr : V → Vr such that r << n. The
subspace Vr ⊂ V and the projection is constrained to minimize the least-squared distance,

||S−ΠrS||2 =
m

∑
i=1

∫ T

0
||si(t)−Πrsi(t)||2dt (5.16)
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This is achieved by forming a correlation matrix (R ∈ Rn×n) of the solution set defined as,

R =
m

∑
i=1

∫ T

0
si(t)si(t)T dt (5.17)

The correlation matrix (R) is a symmetric positive semi-definite matrix. Let λ1 ≥ λ2 ≥ ·· ·λn ≥
0 be the (ordered) eigenvalues of the correlation matrix. The corresponding eigenvectors φφφ i

are give by,
Rφφφ i = λiφφφ i, i = 1,2, · · · ,n (5.18)

The eigenvectors serve as an orthonormal basis from V. The subspace Vr = span{φφφ 1,φφφ 2, · · · ,φφφ r}
with reduced size r represents the optimal subspace known as the POD reduced basis.

The method of snapshots is much efficient method to obtain the POD basis. The correlation
matrix (R), which is n × n in size, is build using a correlation of a time-varying data set
(snapshots). The time correlation matrix (R) is thus m×m in size. The time correlation matrix
is given by,

R = SST =
m

∑
i=1

s(ti)s(ti)T (5.19)

The time-correlation matrix is solved for the eigenvalue problem.

Rψψψ i = λiψψψ i, i = 1,2, · · · ,m (5.20)

The eigenvectors (ψψψ i) are also referred as the POD time modes. The eigenvalues λi remain
the same. The orthonormal subspace Wr = span{ψψψ1,ψψψ2, · · · ,ψψψr} is related with the subspace
Vr = span{φφφ 1,φφφ 2, · · · ,φφφ r} by,

φφφ i = λ
− 1

2
i Sψψψ i, i = 1,2, · · · ,r (5.21)

The eigenvalues (λi) observe an exponential decay in their values, hence the energy content
associated with the POD mode. The value of reduced dimension r is usually chosen based on
the relative information retained,

%I(r) =
∑r

i=1 λi

∑n
i=1 λi

×100 (5.22)
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Galerkin projection

Lets assume a dynamical system with the solution s(t). It is obtained by a finite discretization
of non-linear differential equations. The dynamical system can be written as,

ds
dt

= f (s(t)) (5.23)

Here f : V → V. A reduced-order model is obtained by projecting the dynamical system on
the POD orthogonal reduced basis (Πr) as,

dsr

dt
= Πr f (sr(t)) (5.24)

Using relations Πr = VrVT
r and ai(t) =

√
λiψi(t) in Equation (5.24),

dai(t)
dt

= φφφ
T
i f

(
r

∑
j=1

φφφ ja j(t)

)
, i = 1,2, · · · ,r (5.25)

The system of ordinary differential equations can be solved using an initial value for the time
POD time coefficients (ai(0)). The reduced solution of the system is obtained as,

sssr(t) =
r

∑
i=1

φφφ iai(t) (5.26)

5.4 Conclusion

A brief introduction to reduced-order modeling in the control system and large scale numerical
systems is provided. The preliminary concepts in the model reduction are revised. The basis of
the most commonly used methods in mode reduction, namely, truncated balanced realization,
Krylova subspace apporximations and proper orthogonal decomposition is presented.
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CHAPTER 6

A GALERKIN-FREE MODEL REDUCTION APPROACH FOR THE

NAVIER-STOKES EQUATIONS

Abstract

Galerkin projection of the Navier-Stokes equations on Proper Orthogonal Decomposition
(POD) basis is predominantly used for model reduction in fluid dynamics. The robustness for
changing operating conditions, numerical stability in long-term transient behaviour and the
pressure-term consideration are generally the main concerns of the Galerkin Reduced-Order
Models (ROM). In this article, we present a novel procedure to construct an off-reference so-
lution state by using an interpolated POD reduced basis. A linear interpolation of the POD
reduced basis is performed by using two reference solution states. The POD basis functions
are optimal in capturing the averaged flow energy. The energy dominant POD modes and
corresponding base flow are interpolated according to the change in operating parameter. The
solution state is readily built without performing the Galerkin projection of the Navier-Stokes
equations on the reduced POD space modes as well as the following time-integration of the
resulted Ordinary Differential Equations (ODE) to obtain the POD time coefficients. The pro-
posed interpolation based approach is thus immune from the numerical issues associated with
a standard POD-Galerkin ROM. In addition, a posteriori error estimate and a stability analysis
of the obtained ROM solution are formulated. A detailed case study of the flow past a cylinder
at low Reynolds numbers is considered for the demonstration of proposed method. The ROM
results show good agreement with the high fidelity numerical flow simulation.

Keywords

Reduced-Order Modeling, Proper Orthogonal Decomposition, Navier-Stokes equations
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6.1 Introduction

Computational Fluid Dynamics (CFD) simulations is an indispensable element of the engi-
neering research today. Although there is a considerable advancement in the computing power
in last couple of decades, the exact flow simulations at high Reynolds numbers are unafford-
able in terms of the time and computing cost. The efforts become enormous for research
applications (e.g. optimization), where the simulations need to be performed repeatedly. Con-
sequently, reduced-order models (ROM) are developed extensively in recent years. They offer
substantial reduction in the degrees of freedom and yet retain the essential features of the flow
by means of the reduced basis. The reduced system may lead to a better understanding of
the underlying mechanism and thereby improvements in the empirical flow (turbulence) mod-
els. The flow control, optimization and stability analysis in hydrodynamics, aero-acoustics are
some of the potential applications of model reduction (see for e.g. (Noack et al., 2011)).

The first important step of the model reduction in fluid dynamics is to form an appropriate
reduced basis out of a complete set of basis functions. The choice of particular basis functions
may be problem specific. The derivation of the reduced basis can be ‘a priori’ or ‘a posteriori’.
One can refer to (Joseph, 1976), (Noack and Eckelmann, 1994) for some of the early works
on ‘a priori’ formation of the basis functions. Recently, (Dumon et al., 2013) used ‘a pri-
ori’ derivation of the basis functions, in the context of Proper General Decomposition (PGD).
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Besides, the spectral discretization methods are often preferred over the spatial discretization
methods in order to gain the accuracy for same computing time and space requirements. In
‘a posteriori’ formation, the basis functions are derived using the existing solution datasets
and methods such as Proper Orthogonal Decomposition (POD) (for e.g. method of Dynamic
Mode Decomposition (DMD) in (Rowley et al., 2009) and (Schmid, 2010)). The POD (also
Principle Component Analysis) is a popular choice of the empirical basis functions for the
Navier-Stokes equations, especially in understanding the onset of bifurcations or instabilities
and the spatial-temporal dynamics of the flow structures. The error in time-averaged energy
remains minimal compared to every other method for the same number of modes. The con-
vergence in extracting the space structures (topos) and the associated time modes (chronos)
is optimum in terms of the flow energy (Aubry, 1991). An elaborated discussion with mathe-
matical derivations on the optimality of the POD method is provided in (Holmes et al., 1990).

The POD-Galerkin ROM are build using a coordinate transformation performed by means
of a Galerkin projection of the system of Navier-Stokes equations on the reduced POD basis
functions. Generally, the flow velocity (vvv) is decomposed into the spatial (φφφ i) and temporal
(ai) basis functions as shown in Equation (6.1),

vvv(xxx, t)≈ vvv[0,1,2,...n] = v̄vv(xxx)+
n

∑
i=1

φφφ i(xxx)ai(t) (6.1)

Where v̄vv(xxx) is the time-averaged base flow, n is the number of POD modes. This equation
holds good under the assumption that the flow is statistically stationary in time. In incompress-
ible flows with Dirichlet type boundary conditions, the basis functions satisfy both the bound-
ary conditions and the divergence-free constrain of the continuity equation. The Galerkin pro-
jection of the momentum equations on the basis functions results in the non-linear quadratic
Ordinary Differential Equations (ODE) of the form:

dai

dt
= Ci +

n

∑
j

Li ja j +
n

∑
j,k

Qi jka jak (6.2)

Where C,L and Q are the Galerkin ROM coefficients. The indices i, j,k = 1, · · · ,n. Equa-
tion (6.2) is a reduced model for the Navier-Stokes Equations (NSE) with n spatial modes.
The time-integration of Equation (6.2) with an appropriate initial boundary condition gives
the temporal coefficients (basis functions), and the flow solution can be easily built by us-
ing Equation (6.1). The Galerkin projection ideally should preserve the stability dynamics of
the NSE, but generally it is achieved by extrinsic stability enablers. (Rempfer, 2000) showed
how the Galerkin ROM are inherently prone to numerical instabilities. The energy associ-

108



6.1 Introduction

ated with the truncated basis functions keeps piling on, which results in a divergence of the
Galerkin-ROM. The concept of artificial viscous dissipation to stabilize the Galerkin ROM
was introduced in (Aubry et al., 1988). Later, (Sirisup and Karniadakis, 2004) proposed a
spectral viscosity diffusion convolution operator based on a bifurcation analysis. In addition,
the stability of Galerkin ROM greatly depends on parameters such as the flow compressibility,
pressure-term consideration and time varying boundary conditions. The flow compressibility
effect can be considered by means of an energy based inner product while formulating a ROM
(Rowley et al., 2004). The POD-penalty method was proposed by (Sirisup and Karniadakis,
2005) to treat the time dependence of the boundary conditions on the POD-Galerkin ROM.
The Galerkin projection of the pressure-gradient term of NSE on the reduced basis functions
can be neglected in case of the internal flows, but for open flows the pressure term does not
disappear (Noack et al., 2005) and it needs to be modeled. The pressure term is accounted in a
formulation of the pressure extended Galerkin ROM by (Bergmann et al., 2009). In addition,
(Noack et al., 2003) demonstrated that neglecting the interactions between the time-averaged
base flow and the fluctuating flow may lead to an unstable Galerkin ROM. The authors also
introduced the concept of ‘shift mode’ correction technique. Further, from the flow control
applications point of view (Morzynski et al., 2006) proposed a continuous interpolation based
method. In the method, an interpolation between the stability eigenmodes and the POD modes
is performed to deal with the changing flow conditions. A detailed discussion on the numeri-
cal instabilities and perspectives of the reduced order models in fluid dynamics is provided by
(Lassila et al., 2013).

The choice of an appropriate reduced basis, the Galerkin projection of the NSE on the
reduced basis and the time-integration of the obtained ODE are the main elements of the
POD-Galerkin ROM. The POD basis functions are optimal in terms of flow energy, while as
the Galerkin projection of NSE on the reduced basis may not produce a stable ROM as dis-
cussed above. In this article, we propose a novel approach, where it is not required to perform
the Galerkin projection of NSE on the reduced basis and also the time-integration to obtain
the POD time coefficients. The time-averaged base flow and the POD space basis functions
(topos) are directly interpolated for the change in operating condition. The POD temporal
basis functions (chronos) are also interpolated in phase space. The periodicity (the period of
limit-cycles) of the POD temporal modes is accounted for the energy conservation. Further-
more, the method is extended for a continuous transition between two operating conditions.
Also a linear extrapolation of the POD reduced basis is performed to widen the range of op-
erating parameter. The article is organised as: Section (7.2) is dedicated to the mathematical
formulation and error analysis of the proposed ROM. In Section (6.3), we provide a demon-
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stration of the method using a case study of the flow past a cylinder at low Reynolds numbers.
At last, the work is summarised in Section (6.4).

6.2 Mathematical formulation

The compressible Navier-Stokes equations (including the continuity and energy equations) are
considered here as the High Fidelity Model (HFM). The flow is statistically stationary in time
such that Equation (6.1) is applicable to the solution (state) variables. The solution state vector
sss = sss(xxx, t) is spanned on the space xxx ∈ Ω, Ω is the spacial flow domain. t is the time in [0,T∞].
Let H be a Hilbert space and a state variable sssi(xxx, t) ∈ H with i = 1,2, · · · ,r(sss). r(sss) is the
number of state variables. The standard inner product of the state variables sssi(xxx, t1), sssi(xxx, t2)

and the solution state vector sss(xxx, t) are respectively,

(sssi(xxx, t1),sssi(xxx, t2))Ω =
∫

Ω
sssi(xxx, t1) ·sssi(xxx, t2)dxxx

(sss(xxx, t1),sss(xxx, t2))Ω =


(sssi(xxx, t1),sssi(xxx, t2))Ω

...(
sssr(sss)(xxx, t1),sssr(sss)(xxx, t2)

)
Ω

 (6.3)

The induced norm and time averaging (for time period T∞) of a state variable and the solution
state vector are respectively defined as,

||sssi||Ω =
√

(sssi,sssi)Ω and s̄ssi =
1

T∞

∫
T∞

sssi dt = ⟨sssi⟩T∞

||sss||Ω =


√
(sssi,sssi)Ω

...√
(sssr(sss),sssr(sss))Ω

 and s̄ss =
1

T∞

∫
T∞

sss dt = ⟨sss⟩T∞
(6.4)

6.2.1 Method of snapshots POD

The POD or Karhunen-Loeve expansion was first introduced in fluid dynamics by (Lumley,
1967) for the analysis of coherent structures in the flow turbulence. Following the develop-
ment of POD, (Sirovich, 1987) introduced the method of snapshots for the experimental and
numerical datasets. It allows further reduction of degrees of freedom, compared to the direct
method of POD.

The solution state vector sss includes all variables varying in the time and space. Let η be
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an operating parameter (e.g. Reynolds number). The state vector of the High Fidelity Model
(HFM) solution can be defined as,

sss(xxx, t;η) =


ρ(xxx, t;η)
vvv(xxx, t;η)
p(xxx, t;η)...

 (6.5)

Where ρ , vvv and p are the fluid density, velocity vector and static pressure respectively. The
state vector can be separated in the time-averaged base flow and the unsteady part as shown in
Equation (6.6).

sss(xxx, t;η) = s̄ss(xxx;η)+sss′(xxx, t;η) (6.6)

= s̄ss(xxx;η)+
∞

∑
i=1

φφφ i(xxx;η)aaai(t;η) (6.7)

In Equation (6.7), the unsteady part (sss′(xxx, t;η)) is decomposed into the POD basis functions
using the Galerkin expansion. The time invariant orthonormal φφφ i(xxx;η) and the space invariant
orthogonal aaai(t;η) are the POD basis functions (modes). The state vector can be obtained in
discrete (Nt) snapshots by performing a CFD simulation. The snapshots can be collected once
the flow becomes statistically stationary and using (typically) a constant timestep (∆tsn). Let
Nt , Npod be the number of snapshots and number of POD modes respectively, also Npod ≤
Nt−1. The state vector can be approximated by discrete snapshots as,

sss(xxx, t;η)≈ sss(xxx, t1;η), .......,sss(xxx, tNt ;η) (6.8)

≈ s̄ss(xxx;η)+
Npod

∑
i=1

φφφ i(xxx;η)aaai(t;η) t1 ≤ t ≤ tNt (6.9)

Where t1 and tNt are the time coordinates of the first and last snapshots. Also, let Tsn =

[t1, .., tNt ] be the time domain of discrete snapshots collection. The time step (∆tsn) of snapshots
recording and the number of snapshots (Nt) depend on the desired resolution in the temporal
harmonics of the POD modes (Noack et al., 2005).

Let RRR(η) be the two point time-correlation function, given by,

RRR(η) =RRR(ti, t j,η) =
1
Nt

(
sss′(xxx, ti;η),sss′(xxx, t j;η)

)
Ω i, j = 1,2, .....Nt (6.10)
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The correlation function RRR(η) is solved for the eigenvalue problem, as in Equation (6.11).

RRR(η)ψψψ i(t;η) = λλλ iψψψ i(t;η) (6.11)

where λλλ i are the eigenvalues. The orthogonal eigenfunctions ψψψ i(t;η) are then normalized as,

(
ψψψ i(t;η),ψψψ j(t;η)

)
Tsn

= δδδ i j (6.12)

Where, δδδ i j is the Kronecker delta in vector form. The POD modes are arranged in descending
order of their energy content (the eigenvalues associated with the modes). i.e λλλ 1 > λλλ 2 >

............... > λλλ Npod > 0. The orthonormal ‘topos’ are obtained using Equation (7.10), such
that (φφφ i(xxx;η),φφφ i(xxx;η))Ω = δδδ i j.

φφφ i(xxx;η) =
1√
Ntλλλ i

(
sss′(xxx, t;η),ψψψ i(t;η)

)
Tsn

(6.13)

The corresponding POD time coefficients are given by,

aaai(t;η) =
(
φφφ i(xxx;η),sss′(xxx, t;η)

)
Ω

=
√

Ntλλλ iψψψ i(t;η) (6.14)

Generally, the number of reduced POD modes (Nr) is much smaller compared to the total POD
modes (Nr << Npod). The relative energy captured (EcEcEc) by the most energetic (first few) POD
modes is substantial. It can be given as,

%EcEcEc =
∑Nr

i=1λλλ i

∑
Npod
i=1 λλλ i

×100 (6.15)

6.2.2 Periodicity of POD temporal modes

The total energy † EEE(η)pod of the unsteady part of the discrete state vector can be given by,

EEE(η)pod =
1
2

∫
Ω

〈
sss′(xxx, t,η)2〉

Tsn
dxxx =

1
2

Npod

∑
i=1

λλλ i =
1
2

Npod

∑
i=1

〈
aaai(t;η)2〉

Tsn
(6.16)

†An appropriate term for the non-velocity variables (e.g. density, pressure) be the ‘variance’.
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The space domain (Ω) is limited by a boundary (∂Ω). Similarly, let Tmin be the minimum time
window for which the total energy in Equation (7.13) remains the same, such that,

EEE(η)pod =
1
2

∫
Ω

〈
sss′(xxx, t,η)2〉

Tmin
dxxx =

1
2

Npod

∑
i=1

λλλ i =
1
2

Npod

∑
i=1

〈
aaai(t;η)2〉

Tmin
(6.17)

In statistically stationary flows, the POD temporal basis functions observe the stable limit
cycles in phase space (see for e.g. (Sirisup and Karniadakis, 2004), (Ma and Karniadakis,
2002), (Aubry, 1991)). Let Tη be the time period of the limit-cycle of first POD time coeffi-
cient aaa1(t;η). The higher (well resolved by snapshots) POD time modes for the state vector
are periodic with the time Tη . The characteristic POD time coefficients can be defined as,

ãaai(t;η) = aaai(t;η) f or t ∈ [ta, ta +Tη ] (6.18)

Where ta ∈ [0,(Tsn −Tη)] is an arbitrary time. Further, the total energy in Equation (6.17)
becomes,

EEE(η)pod =
1
2

Npod

∑
i=1

〈
ãaai(t;η)2〉

Tη
=

1
2

Npod

∑
i=1

〈
aaai(t;η)2〉

Tmin
=

1
2

Npod

∑
i=1

λλλ i (6.19)

It also implies that the minimum time window (Tmin) is the time period of the first POD tem-
poral mode (Tη ).

Under the statistically stationary flow assumption and using the periodic characteristic
POD temporal modes (Equation 7.14), one can reconstruct the flow with reduced number (Nr)
of POD basis even outside the snapshots time domain (Tsn) as,

sss(xxx, t;η)≈ s̄ss(xxx;η)+
Nr

∑
i=1

φφφ i(xxx;η)ãaai(t;η) t ≥ 0 (6.20)

6.2.3 Linear interpolation

A linear interpolation is used to interpolate the right hand side terms of Equation (6.20) for the
change in operating parameter η . The interpolation of the characteristic POD temporal modes
(ãaai) ensures the appropriate flow energy (EEE(η)) levels in the interpolated state.

Let sss(xxx, t;η j) with j = 1, 2 be the two reference states. In order to build a solution state
vector at an operating parameter η ∈ [η1,η2], the time-averaged base flow s̄ss(xxx;η), the POD
spacial modes (φφφ i(xxx;η)) and the associated time coefficients ãaai(t;η) are obtained by the linear
interpolation of the reference states. The interpolation is formulated using a vector ΓΓΓ(βββ ;η) in
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Equation (7.16). It stands for the solution state average (s̄ss(xxx;η)) and the POD modes (φφφ i(xxx;η)

and ãaai(t;η)).

ΓΓΓ(βββ ;η) =ΓΓΓ(βββ ;η1)+

[
(ΓΓΓ(βββ ;η2)−ΓΓΓ(βββ ;η1))

(η2 −η1)

]
(η −η1) (6.21)

Here βββ is either xxx, for s̄ss, φφφ i or t ∈ [0,Tη ] for ãaai. A priori, the condition in Equation (7.17) is
satisfied so that the interpolated quantities (RHS of Equation (6.20)) follow the signs of any
of the two (η1 and η2) reference cases.

(ΓΓΓ(βββ ;η1),ΓΓΓ(βββ ;η2))βββ ≥ 0 (6.22)

The time-averages of the state vectors (s̄ss(xxx;η j) for j = 1,2) generally do not alter their
sign for the change in operating parameter (η j). A symmetry in the flow geometry can lead to
a phase difference of π between the corresponding POD space modes (φφφ i(xxx;η j)) for different
operating conditions (η j). The constrain in Equation (7.17) ensures that they do not cancel
out, while performing the interpolation. In addition, the reference states η j need to be close
enough, in order to perform the linear interpolation (Equation 7.16). The characteristic POD
time coefficients (ãaai(t;η)) are brought in minimal phase difference by using Equation 7.17.
The interpolated base solution and the POD modes follow any one of the reference states for
the phase. The characteristic time period (Tη ) is also linearly interpolated for the change in
operating parameter (η). The interpolation ROM solution, with the reduced number (Nr) of
POD interpolated basis and for the change of parameter (η) in [η1,η2], can be written as,

sss(xxx, t;η)≈ s̄ss(xxx;η)+
Nr

∑
i=1

φφφ i(xxx;η)ãaai(t;η) t ≥ 0 & η ∈ [η1,η2] (6.23)

A smooth transition of a ROM solution from one flow state to another is useful in the flow
control applications. A continuous mode interpolating technique developed in (Morzynski
et al., 2006) uses a parameter κ for a continuous transition between the stability matrices at
a steady state to an unsteady (with periodic limit cycle) state. Similarly, a smooth transition
between two interpolated off-reference states (ηn, ηn+1) can be achieved by,

ΓΓΓ(βββ ;η
n+1) = κΓΓΓ(βββ ;η

n+1)+(1−κ)ΓΓΓ(βββ ;η
n) (6.24)

Tηn+1 = κTηn+1 +(1−κ)Tηn (6.25)

Here n is an integer indicator for a flow state. The transition parameter κ varies from 0 to 1.
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6.2 Mathematical formulation

A simple linear function with an appropriate time delay parameter (cτ ) can be used to obtain
a real time transition. Equation (6.26) shows such a function.

κ = cτ

(
t − tn+1

0
)
/Tηn+1 (6.26)

Where, tn+1
0 represents the time of control parameter change. The time delay constant (cτ ) can

be used to control the transition time.

In addition to the linear interpolation, a linear extrapolation of the reference states (η1

and η2) can also be used to widen the range of controlling parameter, with a caution of the
presence of major flow transitions in the vicinity.

6.2.4 A posteriori error estimate

Snapshots POD and truncation errors

The High Fidelity Model (HFM) solution can be an accurate CFD solution to the full NSEs
or the experimental datasets for the flow under consideration. The HFM solution state vector
can be expressed in terms of POD basis functions by Equation (6.7). The method of snapshots
leads to an approximation (similar to Equation 6.9),

sss(xxx, t;η)h f ≈ s̄ss(xxx;η)pod +
Npod

∑
i=1

φφφ i(xxx;η)podãaai(t;η)pod (6.27)

The subscript ‘h f ’ stands for a high fidelity solution, while as the subscript ‘pod’ stands for
quantities estimated using POD. A posteriori the error in POD discretization can be given by,

εεε psss(xxx, t;η) = sss(xxx, t;η)h f −sss(xxx, t;η)pod (6.28)

Where the subscript ‘psss’ stands for a POD based error in the solution state vector sss. The POD
error depends mainly on the timestep of snapshots collection (∆Tsn), number of snapshots (Nt)
and the time-window of snapshots collection (Tsn). A rigorous parametric analysis and error
estimate study of the POD method was performed by Kunisch and Volkwein (2002). In order
to normalise the errors, let us represent the element wise division of vectors uuu and vvv as uuu⊘vvv,
for no element of vector vvv is zero (vi ̸= 0). Further, the total variance can be defined for the
high fidelity state vector sss(xxx, t;η) as,

σσσ
2(η) =

∫
Ω

〈
sss′(xxx, t;η)2

h f

〉
T∞

dxxx (6.29)
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A posteriori, normalized error in POD discretization can be given by,

εp(t;η) =

∣∣∣∣∣∣∣∣∫Ω
εεε psss(xxx, t;η)2dxxx⊘σσσ

2(η)

∣∣∣∣∣∣∣∣
r(sss)

(6.30)

In addition, the error introduced by the truncation of the higher (> Nr) POD modes can be
obtained as,

εεε tsss(xxx, t;η) =
Npod

∑
i=Nr+1

φφφ i(xxx;η)pod ãaai(t;η)pod (6.31)

The normalized truncation error becomes,

εt(t;η) =

∣∣∣∣∣∣∣∣∫Ω
εεε tsss(xxx, t;η)2dxxx⊘σσσ

2(η)

∣∣∣∣∣∣∣∣
r(sss)

(6.32)

Interpolation error

The interpolation errors associated with each term of the ROM solution (Equation 6.23) with
respect to the POD solution can be defined,

εεε s̄ss(xxx;η) = s̄ss(xxx;η)pod − s̄ss(xxx;η)

εεεφφφ i(xxx;η) = φφφ i(xxx;η)pod −φφφ i(xxx;η)

εεεãaai(t;η) = ãaai(t;η)pod − ãaai(t;η) (6.33)

Let εεε isss(xxx, t;η) be the total interpolation error in solution state vector (sss) with respect to the
POD solution. It can be given as,

εεε isss(xxx, t;η) = sss(xxx, t;η)pod −sss(xxx, t;η) (6.34)

εεε isss(xxx, t;η) =

(
s̄ss(xxx;η)pod +

Nr

∑
i=1

φφφ i(xxx;η)podãaai(t;η)pod

)
−(

s̄ss(xxx;η)+
Nr

∑
i=1

φφφ i(xxx;η)ãaai(t;η)

)
(6.35)
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6.2 Mathematical formulation

Using the individual error definitions from Equation (6.33) and the total interpolation error in
Equation (6.35) we obtain,

εεε isss(xxx, t;η) = εεε s̄ss(xxx;η)+

Nr

∑
i=1

φφφ i(xxx;η)εεεãaai(t;η)+εεεφφφ i(xxx;η)ãaai(t;η)+εεεφφφ i(xxx;η)εεεãaai(t;η) (6.36)

A priori, the maximum error bound in the linear interpolation can be given by Equation (6.37),
for each interpolation error term from Equation (6.36). The second derivatives (ααα∗) must exist.

|εεε s̄ss(xxx;η)| ≤ 1
8
(∆η)2 sup

η∈[η1,η2]

|ααα s̄ss(xxx;η)| where ααα s̄ss(xxx;η) =
∂ 2

∂η2 (s̄ss(xxx;η)pod)

∣∣εεεφφφ i(xxx;η)
∣∣≤ 1

8
(∆η)2 sup

η∈[η1,η2]

∣∣αααφφφ i(xxx;η)
∣∣ where αααφφφ i(xxx;η) =

∂ 2

∂η2 (φφφ i(xxx;η)pod)

|εεεãaai(t;η)| ≤ 1
8
(∆η)2 sup

η∈[η1,η2]

|αααãaai(t;η)| where αααãaai(t;η) =
∂ 2

∂η2 (ãaai(t;η)pod)

(6.37)

The error is O(∆η
2). Here ∆η = (η2−η1). The value of ∆η can be chosen based on the total

interpolation error bound |εεε isss(xxx, t;η)|. The total interpolation error in the solution state vector
sss(xxx, t;η) is in bounds as,

|εεε isss(xxx, t;η)| ≤ 1
8
(∆η)2 sup

η∈[η1,η2]

ααα s̄ss(xxx;η)+
Nr

∑
i=1

φφφ i(xxx;η)αααα̃αα i(t;η)+

αααφφφ i(xxx;η)ãaai(t;η)+
1
8
(∆η)2

αααφφφ i(xxx;η)αααα̃αα i(t;η) (6.38)

On the other hand, a posteriori interpolation error can be directly given by Equation (6.34.
The normalized interpolation error will be,

εi(t;η) =

∣∣∣∣∣∣∣∣∫Ω
εεε isss(xxx, t;η)2dxxx⊘σσσ

2(η)

∣∣∣∣∣∣∣∣
r(sss)

(6.39)

Energy based error

Generally, the error in Galerkin ROM is quantified based on the quadratic flow energy terms.
The POD basis functions (topos and chronos) are the optimal basis for a ROM in fluid dynam-
ics, hence it provides an upper bound for the error in Gelerkin ROM ((Balajewicz and Dowell,
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2012), (Demmel, 1997)). The normalized error in ROM based on the kinetic energy can be
expressed as,

εe(t;η) =
∣∣∣∣(EEE(t;η)pod −EEE(t;η)

)
⊘σσσ

2(η)
∣∣∣∣

r(sss)

=

∣∣∣∣∣
∣∣∣∣∣
(

Npod

∑
i=1

ãaai(t;η)2
pod −

Nr

∑
i=1

ãaai(t;η)2

)
⊘σσσ

2(η)

∣∣∣∣∣
∣∣∣∣∣
r(sss)

(6.40)

Where EEE(t;η) is the energy of ROM solution. In the presented formulation of ROM, the en-
ergy based error (εe(t;η)) does not account for the error in interpolation of the time-averaged
base flow (s̄ss(xxx;η)) as well as the POD space modes (φφφ i(xxx;η)). Therefore the total error rele-
vant to the interpolation ROM can be defined as,

εit(t;η) = εi(t;η)+ εt(t;η) (6.41)

6.2.5 Stability of the interpolation ROM

Almost all the Galerkin ROM are unstable and need stabilization techniques such as addition
of the artificial viscosity terms, increasing the order of ROM. This way, either the high fidelity
Navier-Stokes equation are altered or the computational efforts are increased (Balajewicz and
Dowell, 2012). On the contrary, the interpolation based approach of ROM uses the flow
statistical stationarity assumption for the energy balance instead of balancing the energy of
truncated POD modes by means of the empirical turbulence models. The time average of the
total error εit(t;η) in the interpolation ROM (Equation (6.41)) can be given by,

ε(η) = ⟨εit(t;η)⟩T∞
= ⟨εit(t;η)⟩Tη

(6.42)

it implies,
∂ε(η)

∂Tη

= 0 (6.43)

The errors (εεε psss(xxx, t;η), εεε tsss(xxx, t;η) and εεε isss(xxx, t;η)) in the interpolation ROM are in bounds
under the stationary flow assumption for all time. The total normalized error ε(η) remains a
function of the parameters ∆Tsn, Nt , Npod , Nr, ∆η and the second derivatives ααα s̄ss, αααφφφ i and αααãaai .
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6.2 Mathematical formulation

Floquet stability analysis

Let No be the number of POD time modes with the time period Tη . The periodic base flow for
the Floquet instability can be given as,

ssso(xxx, t;η) = s̄ss(xxx;η)+
No

∑
i=1

φφφ i(xxx;η)aaai(t;η) (6.44)

Let sss′o(xxx, t;η) be the small perturbation in the base flow. It is can be represented in terms of
the POD basis as,

sss′o(xxx, t;η)≈
Nr

∑
i=No+1

χi =
Nr

∑
i=No+1

φφφ i(xxx;η)aaai(t;η) (6.45)

The perturbation sss′o(xxx, t;η) in the base flow is periodic with the period Tη . Therefore we
can consider Equation (6.45) for the Floquet analysis. The Tη periodic functions χi can be
represented in the form, χ̃i exp(ςit). Where χ̃i are also Tη periodic and known as Floquet
modes. The exponents ςi are called the Floquet exponents. Generally, the Floquet multipliers
ξi ≡ exp(ςiTη) are used in the stability analysis. The perturbation (sss′o(xxx, t;η)) grows exponen-
tially for |ξi| > 1 and the periodic base flow is unstable. On the other hand the perturbation
decays exponentially for |ξi|< 1 and the periodic base flow is stable ((Barkley and Henderson,
1996)).

The Floquet modes (χ̃i) at a time instance after n time periods (Tη ) can be written as,

χ̃
n
i = φφφ i(xxx;η)ãaai(t;η)n (6.46)

Where, ãaai(t;η)n = ãaai(t0 + nTη ;η) are the POD time modes at n time periods (Tη ) after an
initial time t0. The characteristic POD time modes, as defined in Equation (7.14), are periodic
with time Tη . Therefore ãaai(t0 + nTη ;η) = ãaai(t0 +(n+ 1)Tη ;η), which leads to χ̃n

i = χ̃
n+1
i .

Furthermore, the number of POD modes (Nr) used to build the ROM solution follow stable
limit cycles with time period Tη . Thus the value of Floquet multipliers |ξi|= 1 and the corre-
sponding Floquet exponents ςi = 0. The perturbation sss′o(xxx, t;η) neither grows nor decays with
the time at a particular operating condition (η).
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6.3 Flow past a cylinder at low Reynolds number - a case
study

The flow past a cylinder at low Reynolds number (Re = 125 ∼ 150) in 2-dimension (2D)
is considered for the demonstration of the proposed Reduced-Order Model (ROM). Figure
(7.1) shows the flow domain and the instantaneous flow fields (u, v and p) at Reynolds number
Re= 125 (Re= ρu∞D/µ). The cylinder of diameter D= 1 is at the center of the computational
domain. The inflow streamwise (along +x axis) velocity (u∞) as well as the temperature (θ∞)
far upstream are set to 1. The density of the fluid (calorically perfect gas) is ρ = 1. The Mach
number upstream is M∞ = 0.18, while as the specific heat ratio of 1.4 (for air) is taken. The
gas constant R and the inflow pressure p∞ are 22.05. The dynamic viscosity (µ) is constant, it
is estimated using the Reynolds number (Re∞) as, µ = (ρvvv∞D)/(Re∞). The inflow transverse
velocity is v∞ = 0. The internal energy (e) and the enthalpy (h) are given by Cvθ and Cpθ

respectively, where Cv, Cp are the specific heats at constant volume and constant pressure
respectively. The total energy (E) and the internal energy (e) are related by

e = E − 1
2
(
u2 + v2)

6.3.1 Governing flow equations and numerical methods

A compressible Navier-Stokes flow solver (Navier-Stokes Multi Block - NSMB) is used with a
preconditioning for the incompressible flow at low Mach number. The NSMB solver is devel-
oped in collaboration between several European organizations which mainly includes Airbus,
KTH, EPFL, IMFT, ICUBE, CERFACS, University of Karlsruhe and ETH-Ecole Polytech-
nique de Zurich. The code has been developed since early 90’s. It is coordinated by CFS
Engineering in Lausanne, Switzerland. NSMB is a structured code including a variety of
high-order numerical schemes and turbulence modeling such as LES, URANS, RANS-LES
hybrid turbulence modeling, especially DDES (Delayed Detached Eddy Simulations).

The compressible unsteady Navier-Stokes equations in 2D can be written as,

∂

∂ t
(www)+

∂

∂x
( fff − fff ν)+

∂

∂y
(ggg−gggν) = 0 (6.47)
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6.3 Flow past a cylinder at low Reynolds number - a case study

(a) Geometry and mesh (b) Streamwise velocity u at Re = 125

(c) Transverse velocity v at Re = 125 (d) Pressure p at Re = 125

Figure 6.1 Computational domain and instantaneous flow fields at Re = 125.

Where,

www =

 ρ

ρu
ρv
ρE

 , fff =

 ρu
ρu2 + p

ρuv
u(ρE + p)

 ,ggg =

 ρv
ρvu

ρv2 + p
v(ρE + p)



fff ν =

 0
τxx
τxy

[τττ,vvv]x −qx

 ,gggν =

 0
τyx
τyy

[τττ,vvv]y −qy
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Here www is the state vector. fff , ggg are the convective fluxes, while as fff ν , gggν are the viscous
fluxes. The components of shear stress tensor τττ in the viscous fluxes are given by Equation
(6.48).

τxx =
2
3

µ

(
2

∂u
∂x

− ∂v
∂y

)
,τyy =

2
3

µ

(
−∂u

∂x
+2

∂v
∂y

)
τxy = τyx = µ

(
∂u
∂y

+
∂v
∂x

)
(6.48)

The heat flux is calculated using Fourier’s law as,

qx =−k
∂θ

∂x
,qy =−k

∂θ

∂y
with k = µCp/Pr (6.49)

Where k is the thermal conductivity. The Prandtl number (Pr) is taken 0.72 (for air).

The second order fully implicit LU-SGS (Lower-Upper Symmetric Gauss-Seidel) back-
ward A-stable scheme with a dual-time stepping is used for the time marching. The space dis-
cretization is done using forth order central finite volume scheme in a skew-symmetric form.
The preconditioning method proposed in (Turkel et al., 1996) to impose the incompressibility
is used, for the flows at low speed (mach number).

6.3.2 Results and discussion

The state vector sss in the case study (2-D, incompressible flow) can be considered as,

sss(xxx, t;η) =

u(xxx, t;η)
v(xxx, t;η)
p(xxx, t;η)

 (6.50)

Where xxx is the space domain with x and y dimensions. t represents the time. The operating
parameter η is the Reynolds number Re. The two reference cases are considered at Reynolds
numbers η1 = Re1 = 125 and η2 = Re2 = 150. The number of snapshots taken for each
reference case is Nt = 900, this constitutes ≈ 14 vortex shedding periods. The time step for
snapshots collection is ∆tsn = 0.05. The correlation matrix was built for each reference case
and solved for the eigenvalue problem as detailed in Section (6.2.1). The off-reference case
is considered at η = Re = 140. The linear interpolation of the state vector time-averages and
POD modes (both topos and chronos) using the reference states is performed as per Section
(6.2.3). The results are build using first 10 POD modes (Nr = 10) out of 500 POD modes
(Npod = 500) and compared with the Navier-Stokes High Fidelity Model (HFM) simulation
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results at the same Reynolds number.

(a) % energy associated with each POD mode
of u, v and p.

(b) The POD discretization error (εp(t;Re),
as defined in Equation (6.30))

Figure 6.2 POD analysis of the flow at Re = 140 (η).

The results of POD analysis at Re = 140 are shown is Figure (6.2), in terms of the eigen-
values and the time evolution of the discretization error involved in the method of snapshots
POD. Figure 6.2(a) shows the % energy associated with each POD mode of the state vari-
ables. It also indicates that the ≈ 99.99% of total energy is contained in first 10 modes of each
state variables. Therefore the number of reduced basis Nr = 10 is chosen for the interpola-
tion (ROM). The discretization error in the method of snapshots POD (εp(t;η)), as defined
in Equation (6.30) is plotted in Figure 6.2(b). The root-mean-srquared (rms) of the error is
≈ 0.25% of the variance of the state variable.

Interpolation of the POD reduced basis

In this case study, the POD space modes (φφφ i(xxx;η)) are either symmetric or antisymmetric
about the x axis. The preconditioning in Equation (7.17) is needed for the antisymmetric
modes, only when they observe a flip of sign in changing operating condition (η). Figure
(6.3) shows the linear interpolation performed for the fifth space mode of the streamwise
velocity (φ u

5 ). Figures 6.3(a) and 6.3(b) are the fifth POD space modes of the reference cases at
Re1 = 125 and Re2 = 150 respectively. The result of interpolation at Re = 140 for φ u

5 (xxx;Re) is
shown in Figure 6.3(d). Figure 6.3(c) shows the actual POD mode (φ u

5 ) at Re = 140, computed
using the method of snapshots POD for comparison with the interpolated mode.

Similarly, the remaining topos from the reduced basis were interpolated at Reynolds num-
ber Re = 140. Figure (6.4) shows comparison of the first four interpolated (ROM) modes
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(a) φ u
5 (xxx;Re1) (POD) (b) φ u

5 (xxx;Re2) (POD)

(c) φ u
5 (xxx;Re) (POD) (d) φ u

5 (xxx;Re) (ROM)

Figure 6.3 The interpolation of φ u
5 (xxx, ·).

(Figures 6.4(b), 6.4(d), 6.4(f), 6.4(h)) versus the snapshots POD modes (Figures 6.4(a), 6.4(c),
6.4(e), 6.4(g) respectively). One can notice that the POD modes act in pairs. The first pair
of POD modes of streamwise velocity u (mode number 1 & 2) is antisymmetric, while the
second one is symmetric about the x axis. In general here, the odd pairs of POD modes of u

are antisymmetric and the even pairs are symmetric. The antisymmetry of the modes about
x axis is dealt by the constrain in Equation (7.17) before interpolating the modes. The POD
is a biorthogonal decomposition of the flow in space and time, there is one-to-one correspon-
dence between topos and chronos (Aubry, 1991). The change in symmetry of a topo reflects
in the corresponding chrono. Although this change of sign (of φφφ i and ãaai for the same operating
condition) does not alter the value of flow reconstruction by Equation (6.23). The phase infor-
mation is anyway lost because of the second order statistics used in the POD basis functions
(Schmid, 2010). In addition to the phase information, the change of operating condition (Re)
leads to the change in orientation of the POD basis functions. The interpolation procedure
ensures an appropriate orientation of the POD reduced basis for an intermediate operating
conditions between the reference states.

In Galerkin ROMs the time coefficients often need corrections in their amplitudes. The
common source of error is due to the truncation of higher POD modes and the formulation
of the ROM without pressure-term representation. For instance, the Galerkin ROMs without
pressure-term consideration leads to higher amplitudes of the POD time coefficients (Noack
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(a) φ u
1 (xxx;Re) (POD) (b) φ u

1 (xxx;Re) (ROM)

(c) φ u
2 (xxx;Re) (POD) (d) φ u

2 (xxx;Re) (ROM)

(e) φ u
3 (xxx;Re) (POD) (f) φ u

3 (xxx;Re) (ROM)

(g) φ u
4 (xxx;Re) (POD) (h) φ u

4 (xxx;Re) (ROM)

Figure 6.4 Comparison of φ u
1 (xxx,Re) to φ u

4 (xxx,Re) modes obtained by the snapshots POD against the
modes obtained by using linear interpolation at Re = 140.

et al., 2005). The characteristic POD time coefficients (ãaai(t;Re)) are immune from the trunca-
tion and pressure-term errors, since they are extracted from the time coefficients of the POD
(aaai(t;Re)) itself as per Equation (7.14) for the reference cases (η1 and η2). The characteristic
time coefficients, similar to the fellow spacial modes act in pairs. The interpolation results
for the characteristic time coefficients (chronos) are shown in Figure (6.5). It shows the com-
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(a)
(
ãu

1(t; ·)
)

versus
(
ãu

2(t; ·)
)

(b)
(
ãu

1(t; ·)
)

versus
(
ãu

3(t; ·)
)

(c)
(
ãu

1(t; ·)
)

versus
(
ãu

4(t; ·)
)

(d)
(
ãu

1(t; ·)
)

versus
(
ãu

5(t; ·)
)

Figure 6.5 Comparison of the time coefficients ãu
i (T·; ·) of the first five Chronos. The blue curve in each

plot is an interpolated mode (ROM) at Re = 140 against the snapshot POD mode at Re = 140 in green.
The other color correspondence with Reynolds numbers is: Red → Re1 = 125 and Pink → Re2 = 150

parison of interpolation results in phase space for the first five characteristic time coefficients.
The curves in each plot (Figures 6.5(a), 6.5(b), 6.5(c) and 6.5(d)) expand in size, with the
increase of Reynolds number. The limit-cycles represented in red color are for the reference
state Re1 = 125, while the ones in pink color are for the reference state Re2 = 150. The limit-
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6.3 Flow past a cylinder at low Reynolds number - a case study

cycles at Re = 140, in blue color are interpolated using the reference states Re1 and Re2. It
can be compared with the characteristic POD time modes obtained using snapshots POD at
Re = 140 in green color.

In addition, the characteristic times (Tη ) of the reference states Re1 = 125 and Re2 = 150
are TRe1 = 5.647 and TRe2 = 5.400 respectively. The linearly interpolated characteristic time
at Re = 140 is TRe = 5.499 against the value 5.489 obtained in POD analysis.

(a) Energy (eigen values) comparison (b) Cumulative energy comparison

Figure 6.6 Energy comparison of the interpolated (ROM) modes with the snapshots POD modes.

The eigenvalues of the interpolation ROM solution at Re = 140 were estimated using re-
lation,

λλλ i =
〈
ãaai(t;Re)2〉

TRe
(6.51)

Figure 6.6(a) shows the energy (in %) associated with the reduced interpolated (ROM) modes
at Re = 140, it is compared with the energy (in %) of the corresponding snapshots POD
modes (cumulative plot in Figure 6.6(b)). The time-averaged flow energy estimation using the
interpolated POD time modes (Equation 6.51) evinces the orthogonality of the interpolated
modes (Balajewicz and Dowell, 2012). An additional orthogonality check is performed a
posteriori on the interpolated reduced basis. The angle (θγγγ,βββ ) between interpolated modes (γγγ ,
βββ ∈ L2(Ω)) is calculated by means of their inner product as,

θγγγ,βββ = arccos
(

(γγγ,βββ )Ω
||γγγ||Ω||βββ ||Ω

)
(6.52)

The angles (in degree) between the interpolated reduced basis of streamwise velocity (u) are
tabulated in Table (6.1). It clearly demonstrates that the interpolation of the POD modes
retains the orthogonality of both the topos (φφφ i) and chronos (ãaai).

The errors quantification, as formulated in Section (6.2.4) is plotted in Figure (6.7). The
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φ u
1 φ u

2 φ u
3 φ u

4 φ u
5 φ u

6 φ u
7 φ u

8 φ u
9 φ u

10

φ u
1 00.0 89.9 89.9 90.4 90.1 90.0 90.0 90.0 90.0 90.1

φ u
2 89.9 00.0 90.4 90.1 89.8 90.0 90.0 90.0 90.0 90.0

φ u
3 89.9 90.4 00.0 90.4 89.8 90.5 90.1 89.9 90.0 90.0

φ u
4 90.4 90.2 90.4 00.0 90.5 90.3 90.1 89.8 90.0 90.0

φ u
5 90.1 89.8 89.8 90.5 00.0 89.8 90.3 89.7 90.5 89.9

ãu
1 ãu

2 ãu
3 ãu

4 ãu
5 ãu

6 ãu
7 ãu

8 ãu
9 ãu

10

ãu
1 00.0 90.1 89.0 89.3 90.2 89.7 89.5 90.4 90.4 90.3

ãu
2 90.1 00.0 88.7 90.3 91.6 91.3 90.1 90.5 90.3 88.3

ãu
3 89.0 88.7 00.0 90.5 91.7 88.3 90.2 88.0 90.3 89.7

ãu
4 89.3 90.3 90.5 00.0 88.1 88.0 90.8 89.6 89.6 91.0

ãu
5 90.2 91.6 91.7 88.1 00.0 89.9 87.8 94.0 91.4 90.3

Table 6.1 Orthogonality (angle between the modes in degree) of the interpolated reduced basis.

truncation error (εt(t;Re)) is nothing but the contribution of higher order POD basis functions
(Npod −Nr) to the fluctuations in state variables. The maximum truncation error is ≈ 0.25%
of the variance (σ2) for each state variable (Figure 6.7(a)). The interpolation error (εi(t;Re))
is relatively high, the maximum of it is about 2% of the variance, for ∆η = ∆Re = 25. The
total error relevant to the interpolation ROM (εit(t;Re)) is also ∼ 10 times the truncation error.
Figure 6.7(b) shows the errors (εi, εt & εit) in phase space. The limit cycles illustrate the
boundedness of errors amplitude with the time evolution. On the other hand, maximum of the
energy based error εe(t;Re) (as defined in Equation (6.40)) is ≈ 22% of the variance (Figure
6.7(c)). Further, the phase diagrams in Figure 6.7(b) and Figure 6.7 (d) show that the errors
follow the stable limit cycles, demonstrating the stability of interpolation ROM method.

High fidelity solution comparisons

Figure 6.8(a) shows the average of streamwise velocity ū(xxx;Re) obtained using the high fi-
delity computational fluid dynamics (CFD) simulation at Reynolds number Re = 140. The
interpolated time-average of the streamwise velocity at same Reynolds number (Re = 140)
using the reference states at Re = 125 and Re = 150 is shown in Figure 6.8(b). Generally, the
time-averaged base flow shows little variation over the long range of Reynolds numbers. In
addition, the dimensionless quantities of practical importance such as Drag, Lift coefficients
vary with the logarithmic change in Reynolds number. Therefore the second derivatives ααα∗
in Equation (6.38), contributing to the error bounds for the interpolation error can expected
to be small, providing the possibility to have larger ∆η . Figure 6.9(a) shows the phase plot
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6.3 Flow past a cylinder at low Reynolds number - a case study

(a) εi, εt & εit - a time evolution

(b) εi, εt & εit - in phase space

(c) εe(t;Re) (d) εe in phase space with εit

Figure 6.7 Time evolution and phase diagrams of the errors.

of the Drag versus Lift coefficients estimated using pressure force, for both the high fidelity
(HFM) and interpolation ROM solutions at Re = 140. Figure 6.9(b) shows the comparison of
time-averaged pressure coefficient profile on the surface of cylinder at Re = 140. The Drag,
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(a) ū(xxx;Re) (HFM) (b) ū(xxx;Re) (ROM)

Figure 6.8 Time-averaged base flow comparison at Re = 140 (ū(xxx,Re)).

(a) Drag versus Lift coeff. comparison (b) Time-averaged pressure profile

Figure 6.9 The phase plot of Drag vs Lift coefficient and surface pressure profile comparison.

Lift and pressure coefficients are estimated (respectively) as,

Cd = 2
∫

Lp

pl x̂dl; Cl = 2
∫

Lp

pl ŷdl and Cp = 2(p− p∞) (6.53)

Where Lp is the perimeter of cylinder, pl is the pressure on the small segment (dl) of the
perimeter. x̂, ŷ are the projections of the unit vector normal to a length segment dl along the
inflow (x) and flow normal (y) directions respectively.

The time signal of streamwise velocity in Figure 6.10(a) is probed at x = 5,y= 0. The time
evolution of the Drag and Lift coefficients for unit cylinder length (estimated using pressure
force only) is compared in Figure 6.10(b). It shows a fairly good agreement with the high
fidelity CFD simulation results. The ROM time signals are ∼ 27 TRe long and they persist for
any time duration (T∞).

A smooth transition between the two off-reference ROM solution is shown in Figure 6.11
(a). The figure shows the drag and lift coefficients plot. The continuous transition of the
ROM solution states from Re = 140 to Re = 160 is obtained by using Equations (6.24), (6.25)
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6.3 Flow past a cylinder at low Reynolds number - a case study

(a) Streamwise velocity at x = 5,y = 0

(b) Drag and Lift (pressure) force coeff.

Figure 6.10 Comparison of the time signals of u, Cd and Cl .

(a) Cd(t) Vs Cl(t) (b) Energy comparison

Figure 6.11 (a) Drag vs Lift coefficient plot showing a smooth transition from Re = 140 to Re = 160
and (b) energy comparison between HFM (Re = 160) and the ROM solution (Re = 160) built using a
linear extrapolation.

and (6.26). The time coefficient parameter in Equation (6.26) is taken as cτ ≈ 0.27, in order
to have the transition between the two operating conditions in 20s. The value of cτ varies
linearly with time period Tηn+1 , for a fixed input of the transition time. The ROM solution at
an off-reference operating condition (Re = 160) is computed by using a linear extrapolation of
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the reference solution states at Re = 125 and Re = 150. The result of linear extrapolation are
compared in Figure 6.11(b), in terms of the % of streamwise velocity (u) fluctuations captured.
The plot shows that the ROM solution captures ≈ 98% of the streamwise energy accurately.

6.4 Conclusion

A simple and robust approach to the model reduction of Navier-Stokes equations is presented.
In contrast to the Galerkin Reduced-Order Models (ROMs), the method is based on the peri-
odicity of the Proper Orthogonal Decomposition (POD) time coefficients - a beautiful feature
of the POD temporal basis functions (chronos) - in statistically stationary flows. In order to
cope with the changing operating condition (such as Reynolds number) the reduced POD basis
is interpolated using a linear interpolation of the reference operating conditions. The error and
stability analysis suggests that the errors in the snapshots POD, truncation of the higher order
POD modes and the linear interpolation are bounded for the time evolution. The total absolute
error mainly depends on the difference in the two reference states (∆η) and a sensitivity of
the flow to the operating parameter. The results of high fidelity CFD simulation of the flow
past a cylinder show good agreement with the proposed method. The stable limit-cycles of the
errors and the linear interpolation of reduced basis for changing operating condition ensure
respectively the stability and robustness of the interpolation ROM. Although the considered
case study is in 2-dimensional (2-D) and for an incompressible flow, the mathematical formu-
lation is developed for the full 3-D compressible Navier-Stokes equations. Further, each state
variable is treated independently, therefore we anticipate the applicability of the method for a
wide range of the problems with coupled phenomena (e.g. flow around aerofoil at high Mach,
fluid-structure interaction).
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CHAPTER 7

MODEL REDUCTION OF FLUID-STRUCTURE INTERACTIONS BY

USING THE GALERKIN-FREE POD APPROACH

Abstract

Reduced-order modeling (ROM) of fluid-structure interaction (FSI) systems is essential, since
the applications such as aeroelastic flutter, haemodynamics involve complex physics. In the
present work, the Galerkin-free POD-ROM approach is extended to FSI problems. The mov-
ing computational mesh in FSI is considered as a part of the solution state vector. The grid
deformation is decomposed into Proper Orthogonal Decomposition (POD) modes by using
the snapshots POD. In addition to the POD modes of flow variables, the POD modes of grid
deformation are also interpolated/extrapolated to an off-referenced solution state. The vortex-
induced vibration in a cylinder at Reynolds number Re = 100 in 2-dimensions (2-D) for low
mass ratios (m∗ = [1.5,20]) (mass of the cylinder/mass of the fluid displaced) is considered
for discussion. The fluid-structure coupling is simulated using the Arbitrary Lagrangian Eule-
rian (ALE) approach, where the cylinder is allowed to oscillate only in the flow normal or lift
(Y ) direction using the mass on a spring motion physics. The mass ratio is considered as the
controlling (or changing) parameter of the FSI-ROM. A priori, 10 reference case simulations
are performed for different mass ratios, such that a reduced-order solution can be provided for
the cylinder displacements ranging approximately between 0 and 1D. A posteriori estimate of
an energy based error in the FSI-ROM remained under 2% of the total variance.

Keywords

Reduced-Order Modeling, Fluid-Structure Interaction, Proper Orthogonal Decomposition, Navier-
Stokes equations
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7.1 Introduction

Computing science is addressing more and more complex problems with the benefit of ad-
vanced computing algorithms and technology. Computational Fluid Dynamics (CFD) simu-
lations are still a costly endeavour in terms of the computing cost involved in the large scale
real world problems (Lucia et al., 2004). Reduced-Order Models (ROM) provide a compu-
tationally inexpensive possibility to perform the same computations at a minimum possible
complexity and also keep the essential features of system intact. Although, ROM were ini-
tially developed for the dynamic systems and control theory, now model reduction is popular
in almost every discipline of the computing science and engineering. There exist different
approaches for model reduction that are specific to the problem in hand and can be based
on the selection of the reduced basis functions. The method of balanced truncation ((Moore,
1981a), (Li et al., 2008)) is based on the controllability and observability of a control sys-
tem. The Hankel-norm reduction ((Glover, 1984b)) method is applied for the approximation
of transfer functions. These methods are originated in the context of the systems and control
theory. Although the Proper Orthogonal Decomposition (POD) or Karhunen-Loève expan-
sion was originally developed in statistics, it is commonly used in fluid dynamics ((Lumley,
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1967), (Sirovich, 1987)) in order to build reduced order models, to study the flow structures,
flow stability and so on. The POD basis serves as an optimal choice (in terms of the flow
energy) of the reduced basis ((Holmes et al., 1990)). A traditional procedure to build a ROM
in fluid dynamics is by a Galerkin projection of the Navier-Stokes Equations (NSE) on the
POD time-invariant reduced basis. The resulting reduced system of the Ordinary Differential
Equations (ODE) is then time integrated to obtain the space-invariant POD modes (also known
as the POD time coefficients). Thus, the solution is readily built using the POD reduced basis
functions.

In addition to the numerical issues associated with Galerkin ROM, a principal difficulty in
building a ROM for FSI problems is the dynamic moving mesh (computational grid). In a gen-
eral strategy, two separate ROM are derived each for the fluid flow and structure domains. The
two ROM are then coupled to form a FSI-ROM ((Dowell and Hall, 2001), (Beran et al., 2004),
(Vierendeels et al., 2007), Kalashnikova et al. (2013)). This procedure to build a FSI-ROM
benefits in terms of reducing the number of parameters and also keeping them independent. In
addition to the individual ROM for either domains, sometimes the interface between fluid and
solid domains is also modeled using a ROM ((Vierendeels et al., 2007)). The FSI-ROM are
developed mainly for the Computational Aeroelasticity analysis or Aeroelastic Flutter and for
Haemodynamics applications. In aerodynamics, the weakly coupled flutter analysis is studied
with the help of FSI-ROM ((Silva and Bartels, 2004), (Beran et al., 2004), (Raveh, 2005)).
In this context, the recent advancement in the ROM based on Proper Orthogonal Decomposi-
tion, Volterra series and the method of Harmonic balance are discussed in (Lucia et al., 2004),
(Raveh, 2005). On the other hand, the blood flow through the arteries and heart is a strongly
coupled FSI problem, where ROM are expected to provide simplistic models ((Colciago et al.,
2014), (Gerbeau and Vidrascu, 2003), (Vierendeels et al., 2007)).

The influence of mesh deformation on the POD modes is studied in (Anttonen et al., 2003),
where the Multi-POD technique is adopted in order to select the POD basis depending on the
grid displacement. The method of Multi-POD is applied to a flow around a pitching and
plunging airfoil in (Anttonen et al., 2005), where the blended POD/ROM based on a forced
deformation analysis resulted in an accurate and effective FSI-ROM. A Galerkin POD-ROM
of FSI is also developed in (Bourguet et al., 2011) for small imposed domain deformations
to capture the transition features of a compressible transonic flow. An aeroelastic ROM for
wings in transonic flow is obtained through a transonic full-potential aerodynamic model, its
transfer functions and a structural dynamic operator for the fluid-structure coupling in (Iemma
and Gennaretti, 2005). A general framework for constructing an optimization oriented ROM is
presented in (Bui-Thanh et al., 2007), with an example of a subsonic blade row. A FSI-ROM
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for a steady FSI problem is presented in (Lassila and Rozza, 2010), where a free-boundary
problem is reduced to a low-dimensional parameter space.

In the present work, separate POD modes are obtained for the moving mesh in addition
to the flow variables. The reduced number of POD modes are formed by using the energy
dominant POD modes of the mesh deformation and flow variables. The POD subspaces are
obtained a priori for certain values of the controlling parameters such as Reynolds number
(Re), mass ratio (m∗). The POD subspace is directly interpolated (or extrapolated) linearly
for the changing controlling parameter in order to obtain an off-referenced reduced solution.
A test case of the Vortex-Induced Vibration (VIV) of a single cylinder in 2-D at Reynolds
number Re = 100 for changing mass ratio (mass of the cylinder/ mass of the fluid displaced)
is considered. In the following section (Section 7.2), the mathematical formulation of the
procedure including a posteriori error estimate is provided. In Section 7.3, results of the VIV
test case are presented.

7.2 Mathematical formulation

The accurate Computational Fluid Dynamics (CFD) simulations coupled with the moving
solid boundaries are considered as the High Fidelity Model (HFM). Thus the solution state
vector is composed of the mesh deformation in addition to the solution of Navier-Stokes equa-
tions. The solution state vector sss = sss(xxx, t) is spanned on the space xxx ∈ Ω, Ω is the spacial flow
domain. t is the time in [0,T∞]. Let H be a Hilbert space and a state variable sssi(xxx, t) ∈ H with
i = 1,2, · · · ,r(sss). r(sss) is the number of state variables. The standard inner product of the state
variables sssi(xxx, t1), sssi(xxx, t2) and the solution state vector sss(xxx, t) are respectively,

(sssi(xxx, t1),sssi(xxx, t2))Ω =
∫

Ω
sssi(xxx, t1) ·sssi(xxx, t2)dxxx

(sss(xxx, t1),sss(xxx, t2))Ω =


(sssi(xxx, t1),sssi(xxx, t2))Ω

...(
sssr(sss)(xxx, t1),sssr(sss)(xxx, t2)

)
Ω

 (7.1)

Although the spacial flow domain Ω deforms in its shape, the volume of the elemental flow
domain dxxx is assumed to be conserved. The induced norm and time averaging (for time period
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T∞) of a state variable and the solution state vector are respectively defined as,

||sssi||Ω =
√

(sssi,sssi)Ω and s̄ssi =
1

T∞

∫
T∞

sssi dt = ⟨sssi⟩T∞

||sss||Ω =


√
(sssi,sssi)Ω

...√
(sssr(sss),sssr(sss))Ω

 and s̄ss =
1

T∞

∫
T∞

sss dt = ⟨sss⟩T∞
(7.2)

7.2.1 The Snapshots POD

The method of Proper Orthogonal Decomposition (POD) is brought in fluid mechanics by
(Lumley, 1967) in order to analyse the turbulent flow structures. Later, (Sirovich, 1987) pro-
posed the snapshots POD approach to further considerably reduce the degrees of freedom. In
the Arbitrary Lagrangian Eulerian (ALE) formulation of fluid-structure coupling the compu-
tational mesh is repositioned in accordance with the moving solid boundaries. Therefore, in
the solution state vector sss(xxx, t;η) we can consider the deforming mesh in addition to the flow
state variables. The solution state vector can be written as,

sss(xxx, t;η) =



xxx(t;η)

ρ(xxx, t;η)

vvv(xxx, t;η)

p(xxx, t;η)
...


(7.3)

Where, η represents the controlling parameter. The variables ρ , v and p are density, flow
velocity and pressure respectively. The solution state vectors at discrete time steps (snap-
shots) are obtained by performing the accurate HF CFD calculations. The state vector can be
decomposed by using the Reynolds decomposition as,

sss(xxx, t;η) = s̄ss(x̄xx;η)+sss′(xxx, t;η) (7.4)

= s̄ss(x̄xx;η)+
∞

∑
i=1

φφφ i(x̄xx;η)aaai(t;η) (7.5)

Where sss′(xxx, t;η) represents the unsteady part of the Reynolds decomposition. The flow solu-
tion is assumed to be statistically stationary. The unsteady part of the state vector in Equa-
tion (7.4) is equivalently represented by means of the POD time-invariant (topos) and time-
dependent POD modes (chronos) (Equation 7.5). The time-averaged state vector s̄ss and the
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POD time-invariant (or space) modes (φiφiφi) can be plotted on a time-averaged space vector x̄xx.

sss(xxx, t;η)≈ s̄ss(x̄xx;η)+
NNNr

∑
i=1

φφφ i(x̄xx;η)aaai(t;η) t1 ≤ t ≤ tsn (7.6)

The solution state vector can be built using a reduced number of the dominant POD modes
(φiφiφi) and corresponding time coefficients (aiaiai) as shown in Equation (7.6). The solution can be
rebuilt in the time interval of snapshots collection i.e. for [t1, tsn]. Where NNNr is the reduced
number of POD modes, which can be different for each variable of the solution state vector.
t1 and tsn represent the time of first and last snapshots respectively. Let RRR(η) be the two point
time-correlation function, given by,

RRR(η) =RRR(ti, t j,η) =
1
Nt

(
sss′(xxx, ti;η),sss′(xxx, t j;η)

)
Ω i, j = 1,2, .....Nt (7.7)

Where Nt stands for the number of snapshots used to estimate the time-correlation tensor. The
correlation function RRR(η) is solved for the eigenvalue problem, as in Equation (7.8).

RRR(η)ψψψ i(t;η) = λλλ iψψψ i(t;η) (7.8)

where λλλ i are the eigenvalues. The orthogonal eigenfunctions ψψψ i(t;η) are then normalized as,

(
ψψψ i(t;η),ψψψ j(t;η)

)
Tsn

= δδδ i j (7.9)

Where, δδδ i j is the Kronecker delta in vector form. The POD modes are arranged in descending
order of their energy content (the eigenvalues associated with the modes). i.e λλλ 1 > λλλ 2 >

............... > λλλ Npod > 0. The orthonormal ‘topos’ are obtained using Equation (7.10), such
that (φφφ i(x̄̄x̄x;η),φφφ i(x̄̄x̄x;η))Ω = δδδ i j.

φφφ i(x̄̄x̄x;η) =
1√
Ntλλλ i

(
sss′(xxx, t;η),ψψψ i(t;η)

)
Tsn

(7.10)

The corresponding POD time coefficients are given by,

aaai(t;η) =
(
φφφ i(x̄̄x̄x;η),sss′(xxx, t;η)

)
Ω

=
√

Ntλλλ iψψψ i(t;η) (7.11)

Generally, the number of reduced POD modes (NNNr) is much smaller compared to the total
POD modes (Nr << Npod). The relative energy captured (EcEcEc) by the most energetic (first few)
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POD modes is substantial. It can be given as,

%EcEcEc =
∑NNNr

i=1λλλ i

∑
Npod
i=1 λλλ i

×100 (7.12)

7.2.2 The POD time modes (Chronos)

The total energy of the system can be estimated by Equation (7.13). It also provides an ap-
proximate estimate for the energy in terms of the reduced number of POD time coefficients
(aiaiai).

EEE(η) =
1
2

∫
Ω

〈
sss′(xxx, t,η)2〉

Tsn
dxxx ≈ 1

2

Nr

∑
i=1

λλλ i =
1
2

Nr

∑
i=1

〈
aaai(t;η)2〉

Tη
(7.13)

Here Tsn is the time period of the snapshots collection. The approximate total energy can
be equivalently obtained for the minimum value of time Tη . Tη is a time-period of the first
POD time mode for the operating parameter η . It corresponds to the minimum frequency of
a POD time mode present in the coupled system, which is captured in the snapshots. The
characteristic chronos are obtained using Equation (7.14). Where ta is an arbitrary time (ta =
[0,(tsn −Tη)]).

ãaai(t;η) = aaai(t;η) for t ∈ [ta, ta +Tη ] (7.14)

The POD modes are organized based on their energy content i.e. simply based on the
associated eigenvalues. The energy dominant POD modes are retained as the reduced basis
for the model reduction. In addition, the retained reduced basis functions should follow the
stable limit cycles in their dynamics. Therefore, we can use the periodicity of the POD time
modes resulted from Equation (7.14). Equation (7.6) can be reframed as,

sss(xxx, t;η)≈ s̄ss(x̄xx;η)+
NNNr

∑
i=1

φφφ i(x̄xx;η)ãaai(t;η) t ≥ 0 (7.15)

7.2.3 Linear interpolation

The average of state vector (s̄ss) and the POD modes (φiφiφi, ãaai) are linearly interpolated for the
change in operating parameters such as Reynolds number, mass ratio (mass of solid/mass of
displaced fluid medium) in fluid-structure interaction systems by using Equation (7.16).

ΓΓΓ(βββ ;η) =ΓΓΓ(βββ ;η1)+

[
(ΓΓΓ(βββ ;η2)−ΓΓΓ(βββ ;η1))

(η2 −η1)

]
(η −η1) (7.16)
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Where η1, η2 are the values of controlling parameter for the two high fidelity reference cases.
A priori, the standard inner product in Equation (7.17) is satisfied so that the interpolated
quantities (RHS of Equation (7.15)) track the signs of η1 reference case.

(ΓΓΓ(βββ ;η1),ΓΓΓ(βββ ;η2))βββ ≥ 0 (7.17)

The linear interpolation can be easily extended for a linear extrapolation using the ref-
erence state solutions, in order to broaden the range of operating conditions. Furthermore a
smooth transition from an operating condition to another can be achieved by using a linear
transition similar to the one used in (Morzynski et al., 2006).

7.2.4 Error estimate

The error estimated is based on the quadratic energy terms, since it provides an upper bound
for the error for a Galerkin POD-ROM ((Balajewicz and Dowell, 2012), (Demmel, 1997)).
The normalized error (ε(t;η)) can be given by,

ε(t;η) =
∣∣∣∣(EEE(t;η)pod −EEE(t;η)

)
⊘σσσ

2(η)
∣∣∣∣

r(sss)

=

∣∣∣∣∣
∣∣∣∣∣
(

Npod

∑
i=1

ãaai(t;η)2
pod −

Nr

∑
i=1

ãaai(t;η)2

)
⊘σσσ

2(η)

∣∣∣∣∣
∣∣∣∣∣
r(sss)

(7.18)

Where the subscript pod stands for the energy of the POD solution. The symbol ‘⊘’ represents
an element to element division of the vectors. The total variance is computed using HF model
as,

σσσ
2(η) =

∫
Ω

〈
sss′(xxx, t;η)2

h f

〉
T∞

dxxx

7.3 Vortex induced vibration of a cylinder at Re = 100 for
various mass ratios

The flow past a cylinder in 2-D is considered as the fluid-structure coupled system to build
the Galerkin-free FSI ROM. The cylinder (with a natural frequency fn = 0.17 Hz) undergoes
Vortex Induced Vibration (VIV) at Reynolds number Re = 100, with Re = ρuD/µ . Where ρ ,
µ are the fluid density and fluid dynamic viscosity respectively. D is the cylinder diameter.
The fluid velocity at inflow is u (the streamwise velocity component of the velocity). Figure
7.1 (a) shows the extent of computational domain (mesh). The mean flow is in +x direction.
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Figure 7.1(b) shows an instantaneous streamwise velocity (u) plotted around the oscillating
cylinder.

7.3.1 The flow equations

A compressible flow solver† with an appropriate preconditioning scheme for the incompress-
ibility is used to perform the high fidelity CFD simulations.

(a) Geometry and mesh (b) Instantaneous streamwise velocity u

Figure 7.1 Computational domain and instantaneous flow field at Re = 100 and mass ratio m∗ = 2.50.

The full NSE are described from Equation (7.19) through Equation (7.21).

∂

∂ t
(www)+

∂

∂x
( fff − fff ν)+

∂

∂y
(ggg−gggν) = 0 (7.19)

Where,

www =


ρ

ρu

ρv

ρE

 , fff =


ρu

ρu2 + p

ρuv

u(ρE + p)

 ,ggg =


ρv

ρvu

ρv2 + p

v(ρE + p)



fff ν =


0

τxx

τxy

[τττ,vvv]x −qx

 ,gggν =


0

τyx

τyy

[τττ,vvv]y −qy


†Navier-Stokes Multi Block - NSMB solver
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Here www is the state vector. fff , ggg are the convective fluxes, while as fff ν , gggν are the viscous
fluxes. The components of shear stress tensor τττ in the viscous fluxes are given by Equation
(7.20).

τxx =
2
3

µ

(
2

∂u
∂x

− ∂v
∂y

)
,τyy =

2
3

µ

(
−∂u

∂x
+2

∂v
∂y

)
τxy = τyx = µ

(
∂u
∂y

+
∂v
∂x

)
(7.20)

The heat flux is calculated using Fourier’s law as,

qx =−kθ

∂θ

∂x
,qy =−kθ

∂θ

∂y
with kθ = µCp/Pr (7.21)

Where kθ , θ are the thermal conductivity, temperature respectively. The Prandtl number (Pr)
is taken 0.72 (for air).

The second order fully implicit LU-SGS (Lower-Upper Symmetric Gauss-Seidel) back-
ward A-stable scheme is used for time marching. The space discretization is done using forth
order central finite volume scheme in a skew-symmetric form. The preconditioning method
proposed in (Turkel et al., 1996) to impose the incompressibility is used for the flows at low
speed (mach number).

7.3.2 Fluid-structure coupling

The Algebraic Lagrangian Eulerian (ALE) method is used to simulate the fluid-structure cou-
pling. The motion of cylinder is considered as the mass on a spring system as shown in Figure
(7.2). The cylinder is allowed to oscillate only in flow normal/lift (Y ) direction.

Figure 7.2 The coupling between the cylinder and surrounding fluid.

The equation of motion of the cylinder in flow normal (Y ) direction, under VIV can be
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written as,

m
d2y
dy2 + c

dy
dy

+ ky = Fy (7.22)

Here y is the displacement in the cylinder in the lift direction. m is the mass of cylinder
per unit length, while c, k are the damping and stiffness coefficients respectively. The cylinder
is driven by the fluid force (Fy) per unit length, which is on the right hand side of Equation
(7.22). Table (7.1) specifies the values of the simulation parameters. u∗ = u/( fnD), fn and
ζ = c/(2

√
km) are the reduced velocity, cylinder natural frequency (vacuum) and the damping

ratio of the cylinder oscillations (vacuum) respectively. The cylinder’s and flow density are
D = 1 m and ρ = 1 kg/m3 respectively.

Re u∗ fn (Hz) ζ (%)

100 5.88 0.17 20

Table 7.1 Simulation Parameters.

The mass ratio (m∗ = m/(ρD2)) of the system is taken as the controlling parameter for the
system (η = m∗). The high fidelity simulations are simulated at Reynolds number Re = 100
for different values of the mass-ratio (m∗). The mass ratio is changed in order to have the
amplitude of oscillations of the cylinder varying approximately from y = 0 to y = 1D.

7.3.3 POD analysis

The solution state vector (sss(xxx, t;η), in Equation 7.3) becomes,

sss(xxx, t;m∗) =


y(t;m∗)

u(xxx, t;m∗)

v(xxx, t;m∗)

p(xxx, t;m∗)

 (7.23)

The number of snapshots of the solution state vector taken is 576. They are collected with a
timestep of ∆t = 0.05. A time-correlation tensor is formed by using the unsteady part (sss′) of the
state vector, which is then solved for the eigenvalue problem. The % energy (λi/∑i λi ×100)
associated with the POD modes of the different state variables is plotted in Figure (7.3). The
POD modes are sorted based on their energy content. The percentage of energy associated
with the first POD modes of the mesh deformation is almost 100% (Figure 7.3 (a)). Therefore,
just one mode (Ny

r = 1) is sufficient for the reconstruction of mesh movement. On the other
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(a) POD modes energy (y) (b) POD modes energy (u, v and p)

Figure 7.3 % energy associated with the POD modes at Re = 100, m∗ = 2.50.

hand, the first 10 POD modes of the flow variables contain most of the energy. Thus the
number of reduced modes used for the flow variables i.e. velocity (u, v) and pressure (p)
is Nr = 10. Figure 7.4(a) shows the normalized, time-invariant, first POD mode (φ y

1(x̄xx;m∗))

(a) Space mode (φ y
1(x̄xx;m∗)) (b) Time mode (ay

1(t;m∗))

Figure 7.4 The pair of first POD mode of the mesh deformation in y direction at Re = 100, m∗ = 2.50.

of the mesh deformation for mass ratio m∗ = 2.50. The corresponding first POD time mode
(chrono) ay

1(t;m∗) is shown in Figure 7.4(b) over one time period Tm∗ = 5.79622s.

144



7.3 Vortex induced vibration of a cylinder at Re = 100 for various mass ratios

7.3.4 ROM solution states

The reference case simulations are performed for 10 different values of the mass ratio (m∗), in
order to have the cylinder response (y) varying from 0 upto 1D. Table (7.2) shows the details
of reference cases simulated for various mass ratios (listed in first row) and the corresponding
Root Mean Squared (rms) response of cylinder per unit diameter (y∗rms = yrms/D) in the second
row.

Mass ratio (m∗) 1.5 1.75 2 2.5 3 3.5 5 7 10 20
Cylinder response (y∗rms) .69 .64 .59 .51 .44 .38 .25 .21 .10 .04

Table 7.2 Reference case simulations.

The vortex-induced free vibrations in a circular cylinder are extensively studied. The
progress on the topic is well reviewed in (Williamson and Govardhan, 2004). There exist
a minimum value for the mass ratio (m∗) as discussed in (Williamson and Govardhan, 2004)
(m∗ ≈ 0.5, the value changes with other system parameters). The damping ratio (ζ ) used in
the present work is very high (20%), in order to obtain the desired amplitudes of cylinder
oscillations. Thus the mass-damping parameter m∗ζ varies from 0.2 upto 4. The physics
of the problem at small and very small mass-damping parameter is studied in (Khalak and
Williamson, 1997) and (Khalak and Williamson, 1999). The non-dimensional (reduced) fre-
quency f ∗ = fn ×Tm∗ = 1.015, for m∗ = 2.5.

The reduced number of POD modes (NNNr) with high energy content are selected to form
the POD subspace. There exist two main problems in constructing the ROM of this FSI
system, first, the traditional Galerkin projection of the Navier-Stokes equations on the POD
time invariant modes (or space modes) does not lead to set of ordinary differential equations,
since the space (fluid domain) is time dependent. Second, the validity of a ROM based on
POD is generally limited to a small range of controlling parameter. The POD reduced basis
depends non-linearly on the controlling parameter. In an interesting work, (Bui-Thanh et al.,
2003) proposed a gappy POD procedure to construct the off-reference ROM solutions, thereby
dealing with the change of controlling parameters. Further, the method uses the POD coupled
with an interpolation method, which avoid the Galerkin projection of governing equations. In
(Lieu et al., 2006) a ROM for a complete aircraft is formulated based on a Mach-adaptation
strategy, where the angle between the POD subspace is interpolated in order to deal with the
changes in the controlling parameter. The interpolation of the reduced basis for the change in
controlling parameter is performed in a tangent space to a Grassmann manifold in (Amsallem
and Farhat, 2008) and further on matrix manifolds in (Amsallem and Farhat, 2011). In the
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present work, the periodic construction of the POD time modes as per Equation (7.14) is used
to avoid the Galerkin projection and the solution including the mesh deformation is readily
built using Equation (7.15). A direct linear interpolation of the POD space as well time modes
is performed in order to predict an off-reference solution state by using the pre-simulated
reference cases. An extrapolation of the reference states can be used to broaden the range of
controlling parameter.

(a) φ u
1 (x̄xx;m∗) (high fidelity mode) (b) φ u

1 (x̄xx;m∗) (interpolated mode)

(c) φ u
2 (x̄xx;m∗) (high fidelity mode) (d) φ u

2 (x̄xx;m∗) (interpolated mode)

(e) φ u
3 (x̄xx;m∗) (high fidelity mode) (f) φ u

3 (x̄xx;m∗) (interpolated mode)

Figure 7.5 Comparison of the POD space modes computed using the high fidelity model with the
interpolated modes at Re = 100, m∗ = 2.75.

The linear interpolation of the energy dominant (NNNr) POD modes is performed for the
intermediate values of mass ratio using the reference cases tabulated in Table (7.2). The com-
parison of the interpolated POD modes with the high fidelity POD modes at an off-reference
case (mass ratio m∗ = 2.75) is shown in Figure (7.5). The figure compares the first three time-
invariant POD modes (topos) of the streamwise velocity (u). Figure 7.5 (a), (c) and (e) show
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(a) ãu
1(t;m∗) Vs. ãu

2(t;m∗) (b) ãu
1(t;m∗) Vs. ãu

3(t;m∗)

Figure 7.6 Comparison of the POD time modes computed using the high fidelity model with the inter-
polated modes at Re = 100, m∗ = 2.75.

the first three energy dominant POD modes (φ u
1 , φ u

2 and φ u
3 ) respectively, which are obtained

by using the high fidelity simulation. In comparison, the POD modes in Figure 7.5 (b), (d)
and (f) are the corresponding linearly interpolated POD space modes, obtained by using the
reference state POD subspaces at m∗ = 2.50 and m∗ = 3.00. The modes are shown on a time-
averaged computational grid. A similar configuration at Reynolds number Re= 1690 is treated
in (Liberge and Hamdouni, 2010). A non-linear FSI ROM based on a multiphase formulation
of the Navier-Stokes and its extension in the solid domain is presented. The Reynolds number
is considered as the controlling parameter.

In addition to the interpolation of the POD space modes, the POD time modes are also
linearly interpolated in phase space. The interpolation of the first three POD time modes
(chronos) in phase space is shown in Figure (7.6). The interpolated chronos (in blue color,
Figure (7.6)) coincide with the high fidelity modes beneath (in green color, Figure (7.6)),
which indicates the accuracy of the FSI ROM. The plot of the normalized energy based error
(ε(t)), as defined in Equation (7.18), is shown in Figure (7.7)(b). It is bounded under 2%. A
ROM solution can be built within a minute on a single processor using the interpolated POD
reduced basis, while as the corresponding high fidelity CFD simulation takes about 20 hours
on 8 processors to provide the solution. Figure (7.8) shows a comparison of instantaneous
streamwise velocity plots between HF CFD model and the FSI ROM, built at a time t = 10s.
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(a) Cylinder timely response at m∗ = 2.75 (b) Error ε(t)

Figure 7.7 Comparison of the ROM solution with high fidelity CFD solution at Re = 100, m∗ = 2.75.

(a) u at t = 10s (High Fidelity) (b) u at t = 10s (ROM)

Figure 7.8 Comparison of the streamwise velocity (u) at t = 10s for m∗ = 2.75.

7.4 Conclusion

A Galerkin-free approach to model reduction of fluid-structure coupled problems based on the
POD modes interpolation is developed. The mesh deformation is considered in the solution
state. The snapshots POD analysis is performed on the mesh deformation in addition to the
flow variables. The time periodicity of the POD time modes is used to extract the character-
istic POD modes. A linear interpolation of the POD subspace is performed to cope with the
changing controlling parameter. A case study of the Vortex Induced Vibration of a cylinder
placed in external flow is considered. The high fidelity CFD simulations are performed at
Reynolds number Re = 100. The mass ratio (m∗) is used as an operating parameter for the
FSI-ROM. The FSI-ROM solutions are built using 10 reference case simulations for different
values of mass ratio such that the range of amplitudes of the cylinder oscillations is from 0
to 1D. Only 1 POD mode of the mesh deformation and 10 POD modes of the flow variables
(velocity, pressure) are required to build a solution with an error less than 2% of the total
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variance.

149



CHAPTER 8

CONCLUSIONS AND OUTLOOK
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8.1 Conclusions

The flow induced vibrations in tube arrays under cross flow arrangement, particularly the flu-
idelastic vibration is investigated in this thesis work. Numerical simulations of the cross-flow
through tube arrays are performed by using the URANS and LES calculations. A mathemat-
ical model for the fluidelastic instability is developed. In addition, the second part of thesis
deals with reduced-order modeling of the fluid flow dynamical systems. A novel Galerkin-free
technique for model reduction of the Navier-Stokes equations is developed and extended to
the fluid-structure interaction problems. Below are the concluding remarks and an outlook on
the thesis results.

1. In the beginning of thesis, a detailed introduction to the flow induced vibrations in heat
exchanger tube bundles is provided. There are several excitation mechanisms for the vi-
brations in tube bundles, namely, vortex induced vibrations, turbulent buffeting, acoustic
resonance in addition to the fluidelastic excitation mechanism. Historical developments
of these excitation mechanisms is provided in the context of tube arrays. The excitation
mechanism of the fluidelastic instability is not crystal clear, even after the enormous
experiments performed by many researchers. The different theoretical approaches are
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mainly based on the experimental observations. A detailed review on the mathematical
models of the fluidelastic instability is also provided.

2. There are less number of numerical studies on the fluidelastic instability in tube ar-
rays in comparison with the experimental studies. The results of Computational Fluid
Dynamics (CFD) models (except for the Direct Numerical Simulations (DNS), which
are limited to the low Reynolds number flows) are often criticized for their inability to
model the flow turbulence accurately. The potential flow modeling approach is far from
the reality, since in the tube arrays almost all the flows of practical interest are turbu-
lent in nature. In this work, the Unsteady Reynolds Averaged Navier-Stokes (URANS)
turbulence models, namely, k − ε , k −ω and k − ε − v̄2/k are used to study the time
averaged pressure profiles on the cylinder surface, in static configurations. Although,
the results of k− ε and k−ω models, in static configurations, are fair and comparable
with the the four equation k−ε − v̄2/k turbulence model, the k−ε − v̄2/k is used for the
further investigation of fluidelastic instability in the dynamic configuration. The critical
flow velocity (upc) is well predicted by the k− ε − v̄2/k model by means of performing
the dynamic fluid-structure interaction simulations. The values of resultant quantities,
the cylinder response frequency ( fn) and the damping ratio (ζ ), are in a good order of
magnitudes. Although the stability threshold is well predicted, the trends of variation in
the quantities fn and ζ with increasing flow velocity are missed, when compared with
the experimental data.

3. In order to investigate the transient interaction between the interstitial flow through an
array and a single tube of the array, the fluid flow is simulated using the Large Eddy
Simulations (LES). Although the LES are computationally expensive and restricted to
relatively low Reynolds numbers, the results obtained are encouraging. The transient
nature of the flow and fluid-structure interaction are well captured by the LES. The
development of fluidelastic instability with the increasing flow velocity, in terms of the
variations in the cylinder vibration frequency ( fn) and the effective damping ratio (ζ ),
shows a fairly good agreement with the experiential results.

4. A theoretical model of the fluidelastic instability is proposed based on the dynamics
between the interstitial flow and the cylinder vibration. The mathematical formulation
yields an implicit expression for the critical flow velocity, which accounts for the in-
fluence of the pitch ratio (p∗) and the Reynolds number (Re) through the Euler number
(Eu). The model is developed for the square normal tube arrays with a single vibrat-
ing tube in 1-degrees-of-freedom (in the flow lift or transverse direction). The model
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predictions are promising, even though compared with a limited experiential data.

5. A short review on reduced order modeling in the context of fluid dynamics systems is
provided. Traditionally, model reduction is extensively used in the control designs and
systems. In fluid dynamics, the method of Proper Orthogonal Decomposition (POD)
via Galerkin projections is commonly followed to generate reduced order models. In
this thesis, a new methodology for constructing a reduced order solution of the Navier-
Stokes equations at an off-reference solution state is proposed. A linear interpolation
of the reduced POD space and time modes leads to a Galerkin-free formulation. In
the mathematical formulation, the variables forming the state vector are treated sepa-
rately, hence the model is suited for the multi-physics problems. The model reduction
technique is extended to a fluid-structure interaction problem. The flow past a cylinder
at low Reynolds numbers (Re ≈ 100) in static and dynamic configurations are used to
demonstrate the method.

8.2 Outlook

The number of parameters involved in the flow induced vibrations of the heat exchanger tube
bundles is large. The existing mathematical models of the fluidelastic instability are generally
valid for a particular range of parameters. The proposed implicit model of fluidelastic instabil-
ity is also developed under several simplifying assumptions. The model is developed for the
square normal tube arrays under cross flow of a single phase fluid. Only a single inner cylinder
is free to oscillate in the flow lift or transverse direction. The influence of parameters such as,
array orientation, vibration in all tube bundle instead of a single tube, two phase fluid flow,
different values of the longitudinal and transverse pitch ratios etc. need to be incorporated in
order to generalize the implicit model. The dynamic interaction between the interstitial flow
and the cylinder vibrations are modeled in terms of the mechanical impedance term (Im). The
coupling of the cylinder natural frequency with the fluid (including the effect of flow channel
boundaries) frequencies is modeled under simple assumptions, which can be improved based
on a detailed analysis and quantification of the interactions. The model is capable of predict-
ing the multiple stability boundaries at the lower values of mass-damping parameter. There
is a need to further exploration of the exact shapes of the multiple stability thresholds. The
instability is assumed to occur when the fractional length hc becomes 0.5 as well as when the
pressure drop across the cylinder in the lift direction (∆py) equals the pressure drop (∆prow)
across the cylinder in the flow direction. The exact occurrence of these transitions and the
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interrelation between the two events will be useful in refining the model.
The Galerkin-free model reduction technique developed in this thesis work is a posteriori

formulation, since it deals with the solution sets obtained and not the equations itself. The
linear interpolation technique is robust, although it puts limit on the distance between two ref-
erence states. The interpolation can be improved to an interpolation based on the Grassmann
manifolds.
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APPENDIX A

TURBULENCE MODELING

Contents
A.1 Unsteady Reynolds Averaged Navier-Stokes (URANS) . . . . . . . . . . 155

A.1.1 Linear eddy viscosity models . . . . . . . . . . . . . . . . . . . . . 156
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A.2.1 Smagorinsky-Lilly Model . . . . . . . . . . . . . . . . . . . . . . 161

Navier-Sokes equations (NSE) describe the flow of viscous fluids. The equations are de-
rived using laws of conservation of mass, momentum and energy as well. The fluid is con-
tinuum and undergoes Newton’s second law of motion. In addition, the Cauchy stress tensor
defined for fluids, which is the addition of a velocity gradient term and a pressure term for the
Newtonian fluids. A general form of Navier-Stokes equations (with continuity of mass and
momentum) in Einstein’s index notation can be written as,

∂ (ρ)

∂ t
+

∂ (ρui)

∂xi
= 0 (A.1)

∂ (ρui)

∂ t
+

∂
(
ρuiu j

)
∂x j

=
∂
(
σi j
)

∂x j
+ fi (A.2)

Where ρ is the fluid density, ui is the ith component of instantaneous velocity, t and xi rep-
resents time and space respectively. fi is a body force. The stress tensor σi j is given by,
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σi j =−pδi j + τi j (A.3)

Where p is the static pressure and τi j is the shear stress tensor. δi j is the Kronecker delta. τi j

is formulated by using the Newton’s law of viscosity and Stokes assumptions as,

τi j = µ

(
∂ui

∂x j
+

∂u j

∂xi
− 2

3
δi j

∂uk

∂xk

)
+δi jλ

∂uk

∂uk
(A.4)

Where, µ and λ are the first and second coefficients of viscosity, also know as dynamic vis-
cosity and bulk viscosity respectively. The equations are simplified significantly for incom-
pressible fluids. By considering the incompressibility and not accounting for body forces, the
resulting equations can be written as,

∂ui

∂xi
= 0 (A.5)

∂ui

∂ t
+u j

∂ui

∂x j
=− 1

ρ

∂ p
∂xi

+ν
∂ 2ui

∂x j∂x j
(A.6)

Where ν = µ/ρ is the kinematic viscosity of fluid.

The dimensionless Reynolds number (Re) for a fluid flow is defined as the ratio of fluid
inertial forces to viscous forces. The flow at high Reynolds number (normally) becomes tur-
bulent and appears chaotic. The Direct Numerical Simulations (DNS) of Navier-Stokes Equa-
tions (NES) at higher Reynolds number is computationally expensive endeavour. Turbulence
modeling is useful in obtaining numerical solutions of the NSE at high Reynolds number. The
DNS approach resolves all the energy scales of the turbulent energy spectra, otherwise the
unresolved turbulence need to be modeled.

A.1 Unsteady Reynolds Averaged Navier-Stokes (URANS)

The instantaneous flow velocity is decomposed into the average and fluctuating parts in Reynolds
Averaged Navier-Stokes (RANS) approach of turbulence modeling. All the turbulent scales
present in the flow are modeled. The NSE are replaced by the averaged NSE and separate
equations modeling turbulence in the flow. The Reynolds decomposition can be written as,

ui = ui +u′i (A.7)
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Where ui and u′i are the time averaged ith component of velocity and associated fluctuating
component respectively. The Reynolds averaged Navier-Stokes equations become,

∂ui

∂xi
= 0 (A.8)

∂ui

∂ t
+u j

∂ui

∂x j
=− 1

ρ

∂ p
∂xi

+ν
∂ 2ui

∂x j∂x j
−

∂u′iu
′
j

∂x j
(A.9)

An extra term appears in this operation, u′iu
′
j which is known as Reynolds stress tensor. The

system of equations remains open with 10 unknowns in 4 equations. One can write 6 sepa-
rate transport equations for the Reynolds stress tensor, which further produces 34 unknowns.
((Manceau, 2015)). Depending upon the number of equations solved for turbulent quantities,
in addition to the mean flow quantities, the turbulence models can be classified.

A generalised eddy-viscosity model for Reynolds stress tensor (u′iu
′
j) is written as,

u′iu
′
j =−2νtsi j +

2
3

kδi j (A.10)

Where νt , k are the turbulence viscosity and kinetic energy respectively, while si j is the aver-
aged strain rate tensor, represented as,

si j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)

A.1.1 Linear eddy viscosity models

The standard k− ε model is a two-equation turbulence model, as separate transport equations
are solved for the turbulent kinetic energy k and the turbulent dissipation ε . This model is the
most commonly used in industry, since it was first proposed by Launder and Spalding (1974).
The turbulence length scale and time scale are evaluated as k3/2/ε and k/ε respectively. The
effective turbulence viscosity (νt) is estimated as,

νt =Cµk2/ε (A.11)

The equations for turbulence dissipation (ε) and the turbulence kinetic energy (k) are given as,

∂ε

∂ t
+u j

∂ε

∂x j
=

∂

∂x j

[(
ν +

νt

σε

)
∂ε

∂x j

]
+

C1ε

k
Pkε −C2

ε2

k
(A.12)
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∂k
∂ t

+u j
∂k
∂x j

=
∂

∂x j

[(
ν +

νt

σk

)
∂k
∂x j

]
+Pkε − ε (A.13)

Where Pkε is the rate of production of turbulent energy (k). It is given by,

Pkε = 2νtsi jsi j (A.14)

The empirical constants appearing in the Standard k−ε equations are experimentally eval-
uated ((Launder and Sharma, 1974)) to be,

Cµ = 0.09 C1 = 1.44 C2 = 1.92 σk = 1.0 σε = 1.3

The near wall treatment is necessary for the Standard k − ε model, since the Prandtl-
Kolmogorov relation for the turbulent viscosity in Equation (A.11) is not valid in the proximity
of wall. An approach of wall-functions modeling is generally opted for near-wall correction
((Patankar and Spalding, 1972), (Launder and Spalding, 1974)).

k− ε Linear Production

Although, Standard k − ε is widely used turbulence model, it has some serious limitations
((Manceau, 2015)), stagnation point anomaly is one of them. The production term Pkε has
a quadratic dependency on the mean strain rate tensor (si j), which results in overproduction
of the turbulent kinetic energy. In Linear Production k − ε turbulence model (proposed in
(Guimet and Laurence, 2002)), the turbulent energy generation rate is linearised based on
turbulence anisotropy. The formulation is based on the fact that the anisotropy in fluid does not
grow linearly for large values of strain rate tensor. Therefore the value of improved coefficient
Cµ is evaluated from the measure of anisotropy in the near wall region. The anisotropy tensor
is defined ((Rotta, 1951)) as,

ai j =
u′iu

′
j

k
− 2

3
δi j (A.15)

Thus by using measurements of the anisotropic tensor in the log layer and the turbulent energy
production and dissipation terms, the improved coefficient Cµ is modeled as,

Cµ = [a12]
2
log layer

ε

Pkε

(A.16)

Further modeling [a12]
2
log layer term, allows to return to the original isotropic formulation

(quadratic production terms). Several validation case studies are also provided in ((Guimet
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and Laurence, 2002)).

k−ω SST

In most of the two-equation models, turbulent kinetic energy (k) is used as first variable,
while the choice of second variable differs from one model to another. Although the two
independent turbulent scales are used in these models, they are interrelated and their choice
make no difference beforehand. In (Wilcox, 1988), the author presented a frequency scale
(ω), based on hypothesis similar to Kolmogorov. The turbulent energy dissipation (ε) linked
to the frequency parameter as ω = ε/k. The model is integrable up to the wall boundary faces,
contrary to the k−ε formulation. On the other hand the model (k−ω) predictions are not not
satisfactory in external flows, as compared to Standard k− ε model. An approach combining
merits of both the k− ε and k−ω turbulence model is proposed by (Menter, 1994). The first
equation of turbulent kinetic energy is given as,

∂k
∂ t

+u j
∂k
∂x j

=
∂

∂x j

[
(ν +σkνt)

∂k
∂x j

]
+Pkωsst −β

∗kω (A.17)

∂ω

∂ t
+u j

∂ω

∂x j
=

∂

∂x j

[
(ν +σωνt)

∂ω

∂x j

]
+

α

νt
Pkωsst −βω

2

+2(1−F1)
σω2

ω

∂k
∂x j

∂ω

∂x j
(A.18)

Where Pkωsst is the turbulent kinetic energy production rate. The function F1 controls the
model depending on the region in the computational domain. In the near wall region it tends
to value 1, where the k−ω model should dominate the physics, while away from the boundary
layers k− ε formulation is effective. The closure coefficients and auxiliary relations (α , β ∗,
β , σk, σω , σω2 and F1) can be referred in (Menter, 1994).

A.1.2 Non-linear eddy viscosity models

A generalised formulation for Reynolds stress tensor is postulated in (Wallin and Johansson,
2000), where a non-linear relation between the turbulence stresses and strain rate and mean
vorticity tensors is proposed. The eddy viscosity models with inclusion of higher order terms
from the general equation leads to non-linear eddy viscosity models.
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k− ε − v2/k elliptic blending turbulence model

The v2- f model ((Durbin, 1995)) is similar to the Standard k− ε model. In addition to the
k and ε , two additional variables are solved, namely v2 and f . Where v2 is a velocity scale,
nothing but the ratio of wall normal Reynolds stresses to the turbulent kinetic energy (which
represents near-wall anisotropy in turbulence). The second variable f is solved in the form of
an elliptic relaxation equation.

A numerically robust form of the model is proposed in (Laurence et al., 2005). A new
variable is proposed as ϕ = v2/k in place of v2, while a function f̄ is newly formulated instead
of f as,

f = f̄ − 2ν

k
∂ϕ

∂xi

∂k
∂xi

−ν
∂ 2ϕ

∂x2
i

(A.19)

such that, f̄ → 0 as the distance from wall tends to zero. The transport equations for the new
variables are written as,

∂ϕ

∂ t
+u j

∂ϕ

∂x j
=

∂

∂x j

[
νt

σk

∂ϕ

∂x j

]
+ f̄ −Pv2 f

ϕ

k
+

2νt

kσk

∂ϕ

∂x j

∂k
∂x j

(A.20)

L2 ∂ 2 f̄
∂xi

− f̄ =
1
T
(C1 −1)

[
ϕ − 2

3

]
−C2

Pv2 f

k
−2

ν

k
∂ϕ

∂x j

∂k
∂x j

−ν
∂ 2ϕ

∂x2
i

(A.21)

Where L and T represent length and time scales of turbulence, defined as,

L =CLmax

[
k3/2

k
,Cη

ν3/4

ε1/4

]
T = max

[
k
ε
,6
√

ν

ε

]
The constant coefficients of the equations are used as,

CL = 0.25,Cη = 110,C1 = 1.4,C2 = 0.3

Contrary to the earlier (v2 − f ) formulations, the dissipation rate ε is not used directly in
the equation for f̄ . The modified transport equation for ε in v2 − f model propositions is of
the form,

∂ε

∂ t
+u j

∂ε

∂x j
=

∂

∂x j

[(
ν +

νt

σε

)
∂ε

∂x j

]
+

Cε1Pv2 f −Cε2ε

T
(A.22)

The eddy viscosity (νt) is modeled as,

νt =CµϕkT
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The values of constants for the turbulent kinetic energy (k) and dissipation rate (ε) equations
are,

Cµ = 0.22,σk = 1,σε = 1.3,Cε2 = 1.9 and Cε1 = 1.4

(
1+0.05

√
1
ϕ

)
The wall boundary conditions for the four variables are,

k = 0,ε → 2νk
y2 ,ϕ = 0, f̄ = 0

Where y is a distance normal to the wall. The boundary conditions ϕ = 0, f̄ = 0 allow to solve
the system of equations separately.

A.2 Large Eddy Simulations (LES)

Increase of inertial forces in fluid flow over viscous forces lead to flow instabilities. Although,
flow appears chaotic for increased Reynolds numbers, the turbulence is organized in multi
scale flow structures in space and time. The largest scale space structures contain most of
the turbulent kinetic energy, which flows down to the smallest scales (Kolmogorov length
scale) of turbulence. Thus the flow contained with large eddies, which are characteristic of
the flow geometry. The large eddies give rise to small eddies and so on, until the smallest
eddies dissipate the turbulent energy against the viscous forces. Numerical simulations of
such a flow require huge computing resources. Large Eddy Simulations (LES) was proposed
by (Smagorinsky, 1963), wherein the large eddy structures from the flow are resolved (low-
pass filtered) and directly solved, while the smaller (or unresolved) eddies are modeled using
Boussinesq type eddy viscosity relation.

An LES filter, which can be applied in space or time can be defined as,

ũi(xxx, t) =
∫ ∞

−∞

∫ ∞

−∞
ui(rrr, t ′)G(xxx−rrr, t − t ′)dt ′drrr (A.23)

Where G is the filter convolution kernel. Generally, the computational grid is used as a default
length scale filter. The governing equations for Large Eddy Simulations are the Navier-Stokes
equations convoluted with the LES filter. The velocity field can be split up using the LES filter
as, ui = ũi +u′i. The incompressible Navier-Stokes equations (Equations A.5, A.6) become,

∂ ũi

∂xi
= 0 (A.24)

160



A.2 Large Eddy Simulations (LES)

∂ ũi

∂ t
+ ũ j

∂ ũi

∂x j
=− 1

ρ

∂ p̃
∂xi

+ν
∂ 2ũi

∂x j∂x j
−

∂ ũ′iu
′
j

∂x j
(A.25)

Where ũ′iu
′
j is known as sub-grid scale stress tensor. Similar to the Reynolds stress tensor, the

sub-grid scale stress tensor is a difference between the non-linear convection term (NSE) and
the resolved convection term (LES). It is given by,

ũ′iu
′
j = ũiu j − ũiũ j (A.26)

The sub-grid scale tensor needs to be modeled. Boussinesq hypothesis is usually employed
to model ũ′iu

′
j, similar to the Reynolds stress tensor (in Equation A.10).

ũ′iu
′
j =−2νt s̃i j +

2
3

ũ′ku′kδi j (A.27)

The sub-grid scale energy term (ũ′ku′k/2) is added to the pressure term ( p̃) (Pope, 2000) of
filtered LES equations.

A.2.1 Smagorinsky-Lilly Model

The simple and very first model for sub-grid scale eddy viscosity was proposed by (Smagorin-
sky, 1963). It was used in a numerical simulation first time in (Deardorff, 1970). The turbulent
eddy viscosity is modeled as,

νt = (Cs∆g)
2√2s̃i j s̃i j (A.28)

Where the proportionality constants ∆g and Cs are the effective grid size and a Smagorinsky
constant based on Kolmogorov’s hypothesis respectively. It assumes that the production of the
turbulent energy and its dissipation are equal. Cs = 0.18 in isotropic flows, while it needs to
be adjusted depending on a flow (e.g. in channel flow Cs = 0.065).
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In the Operational Modal Analysis (OMA), the forces acting on structures are unknown
beforehand, contrary to the traditional Experimental Modal Analysis (EMA), where the sys-
tem is provided with known excitation force. Thus, the former method (OMA) is non intrusive
compared to the later (EMA) method. The method is significant especially in stability analysis
of a system. A recent review on operational modal analysis can be found in (Brincker, 2014).
There are two methods presented here to post process the random time response signals in
order to estimate the modal parameters such as natural frequency, damping ratio, mode shapes
etc.

B.1 Half-Power Bandwidth Method (HBM)

The half-power bandwidth method is commonly used to estimate the damping ratio (ζ ) of
vibration response signal. The method is fairly simple and accurate for smaller values of
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the damping ratio (ζ ⪅ 10%). The method is applicable for single as well as multi-degree-
of-freedom systems as long as the frequency response spectra has distinct frequency peaks.
Although there exist several formats of the method, the estimation of damping using the am-
plification or quality factor (Q) is most common. One can refer (Green, 1955) for elaborated
discussion on origin, applications of the factor Q.

The quality factor (Q) of any under-damped oscillator represents the energy stored per unit
energy dissipated in one cycle at a resonant frequency fn. It also characterizes the sharpness
of resonance. High values of Q represent sharp spectral peaks and small bandwidth of the
resonant frequencies near the modal frequency. On the other hand, low values of Q means
a broad range of resonance frequencies, indicating higher energy dissipation per cycle. The
non-dimensional quality factor and damping ratio are related as,

Q =
1

2ζ
(B.1)

The Q factor is also represented in terms of the center resonance frequency fn and the band-
width ∆ f at half the value of peak power at fn.

Q =
fn

∆ f
(B.2)

The half-bandwidth ∆ f is calculated using two adjacent frequencies f1 and f2 on the frequency
lobe fn at half power as ∆ f = f2 − f1.

Figure B.1 Estimation of damping using the Half Power Bandwidth Method (HBM).

Figure (B.1) shows a frequency response spectrum of a damped oscillator with fn = 1. The
peak value of power at fn = 1 is 10. The half power (10/

√
2) is represented on the frequency
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Response signals (random data)

⇓

Estimation of characteristic functions (damped sinusoids + noise)

⇓

Determination of the number of modes and initial values of modal
parameters

⇓

Non-linear maximum likelihood estimation return of modal param-
eters and residual noise

Figure B.2 The IMENE flow chart.

lobe by f1 = 0.946962 and f2 = 1.046961. The quality factor Q of the oscillations using
Equation (B.2) is 10. The damping ratio calculated using Equation (B.1) is ζ = 5%.

A correction to the half power bandwidth method for calculating higher damping ratios
(ζ ⪆ 10%) is proposed in (Wu, 2014).

B.2 Time Domain Modal Analysis (TMA)

The time domain method described here for the modal identification is known as Identification
Modale Excitation Non Evaluée (IMENE). The method is proposed by (Granger, 1990). It is
developed in the context of obtaining indirectly the unmeasured fluid-elastic forces on tube
bundle. The flow chart in Figure (B.2) shows the procedure to estimate the modal parameters
of a system.

B.2.1 The characteristic functions

The time response signals measured at No locations are represented using sampled charac-
teristic functions ck(n). Where n and k are indices for the sample number and measurement
location. The model of ck(n) consists of a deterministic part ak(n) and a random part wk(n).
The deterministic part is sum of N sampled damped sinusoids with each sinusoid corresponds
to a vibration mode. The damped modal frequency is given by ωi

√
1−ζi, where ωi, ζi are the

angular frequency and damping ratio of ith mode respectively. The sampled random part wk(n)

is the output of an autoregressive-moving-average(ARMA) filter with an input of a sampled
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Gaussian white noise ek(n). The characteristic functions are expressed as,

ck(n) = ak(n)+wk(n), 0 ≤ n ≤ Ns −1 (B.3)

Where Ns is a number of samples.

ak(n) =
2N

∑
i=1

Dkizn
i , with Dkizn

i = Dki−Nzn
i−N f or N +1 ≤ i ≤ 2N (B.4)

Where Dki is a complex amplitude of the damped sinusoid and zi is the characteristic param-
eter which provides the natural frequency and damping ratio of a mode. The complex ampli-
tude (Dki) is used to estimate the mode shape coefficient (Vki). The derivation is provided in
Appendix A of (Granger, 1990). The random part (wk(n)) of the characteristic functions is
expressed as,

wk(n) =
p

∑
s=1

φkswk(n− s)+ ek(n)+
q

∑
s=1

θksek(n− s) (B.5)

Thus the modal features are defined in analytical forms using the characteristic functions.
The random time signals at several locations are treated using cross-correlations between a
reference location and the rest locations, in order to evaluate the characteristic functions.

B.2.2 The number of modes and parameters of the characteristics func-
tions

A nonlinear optimization of the characteristic functions is preformed in order to identify the
parameters of characteristic functions and thereby estimate of the modal parameters. An iter-
ative process is followed to improve the values of characteristic parameters successively. An
initial approximation of the parameters is obtained using first, the Z-transforms of Equation
(B.4) and Equation (B.3) to provide polynomials and second, the polynomials are solved to
obtain roots which lead to natural frequency and associated damping ratio. The Z-transform
of ak(n) is,

Ak(z) =
+∞

∑
n=0

ak(n)z−n =
Pk(z)
Q(z)

With,

Pk(z) =
2N

∑
i=1

Dkiz
2N

∏
s=1,s ̸=i

(z− zi)
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Q(z) =
2N

∏
i=1

(z− zi) (B.6)

Rewriting Q(z) in polynomial form

Q(z) = z2N +
2N

∑
i=1

qiz2N−i (B.7)

shows that

z2NAk(z)+
2N

∑
i=1

qiz2N−iAk(z) = Pk(z) (B.8)

The inverse Z-transform of Equation (B.8) and similar treatment of ck(n) give following finite-
difference equations,

ak(n)+
2N

∑
i=1

qiak(n− i) = 0 n ≥ 2N

ck(n)+
2N

∑
i=1

qick(n− i) = wk(n)+
2N

∑
i=1

qiwk(n− i) n ≥ 2N (B.9)

A detailed treatment of Equation (B.9) using a modified Prony’s method is presented in
Appendix B of (Granger, 1990), which enables to select number of modes N. The polynomial
coefficients qi are estimated using a set of extended Yule-Walker equations by means of the
linear least-squares method. The roots of polynomial Q(z) (Equation B.7) are obtained using
a standard root-solver. The equations,

zi = eλi∆t

λi = ωi

(
−ζi + ı̂

√
1−ζ 2

i

)
leads to initial values of the natural frequencies and damping ratios. Where ı̂ stands for

√
−1.

The initial values of the complex amplitude function Dki is then obtained using the linear least-
squares fit technique. In addition, the parameters of the random part wk(n) of the characteristic
functions, namely φk and θk are obtained by a set of Yule-Walker equations and Wilson’s
nonlinear algorithm ((Box et al., 2013)) respectively.
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B.2.3 Statistical estimation of the modal parameters

The initial values of the modal parameters in hand are optimized by performing the maximum-
likelihood estimation procedure coupled with an iterative Gauss-Newton approach. A statis-
tical model is formulated for the modal parameters of the characteristic functions. The like-
lihood function of the model is defined as in (Box et al., 2013). The optimization procedure
assumes that the time signals are sufficiently long to perform statistical analysis. The residues
(errors) are minimized using an iterative Gauss-Newton algorithm. The method provides a
confidence interval for each modal parameter, what makes this method more reliable. The test
cases of detailed validation are provided in (Granger, 1990).
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