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0.1 Introduction

Cancer is one of the most frequent causes of death worldwide, which makes
the research on this disease extremely important. Cancer is a genetic dis-
order occurring as a result of progressive accumulation of mutations that
lead to the malfunctioning of cells: uncontrolled growth, lack of contact
inhibition and genomic instability. Cancer initiation is often caused by rear-
rangements of DNA sequence called structural variants (SVs). It is crucial
to be able to precisely identify such SVs for early detection and accurate
treatment of cancer.

With the development of next generation sequencing (Ngs) methods,
whole genome sequencing of paired-end reads became routine for detection
of both small and large somatic mutations. Such mutations include point
mutations, small indels and structural variants (SVs) in cancer genomes.
Paired-end sequencing of mate-pair libraries is often employed when the
aim of the study is the detection of large SVs, i.e., variants of length greater
than the read length [PSO+10, SML+09, SGF+11, VB13].

Several methods for detecting structural variants with whole genome se-
quencing data have been developed so far. Most of them are based on paired-
end mapping signatures or change in depth of coverage. Each type of large
SVs (translocation, duplication, deletion, inversion, etc.) corresponds to a
particular paired-end mapping signature (Pem) [ZBJL+10]. As such, dele-
tions are characterized by an insert size (distance between mapped paired
reads) larger than expected, while insertions have an insert size shorter than
expected. Additionally, SVs often result in a change of copy number status
around the breakpoint junction, which is reflected in changes in read depth
of coverage (Doc). For instance, deleted regions have a relatively low Doc,
whereas duplicated regions are characterized by a high Doc. Thus, di↵er-
ences in Doc and abnormal positioning of mapped reads often indicate the
same genomic abnormality (e.g., a deletion or a tandem duplication).

The aim of my PhD was to create a computational method that combines
both types of information, i.e., normal and abnormal reads, and demonstrate
that this combination highly improves both sensitivity and specificity rates
of structural variant prediction. I propose a Bayesian framework for SV de-
tection using paired-end or mate-pair libraries, implemented as the software
SV-Bay. In this framework, Pem signatures are combined with informa-
tion about changes inDoc in regions flanking each candidate rearrangement.
The method takes into account GC-content and mappability. The use of a
Bayesian framework based on both Pem and Doc information allows to sig-
nificantly decrease the level of false positive predictions while retaining high
sensitivity. Additionally, SV-Bay infers 17 di↵erent types of structural vari-
ants from the detected novel genomic adjacencies. The algorithm introduced
in SV-Bay makes it possible to detect SVs more accurately than any other
existing method, recognizing more types of complex SVs. Moreover, unlike
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many other tools SV-Bay pipeline integrates a number of preprocessing and
post processing steps. Preprocessing steps include filtering out reads with
low mappability, determining normal fragment orientation, collecting frag-
ment lengths statistics and estimating GC-content. Post processing steps
include assembly of complex SVs and filtering out germline mutations. Rich
integrated functionality makes it easy to use SV-Bay tool even without
deep knowledge of sequenced data specifics. These SV-Bay advantages
significantly simplify structural variants research, possibly contributing in
development of e�cient cancer prevention and treatment methods.

The thesis is organized in the following way. In chapter 1, the basic
information about cancer development and modern sequencing technologies
is provided. Di↵erent types of genes related to cancer are described, followed
with the examples of structural variants that may cause cancer initiation
and progression. Next generation sequencing (Ngs) technology and the
di↵erence between mate-pair and paired-end libraries are explained. Next,
a brief overview of the existing approaches to structural variants detection is
given, including methods based on paired-end mapping signatures, variation
of Doc and split-reads.

In chapter 2, the mapping of sequenced reads to the reference genome
is described. The issues of paired read mapping are covered. The choice of
BWA as an aligner for our research is justified through a discussion of the
advantages and drawbacks of this tool.

Chapter 3 covers the implementation of the approach for SV detection
based on Pem signatures, which is a part of the SV-Bay algorithm. In this
chapter the definitions of normal and abnormal fragments are provided, the
algorithms to separate abnormal fragments and cluster them in order to get
SV candidates are given.

Chapter 4 includes the information about factors that influence depth of
coverage: GC-Content, ploidy and mappability of the region. The informa-
tion about Freec and Gem tools, used in SV-Bay pipeline, is provided.

In chapter 5, special genomic areas, called flanking regions and abnor-
mal region, are defined for each candidate SV. These areas are further used
in chapter 6 to observe the Doc change around breakpoint junction. The
methods to estimate the expected number of fragments in flanking and ab-
normal regions, considering factors described in chapter 4, are provided.

In chapter 6, the probabilistic Bayesian model, used in SV-Bay to filter
out false SV candidates, is described. The probabilistic approach also allows
to estimate the most probable number of gained or lost alleles and the most
probable breakpoint position for the considered genomic adjacency.

In chapter 7, an exhaustive classification of structural variant types is
given. For each SV the corresponding Pem signature is provided. Sim-
ple and complex SVs are defined and the algorithm used for complex SV
assembly in SV-Bay is explained.

Chapter 8 provides an overview of four existing tools for SV detection:
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GasvPro, BreakDancer, Lumpy and Delly. After a brief explanation
of the design principles in each tool, the implementation is described; ad-
vantages and drawbacks are discussed.

In chapter 9, results on both simulated and real data are provided for
SV-Bay and competitive tools considered. The process of simulation of
mate-pair and paired-end sequencing data for tumor genome is described.
The precision and recall rates are compared for all the tools. The quality of
breakpoint resolution of each tool and the influence of dataset type (mate-
pair or paired-end) and copy number variation (CNV) presence are also
covered.

Finally, in Chapter 10, a general conclusion is drawn. Possible improve-
ments and perspectives are discussed.



Chapter 1

State of the art

Cancer is the result of mutations and rearrangements in individuals DNA.
Di↵erent types of structural variants are known to be related to di↵erent
types and stages of cancer. For any stage, it is important to be able to
accurately determine present SVs.

Some people can have a genetic predisposition to cancer by mutations in
recessive tumor suppressor genes. Such mutations do not cause the disease
themselves, but highly increase the probability of cancer development in
case of a mutation in the second gene copy. Discovering alterations related
to such mutations helps to understand that there is a probability of the
appearance of the disease.

For cancer at an early stage, finding a particular genome alteration can
help to detect the presence of cancer and its type. Such test allows to
identify the disease even when the tumor is not yet observable and does not
cause any specific symptoms. At late stages, knowing the exact structural
variants involved helps to estimate the speed of cancer development and to
understand whether the patient should be treated more aggressively.

One of the most important goals of structural variant detection lays in
the personal medicine sphere. A lot of patients die because of a treatment
not adapted to the specificity of their case. If every patient was treated with
respect to the particular case, it could help to increase the survival rate and
reduce the side e↵ects of treatment.

Even after cancer has been treated, cells with mutations in responsible
genes can still remain in the body. For now, it is proven that circulating
tumor cells (CTC) are present in blood during the metastases development.
These cells have the same structural variants as the original tumor cells.
If the percentage of these cells exceeds some threshold, the probability of
cancer relapse significantly increases. Such cells are usually larger than
the rest, so they can be extracted from the blood test and checked for the
presence of specific structural variants. This procedure can help to identify
the metastases very early and decide that the treatment should be resumed.

9
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The e↵ect of cancer large rearrangements in cancer can be vividly demon-
strated on the karyotype test results. Figure 1.1 depicts DNA karyotypes
for normal (on the left) and cancer (on the right) cells. Normal DNA has
two copies of each chromosome as expected, cancer DNA has several ad-
ditional copies for almost each chromosome. Moreover, some chromosomes
exchanged significant regions. For example, it is likely that two copies of
chromosome 8 (purple) exchanged material with chromosome 10 (white).

Figure 1.1: (a) normal genome karyotype test
(b) CLB-GA (neuroblastoma cell line) karyotype

Although karyotype test is good for visual representation, it is not an ac-
tual structural variants detection method. The reason is that it can recognise
only alterations a↵ecting regions of size comparable to the whole chromo-
some size. Moreover, it cannot show precise positions for structural variants,
i.e. cannot identify which genes were involved in the rearrangement.

In this chapter, we provide the basic information about cancer, explain
how sequencing data is produced and how it can be used for structural
variant detection.

First, the origin and the main steps of cancer development are presented.
Then the examples of particular structural variants which can be identified
at di↵erent stages are provided.

Further we discuss genome sequencing technologies and introduce Next
Generation Sequencing (NGS). Finally, a brief overview of present methods
for structural variants detection is given.

1.1 Cancer development

Cancer development is a very complex process, which can significantly di↵er
between cancer types and stages of the disease. There are approximately
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two hundreds of genes associated with cancer in contemporary researches.
These genes are usually classified into three groups:

• Proto-oncogenes are responsible for the synthesis of proteins that stim-
ulate cell division or prevent cell death. Malfunctioning forms of these
genes are called oncogenes.

• Tumor suppressor genes are responsible for producing proteins that
prevent cell division or accelerate cell death (in particular, trigger
apoptosis).

• DNA repair genes help preventing mutations in all genes (including
the first two groups) and thus preventing cancer development.

If the cell division becomes significantly more intensive than usual, it
may contribute to the development of a tumor. The contribution to this
process of mutations in the genes of each group is explained below.

1.1.1 Proto-oncogenes

The first group of genes related to cancer is proto-oncogenes. In normal cells
they are responsible for production of proteins controlling the cell division.
Such proteins are involved in a process called signal transduction cascade.
The conversion of proto-oncogene into oncogene is called activation. It can
occur with the involvement of three mechanisms ([LH00]):

• Mutation of or a translocation in the proto-oncogene. Such mutation
can result in the intensified action of the encoded protein.

• Duplication (gene amplification) of a DNA segment that includes a
proto-oncogene, leading to overexpression of the encoded protein.

• Rearrangement of genes in a chromosome or an inter-chromosomal
translocation. Such rearrangements can move proto-oncogene to a
new location under the control of di↵erent promoter, causing abnormal
gene behaviour.

1.1.2 Tumor suppressor genes

The second group is tumor suppressor genes. These genes are responsible for
synthesis of proteins suppressing cell growth and division. Such proteins may
act in di↵erent cell areas: nucleus, cytoplasm or membrane. Mutation of
these genes results in a loss of a function, which contributes to uncontrolled
cell growth or division.

Tumor suppressor genes are usually recessive: the disease does not de-
velop until both gene copies are mutated. The first mutation can be already
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present in the germ line cell, making all child cells inherit it. If a mutation
later occurs in the second gene copy, the uncontrolled cell division starts.
This leads to a higher cancer frequency among individuals inheriting the
mutation in tumor suppressor gene than in the population as a whole.

It illustrates the fact that heredity can be an important cancer factor.
However, even mutations in two copies of a tumor suppressor gene can occur
in a somatic cell, usually caused by environmental factors.

There are several types of cancer, associated with tumor suppressor genes
defects:

• Familial adenomatous polyposis of the colon (FPC) is caused by mu-
tations in both copies of APC ;

• Hereditary breast cancer is caused by mutations in both copies of
Brca2 ;

• Hereditary breast and ovarian cancer is caused by mutations in both
copies of Brca1.

Another typical example is hereditary retinoblastoma, a retina cancer
that occurs in the childhood. It is caused by a mutation in the RB1 tumor
suppressor gene ([AD04]). Mutation in one copy is usually transmitted
to the o↵spring from one of the parents. Mutation in the second copy is
highly probable to occur because of a large number of retinoblasts and rapid
division of cells of this type. About ninety percent of children inheriting
RB1 mutation develop retinoblastoma. Only individuals younger than eight
years old have retinoblasts, so the risk of retinoblastoma exists only in the
early childhood. However, RB1 mutation is also dangerous for adults as it
increases the risk of several other cancer types.

1.1.3 DNA repair genes

The third group of genes related to cancer is DNA repair genes. The pro-
teins encoded by these genes are responsible for correcting the malformed
nucleotide sequences.

The damage to DNA is very common and can be caused by various
factors such as radiation, UV light, chemicals and poor environment. Errors
in DNA replication can also cause DNA damage. The products of DNA
repair genes fix the broken sequences and thus minimise the number of
mutations in cells. When such a gene is mutated itself, it may not code for a
functional corresponding protein any more. Lack of DNA repair significantly
increases the frequency of cancerous DNA changes.

A well-known example of DNA repair gene is Xeroderma pigmentosum
(XP). Malfunction of this gene causes an increased sensitivity to UV light.
Individuals with such mutations have a thousand-fold increased probability
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for the development of all skin cancer types. Another example of a dis-
ease related to broken DNA repair is Bloom syndrome. It is an inherited
ailment, caused by the mutation in BLM gene, required to support stable
DNA structure. Individuals with this syndrome have a high frequency of
DNA alterations, which leads to an increased risk of cancer and diabetes.

1.2 Examples of structural variants that can result
in cancer development

Various examples of structural variants that are related to cancer are pro-
vided below. These examples include SVs that cause mutations in all three
types of genes considered in the previous section: oncogenes, tumor sup-
pressor and DNA repair genes.

There are several examples of inter-chromosomal translocations that
cause the formation of new oncogenes. Such oncogenes are called fusion
genes. Fusion genes contribute to tumor formation, producing proteins that
are more (or even constantly) active. The result of such translocations is
a modified form of the gene, contributing to cancer by accelerating the cell
growth. Most proto-oncogene mutations are dominant: a single gene copy
is enough to cause uncontrolled cell growth. The presence of an activated
oncogene in germ line cells causes the child to inherit predisposition for
cancer.

One of the most famous examples of this kind of genes is EWS-FLI1 fu-
sion gene. EWS-FLI1 is a chimeric protein formed by a tumor-specific
translocation between chromosomes 11 and 22. Such translocations are
found in both Ewing’s sarcoma and primitive neuroectodermal tumor.

EWS-FLI1 amino-terminal domain is a much more potent transcrip-
tional activator than the corresponding amino-terminal domain of FLI-1.
Moreover, EWS-FLI1 e�ciently transforms NIH 3T3 cells, while FLI-1
does not. Ews/Fli1 [Lee07], functioning as a transcription factor, leads to
a phenotype dramatically di↵erent from that of cells expressing FLI-1.

Figure 1.2: Fusion of chr11 and chr22 encoding for Ews/Fli1 causes Ewing
sarcoma. Adopted from [Lee07]

Another example is the Philadelphia chromosome fusion of chromosomes
9 and 22. It gives a match of the ABL1 gene on chromosome 9 (region q34)
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to a part of the breakpoint cluster region (BCR) gene on chromosome 22
(region q11) [RKMT03]. Such fusion encodes a new oncogenic protein called
BCR/ABL. The detection of this translocation is a highly sensitive test for
chronic myelogenous leukemia (CML), since 95% of patients with CML have
this abnormality.

Figure 1.3: Philadelphia chromosome fusion of chr9 and chr22. (Thanks to
James Gri�n for the figure)

Not only translocations can damage a tumor suppressor gene or create
a functional mutation in a proto-oncogene, all types of structural variants
can be involved in the process. Below we consider SVs that cause gain
and loss of the genetic material. Discovering such SVs helps to predict the
aggressiveness of cancer development.

Mycn amplification, which occurs in approximately 22% of primary neu-
roblastomas, is one of the most powerful prognostic factors identified to
date. It is significantly associated with advanced-stage disease, rapid tumor
progression, and poor prognosis. Interestingly, it is shown in [BBPL+09]
that children with Mycn-amplified, hyperdiploid, favourable-stage tumors
had significantly better survival than those with diploid tumors. Figure 1.4
shows the Kaplan-Meier survival curves for 31 Mycn-amplified stage A, B,
and Ds patients by ploidy ([Sch]).

Analysis of chromosomal aberrations is used to determine the prognosis
of neuroblastomas (NBs) and to aid treatment decisions. It is shown in
[CKN+10] that patients with with di↵erent genomic profiles have di↵erent
survival rates. Authors studied Mycn gene amplification, 11q deletion and
17q gain, and genomes with numerical aberrations (i.e., whole-chromosome
gains and losses).

Another example of the importance of the amplification detection is
given by the ERBB2 gene. Over expression of the receptor tyrosine kinase
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Figure 1.4: Kaplan-Meier survival curves for 31 Mycn-amplified stage A,
B, and Ds patients by ploidy. n is the number of patients.
(A) Event-free survival, P = .0063;
(B) overall survival, P = .0074.[Sch]
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ERBB2 (also known as HER2) occurs in around 15% of breast cancers and
is driven by an amplification of the ERBB2 gene.

1.3 Sequencing technologies

The ability to read a DNA sequence and produce a digital representation for
it is the basis of a huge part of contemporary biological researches. The first
approach answering this challenge was capillary electrophoresis (CE)-based
Sanger sequencing. This technology gave the ability to extract the genomic
information from any organism and thus was widely adopted by scientists
around the world. However, this technology has significant limitations in
speed, scalability and resolution, which make it hardly usable for various
studies.

An entirely new technology overcoming these limitations, Next Genera-
tion Sequencing (NGS), was created at the beginning of the 2000s. NGS is
a fundamentally di↵erent approach, which started a revolution in genomic
science. This approach not only allowed to decipher whole human genome,
but also reduced the cost of whole genome sequencing by three to four orders
of magnitude during last 15 years.

The principle concept of NGS technology is similar to Sanger sequencing :
the bases of a DNA fragment are sequentially identified from signals emitted
as each fragment is resynthesized from a DNA template strand. The crucial
di↵erence is that NGS allows to read millions of fragments simultaneously.
This enhancement allows the latest instruments to read large stretches of
DNA in a massively parallel fashion, producing hundreds of gigabases in a
single sequencing run.

NGS technologies can provide three types of data: single-end, mate-pair
and paired-end short read data (Illumina, Life Technologies) and single-end
long read data (PacBio). Both Illumina and SOLID paired-end and mate-
pair sequencing produce pairs of reads suitable for the detection of large SVs.
PacBio is the newest sequencing technology; the first commercial product,
PacBio RS, was sold to a limited set of customers in 2010 and commercially
released in early 2011. As it still has limited availability and high product
price, we concentrate in this work on mate-pair and paired-end data and do
not cover long single-end PacBio reads.

1.3.1 Paired-end data

The key steps of a sequencing project are the same for both mate-pair and
paired-end technologies: preparation and amplification of template DNA,
distribution of templates on a solid support, sequencing and imaging, base
calling and quality control.

The first step in preparation of the sequencing library is DNA fragmen-
tation. For this purpose, sequencing adapters are ligated to both ends of the
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DNA fragments. Then PCR amplification using primers complementary to
the adapters is performed.

Same adapters are placed on the flow cell (in Illumina SGS technology);
then, fragments are placed on the flow cell and two complement adapters are
attached to each other. The flow cell can have di↵erent shapes. For example,
for the Illumina it is a flat glass plate; 454 uses beads with adapters on it,
and there is place on the plate for each of the beads.

Once a fragment is attached to the corresponding adapter, polymerase
creates a complement of all the sequence. Finally, the double-stranded DNA
is unwinded, the original strand is washed away and the process is repeated.

The typical insert size (the distance between paired reads) for paired-
end data is rather small: several hundreds of bases. The reads in a fragment
in paired-end data are oriented towards each other. As explained further,
paired-end data is less suitable for complex tasks including structural vari-
ants detection than mate-pair data. The main advantage of paired-end
sequencing is its simple workflow making it widely spread.

1.3.2 Mate-pair data

Mate-pair libraries are created in a slightly di↵erent way. DNA is split
into sequences that are longer than those for paired-end data. As for pair-
ended technology, adapter sequences are ligated to both ends of the DNA
fragments. Then the sequence is circularised: the two ends of the original
DNA fragment are both adjacent to each other.

A special heavy biotin molecule is placed between the two adapters.
When fragmentation of the circular DNA is finished, the fragment that
contains original linear DNA ends is selected using biotin capture. Errors
can be introduced at this stage, as it is not always possible to robustly
choose the mate-pair fragments. As a result, the mate-pair data is usually
contaminated with paired-end fragments with a di↵erent average insert size.
Such fragments are called singletons.

The end of the sequencing process is exactly equal to the one used for
paired-end, i.e. fragments are placed on the solid cell and amplified. Se-
quencing of both ends of the selected fragment yields reads that are sepa-
rated by the length of the original fragment.

Mate-pair libraries allow larger insert sizes than paired-end, from 2 to
20 kilobases. Large inserts are especially valuable in de novo sequencing
projects, where they can substantially improve sca↵olding (ordering of as-
sembled contigs). In contrast to paired-end reads, which are oriented to-
wards each other, mate-pair reads are either both oriented outwards from
the original fragment (Illumina protocol) or both have the same orientation
(SOLiD protocol), which needs to be considered in the data analysis.

The major drawback of mate-pair sequencing is the complicated labo-
ratory protocol. Another problem is that a substantially larger amount of
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DNA (5 to 120 times) is required to prepare a mate-pair library.

1.4 Approaches to structural variants detection

In this section main SV detection approaches are briefly discussed to get a
general idea about existing methods. Di↵erent in-depth details are provided
in further chapters: most widely used tools implementing these approaches
are presented in Chapter 8 and compared in Chapter 9.

Most of the current SV detection methods can be classified into three
categories: methods based on paired end mapping (Pem) signatures, depth
of coverage (Doc ), and split-read mappings [MSB09]. Each approach has
its own limits in terms of the types and sizes of SVs that it is able to detect.

1.4.1 Pem based algorithms

Pem-based algorithms may be based either on read clustering or on fragment
length distribution.

The former category identifies discordant Pems as Pems with unex-
pected orientation or insert size, clusters them and applies statistical tests
to validate candidate clusters [HAES09, KAM+09, HHD+10, ZBJL+10].

The latter compare the observed insert size distribution of all read pairs
in a given window versus the expected distribution. Windows with a signif-
icant proportion of read pairs having unexpected insert sizes are annotated
as containing SVs (Lee et al., 2009).

In some cases the same package, e.g., BreakDancer [CWM+09], pro-
vides two complementary methods for SV detection: clustering-based (Break-
DancerMax) and distribution-based (BreakDancerMini) to detect large
and small size SVs respectively.

1.4.2 Doc based algorithms

Doc-based methods detect regions in the genome where genomic material
is gained or lost. They rely on some evaluation of the expected Doc, nor-
malised for GC-content bias [YXM+09, BZB+11, VBTPKBPCJCGSIJLOD12].
A deviation from the expectedDoc suggests putative gain or loss of genomic
material.

Doc-based methods do not provide information about the adjacency of
DNA regions involved in copy number changes. Thus, such methods are
not able to indicate the type of SV (e.g., tandem duplication, fragment
reinsertion, translocation) causing genomic loss or gain. Additionally, the
resolution of such methods is rather low for low Doc datasets: a 30x cov-
erage dataset allows approximately a resolution of 1Kb for rearrangement
breakpoints.
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1.4.3 Split-read based approach

Split-read based methods use partial read alignments for SV detection [WME+11,
SHB+14, TEER14]. Although such methods may be e�cient for data with
high read coverage, they may fail to identify SVs with breakpoints located
in repetitive elements of the genome.

Ideally, this approach should be combined with paired-end signatures;
this idea was implemented in SVMerge [WKSA10], Prism [JWB12],Meerkat
[YLG+13], Smufin [MGB+14] and Delly [RZS+12].

1.4.4 Combination of di↵erent approaches

Combining information about discordant Pems with changes in Doc is a
promising solution for the SV detection problem. Probabilistic models inte-
grating both the Doc signal and Pem signatures provide higher specificity
together with equal or greater sensitivity than tools that simply use paired-
end signatures [QZ11, ORA+12, SOP+12, ETB+13, LCQH14, HKNM11].

However, most of these methods do not take into account two important
parameters that a↵ect read count for both normal and abnormal mappings:
GC-content and read mappability. Another general drawback of the major-
ity of these methods is their lack of ability to detect all possible types of
SV that can be present in cancer data including co-amplifications, tandem
duplications with inversions, linking insertions, etc.
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Chapter 2

Data management and
alignment issues

2.1 Mappability of fragments

After the sequencing process is finished, di↵erences between the sequenced
and reference genomes can be determined. To do so, it is necessary to match
sequenced reads with some positions in the reference DNA sequence.

De novo assembly, which re-builds the genome directly from the reads, is
hard even for medium-size genomes. For the human genome it is impossible
to do it automatically without manual control and biological correction of
the results. Thus, alignment (also called mapping) of the sequenced short
reads to the reference human genome is a mandatory step. During the
alignment process a mapping position in the reference genome is found for
each read.

The common approach to this problem is briefly discussed in section 2.2.
First, we describe the structure of the data produced by sequencing ma-
chinery. Then, read mapping is discussed and the probabilistic approach to
mapping position choice is introduced. Finally, the usage of paired reads in-
formation during alignment is explained. In section 2.3 the Burrows-Wheeler
Aligner (Bwa), used for data preparation in our work, is described. The
rationale for this choice and Bwa method drawbacks are given.

2.2 Alignment issues

2.2.1 Sequencing data

Most sequencing machines nowadays provide mate-pair or paired-end frag-
ments (see chapter 1). Paired-end (mate-pair) reads usually are provided in
two fasta or fastq files. These files are used as an input for the alignment
tools.

21
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One file contains first reads while the second one contains second reads
of each pair. Reads that correspond to the same fragment have the same
names. Based on the names, the aligner can take into account connection
between two reads. The length of the reads is constant for a particular
dataset and depends of the data preparation or the choice of the sequencing
machine.

Files in fasta format store only the name and the nucleotide sequence
for each read; possibly, some additional information can be provided, such as
the name of the dataset or a particular sequence placement (mRNA, RNA,
etc).

Files in fastq format extend this information with Phred quality of
each sequenced base. This quality score represents the probability of a cor-
rect recognition of each nucleotide. Given the base-calling error probability
P , Phred quality Q is defined as

Q = �10log10[P ]. (2.1)

For example, if the probability of the base being called incorrectly is
0.001, Q is equal to 30.

In fastq files, Phred quality for each base is encoded as an ASCII
character by adding 33 (Illumina 1.8+) or 64 (Illumina 1.5+) (Standard
ECMA-6: 7-bit coded character set. 6th edition. Ecma international (De-
cember 1991)) to the Phred value. For instance, in the Illumina 1.8+
format, the character ’ !’ represents the lowest quality. The examples of
fasta and fastq strings representing a single read are provided below.

Code 2.1: Fasta format : first line is sequence id (it can also contain some
comments); second line is the raw sequence.

>gi |5524211| gb|AAD44166 .1| cytochrome b (Elephas maximus

maximus)

GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCC

Code 2.2: Fastq format: first line is sequence id (it can also contain some
comments); second line is the raw sequence; last line provides quality for
the sequence.

>SEQ_ID

GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCC

+[ SEQ_ID]

!’’*((((***+))((((++) ((((() .1*** -+*’’))**

2.2.2 Reads alignment

Intuitively, an alignment algorithm should search for the reference genome
region exactly matching each read. Unfortunately, this approach can fail:
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in several situations, the exact match cannot be found.
The most frequent reason for it is the presence of single-nucleotide poly-

morphisms (Snps), that are alterations of a single base. Snps define the
genetic di↵erence between two individuals. These polymorphisms typically
form about 0.1% ([HA11]) of the whole genome. Since the sequencing data
are aligned against a reference genome, which has been constructed as a
consensus between several people, it is expected that many reads contain
Snps. Such reads do not match any region without mismatch.

Exact matching is also impossible in other cases: for example, sequenc-
ing errors may occur. Also, some reference genome regions are wrongly
assembled and are di�cult to map on.

As a consequence, the alignment algorithms look for the closest, but not
necessarily exact, match. The alignment process complexity increases when
the total number of allowed mismatches, k, increases. The complexity of
the k-mismatch problem was shown to be O(kn) [LV86, Mye86], where n is
the whole genome length.

Definition 2.2.1 A read is uniquely mappable if there exists exactly one
position in the genome where its sequence maps with up to k mismatches.

When a read is not uniquely mappable, it is a non trivial task to chose
among the di↵erent possible mapping positions. Existence of sequencing
errors and Snps force to define a correct alignment up to some quality. A
probabilistic approach to this problem is presented below.

2.2.3 Probabilistic approach to mapping position selection

Some of the fragments can have several alignment positions, possibly with
di↵erent number of mismatches. For example, a read can be mapped uniquely
with one mismatch at one position and with two mismatches at another. In
order to choose between di↵erent positions in such situations, a Bayesian
approach was proposed, published in [LRD08]. In this approach the quality
of each alignment is measured by the Phred mapping quality score, noted
Q

s

, defined as a function of the probability that the mapping of fragment z
at position u is correct. For any position u, let p

s

(u, z) denote the posterior
probability that a read z originates at u in the genome x. Then Q

s

is equal
to the positive value

Q
s

(u, z) = �10log10[1� p
s

(u, z)] . (2.2)

The higher is the probability p
s

(u, z), the higher is the value of Q
s

, the
better is the confidence for the choice. For a given short sequence read, the
alignment that maximizes the score (2.2) is chosen as the best alignment.

To compute this score, it is necessary to compute the prior probability
p(z, v) : the probability that z aligns at position v in genome x. A simple
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example is provided in [LRD08]. Let L denote the length of the reference
genome and l denote the length of the read. First, a uniform prior probability
is assumed. The posterior probability p

s

is equal to

p
s

(u, z) =
p(z, u)

L�l+1P
v=1

p(z, v)

. (2.3)

This quantity is upper bounded by 1. This upper bound is reached if one
prior probability p(z, u) is 1, the other ones being 0. When a read can be
mapped to multiple locations with similar prior probabilities, the ratio (2.3)
will be di↵erent from 1. Accordingly, the mapping quality score Q

s

will be
lower, possibly zero. Observe that quantity p(z, u) will be e↵ectively zero for
most possible alignments; therefore, only a small subset of all possible align-
ments (those that result in small numbers of mismatches) can be considered
in evaluating the denominator.

Sequencing errors at di↵erent sites are assumed to be independent. Con-
sequently, the probability, p(z, u), is defined as the product of the probability
of sequencing errors. Therefore, � log(p(z, u)) is the sum of the Phred score
values of the bases that disagree with the reference sequence.

For example, if there is a single mismatch with base quality 20, we ap-
proximate the probability of sampling the read as 0.01. With two mis-
matches with base quality 20, the approximation becomes 0.0001.

The Q
s

value can be equal for several mapping positions. This notably
occurs if reads have the same number of mismatches with the same quality
score. Mismatches may also have di↵erent quality scores. For example, the
read can have two mismatches with score 10 at one mapping position and 1
mismatch with score 20 at another.

The alignment algorithms choose the position with the best mapping
quality score Q

s

for each read. The score Q
s

is usually output and widely
used by various genome alterations detection algorithms, such as the SAM-
tools algorithm, to filter out reads mapped with low confidence and prevent
false positive alteration discovery.

2.2.4 Paired reads alignment

To improve the mapping accuracy, alignment algorithms take into account
the relation between two reads in the fragment. Fragments from the same
dataset normally have approximately the same length (see chapter 1). This
length depends on the data preparation process; it is called insert size.

Definition 2.2.2 insert size for mate-pair or paired-ends fragments is the
distance between the leftmost position of the left read and the rightmost po-
sition of the right read.
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In some cases, the first read of the fragment is uniquely mappable and
the second read aligns to several mapping positions. If one of these positions
is located within the expected distance (expected insert size) from the first
read, it may be correctly mapped. A similar event occurs when both reads
have several possible mapping positions and a unique couple of positions
exists within the expected distance: the two positions in this couple are
assumed to be correct and both reads are mapped to them.

In [BS12], the authors claim that the first case, where one read is uniquely
mappable, while the other is not, occurs for 2% of fragments, only. This
number is strongly related to the read length; moreover, it can be used only
for a healthy genome, which did not undergo genomic rearrangements.

The second situation, where both reads not uniquely mappable, but one
pair of positions can be chosen based on insert size, is much more common.
For example, in our experiments during data preparation with BWA, this
occurred for 20% of the reads.

2.3 Alignment algorithms

We have chosen the Bwa aligner [LD09] to map reads later used as an input
to our method for SV detection. The rationale for using Bwa are given in
2.3.1 below and drawbacks are described in 2.3.2.

Bwa is a Burrows-Wheeler transform based tool that uses the Ferragina
and Manzini matching algorithm to find exact matches [PF00]. Seeds are
extracted from the reads and aligned to the genome with maximal exact
matches. These seed alignments are extended with the a�ne-gap Smith-
Waterman algorithm. To find inexact matches, the authors introduce a new
backtracking algorithm that searches for matches between substring of the
reference genome and the query within a certain defined distance.

2.3.1 Aligner choice rationale

Our choice is based on the overview of short sequence mapping tools given
in [HBT13]. The authors use two types of data: synthetic (simulated by
Wgsim tool) and experimental. Two main criteria are used for the com-
parison: throughput and mapping quality. The throughput is the number of
base pairs mapped per second; this parameter reflects the tool performance.
The mapping quality is addressed using three mapping characteristics: per-
centage of correctly mapped reads, errors (false positives) and ambiguous
reads (reads mapped to more than one location with the same number of
mismatches). The paper provides the dependency of the performances to
the value of several parameters: read length, number of allowed mismatches,
seed length for Bwt based aligners.

According to this paper, three tools outperform Bwa in mapping quality
when the default options are used: Gsnap, Novoalign, Bowtie 2. But
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the default options for the number of possible mismatches are not the same.
When all the tools are run with the same parameters, Bwa only loses under
certain circumstances against Gsnap and Novoalign. As Novoalign is
a commercial tool and does not have a published method explanation, we
excluded it from further consideration. Gsnap, in turn, has an extremely
high probability of errors. SV-Bay bases predictions on the read count
number; therefore, the false-positive mapping can have a strong impact on
the results. Bwa has a relatively low processing speed: almost every other
tool considered in the review outperforms it in terms of throughput. Nev-
ertheless, for our purposes, sensitivity is more important than the run time
of the algorithm; therefore, we have chosen Bwa for read mapping.

2.3.2 BWA drawbacks for structure variants detection

Although Bwa shows a good mapping percentage, its mapping strategy
is not adopted for the structure variants detection task. And it has an
important impact on SV-Bay algorithm.

During the alignment process, Bwa and tools with similar mapping
strategies take into account the paired-end or mate-pair information. If
one of the reads in a fragment cannot be mapped uniquely, the mapping
position can be chosen on the basis of the expected insert size (explained
in 2.2.4). Insert size is also considered while calculating the mapping qual-
ity (MQ) score for the fragment. This approach has both advantages and
disadvantages. On the one hand, when insert size distribution is taken into
account, a paired-end fragment can be aligned with a high mapping quality
even if one of the reads cannot be mapped uniquely. In this case Bwa relies
upon the estimated fragment length and the mapping of the other read. If
one of the multiple read mappings is located within the expected distance
from the other read, Bwa assumes this fragment is mapped correctly. On
the other hand, in tumor data, there are fragments coming from SVs. For
such fragments, reads can be placed on di↵erent chromosomes or the in-
sert size may be far from expected. Therefore, they can be mapped only
if both reads are uniquely mappable. In this case, Bwa gives a very low
or even zero mapping quality score to the fragment, because the distance
between two reads significantly di↵ers from the expected value. This leads
to filtering out some possible SVs. For example, in COLO-829 melanome
data, we found out that over 16% of the fragments, in which both reads
were mapped uniquely, are given a low mapping quality. The SV-Bay def-
inition 3.1.2 takes into account these ”abnormal” fragments. The SV-Bay
procedure considering this e↵ect is described in Chapter 3.



Chapter 3

Structural variant detection
based on paired-end mapping
signatures

Once the fragments are mapped, one can proceed to the SV detection.

As described in the previous chapter, all fragments should have approx-
imately the same length. If the mapping is correct, we expect that after
mapping fragments retain this property. But as a result of an SV in the
tumor genome, fragments coming from the SV region cannot be mapped as
it is expected (with the expected orientation of the reads and the expected
insert size). Based on these abnormalities, SVs can be detected. Theoret-
ically all SVs should be supported by a signature, i.e. fragments that are
mapped in a special way. For example, after mapping, fragments will have
insert size above average for a deletion and below average for an insertion.
A full list of signatures is described in chapter 7. Below, we explain the pro-
cedure of detection of possible SVs based on abnormal fragment mapping
implemented in the SV-Bay algorithm.

3.1 Annotation of normal and abnormal read pairs

All fragments are separated into two groups: normal and abnormal. This
separation is based on the orientation, insert size and mapping properties of
the read pairs. We assume that abnormal fragments can be related to the
break-point junction, i.e., to the SV positions.

We consider as PCR duplicates and discard read pairs with identical or
close (up to k bp) start and end positions; k specified by the user.

27
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3.1.1 Detection of normal fragments orientation

As it was described before, paired-end and mate-pairs fragments consist
of two reads. For a read mapping two orientations are possible: forward
(F) or reverse (R). Thus, there are four kind of possible fragment mapping
orientations: forward-forward (FF), reverse-reverse (RR), forward-reverse
(FR) and reverse-forward (RF). For one of the most popular sequencing
technologies, Illumina, normal orientation can be FR for paired-end data
and RF for mate-pair data. It is expected that the reads from all fragments
in the library have the same orientation unless they correspond to an SV.

The information on the expected normal orientation can be provided
together with the data. When it is not the case, it must be determined. The
number of fragments with the correct orientation should significantly exceed
the number of fragments with other orientations. There are usually 1-2%
of fragments with unexpected orientation in paired-end data. For mate-
pairs, data contamination with fragments with unexpected orientation may
constitute up to 10% because of a possibly high fraction of singletons.

SV-Bay is able to detect normal orientation. It simply calculates the
number of fragments for each orientation and assumes that the orientation of
the majority of fragments corresponds to the normal orientation of fragments
in the library.

3.1.2 Definition of normal insert size

Once normal orientation of the reads in fragments is detected, SV-Bay pro-
ceeds to the evaluation of the normal insert size. To approximate normal
insert size and the shape of fragment length distribution, SV-Bay takes
into account only fragments with normal orientation that map on the same
chromosome. All normal fragments are expected to have similar insert size.
Presence of genomic SVs such as deletions and insertions in the constitu-
tional or tumor DNA may change the insert size of the corresponding read
pairs. Moreover, even for the fragments not related to the structural vari-
ants, the insert size can vary due to cross-ligation of DNA fragments during
library preparation or due to mapping errors.

By default, SV-Bay considers the fragment insert size as normal if it is
within the 99% of insert size distribution when we consider fragments with
insert size shorter than 10 Kb. When the fragment is too long, we consider it
as coming from an SV. 10 Kb is the empirical value; this value is based on the
knowledge that no sequencer machine can be expected to sequence fragments
whose length exceeds 10 Kb, even in the case of mate-pairs where average
length could be up to 7 Kb. After the analysis of insert size distribution,
we define µ (the median insert size) and � (standard deviation of insert size
Grafarend2006) .

The minimal and maximal insert sizes of a normal read pair are noted
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l
min

and l
max

, respectively. By default, they correspond to the 99% confi-
dence interval. The parameter 99% can be modified by the user, when the
user has an a priori knowledge of the data. For example, some datasets can
have a heavy tail in insert size distribution. Default parameters are based
on the 3-sigma rule.

3.1.3 Formal definition of normal and abnormal fragments

Here we define normal and abnormal fragments to use in further analysis.

Definition 3.1.1 A fragment (pair of reads) is considered normal if:

1. both reads are mapped to one chromosome,

2. the insert size is within the confidence interval

3. the orientation of the reads is normal

4. the mapping quality of both reads is greater than or equal to 20.

When reads within a fragment have expected normal orientation and an
insert size within the confidence interval, a mapping quality more than 20 is
required to pass filtering: this value guarantees that the fragment is mapped
correctly with 99% probability.

Definition 3.1.2 The fragment (pair of reads) is considered abnormal if
both reads are uniquely mapped and at least one of the following conditions
is satisfied:

1. the insert size is out of the confidence interval

2. the orientation of the reads is not equal to the normal orientation

3. reads are mapped to di↵erent chromosomes.

When a fragment has an unexpected orientation for the reads, or (and)
has an insert size not in the confidence interval, or when reads are mapped
on di↵erent chromosomes, it is used by SV-Bay if both reads in a pair are
mapped uniquely.

All fragments not satisfying the above definitions are discarded from
further analysis.
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3.2 Clustering of abnormal fragments

Most of the abnormal fragments are in fact noise, caused by errors in library
preparation and mismapping. Such fragments are not related to structural
variants. To circumvent this di�culty, read coverage properties may be used:
each base in the genome gives rise to several sequenced fragments. This is
also true for the break-point base, which implies that each abnormal read
signature should be observed for several fragments.

Therefore, once we got the array of abnormal fragments, the next step is
to cluster them in order to provide SV candidates. The clustering algorithm
takes into account positions, lengths and orientations of the fragments. It
identifies sets of fragments that are close to each other and have the same
read orientation. Below we present a two-phase clustering algorithm devel-
oped for SV-Bay. This algorithm takes into account all specific features
typical for complex structural variants.

3.2.1 Cluster definition

Clustering of fragments is based on two main parameters: the di↵erence of
insert sizes and the di↵erence of read coordinates. Given a fragment i, one
denotes:

• x
i

: the mapping position of the leftmost read beginning;

• y
i

: the mapping position of the rightmost read end.

Additionally, the position of the middle point is denoted F
i

and the total
length of the fragment is denoted Flen

i

. For any fragment i, parameters F
i

and Flen
i

satisfy the equations:

F
i

=
x
i

+ y
i

2
;

Flen
i

= y
i

� x
i

.

For fragments corresponding to the same genomic adjacency, the maxi-
mum possible di↵erence of insert sizes is denoted I

max

. For all known SVs,
this di↵erence is not greater than 2 · l

max

, so I
max

= 2 · l
max

. To illustrate
this, we consider two SV classes involving and not involving an inversion.
In Figure 3.1, we provide two examples that lead to the maximum and
minimum possible di↵erences of insert sizes. Panel (A) shows an inverted
adjacency (e.g., inversion or inverted translocation). The maximal di↵erence
in insert sizes within this SV is 2 · l

max

. Panel (B) shows a direct adjacency
(e.g., deletion, duplication, direct translocation). The maximal di↵erence in
insert sizes is l

max

� l
min

, where l
min

is the minimal fragment insert size.
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Figure 3.1: (A) Inverted adjacency (Inversion); (B) Direct adjacency (Dele-
tion)
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The maximum di↵erence of midpoint positions for two fragments corre-
sponding to the same genomic adjacency is denoted D

max

. For all known
SVs, this di↵erence is not greater than l

max

, so D
max

= l
max

. It can be
achieved for a direct adjacency, shown in panel (B) of Figure 3.1. In the
case of an inverted adjacency, the maximal di↵erence of midpoint positions
is (l

max

� l
min

)/2, as shown in panel (A).
The SV-Bay clustering algorithm includes two phases: primary cluster-

ing and splitting of large clusters of read pairs when it is needed. On the
first step a set of super-clusters is produced.

Definition 3.2.1 A super-cluster is a set of abnormal fragments (x
i

, y
i

)
i=1···n

such that :

1. Fragments are sorted by their midpoint position: F1  F2  · · ·  F
n

2. Read pairs within all fragments have the same orientation

3. max
i,j

|Flen
i

� Flen
j

|  I
max

4. max
i

|F
i+1 � F

i

|  D
max

5. The super-cluster is exhaustive:

8(x
t

, y
t

) 62 S : 6 9i 2 {1 · · ·n}, such that |Flen
t

�Flen
i

|  I
max

and |F
t

�F
i

|  D
max

(3.1)

During the second step, clusters are further divided into smaller parts
that bijectively correspond to a genomic adjacency. The resulting clusters
are called links.

Definition 3.2.2 A link is a set of abnormal fragments (x
i

, y
i

)
i=1···n, sat-

isfying all super-cluster constraints and also with |F
n

� F1|  D
max

.

3.2.2 Primary clustering algorithm

The first phase of the clustering algorithm is primary clustering. It is per-
formed separately for the following groups of fragments:

1. Intra-chromosomal fragments of each chromosome. They are divided
into four groups with read orientations FF, FR, RF and RR.

2. Inter-chromosomal fragments of each chromosome pair. They are di-
vided into four groups with read orientations FF, FR, RF and RR.

The primary clustering iteratively builds super-clusters. The fragments
from the input list are sorted by their midpoint positions. Then, the list is
traversed from left to right. Neighbour fragments with a midpoint distance
smaller than or equal toD

max

are added to a super-cluster S. The fragments
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with the di↵erence in lengths greater than I
max

are skipped. The iteration
step ends if the midpoint distance between current and next fragment is
larger than D

max

. The fragments included in a super-cluster are removed
from the input array.

This iteration step is repeated until each fragment is assigned to a super-
cluster. Super-clusters with only one fragment are discarded as noise and
are not further processed.

The simplified pseudo code is presented below.
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# Initialize empty array for resulting super -clusters

res_super_clusters = []

# Assume that fragments array is sorted by midpoint position

while fragments is not empty: # Iteration steps loop

# Initialize array of fragments in current super -cluster

super_cluster = []

# Initialize previous_fragment with the first fragment

previous_fragment = fragments [0]

# Remove it from the source array and add to

super_cluster

fragments.remove(previous_fragment)

super_cluster.append(previous_fragment)

# Initialize maximum fragment length in super_cluster

max_length = previous_fragment.length

# Initialize minimum fragment length in super_cluster

min_length = previous_fragment.length

for fragment in fragments: # Iteration step

# Check D_max constraint

if fragment.middle - previous_fragment.middle <=

D_max:

# Check I_max constraint

if frag.length <= min_length + I_max and

frag_length >= max_length - I_max:

# I_max constraint passed

# Update max_length and min_length

if frag.length > max_length:

max_length = frag.length

if frag.length < min_length:

min_length = frag.length

# Update previous_fragment

previous_fragment = frag

# Add frag to super_cluster

super_cluster.append(frag)

# and remove it form source array

fragments.remove(frag)

else: # I_max constraint not passed

continue # skip fragment

else: # D_max constraint not passed

break # Finish iteration step

# Check resulting super_cluster length

if (len(super_cluster) > 1:

# If it’s not noise , add it to res_super_clusters

res_super_clusters.append(super_cluster)
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3.2.3 Splitting algorithm

The second phase of the clustering algorithm splits the super-clusters into
links with the property F

n

� F1  D
max

.
Let D = F

n

� F1 denote the maximal distance between the fragment
midpoints of a super-cluster. If D is smaller than or equal to D

max

, the
super-cluster is annotated as a link. It corresponds to a possible novel ge-
nomic adjacency and does not need splitting. The remaining super-clusters
(with D > D

max

) cannot correspond to a single new genomic adjacency and
should be divided into several links.

Splitting of each super-cluster S is performed iteratively. On each iter-
ation, fragment midpoints of S are clustered using the k-means algorithm.
The k-means implementation from Scipy (python library for scientific com-
puting) is used. The parameter k is set to D

D

max

, rounded upward.
The constraint D  D

max

is checked for each resulting cluster. The
clusters for which this constraint is satisfied are annotated as links. The
fragments included in such clusters are removed from S. If there are still
fragments remaining in S, values D and k are re-calculated for them and
the k-means iteration is repeated. Otherwise processing of S is finished.

Similarly, to the primary clustering, resulting links are checked to con-
tain more than one fragment. Links containing less than one fragment are
discarded as noise. In simulated mate-pairs data only 23% of abnormal frag-
ments are associated with links and the others are discarded as noise, which
illustrates the importance of the clustering step.
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Chapter 4

Coverage issues

In the previous chapter, we discussed the signature based approach for SV
detection and its implementation in the SV-Bay algorithm. SV-Bay sepa-
rates fragments into normal and abnormal fragments. Abnormal fragments
are potentially related to structural variants; clustering these abnormal frag-
ments provides SV candidates.

Another major approach for SV detection is based on the observation
of the depth of coverage (DOC) change. Typically, DOC of the genomic
region is defined as the average number of times each base of the region
has been sequenced (read coverage); also, one can define fragment DOC: the
average number of sequenced fragments covering each position. Structure
variants often result in a change of copy number status around the break-
point junction, which is reflected in changes in read and fragment DOC.
For instance, deleted regions have a relatively low DOC, whereas duplicated
regions are characterized by a higher DOC [MWS+11]. Thus, di↵erences
in DOC and abnormal positioning of mapped reads often indicate the same
genomic abnormality (e.g., a deletion or a tandem duplication).

SV-Bay algorithm considers the DOC change to filter out false SV can-
didates with a probabilistic Bayesian approach. This approach is further
described in chapter 6. To make the probabilistic model accurate, it is
crucial to take into account all factors influencing DOC. These factors are
discussed in this chapter.

There are three main factors that influence DOC: GC-content, ploidy/-
copy number changes and region mappability. They are described in sections
4.1, 4.2 and 4.3 respectively.

4.1 GC-content

The first important factor influencing the depth of coverage is GC-content.

Definition 4.1.1 The GC-content of a given region is the proportion of
either guanine or cytosine nucleotides in this region.

37
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Example 4.1.1 The GC-content of sequence AACCGATGAC is 6
10 = 0.6.

The fragment amplification rate strongly depends on the GC-content. It
is illustrated in Figure 4.1. The top panel shows the number of fragments
starting in a sliding window of 5O Kb along the genome; the bottom panel
one shows the GC-content calculated using the same sliding window. It is
clear that the number of fragments increases in regions with a high GC-
content and decreases in regions with a low GC-content. The di↵erence of
coverage between GC-rich to GC-poor regions is up to 2-3 times.

Figure 4.1

Definition 4.1.2 The GC-content bias is the dependence between fragment
count (DOC) and GC-content found in high-throughput sequencing assays.

The GC-content bias is data dependent and may even vary between
di↵erent experiments of the same type. This phenomenon is particularly
strong with the Illumina Genome Analyzer technology.

A method to evaluate and correct for the GC-content bias for normal
genome was recently proposed in [BS12]. In Section 5.2, we extend it to
handle tumor data.

In [BS12] it is assumed that the fragments are sequenced on both ends
using the standard Illumina procedure. Each fragment is mapped on the
reference genome using (Bwa). Fragments are used in this method only if
50 read is uniquely mapped (flag XT : A : U of Bwa). This allocation of
reads, that excludes the ones mapped to multiple locations, is very sensitive
to the comprehensiveness of the reference.
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Authors suggest the following algorithm to count the expected number of
fragments with the amendment to the GC-content. A window length is set.
For a given GC-rate �, let N

�

denote the number of windows in the genome
with a GC-rate equal to �. Let F

�

denote the total number of fragments
that start at the beginning of such a window. According to [BS12], the
expected number of amplified fragments at the starting position of such a
window, denoted µ

�

, is set to

µ
�

=
F
�

N
�

. (4.1)

Computing the valuesN
�

and F
�

yields this average value µ
�

. The choice
of the window length is extensively discussed in the paper. The conclusion
of the authors is that the best choice for the window length is the median
of the normal fragment lengths.

4.2 Ploidy and copy number changes

Other factors influencing coverage are ploidy and changes in the copy num-
ber.

Definition 4.2.1 Ploidy is the number of sets of chromosomes in a cell.

To evaluate the expected read count per one copy of a chromosome, SV-
Bay only takes into account regions where the number of copies is equal to
the ploidy (the exact value is provided by the user in the initial parameters
for the tool). Copy number of each region is provided by the Control-
FREEC method [BZB+11, VBTPKBPCJCGSIJLOD12] (Figure 4.2).

Figure 4.2: Freec output for the COLO-data, shows the variation of the
copy number in the same chromosome.
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TheControl-Freec algorithm consists of several steps. First, it roughly
calculates the copy number profile by simply counting reads in large non-
overlapping windows. The second step is a normalization of the GC-content
profile. This normalization is based on several assumptions:

(i) the main ploidy of the sample, P , is provided;

(ii) the observed read count in P -copy regions (i.e., regions with a copy
number equal to P ) can be modeled as a polynomial of GC-content;

(iii) the observed read count in a region with altered copy number is linearly
proportional to the read-count in P -copy regions;

(iv) the interval of measured GC-contents in the main ploidy regions must
include the interval of all measured GC-contents.

The third step is a segmentation of the normalized Copy Number Pro-
file (CNP). Control-Freec uses a Lasso-based algorithm suggested by
[HLL08]. The segmentation provided by this algorithm is robust against out-
liers, which makes it suitable for a segmentation of deep-sequencing CNPs.
The last step involves an analysis of segmented profiles. This includes the
identification of regions of genomic gain and loss and the prediction of the
absolute copy numbers in these regions.

4.3 Mappability

The last factor influencing the coverage is the mappability of the region.
This factor is considered below. First, the repetitive structure of human
genome is discussed. Then, the relationship between read mappability and
coverage is explained. Finally, the mappability of a genomic position is
defined and the Gem tool used in SV-Bay pipeline is discussed.

4.3.1 Repeats in human genome

The repetitive structure of the genome complicates read mapping and the
assessment of mappability. A list of known types of repeats in the human
genome and statistics of their distribution in di↵erent chromosomes are pro-
vided in figure 4.3.

Average lengths of the repeats are given in [GWNL00]. It is claimed
in [TS12] that 50% of the genome consist of the di↵erent types of repeats.
According to this work, only 18% out of these 50% repeats have a length
smaller than 300 bp; all the rest have an average length greater than 500
bp.

Average size of pair-ended Illumina fragments varies from 250 to 400
bp. Therefore, with paired-end technology, 32% of read pairs can have
ambiguous mapping positions and thus can lead to a wrong SV detection.
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Figure 4.3: The table in panel a shows various named classes of repeat in
the human genome, along with their pattern of occurrence (shown as ’repeat
type’ in the table; this is taken from the RepeatMasker annotation). The
number of repeats for each class found in the human genome, along with the
percentage of the genome that is covered by the repeat class (Cvg) and the
approximate upper and lower bounds on the repeat length (bp). The graph
in panel b shows the percentage of each chromosome, based on release hg19
of the genome, covered by repetitive DNA as reported by RepeatMasker.
The colours of the graph in panel b correspond to the colors of the repeat
class in the table in panel a
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Mate-pair data average insert size from 2,500 up to 6,000 bp. Accord-
ing to RepeatMasker Library, db20140131, LINE-1 repeats have an average
length of 6,000 bp (17.5% of the genome), Line-2 repeats - 3,000 bp (3.7% of
the genome) and LTR repeats - 640 bp (about 9% of the genome). There-
fore, mate-pair data can cover almost every type of repeats in the human
genome, except long LINE’s repeats, rDNA repeats (0.01% of the human
genome) and segmental duplications and other classes (around 0.2% of the
human genome). However, we should mention that often a unique read
mapping is possible even for these repetitive regions as they have undergone
many point mutations during the genome evolution.

4.3.2 Reads mapping and DOC

In chapter 2, we discussed that some reads can be mapped ambiguously
because of the repeats and sequencing errors. If one of the reads is mapped
ambiguously, the aligner sets a low mapping quality for the fragment and
this fragment is filtered out (see chapter 3).

In a repetitive region almost all fragments might be discarded, therefore
the number of observed fragments on the region may be very low. This e↵ect
should be considered when the expected DOC (number of fragments) is cal-
culated for a region. Otherwise, this loss of coverage might be, erroneously,
associated with a genomic loss, for example, with a deletion.

The mappability factor is significant: over 50% of the human genome
consist of regions repeated exactly or approximately in the other places.
Some of the repeats occur thousands of times throughout the genome as
described above.

4.3.3 Mappability of a genome position

Definition 2.2.1 measures the confidence of the mapping of an individual
read. The position of the read is not considered. It is observed for some
genomic regions that all, or almost all, reads from that region cannot be
uniquely mapped. This occurs notably if the region is repeated in some
other place of the genome. For a specific genome, the percentage of reads
that are mapped uniquely mostly depends on the number of mismatches
allowed during alignment and the read length. Thus, knowing the read
length and the mapping algorithm parameters it is possible to compute the
mappability of the whole sequence beforehand.

The approach to this problem is extensively discussed in [DEM+12]. The
authors give the following auxiliary definition of k-frequency:

Definition 4.3.1 Given some read length k, the k-frequency F
k

(x) of a
sequence at a given position x corresponds to the number of times the k-mer
starting at position x appears in the sequence and in its reverse complement,
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considering as equivalent all the k-mers which di↵er by less than some pre-
defined alignment score.

Based on k-frequency the inverse value k-mappability is defined:

Definition 4.3.2 The k-mappability or k-uniqueness T
k

(x) is the in-
verse of the k-frequency:

T
k

(x) =
1

F
k

(x)
(4.2)

The authors introduce an algorithm to compute the mappability for
the reference genome. This algorithm is implemented in the Gem tool.
Given the window length k and the number of possible mismatches t, Gem
tries to match each possible k-mer at some other position with up to t
mismatches using a time- and memory-e�cient algorithm and thus calculate
the k-mappability T

k

(x). If t is equal to zero, the exact mappability is
calculated, otherwise a good approximation is produced.

The output of the algorithm is a string of flags representing mappability
equal to one for positions for which the k-mer has no other matches (map-
pable positions) and lower mappability for the other positions. The length
of this output string is equal to the reference (chromosome or whole human
genome) length.

In SV-Bay pipeline the output of Gem tool is used. The parameter
k is set to the read length, and t is set to 3 (equal to the respective Bwa
parameter). As explained before, to estimate the number of fragments for a
region for each position the SV-Bay algorithm should consider if the read
is expected to be mapped uniquely on this position or not. For this reason,
we use the discrete mappability value M

i

instead of the mappability
produced by Gem.

Definition 4.3.3 Given the read length k, the discrete mappability M
i

of the position i in reference genome equals 1 if k-mappability T
k

(i) equals
1 and 0 otherwise.
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Chapter 5

Abnormal and flanking
regions

The SV-Bay probabilistic approach to SV validation is based on the esti-
mation of the depth of coverage (Doc) in special genomic areas, related to
each SV candidate. Such areas, called flanking regions and abnormal region,
are introduced in section 5.1.

In section 5.2, the methods to estimate the expected number of fragments
starting in a genomic region are described. The estimate is given in Section
5.2.1 for the flanking regions, in Section 5.2.3 for the abnormal regions.
These estimates are based on the factors described in Chapter 4.

5.1 Definition of flanking regions and abnormal re-
gions

Most novel genomic adjacencies have two breakpoints in the reference genome,
with the exception for small insertions and mirror duplications. Without loss
of generality, we further assume that there are two breakpoints per link.

As a cluster spans the breakpoints, a Doc change is expected in the sur-
rounding genomic area. The basic idea of the SV-Bay probabilistic model
is to compare the expected and observed number of two types of fragments̃:

• Normal fragments in surrounding areas not spanning breakpoint.

• Abnormal fragments spanning breakpoint.

The so-called flanking regions are introduced in 5.1.1. These regions are
areas surrounding a possible SV, which can only contain normal fragments
that do not span the breakpoint. To denote them we use an auxiliary def-
initions of safety regions : areas which can possibly contain the breakpoint
and starts of fragments spanning it (considering that the exact breakpoint

45



46 CHAPTER 5. ABNORMAL AND FLANKING REGIONS

position is not known). An abnormal region is an area where abnormal
fragments, possibly spanning a breakpoint, can start. These regions are
introduced in 5.1.2.

5.1.1 Flanking regions

First, areas where the breakpoints and fragments spanning them may fall
are defined. Such areas are called safety intervals:

Definition 5.1.1 For any link S with reads leftmost positions {(x
i

, y
i

)}
i={1..,n},

the left and right safety intervals S
x

and S
y

are defined as:

S
x

= [min(x
i

)� l
max

,max(x
i

) + l
max

] ; (5.1)

S
y

= [min(y
i

)� l
max

,max(y
i

) + l
max

] . (5.2)

This definition guarantees that both breakpoints are included in the
safety intervals. As a consequence, any read pair starting outof the safety
intervals belongs to a normal fragment, i.e., a fragment that does not con-
tain a breakpoint junction. An evaluation of the most likely positions for
breakpoints within these intervals is described later in chapter 6.

Next, we define flanking regions. These regions should not include the
interval around the breakpoint itself, where we expect to observe a gap in
normal Doc [SOP+12]. Moreover, they should not overlap any structural
variant that could a↵ect the number of normal read pairs within this region.

Definition 5.1.2 Given a safety interval for a breakpoint, an upstream (re-
spectively downstream) flanking region is the largest region located upstream
(respectively downstream) of that interval, that does not intersect any safety
interval of any other breakpoint.

Closely located links may have overlapping safety intervals. In this case,
the corresponding flanking regions are empty. Also, flanking regions are not
allowed to span centromeric regions and long unassembled poly-N regions.

SV-Bay formally divides the regions around each link into four flanking
regions. We denote these regions (A1, A2) and (B1, B2) for the left-most and
right-most breakpoints, respectively.5.1

(A) General case: Flanking regions are defined by

– the safety intervals of the link extremities: purple links that define
right boundaries of regions A1 and B1 and left boundaries of
regions A2 and B2;

– safety intervals of intervening links: grey links that define left
boundary of B1 and right boundaries of A2 and B2;
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Figure 5.1: Flanking regions. (A) General case. (B) Special case when two
flanking regions, A2 and B1 coincide.

– large regions of unassembled or unmappable genome: red region
defines left boundary of region A1. The set of large unassem-
bled or unmappable regions is provided by the user or can be
calculated with a script provided in the Sv-Bay package.

(B) Special case: two flanking regions, A2 and B1, coincide. The region
between two breakpoints does not contain other candidate SVs or un-
mappable regions. This case occurs notably for small and medium size
deletions.

5.1.2 Abnormal region

Definition 5.1.3 Assume a breakpoint occurs at position x in the reference
genome. Let �(x) denote the set of genomic positions where a fragment
spanning x in the tumor genome can start. This region is called the abnormal
region for x.

The length of an abnormal region is always equal to l
max

: this ensures
that even the longest possible fragment would start within this region. The
exact coordinates depend on the orientation of fragments in the correspond-
ing link and of the expected orientation If the orientation of the first read in
the fragments is the expected orientation of the first read in a normal pair
(for example, F for paired end FR reads), then the abnormal region is :

[x� l
max

;x] ;

otherwise, it is
[x;x+ l

max

] .



48 CHAPTER 5. ABNORMAL AND FLANKING REGIONS

Figure 5.2: Abnormal region coordinates depending on the fragments ori-
entation. Expected orientation for this example is equal to FR. First reads
from each pair are shown (x

i..n

): (A) reads have the expected orientation,
(B) reads have the unexpected orientation.

This is depicted in Figure 5.2.
In practice, the exact position of the breakpoint is not known from se-

quencing data. A procedure in SV-Bay, described in 6.3, computes the
position that is the most likely.

5.2 Expected number of fragments in a genomic
region

For SV-Bay algorithm, we introduce a special definition of the depth of
coverage for a genomic region:

Definition 5.2.1 The depth of coverage of a genomic region is the number
of fragments starting on this region.

To evaluate the most probable number of copies involved in a possi-
ble SV, SV-Bay relies on the expected and observed number of fragments
starting in flanking and abnormal regions.

In this section, estimations of the expected number of fragments starting
in the flanking or abnormal regions are derived. An auxiliary method con-
sidering GC-content to approximate the number of fragments starting on a
specific position is also provided.

5.2.1 Expected number of fragments for a flanking region

As flanking regions are intentionally chosen not to contain fragments overlap-
ping the breakpoint, we estimate the expected number of normal fragments.

Let I be one of the flanking regions. Let us assume that the copy number,
noted ↵, is constant in that region. For a diploid region, ↵ is equal to 2. For
any position i in I, let �

i

denote the number of fragments that originate at
this position on one copy in the donor genome. Let O

I

denote the number
of reads aligned on the interval I in the reference genome.
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Let us consider at first the simplified situation where the distribution of
the random variable �

i

is independent of the position i and does not depend
on the GC-content in the donor genome. Let � denote the expectation of
the random variable �

i

.
The number of reads that are aligned on interval I in the reference

genome can be approximated as

O
I

⇠ ↵
X

i2I
M

i

· �
i

, (5.3)

where M
i

is the mappability at position i.
Let E(O

I

) be the expectation of the number of mapped reads on a large
number of sequencing experiments. Equation 5.3 translates into

E(O
I

) = ↵
X

i2I
M

i

· � . (5.4)

On a large interval I, E(O
I

) can be approximated by the observation
O

I

; this yields the statistical approximation for �

�̂ =
1

↵
· O

IP
L

i=1Mi

. (5.5)

Let us turn now to the more general case where the distribution of �
i

depends on the GC-content. Following the definitions given in 5.2.2, one
denotes �

i

the GC-content at a given position i. We assume that �
i

follows
a Poisson distribution with parameter �(�

i

). In particular, its expectation
is �(�

i

).
Equation (5.3) now translates into

E(O
I

) = ↵
X

i2I
M

i

· �(�
i

) . (5.6)

To account for possibly mismapped reads in homozygous deletion re-
gions, we modify formula 5.3 for ↵ = 0:

E(O
I

) = I
L

·N
abnormal

/L (5.7)

Here I
L

is the length of the region I, L the genome length, and N
abnormal

the total number of abnormal read pairs, which approximates the number
of incorrectly mapped read pairs in a given experiment.

5.2.2 Estimation of the number of fragments starting on a
position considering GC-content

Values �(�) for all possible values � of the GC-content can be evaluated
on the basis given in [BS12] and described in Chapter 4. Following the
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observation by [BS12] that the best window size for the GC-content bias
correction corresponds to the average fragment length, the GC-content of a
given position is evaluated within a window of length µ.

The number of copies in the tumor (donor) may vary along the genome.
Therefore, to evaluate �(�), we select positions coming from copy neutral re-
gions in the tumor genome, i.e., regions where the copy number ↵

i

is constant
and equal to the main ploidy of the tumor genome. The selection of these po-
sitions is based on the output of Control-Freec [VBTPKBPCJCGSIJLOD12,
BZB+11] included into the SV-Bay pipeline.

Evaluation of �(x) is implemented on a random subset of genomic po-
sitions with a precision of two decimal places. SV-Bay chooses a random
set of K windows where K is a large number that allows to have more
than zero observations for each range of GC-content, and calculates the first
approximation �0(x) using these windows. The default value for K is 1
million.

At the next step, the second subset of K di↵erent windows is chosen
and the second approximation, �1(x), is computed on these 2 ·K windows.
This step is repeated until a termination criterion is satisfied: for any x in
[0 : 100], |�0(x)��1(x)| is smaller than a threshold defaulted to 10(�2). The
total number of steps depends of the values of K. In this work, the default
value of K = 106 and the number of steps is typically 2.

5.2.3 Expected number of fragments for the abnormal region

For each abnormal region we need to estimate the expected number of ab-
normal fragments overlapping the corresponding breakpoint. To estimate
the expected number of normal fragments for flanking regions it was enough
to consider the starting position of the first read for each read pair. For
abnormal fragments the mappability of the ending position of the mate-pair
should also be considered: SV-Bay algorithm discards read pairs if at least
one of the two reads is not uniquely mappable. In case where a fragment is
discarded by the algorithm, it should not be counted when calculating the
expected number of abnormal fragments.

Let i be some position of the abnormal region. If a read aligns to this
position, the ending position of the mate-pair may vary, as the insert size is
not constant. This leads to the definition of the extended mappability.

Definition 5.2.2 In an abnormal region, the extended mappability of a
position i is

M̄
i

= M
i

i+l

maxX

j=i+l

min

M
i+j

· p(Flen > i+ j), (5.8)

where p(Flen¿i+j) is the probability distribution of the insert size.
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Computing formula (5.8) is time-consuming, so we provide an approxi-
mation. As explained in chapter 3, the observed insert size distribution is
approximated by a normal distribution with mean µ and variance �. Frag-
ments in the tails of the normal distribution are discarded when separating
normal and abnormal fragments. For a sake of simplicity and to avoid time-
consuming calculations, for the remaining fragments the normal distribution
can be further approximated by the uniform distribution with boundaries
[µ� c;µ+ c].

The boundaries are chosen to make the variance and mean values of
the uniform distribution equal to µ and � respectively. The corresponding
segment [l̄

min

, l̄
max

] is the region where we expect to map the rightmost
mate of the leftmost read in a pair. It is slightly shrank compared to the
segment [l

min

, l
max

] defined from the normal distribution (Figure 5.3).
According to the general properties of the uniform distribution, the

bounds of the segment satisfy the following:

µ =
1

2
(l̄
min

+ l̄
max

)

� =
1

12
(l̄
max

� l̄
min

)2

Equivalently,

l̄
max

= µ+ �
p
3 ;

l̄
min

= µ� �
p
3 .

Assuming that the insert size is uniformly distributed with a mean µ
and a variance �, the extended mappability of a position i is

M̄
i

= M
i

1

2�
p
3
(

µ+�

p
3X

j�i=µ��

p
3

M
j

) . (5.9)

The redefined mappability M̄
i

allows to calculate the expected number
of fragments mapped per position.

Proposition 5.2.1 The expectation of the number of fragments mapped on
a position with a given GC-content x is denoted �̄(x) and satisfies

�̄(x) =

P
L

i=1 M̄i

· Ō
i

· 1
�

i

=xP
L

i=1 ↵i

M̄
i

· 1
�

i

=x

, (5.10)

where L is the genome length, ↵
i

is the number of genomic copies for position
i, Ō

i

is the observed number of normal read pairs mapped to position i, and
1
�

i

=x

the indicator that GC-content at position i is equal to x.
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Figure 5.3: The green smarts are the insert size distribution; red dotted
line is the approximation by normal distribution; blue dotted line is the
approximation by a uniform distribution.

In practice, to evaluate �(x) we do not consider all genomic positions.
Instead, we use a large enough random subset so that we can evaluate �(x)
up to the third decimal place. For the tumor genome, we select positions
coming from copy neutral regions, i.e., regions with copy number equal to the
main ploidy of the tumor genome. The selection of these regions is based
on the output of Control-FREEC [BZB+11, VBTPKBPCJCGSIJLOD12]
included in the SV-Bay pipeline.

Proof: The total count of couples (i, j) of mappable positions, weighted
with the probability of an insert size (j � i), with the additional constraint
that the GC-content �

i

is equal to x is

LX

i=1

M̄
i

· 1
�

i

=x

.

The expectation of the total number of fragments in such a position is

�(x)
LX

i=1

M̄
i

· Ō
i

· 1
�

i

=x

The total number of fragments in the donor that are amplified and
mapped to the reference genome is
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Figure 5.4: A and B show first and second breakpoint positions respectively.
To evaluate the GC-content on the abnormal region, SV-Bay creates the
concatenated sequence S̃ which approximates the sequence appearing in the
tumor genome.

LX

i=1

M̄
i

· Ō
i

· 1
�

i

=x

Let S̃ be a sequence spanning a breakpoint. Without loss of generality,
we can assume that it is aligned in the tumor genome to a sequence upstream
of a point x

A

and to a sequence downstream of a point x
B

. On this sequence
SV-Bay calculates the GC-content for the current position.

For a breakpoint junction connecting chromosomes A and B, we can now
evaluate the expected number of abnormal fragments spanning the break-
points x

A

and x
B

on chromosomes A and B, respectively. Without loss of
generality, we assume that the junction connects a region upstream to x

A

to a region downstream of x
B

.
Then, the expected number of abnormal fragments spanning the break-

points E
x

A

,x

B

can be calculated as:

E
x

A

,x

B

,�>0 =
x

AX

i=x

A

�l

max

M̄
i

(x
A

, x
B

)·�·�̄(GC(i, x
A

, x
B

))·p(InsertSize � x
A

�i),

Theoretically, it possible to observe several closely located abnormal read
pairs that do not correspond to any SV. This may happen due to mismapping
or DNA fragment fusion during the library preparation. To account for such
a possibility in our Bayesian model, we need to estimate the probability to
get a random cluster of abnormal read pairs. The expected number of read
pairs located just by chance at a distance smaller than l

max

is approximated
as E

x

A

,x

B

,�=0:

E
x

A

,x

B

,�=0 = l
max

· Nabnormal

L
, (5.11)
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where N
abnormal

is the total number of abnormal read pairs.



Chapter 6

Bayesian models

In Chapter 3, we described the separation of normal and abnormal fragments
and abnormal fragments clustering. The result of the clustering process is a
collection of fragments sets called links. Each link possibly corresponds to
an SV.

The next step is the validation of these SV candidates. Our goal is to
check whether a given link is actually related to a real SV. In which case,
the number of genomic copies involved in the genomic adjacency should also
be determined. A Bayesian approach used to solve this problem is described
further.

6.1 Model definition

To validate a link with a Bayesian approach we introduce a model M for the
link properties that is a set of five parameters: ↵1,↵2,�1,�2, �.

The four parameters ↵1,↵2,�1,�2 represent the number of copies in
flanking regions A1, A2, B1, B2. The last one, �, represents the number of
copies involved in the structural variant. For most SV types, e.g., duplica-
tions and deletions, the number of copies involved is the number of gained
or lost copies. For other types, e.g., inversions, it is the total number of
copies on the a↵ected region.

Some flanking regions may be empty, and/or regions A2 and B1 may
coincide. The number of parameters in the model is reduced accordingly.
This occurs, for example, for a short deletion.

The parameters of the model satisfy the following constraints:

↵1 = ↵2 ± �;�2 = �1 ± �. (6.1)

The sign before � depends on the orientation of reads in the correspond-
ing link. If the reads have an expected orientation, then sign before � is
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Figure 6.1: Large tandem duplication. One genomic copy is gained in-
between two breakpoint positions.

minus. If the orientation of one or both reads is not expected, the respec-
tive signs change.

As an example, let us take a large tandem duplication. In this SV type,
a second copy of a region is presented just after or before the original re-
gion, which causes a gain of genomic copies. After mapping to the reference
genome, fragments coming from the SV junction have the inverted orien-
tation RF (for Illumina paired-end reads). In this case, both reads have
unexpected orientation, thus formulas 6.1 will be the following:

↵1 = ↵2 � �;�2 = �1 � �. (6.2)

It is explained by the gain of fragments in-between two breakpoints,
illustrated in Figure 6.1.

Another example is deletion. SV deletion is characterised by a loss of a
part of the genome and thus by loss in copy number. Fragments correspond-
ing to this signature have the expected orientation of the reads and length
longer than the longest normal fragment. Thus according to the rules pre-
sented above both signs before � would be plus and the formula 6.1 should
be the following:

↵1 = ↵2 + �;�2 = �1 + �. (6.3)

In this case ↵1 and �2 is greater then ↵2 and �2 which corresponds to a
loss in copy number between the two breakpoints.
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6.2 Bayesian approach

6.2.1 Conditional probability of a model

The aim of our Bayesian approach is to match observations, i.e., the number
of fragments in the flanking regions and the abnormal region, with a model
M(↵1,↵2,�1,�2, �).

Observations are formalized as a 5-uple � = (n
A1 , nA2 , nB1 , nB2 , n�).

The observed values n
A1 , nA2 , nB1 , nB2 are the observed number of normal

fragments mapped to the flanking regions A1, A2, B1, B2, respectively. The
value n� is the observed number of abnormal fragments mapped in the
abnormal region; this is equal to the number of abnormal fragments in the
link.

According to Bayes’ rule, the probability of a model M 0 given observed
data � is:

P (M 0|�) =
P (�|M 0)P (M 0)P
M

P (�|M)P (M)
(6.4)

To determine the most probable model we need to define all possible
models M and to calculate, for each model, the corresponding probabilities
P (�|M) and P (M). The denominator of the formula 6.4 is constant and so
can be ignored when choosing the most probable model. Further we describe
how P (M 0) and P (�|M 0) are calculated and how the set of models to be
checked is chosen.

6.2.2 A priory probability of a model

We assume a priori probability P (M�>0) of every model M where � > 0 to
be identical. We expect P (M�>0) to be lower than P (M�=0), as we suppose
that there are less links corresponding to real SVs than to read mismappings
and artefacts in library preparation.

To estimate these a priori probabilities we introduce a user-defined pa-
rameter, E

SV

, that represents the expected number of true SVs in the
dataset. Then, denoting N

links

the total number of links, the probabilities
P (M�>0) and P (M�=0) are calculated as follows:

P (M�>0) = (min(
E

SV

N
links

, 1) ;P (M�=0) = 1� P (M�>0) .
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6.2.3 Factorization of the conditional probability

In the general case, when A1, A2, B1, B2 are not empty and do not overlap,
the conditional probability P (�|M) can be factorized as follows:

P (�|M(↵1,↵2,�1,�2, �)) = P (n
A1 |↵1)·P (n

A2 |↵2)·P (n
B1 |�1)·P (n

B2 |�2)·P (n�|�).
(6.5)

To calculate these probabilities, we assume that the number of fragments
follows a Poisson distribution with mean equal to the expected number of
fragments per region. This mean is calculated by formula (5.6) for normal
fragments in flanking regions A1, A2, B1, B2, and by formulas (5.11) and
(5.11) for abnormal fragments in the abnormal region.

P (n
A1 |↵1) = Pois(�

A1(↵1);nA1) ; (6.6)

P (n
A2 |↵2) = Pois(�

A2(↵2);nA2) ; (6.7)

P (n
B1 |�1) = Pois(�

B1(�1);nB1) ; (6.8)

P (n
B2 |�2) = Pois(�

B2(�2);nA2) ; (6.9)

P (n�|�) = Pois(E
x

break

A

,x

break

B

,�

;n�) . (6.10)

Here Pois(�; k) = �k · e

��

k! is the probability that the random variable
has value k for a Poisson distribution with mean �.

6.2.4 Set of models to test

Since the total number of possible models to test is infinite, in SV-Bay
algorithm we limit the set of models, considering only the most plausible
ones.

First, SV-Bay defines a rough approximation for the number of copies
in each flanking region. For each region, the associated model parameter is
initialized with the observed number of fragments divided by the expected
number of fragments for one genomic copy in this region. For example, for

the flanking region A1 the initial ↵1 value, denoted ↵
[0]
1 , is calculated as

follows:

↵
[0]
1 = round(

n
A1

E(O
A1))

, (6.11)

The expected number of fragments for one genomic copy is calculated
using formula 5.6.

Then SV-Bay calculates the probability P (n
A1 |↵1) for each positive

value ↵1 in the set [↵[0]
1 �3, · · · ,↵[0]

1 +3]. If ↵[0]
1 is not the global maximum for

P (n
A1 |↵1), then ↵

[0]
1 is replaced by the new global maximum. SV-Bay re-

peats this operation until ↵[0]
1 maximizes the function P (n

A1 |↵1). After the
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maximum is achieved, the set [↵[0]
1 � 3, · · · ,↵[0]

1 +3] is used on the following
steps. The same algorithm is applied for the other flanking regions.

The initial � value �[0] is calculated using the same approach. It is equal
to the closet integer to the number of the abnormal fragments in a link
divided by the expected number of abnormal fragments in the abnormal
region expected for one allele. Like for ↵ and �, a set [�[0]3, · · · , �[0] + 3] is
built and the global maximum is adjusted for positive �.

Once, sets of initial values for all model parameters have been calculated,
SV-Bay discards the values which do not fit the constraints 6.1. To do so,
for each � from the initial set, all possible pairs (↵1,↵2) and (�1,�2) from
the initial sets are checked. Only the pairs which fit the constraints are
added to the set of models to test.

6.2.5 Model choice

After the set of models to test is created, SV-Bay calculates conditional
probability of each model given the observed data using formula 6.4.

By the end of this step, for each link SV-Bay detects the model that
explains the observed fragment numbers in abnormal and flanking regions
with the highest likelihood. Each validated link is annotated with a value �
and a model probability. If the number of copies involved in the candidate
adjacency is evaluated as 0, the candidate link is considered false positive
and discarded.

6.3 Evaluation of the breakpoint position

In equations (6.6 - 6.10), it is assumed that the exact breakpoint position
is known. In practice, several possible breakpoint positions are checked and
the one that provides the highest likelihood is chosen.

For each candidate novel genomic adjacency S with read start positions
{(x

i

, y
i

)}
i=1···n, SV-Bay evaluates the most likely positions of the two break-

points xbreak
A

, xbreak
B

. As above, without loss of generality, we assume that a
junction connects a region upstream to xbreak

A

and a region downstream of
xbreak
B

. Then xbreak
A

and xbreak
B

may only lay within intervals C�
x

and C+
y

:

C�
x

= [max(x
i

), (min(x
i

) + l
max

]; (6.12)

C+
y

= [max(y
i

)� l
max

, (min(y
i

)]; (6.13)

We also assume the following dependency between positions of the two
breakpoints given the positions of read pairs in the link:

xbreak
A

� xbreak
B

=
nX

i=1

y
i

� x
i

n
� µ (6.14)
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For each set of parameters (↵1, ↵2, �1, �2, �), we find a set of two
breakpoint positions xbreak

A

, xbreak
B

that maximizes the model probability and
satisfies conditions. It can be achieved by considering all pairs of positions
from regions 6.12 and 6.13 matching the constraint 6.14. For each considered
pair, the conditional probability 6.4 should be calculated. The two points
maximizing the conditional probability should be chosen.

In practice, calculation of 6.4 for each positions pair is very time-consuming,
so only a small evenly distributed subset is checked. By default, it includes
ten point pairs. As shown in chapter 9, this approach gives a reasonably
good breakpoint resolution accuracy.



Chapter 7

SV types and assembly
workflow

7.1 Structural Variant types

Rapid development of high-throughput sequencing technologies provides an
opportunity to improve identification of somatic rearrangements in cancer
genome. So far, a lot of di↵erent types of structural alterations are stud-
ied. Nevertheless, no comprehensive catalogs of somatic structural variations
exist. It partially arises from the fact that, due to sequencing methods con-
straints, a given SV detection tool can hardly address all known SV types
for a given data set. We fill this gap below (see [IJLB+15]). The variations
considered are extracted from the literature [YLG+13, CLBM+13] or from
empirical observations on cancer data (Curie Institute). As explained in
Chapter 3, each structural variant can be associated with a signature. SV-
Bay clusters fragments with common signatures. For each cluster (link),
the type of the corresponding SV can be determined based on the signature.
Some of the links are independent and some are related to the same SV.
On this basis two classes of structural variants, simple and complex, can be
distinguished. They are presented further. For each type of SV, the set
of constraints to be satisfied is specified and a figure is given. For some
well-known types, the examples of related diseases are also provided. By
convention, the expected fragment orientation is assumed to be forward-
reverse (F-R).

7.1.1 Simple structural variations

When there is only one link associated with the specific SV, such struc-
tural variant is called simple. In this section the following simple SVs
are described: small insertion, deletion, large/small duplication, unbalanced
translocation with/without inversion and mirror duplication. The signature
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of a simple SV includes:

1. Reads orientation: the orientation of the two reads of each fragment of
the related link can be either forward-forward, reverse-reverse, forward-
reverse or reverse-forward. These orientations are commonly abbrevi-
ated as FF, RR, FR and RF.

2. Fragment insert size: each fragment of the related link can be mapped
to the reference genome with an insert size longer or shorter than
respectively maximum or minimum normal fragment length.

3. Inter/intra chromosomal location: the SV can be either intra-chromosomal
(when the two reads of each fragment of the related link are mapped
on the same chromosome) or inter-chromosomal (when the two reads
are mapped on di↵erent chromosomes).

Small insertion and deletion First discovered structural variants were
small insertion and deletion. These common types of SVs are character-
ized by insert size of mapped fragments respectively smaller or larger than
expected. The signatures of small insertion and deletion are depicted in
the left and right panels of Figure 7.1. Small indels are usually not larger

Figure 7.1: (1)Small insertion; (2) Deletion

than 1-2 median insert sizes of the fragment. A larger inserted region usu-
ally origins from another DNA location, which serves as a template; in this
case several links form one complex SV called linking re-insertion, which is
described further.

Unbalanced translocation This abnormality, that is common for cancer
diseases, is caused by a rearrangement of parts between nonhomologous
chromosomes. Several forms of cancer are caused by somatic translocations;
this has been described mainly in leukemia (acute myelogenous leukemia and
chronic myelogenous leukemia). Translocations have also been described
in solid malignancies such as Ewing’s sarcoma. When a new part from a
di↵erent chromosome is inserted in inverse orientation, this is an unbalanced
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Figure 7.2: Unbalanced translocation

Figure 7.3: Unbalanced translocation with inversion
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translocation with inversion. Otherwise, it is an unbalanced translocation
without inversion. It is depicted in figures 7.2 and 7.3.

A single breakpoint is associated with these SV types; therefore, they
are supported by a single link. In both cases, reads are located on di↵erent
chromosomes.

Duplication A tandem duplication of a genomic region creates an extra
copy of the corresponding region. Such duplications happen in many human

Figure 7.4: Small duplication

Figure 7.5: Large tandem duplication.

genetic disorders. For example, Charcot-Marie-Tooth disease type 1A might
be caused by a duplication of the gene encoding peripheral myelin protein
22 (PMP22) on chromosome 17 [Lup98]. Gene duplications and increases
of gene copy numbers can also be related to cancer. They can be detected
in transcriptomic data or using copy number variation arrays. For example,
the chromosomal region 12q13-q14 is strikingly amplified in many sarcomas.
This chromosomal region encodes a binding protein called MDM2, which is
known to bind to a tumor suppressor called p53. When MDM2 is ampli-
fied, it prevents p53 from regulating cell growth and contributes to tumor
formation [OKM+92]. Depending on the size of duplicated region, di↵erent
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signatures may be associated with this structural variant. A duplication is
called small if the duplicated region is shorter than the minimum normal
fragment length. The corresponding signature is: (i) an insert size smaller
than the median of normal fragment lengths and (ii) reads map with the ex-
pected orientation. It is depicted in Figure 7.4. Respectively, a duplication
is called large if the duplicated region is larger than the maximum normal
fragment length. The signature of the relevant fragments is the opposite:
insert size is larger than the median normal insert size and both reads have
the unexpected orientation. This is depicted in Figure 7.5.

Figure 7.6: Mirror duplication.

Mirror duplication Mirror duplication is a special case of a duplication,
where the original and the duplicated fragment are both connected in in-
versed manner. Mirror duplications can cause triplex DNA [DM11]. For this
type of SV, fragment insert size is shorter than the median fragment length,
and the orientations of the reads are F-F or R-R (for Illumina paired-end or
mate-pair reads). This is shown in Figure 7.6.

7.1.2 Complex structural variants

When there are several links associated with a specific SV, such SV is called
complex. The list of such SVs is provided further. We consider two links
as possibly related to one complex SV only if the distance between their
start and end positions does not exceed two normal fragment lengths. In
addition to the signature of each link, which is similar to the signature for
simple SVs, the signature of complex SVs also includes:

1. Relative position of the links: one link may contain another, or they
may overlap.
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2. Gain or loss of genomic copies: the number of copies gained/lost �,
estimated with the Bayesian approach. For instance, considering num-
ber of involved copies is essential to distinguish one of the complex SV
types called co-amplification.

Basic inversion Inversion of a genome region is one the most common
and well-recognized SV types. This type is associated with two overlap-
ping clusters larger than the biggest normal fragment with the orientations
FF and RR. There are examples of inversions related to particular types
of cancer. For instance, the CBFB-MYH11 gene fusion created by the
inv(16)(p13.1;q22) inversion is associated with a favorable prognosis in AML
[dSK+97]. Another example is an inversion in chromosome 2 that fuses the
ALK gene with another gene called EML4 ; the result is the EML4-ALK
fusion protein, which contributes to the development of non-small cell lung
cancers [SCE+07].

Figure 7.7: Basic inversion.

Re-insertion These SV type has been described and validated in the pa-
per introducing the Meerkat method [YLG+13]. It corresponds to a deletion
of a region and a re-insertion of this region into some other location of DNA.
This insertion may occur in the initial chromosome (where this region came
from) or in another chromosome. The region may be inserted in the ori-
entation conforming with the orientation of this sequence in the reference
genome or it can be inverted; in the latter case, the SV is called re-insertion
with inversion. This SV type is associated with three links:

• one link corresponds to the deletion and consists of fragments having
length larger than the maximum normal fragment length and expected
reads orientation;
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• the two other links correspond to the insertion in donor DNA. Depend-
ing on the type of SV (with or without inversion) orientation of reads
in the clusters are forward-forward and reverse-reverse (with inversion)
or forward-reverse and reverse forward (without inversion).

Figure 7.8: Re-insertion.

Figure 7.9: Re-insertion with inversion (1)

Figure 7.10: Re-insertion with inversion (2)

Large duplication with inversion This duplication has the same ori-
gins as small/large duplication described before. The di↵erence is that the
duplicated region is inserted in the opposite orientation. Detection of the
duplication can vary according to the size of the duplicated region. The sig-
nature characteristics are as follows: orientations are forward-forward and
reverse-reverse and one of the clusters contains another.
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Linking insertion and linking insertion with inversion Linking in-
sertion is defined on the basis of empirical observations of cancer data. This
structural variant corresponds to the duplication of a chromosomal region,
the duplicated region is further inserted directly or with an inversion at
some other genomic location. The direct linking insertion has two corre-
sponding clusters of abnormal fragments. The orientations of reads in these
clusters are forward-reverse and reverse-forward. The clusters overlap, reads
with the orientations forward and reverse are mapped closer then minimum
fragment length.

Figure 7.11: Linking insertion with inversion (1)

Figure 7.12: Linking insertion.

Balanced translocation and balanced translocation with inversion
Balanced translocation is a structural variant resulting in the exchange of
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parts between two chromosomes. No genetic material is gained or lost as
a result of this event. The most common case of balanced translocation is
the exchange of the chromosome edges, including telomeres. However, the
exchange of random chromosome regions is also possible. The exchanged re-
gion can also appear in the new chromosomes inverted, in this case the struc-
tural variant is called balanced translocation with inversion. Both balanced
and unbalanced translocations can cause formation of new oncogenes and
thus be involved in cancer development. A signature that corresponds to a
direct balanced translocation consists of two clusters of fragments with reads
mapped on di↵erent chromosomes (in case of intra-chromosomal transloca-
tion on another copy of the same chromosome). The read orientations are
forward-reverse and reverse-forward. For balanced translocation with in-
version the signature consists of two clusters with reads of each fragment
mapped on di↵erent chromosomes. The orientation of reads is forward-
forward for one cluster and reverse-reverse for another.

Figure 7.13: Balanced translocation.

Complex Deletion Complex deletion was introduced in [YLG+13]. This
structural variant type represents a deletion with an insertion or inversion
at the breakpoint position. Authors showed the appearance of such SVs
in CDKN2A/2 gene, which codes for two proteins: p16 and p14arf. Both
act as tumor suppressors by regulating the cell cycle. p16 activates the
retinoblastoma (Rb) family of proteins. p14ARF (also known as p19ARF
for the mouse) activates p53 tumor suppressor. According to the Interna-
tional Cancer Genome Consortium, TP53 gene is the most frequently mu-
tated human gene related to cancer (the mutation is present for more than
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Figure 7.14: Balanced translocation with inversion.

50 % of cases) [NRR11]. Complex deletion without/with inversion is identi-
fied by the signature consisting of two clusters of fragments containing one
another. Fragments in both clusters have lengths exceeding the maximum
normal fragment length. In case of inversion the clusters consist of frag-
ments with read orientations forward-reverse and forward-forward, in case
without inversion the orientations are forward-reverse for both clusters.

Figure 7.15: Complex deletion.

Co-amplification This SV type has been observed and validated, for ex-
ample, in [CLBM+13]. Gene co-amplification is common in cancer cells, and
some amplified genes may cause cancer cells to grow or become resistant to



7.1. STRUCTURAL VARIANT TYPES 71

Figure 7.16: Complex deletion with inversion.

anticancer drugs. Additional examples are provided in Chapter 1. For these

Figure 7.17: Co-amplification

SVs, one or several regions are duplicated many times (up to hundred times).
Thus, detection of this this SV is very specific. First, the number of DNA
copies involved in each link should be approximately the same and this num-
ber should significantly di↵er from the normal ploidy. Second, two clusters
may either overlap or be nested. This leads to many combinatorial lay-outs.

Large duplication with inversion For this SV type there are two cor-
responding links. For one link, the leftmost and the rightmost reads of
each fragment have the reverse orientation, and the insert size is larger than
expected. For the second link, the leftmost and the rightmost reads of all
fragments have the orientation forward-forward, and the insert size is smaller
than expected. Additionally, the first link should contain the second one.
This is depicted in Figure 7.18.
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Figure 7.18: Large duplication with inversion

7.2 SV assembly process

Once the Bayesian step is finished, SV-bay outputs the links that have at
least one genomic copy � > 0 involved in the rearrangement. These links
are likely to be parts of real SVs. We designed an algorithm that assembles
these links into complex SVs and determines the SV type. There are links
of 4 types defined by the orientation of the fragments inside the link: FF,
RR, FR and RF. For each link, information about the number of copies in
the flanking regions is provided. This information is not enough to identify
a complex SV, as it was described in the previous section. For example,
linking-insertion with inversion has two related links with orientations RR
and FF, which should be located in a special way in relation to each other
and have a certain size (see Figure 7.11). All links are sorted by the left-most
positions. The algorithm starts proceeding from the left to right, accord-
ing to read mapping position on the reference genome. At the first step,
SV-bay distinguishes co-amplifications from other SVs. They cannot be
confused with other SV, because the number of genomic copies involved in
co-amplifications is significantly larger than it is for any other SV types and
this makes identification simple. Thus, SV-bay splits the set of links accord-
ing to the number � of gained or lost copies. This number should be greater
than a user-defined threshold b (by default, b = 10). Co-amplifications are
associated to an amplification level � higher than b. Second, algorithm deals
with the inter-chromosomal links. Unbalanced translocations and translo-
cations with inversion are distinguished at this step. Third, the algorithm
proceeds to the intra-chromosomal links. All the links, which were processed
on previous steps are now excluded. For the each link, SV-bay checks if
it overlaps with other links (also considering nested links as overlapping)
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. If there are no intersections, we associate the link with one of the fol-
lowing types according to the orientation of the fragments inside the link:
deletion, small insertion, large duplication, small duplication. If there is an
intersection, we keep only those links which have number of gained or lost
alleles comparable with current link (usually it is plus/minus one). After
that, all possible variants of complex SV are checked. For example, as-
sume that the current link is an FF intra-chromosomal link that overlaps
with an intra-chromosomal RR link. We check if both links have average
size of the fragments longer then maximum normal fragment length. If it
is so, then this couple of links should be associated with a linking inser-
tion with inversion; otherwise, it could be either a large duplication with
inversion or a mirror duplication according to the fragment size inside the
links. All the links which were involved in complex SV are excluded from
the list and not processed in the assembly of other SVs. On each step a
decision tree is used for each type of link to identify the associated SV type.
In total there are 9 decision trees: FF, RR, RF, FR for intra-chromosomal
and inter-chromosomal links and one for co-amplifications. As an example,
decision tree for FR intra-chromosomal links 7.19 is provided below (the
normal fragment orientation is assumed to be FR). identification of the SV
type is always unique, that is why algorithm checks all possible solutions.
It is possible that a link might be associated with several complex SVs. In

Figure 7.19: decision tree for assembly SVs if first observed link has orien-
tation forward-reverse, assuming that expected orientation is RF.
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this case, SV-Bay algorithm outputs all the possible complex SVs for this
link, but does not make any decision. A warning is also reported. If a link
could not be associated with any complex SV, it is treated as a simple event
(deletion, insertion, mirror duplication, etc.). Complex events always have
higher priority than simple SVs.



Chapter 8

Overview of competitive
methods for SV detection

In this chapter we provide an overview of four published SV detection meth-
ods: GasvPro [SOP+12], BreakDancer [CWM+09], Lumpy [LCQH14]
and Delly [RZS+12]. These methods are further compared to SV-Bay on
simulated and experimental data. For each method, a brief description is
provided, advantages and drawbacks are discussed, the basic information
about the implementation is given, such as programming language, license
and some performance measures.

The exact parameters used for each tool in further experiments are pro-
vided. Finally, we compare the main features of each tool. The support of
di↵erent SV types is also covered.

8.1 Methods description

8.1.1 GasvPro

GasvPro uses read depth and read pair information and integrates these
two signals into a probabilistic model. Unlike most SV detection algorithms,
which ignore reads with several alignments, GasvPro considers all possible
alignments for each read. A Markov Chain Monte Carlo (MCMC) model
is used to sample the set of fragment possible mappings. This approach
increases SV detection sensivity, especially in repetitive regions. A hard
clustering (that uses only fragments with a high mapping quality) is also
available under the name GasvPro-HQ.

In addition to the standard read pair signatures, a breakend read depth
(beRD) method is designed: the read depth is analyzed to discover localized
drops of coverage that occur at the breakpoints of both copy number-variant
and copy number-invariant SVs. It is also used to predict zygosity of vari-
ants. GasvPro uses simultaneously the amount of discordant read pairs
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and the beRD signatures at each breakpoint to determine the likelihood of
a potential SV and remove false positives.

The major GasvPro drawback is that it does not take into account
the possible bias of read counts due to changes in the GC-content (GC-
content bias). Moreover, mappability is only considered for the regions
with abnormal read-pairs, while it also influences normal regions; so Doc
information used is very unreliable.

GasvPro is written in Java and distributed under GNU GPLv3 open
source license. The tool allows to manually set up parallel processing of
di↵erent chromosomes data on several CPU cores. In our experiments
GasvPro showed reasonable speed and memory usage for pair-ends dataset,
processing whole genome in about 5 hours. Nevertheless, processing mate-
pair data was very slow, taking several days for some chromosomes.

8.1.2 BreakDancer

BreakDancer is probably the most popular tool for SV detection. It
implements two complementary algorithms: BreakDancerMax provides
genome-wide detection of insertions, deletions, inversions, inter- and intra-
translocations, while BreakDancerMini focuses on detecting small indels,
typically in the range of 10-100 bp, that cannot be found with Break-
DancerMax.

BreakDancerMax algorithm uses a standard clustering strategy. Clus-
ters classification relies on orientation of the paired reads, mapped distance
between them and insert size distribution in the dataset. Estimation of the
confidence score is based on a Poisson distribution model that takes into
account the number of fragments in the cluster, the coverage of the genome
and the length of the region covered by the cluster. BreakDancerMini
uses a sliding window test to identify the small indels: it checks the di↵er-
ence between the separation distances of fragments that are mapped within
the window versus fragments in the entire genome. Abnormal regions are
identified using Kolmogorov-Smirnov test. BreakDancer does not use
Doc information despite its relevance for SV detection.

The tool is implemented in Perl/C++ and distributed under GNUGPLv3
open source license. BreakDancer is the fastest tool of those we have
tested - the processing of the whole human genome data took around half
an hour for both mate-paired (fragment coverage 8) and pair-ends datasets
(fragment coverage 14).

8.1.3 Lumpy

The most recent method, Lumpy, combines three approaches: PEM, Doc
and coverage by split-reads. It also uses some initial information about
already validated or manually imputed mutations. Three modules are pro-
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vided in Lumpy to process various SV signals: read-pair, split-read and
generic. Read-pair module uses the output of a paired-end sequence align-
ment algorithm such as NovoAlign or Bwa, split-read module uses the
output of a split-read sequence alignment algorithm (for example, Yaha,
Bwa-Sw, or Bwa-Mem). The generic module allows the user to provide
prior knowledge of known SVs or copy number variations discovery tool
output.

Integrating di↵erent sources into a single discovery process allows sen-
sitive SV detection. Nevertheless, Lumpy does not take into account GC-
content and region mappability, so Doc information can be unreliable and
lead to the wrong SV detection. Additionally, Doc calculation is not imple-
mented in the tool: the user has to generate information about CNVs with
some other tools like CVNator of Freec and provide it as input in a spe-
cific format. Basically, Lumpy only includes modules to process split-reads
and perform clustering of pair-end reads. Moreover, Freec and CVNator
use large windows (10-50 Kb) to estimate the Doc; so this information can-
not be used for precise SV detection. Also Lumpy is able to work only with
pair-end data, but not with mate-pairs.

Lumpy is an open source software written in C++ and distributed under
Mit license. It can process several data samples simultaneously and proved
to be rather fast, identifying SVs in a whole genome in about 12 hours
on a single core using 8 gigabytes of memory according to the authors’
information. In our experiments Lumpy processed the whole genome data
even faster - in about 4 hours. The tool is relatively easy to use, but one
has to perform several data pre-processing steps using external tools to run
it.

8.1.4 Delly

Another recent method,Delly, combines short-range and long-range paired-
end mapping and split-read analysis for SV discovery. Delly focuses on en-
abling SV calling in the presence of di↵erent paired-end sequencing libraries
with distinct insert sizes. Using of di↵erent datasets allows an accurate dis-
covery of both small and large SVs, while the split-read analysis allows for
the breakpoint resolution up to a single nucleotide.

During paired-end mapping analysis Delly considers uniquely mapped
read pairs which either have an abnormal orientation or have an insert size
that di↵ers from the median insert size by more than three standard devia-
tions. Such read pairs are clustered using an specially designed graph-based
algorithm. This analysis is performed separately for each library provided.
During split-read analysis the clusters are interpreted as genomic intervals
that contain breakpoints. Delly tries to map reads in the split-read mode
to detect SV breakpoints at the single-nucleotide resolution. For this pur-
pose, all pairs with one read mapped and the other unmapped are checked.
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Pairs mapped closely to SV breakpoint are added to the set of putative split-
reads. Putative split-reads are filtered with a special k -mer-based approach
and finally mapped to the reference region using dynamic programming.

The major drawback of this method is that it does not use Doc informa-
tion, which is important for filtering clustering results not corresponding to a
real structural variant. Another problem is that Delly achieves best sensi-
tivity and specificity only when using mate-paired and paired-ends datasets
at the same time, but in real life these datasets are very rarely available
simultaneously for the same genome.

Delly is implemented in R and C++ programming languages and dis-
tributed under Gnu GPLv3 license. The authors report Delly to process a
sequenced human genome with median read coverage equal to 5 in 2 hours,
in our experiments the dataset with nearly same coverage was processed
even faster – in about 45 minutes. The processing time linearly depends on
the coverage. The simple parallelization on chromosome level is available,
which allows to further accelerate the processing. The memory footprint is
around 4 gigabytes and does not depend on the coverage.

8.2 Configuration used for considered software

The following versions of the tools were used: SV-Bay v1.0, BreakDancer
v1.3.6, GasvPro v2.0, Lumpy v0.2.9. The major configuration parameters
of each tool are discussed further.

SV-Bay uses an important user-defined parameter, the expected number
of SVs. This number gives SV-Bay a priory probability of an SV candidate
being a real SV (explained in Chapter 6). This parameter is mandatory.
It is assumed that the user has a prior knowledge about the patient such
as the diagnosis and duration of the disease, which allows to evaluate the
mutations number. The exact values used are 1200 for simulated PE data,
200 for simulated MP data and 3300 for real MP data.

BreakDancer has three principal user-defined parameters:

• n is the number of observations required to estimate the mean and the
standard deviation of the insert size.

• r is the minimum number of read pairs in a cluster, starting from
which the algorithm considers it as a possible SV. This parameter can
be set from 1 to infinity. Value 1 will lead to a lot of false positive
predictions. Additionally, it will dramatically change the runtime of
the algorithm. With a large value a lot of real SVs, which are poorly
covered, might be lost.

• q is the minimum mapping quality. The default value suggested for
BreakDancer is 30, but we use 20 for two reasons. First, our data
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have a rather low coverage, which means that a high threshold can
cause a major data loss. Second, minimum mapping quality equal
to 20 is internally used in SV-Bay and other tools, which makes the
comparison of di↵erent tools more accurate. The value 20 is com-
mon between several published methods, because it corresponds to a
probability 99% for the fragment to be correctly mapped.

The same parameters are used for BreakDancer for each dataset: n =
100000, q = 20 and r = 3. These values are equal to the corresponding
internal values in SV-Bay.

GASVPro does not have any non-trivial parameters. However, for
GasvPro, we had to manually set two parameters from the SV-Bay out-
put, because GasvPro failed to calculate these parameters correctly. These
parameters are average genome coverage � = (#normal fragments)

(genomelength) and me-
dian of the fragment lengths µ. These values were set respectively to 25.5
and 399 for simulated PE data, 54 and 4282 for simulated MP data and 14
and 3038 for real MP data.

Lumpy was run on paired-end data only as it does not support mate-pair
datasets. The default parameters were left unchanged for this tool.

In this section the general comparison of the tested tools is provided.
We discuss the features implemented and the support of di↵erent SV types.
The runtime and memory consumption of each tool are also compared.

8.3 Main features and scopes

The features implemented and the di↵erent SV types that may be detected
are discussed below. The major di↵erences between SV-Bay, Break-
Dancer, GasvPro, Lumpy and Delly features are summarized in Table
8.1.

SV-Bay BreakDancer GasvPro Lumpy Delly

Processes PE libraries + + + + +
Processes MP libraries + + + - +
Uses Doc information + - + ±* -
Uses split-reads - - + + +
Uses read mappability + - ±** - -
Uses GC-content + - - - -
Uses normal controls + + - + +
Detects complex SVs + - - - -

Table 8.1: * removes regions with extremely high read coverage; ** GasvPro
uses read mappability information only to estimate the number of abnor-
mal fragments spanning the breakpoint position, but not to correct Doc in
flanking regions;
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Di↵erent types of information about the data may be used. Most consid-
ered tools (Lumpy is the exception) are able to process both paired-end and
mate-pair data.

Unlike BreakDancer and Delly, SV-Bay takes into account Doc to
validate SV candidates and reduce the number of false positive results.
GasvPro and Lumpy also use Doc, but SV-Bay is the only method that
takes into account GC-content and mappability. As explained in Chapter
4, these two factors highly a↵ect Doc [BZB+11]. Also, similarly to all tools
but GasvPro, SV-Bay can use Bam files generated from constitutive DNA
in order to filter out read alignment artefacts and germline SVs.

The only type of information, which SV-Bay does not use while several
other tools do, is split-read mappings. The main reason for this choice is that
for datasets with rather low coverage (mate-pair datasets), the breakpoint is
rarely covered by many reads. Also, split-reads do not bring additional in-
formation in the case of homology at the breakpoint junction, which is often
observed in cancer samples. Results in Chapter 9 show that SV-Bay, which
does not use split-reads, achieves a good breakpoint resolution using the
probabilistic model. Therefore, although our method can be theoretically
improved by the use of split-reads, we did not implement this possibility.

One of the most important characteristics of the SV detection software is
the list of SV types the tool can detect. SV-Bay is the only tool which is
able to detect complex SVs.

More precisely, existing tools are able to detect just few types of struc-
tural variants among the ones that were exhaustively listed in Chapter 7.
GasvPro detects only deletions, inversions and translocations. Break-
Dancer and Lumpy additionally support insertions, the latter can also
identify duplications. Delly is able to identify tandem duplications, but
not insertions. None of these tools support complex SVs (co-amplifications,
tandem duplications with an inversion of the duplicated unit, linking in-
sertions and linking re-insertions), while SV-Bay supports all these types.
This is an important advantage of SV-Bay, that is crucial for accurate
interpretation of results.

This comparison illustrates that SV-Bay generally uses a more complex
approach for SV detection and takes into account more sources of informa-
tion.



Chapter 9

Results on simulated and
real data

In this chapter, results of SV-Bay on both simulated and real datasets
are given. To perform this test, simulation of the tumor genome data was
performed. Then, SV-Bay is compared with other SV detection tools:
GasvPro, Lumpy,BreakDancer and Delly. Mate-pair and pair-end
datasets were prepared.

Section 9.1 addresses the production of simulated data. First, simulated
genomes (normal or tumor) are to be created: the data simulation method is
discussed. In the second step, mate-pair and pair-end datasets preparation
is explained.

Then, the results for all considered tools on the simulated and real
datasets are compared. For each tool we provide a precision-recall curve
and extensively discuss the results.

Also we discuss the quality of breakpoint resolution of each tool, the
influence of dataset type (mate-pair or paired-end) and CNV presence.

In Section 9.5, the execution time of considered tools is compared.

9.1 Simulated data

Simulation pipeline includes TGSim, a software we developed to simulate a
tumor genome (https://github.com/InstitutCurie/TGSim), and Pirs, a
read simulation software [HYS+12] (code.google.com/p/pirs/).

The first step of the pipeline is adding SNPs, small indels and small
inversions to the reference genome using Pirs. This step produces a simu-
lated normal genome with germline mutations. The second step is adding
di↵erent SVs to the normal genome using TGSim. This step produces a
simulated cancer genome. The last step is simulating mate-pair and pair-
ends sequenced data for the cancer genome using Pirs. These three steps
are described further.
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9.1.1 Simulation of normal genome

The first step is the creation of a normal control diploid genome. To gen-
erate such a nucleotide sequence, we modify the reference human genome
GRCh38/hg38 using Pirs.

Pirs modifies the reference genome by adding 3 million heterozygous
SNPs (single-nucleotide polymorphisms). Pirs also introduces the list of
germline mutations (small indels and inversions) in the simulated genome.
Approximately 2000 small indels and 1000 small inversions with length from
100 to 2000 bp are inserted.

The resulting diploid genome is produced as output in Fasta format.

9.1.2 Simulation of cancer genome

The next step is simulation of cancer genome by adding complex structural
variants to the control normal genome.

We specially designed an algorithm, TGSim, in order to modify a normal
genome. This algorithm rearranges the nucleotide sequence in a special way
that depends of the structural variant to be simulated. For example, for
a linking insertion, a genomic region is copied and inserted in some other
location and for re-insetion a region is cut from one location and inserted at
another.

The main problem adding complexity to this algorithm is the fact that
indices in the genome are changed after each rearrangement, even one inser-
tion. Therefore, all coordinates for the next SVs are re-calculated.

TGSim allows to inject any simple or complex structural variant de-
scribed in the SVs list in Chapter 7. Since we defined a number of novel SV
types, no appropriate tool allowing to do so existed before.

During the data simulation TGSim introduces 62 novel genomic adjacen-
cies. The number of simulated SVs reflects, in our opinion, the usual number
of large SVs in a cancer genome. The list of genomic events simulated is
provided below:

• 3 inversions of lengths from 6000 to 750000 bp

• 2 tandem duplications of lengths 3000 and 10000 bp

• 2 deletions of lengths 10000 and 700000 bp

• Whole genome duplication

• Random loss of 8 chromosomes

• Random duplication of 2 chromosomes

• 1 balanced translocation
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• 4 unbalanced translocations

• 5 tandem duplications of lengths from 3000 to 1200000bp

• 3 deletions of lengths from 100000 to 3000000 bp

• 3 deletions of lengths from 3000 to 100000 bp

• 3 linking insertions of lengths from 4000 to 40000 bp, direct orientation

• 2 linking insertions of lengths from 10000to 30000 bp, reverse orienta-
tion

• 2 re-insertions of lengths 3000 and 80000 bp, direct orientation

• 2 re-insertions of lengths 4000 and 60000 bp, reverse orientation

• 2 inverted duplications of lengths 3000 and 40000 bp

• 3 inversions of lengths from 3000 to 200000 bp

• 5 de novo insertions of lengths from 1000 to 2000 bp

• Random duplication of 1 chromosome

• Random deletion of 1 chromosome

• 1 unbalanced translocation

• Random duplication of 1 chromosome

This scenario does not cover the chromothripsis phenomenon. However, the
latter is observed in only 2-3% of tumors [FKJ12]. SV-Bay is supposed
to work equally well on such samples by design; the user may only need to
increase the parameter value corresponding to the expected number of SVs.
Thus, we did not perform a corresponding validation.

The .Fasta file generated for the tumor genome by TGSim contains
approximatively 4 copies of each chromosome (tetraploid genome) because
we added a whole genome duplication frequent in cancer cells.

9.1.3 Simulation of sequencing data

Once a tumor genome is created, the last step is simulation of sequencing
process that includes drawbacks known for Illumina sequencing. The Pirs
tool was used to create the sequencing data.

When generating the sequencing data, Pirs considers the GC-content
profile. The GC-content profile is built based on experimental sequenced
data for the NB1142 neuroblastoma cell line from [VB13].
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A procedure close to the one used in SV-Bay (see Chapter 5) is used
to build a GC-content profile for these data. The dependency between GC-
content and read-coverage is analyzed using a sliding window along the whole
genome. In each window, the GC-content and the average base depth are
computed. Then, for each GC-content interval (1% step), the mean depth
value is calculated. This GC%-depth profile reflects the mean coverage depth
in sequence regions with a similar GC content. The resulting profile is shown
in Figure 9.1.

Figure 9.1: GC-content for the experimental data for the NB1142 neurob-
lastoma cell line that was applied to model the GC-content bias in the set
of simulated data. The X-axis denotes GC-content, the Y-axis denotes frag-
ment count.

Pirs generates reads in the Fastq format. For each read pair, the insert
size is randomly drawn from the normal distribution with given values for
the mean and standard deviation.

We also simulated both mate-pair (MP) and paired-end (PE) sequenced
data for the diploid control genome, to be able to exclude germline mutations
and mapping artefacts.
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9.1.4 Mate pair and pair-ended datasets statistics

Below, we provide di↵erent statistics on the simulated MP and PE datasets.
These statistics were collected by SV-Bay (no other tools tested provide
such information).

The read length equal to 70 bp is used for both MP and PE data. This
choice was made because the sequencing data chosen to build the GC-depth
profile for Pirs has the 70bp read size. The same length was left to ensure
similarity.

The simulated MP dataset contains approximately 45 millions of read
pairs with an average insert size of 4282 bp. The PE data contains ap-
proximately 222 millions of read pairs with average insert size of 400 bp.
By design, the MP library was contaminated by approximately 5 millions
(10%) of singletons with forward-reverse orientation and average insert size
of 400bp. Matched normal datasets also contain approximately 45 and 222
millions of read pairs for mate-pair and paired-end libraries respectively.

MP PE
Total number of fragments 45,843,392 222,042,622
Number of normal fragments 38,973,430 217,868,967
Number of abnormal fragments 409,199 4,173,655
Coverage for one allele 16.5 6

Table 9.1: Number of read pairs in mate-pair and paired-end simulated
datasets.

As mentioned in Section 5.2.2, SV-Bay evaluates parameter � in re-
gions with expected ploidy. Such regions are identified with the Control-
FREEC tool. In Figure 9.2, the calculated CN profile for simulated data is
shown.

9.2 Comparative performances on simulated data

In this section we compare the results of SV-Bay and other considered tools
on the simulated data.

First, the comparison scores, precision and recall, are discussed. Then
we provide the detailed results for each tool.

9.2.1 Precision and recall

The tools are compared based on two scores: precision and recall. Recall is
the proportion of true SVs, that were predicted by a specific tool, among all
true SVs. Precision is the proportion of true SVs, that were predicted by a
specific tool, among all SVs predicted by this tool.
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Figure 9.2: Copy number profile for mate-pair data, generated by Freec.
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All considered tools annotate the predicted SVs with a quality score.
This allows to calculate recall and precision rates when setting variable
thresholds for this score. Reducing the threshold, we increase the number
of predicted SVs considered and thus possibly increase the recall.

Using the described approach, a precision/recall curve may be produced.
It is depicted in Figure 9.3 for both MP and PE datasets for each considered
tool.

As specified in the previous section, 62 genomic adjacencies were inserted
into a simulated tumor genome. SV-Bay achieved maximal recall on mate-
pair and paired-end datasets, detecting 59 and 25 correct novel genomic
adjacencies, respectively. BreakDancer was the second best after SV-
Bay in terms of recall.

However, since BreakDancer uses only information about abnormal
read mappings and no split-reads or information about changes in DOC, it
gives a large number of false positive predictions (Figure 9.3). Overall, on
simulated data SV-Bay demonstrates better prediction accuracy than other
tools, both in terms of precision and recall.

9.2.2 Detailed results

Detailed results for all tools are given in Table 9.3. The total number of
predictions for each tool is shown in table 9.2.

MP PE
BreakDancer 1787 197
GASVPro 56 153
Lumpy - 171
Delly 16675 479
SV-Bay 85 66

Table 9.2: Number of SVs predicted for MP and PE datasets by each tool.

9.3 Comparative performances on a neuroblastoma
mate-pair dataset

To investigate the performances on experimental data, we selected a mate-
pair dataset from a neuroblastoma diploid cell line CLB-GA. This dataset
was recently sequenced using a mate-pair protocol together with a corre-
sponding normal control dataset [VB13]. SVs were predicted for this data
and the correlation with biologically validated SVs was studied, allowing
to check the performance of SV-Bay and compare it with BreakDancer,
Delly and GasvPro. Lumpy was excluded from this test as it is not able
to analyse mate-pair data.
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Figure 9.3: Prediction accuracy on simulated data for BreakDancer,
GasvPro, Lumpy, and SV-Bay. (A) Precision/recall curves for simu-
lated mate-pair library; (B) Precision/recall curves for simulated paired-end
library. The results for Delly are shown only for PE data. For all tools,
we kept only SVs with average insert size larger than 100bp and 500bp for
PE and MP data respectively.
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Type
Nu
m
be

BreakDancer0
(PE)

Lumpy0(PE) GASVPro0(PE) SV;Bay0(PE) BreakDancer0
(MP)

GASVPro0(MP) SV;Bay0(MP)

Co#Amplification 3 matched not2matched not2matched matched matched not2matched matched
not2matched not2matched not2matched matched not2matched not2matched matched
not2matched not2matched not2matched matched not2matched not2matched matched

Co#Amplification 4 not2matched not2matched not2matched matched matched not2matched matched
not2matched not2matched not2matched matched matched matched matched
matched not2matched not2matched matched matched matched matched
not2matched not2matched not2matched matched matched not2matched matched

Deletion 1 matched matched matched matched matched matched matched
Deletion 1 not2matched not2matched not2matched matched matched not2matched matched
Deletion 1 not2matched not2matched not2matched not2matched not2matched not2matched not2matched
Deletion 1 not2matched not2matched not2matched matched matched matched matched
Deletion 1 not2matched not2matched not2matched not2matched matched matched matched
Deletion 1 matched matched matched matched matched matched matched
Deletion 1 matched matched matched matched matched matched matched
Deletion 1 matched matched not2matched matched matched not2matched matched
Tandem2duplication1 not2matched not2matched not2matched not2matched not2matched not2matched matched
Tandem2duplication1 matched not2matched not2matched not2matched matched not2matched matched
Tandem2duplication1 not2matched not2matched not2matched matched matched not2matched matched
Tandem2duplication1 matched matched not2matched matched matched not2matched matched
Tandem2duplication1 not2matched not2matched not2matched matched matched not2matched matched
Tandem2duplication1 matched not2matched not2matched matched matched not2matched matched
Tandem2duplication1 not2matched not2matched not2matched not2matched matched matched matched
Tandem2duplication1 matched matched not2matched matched not2matched not2matched matched
Tandem2duplication2with2inversion2 not2matched not2matched not2matched matched matched matched matched
Insertion2of2random2sequence1 not2matched not2matched not2matched not2matched not2matched not2matched not2matched
Insertion2of2random2sequence1 not2matched not2matched not2matched not2matched matched not2matched not2matched
Insertion2of2random2sequence1 not2matched not2matched not2matched not2matched matched matched matched
Insertion2of2random2sequence1 not2matched not2matched not2matched not2matched not2matched not2matched matched
Insertion2of2random2sequence1 not2matched not2matched not2matched not2matched matched not2matched matched
Inversion 2 matched matched not2matched not2matched matched matched matched
Inversion 2 matched matched matched matched matched not2matched matched
Inversion 2 matched matched matched matched matched not2matched matched
Inversion 2 not2matched not2matched not2matched matched matched not2matched matched
Inversion 2 matched matched matched matched matched matched matched
Inversion 2 matched matched matched matched matched not2matched matched
Inversion 2 matched matched not2matched matched matched not2matched matched
Unbalanced2translocation1 not2matched matched not2matched matched not2matched not2matched matched
Unbalanced2translocation1 matched matched not2matched matched not2matched not2matched matched
Unbalanced2translocation1 not2matched not2matched not2matched not2matched not2matched not2matched matched
Unbalanced2translocation1 not2matched not2matched not2matched not2matched not2matched not2matched matched
Linking2insertion 2 matched matched not2matched not2matched not2matched not2matched matched

matched matched not2matched not2matched not2matched not2matched matched
Linking2insertion 2 not2matched not2matched not2matched matched not2matched not2matched matched

not2matched not2matched not2matched matched not2matched not2matched matched
Linking2insertion 2 not2matched not2matched not2matched not2matched not2matched not2matched matched

not2matched not2matched not2matched not2matched not2matched not2matched matched
Linking2insertion2with2inversion2 not2matched not2matched not2matched matched not2matched not2matched matched

not2matched not2matched not2matched matched not2matched not2matched matched
Linking2insertion2with2inversion2 not2matched matched not2matched matched not2matched not2matched matched
Linking2re#insertion3 not2matched not2matched not2matched not2matched not2matched not2matched matched

not2matched not2matched not2matched not2matched not2matched not2matched matched
matched matched not2matched not2matched matched matched matched

Linking2re#insertion3 matched matched not2matched not2matched not2matched not2matched matched
matched matched not2matched not2matched not2matched not2matched matched
not2matched not2matched not2matched not2matched not2matched matched matched

Linking2re#insertion2with2inversion3 not2matched not2matched not2matched not2matched not2matched not2matched matched
not2matched not2matched not2matched not2matched not2matched not2matched matched
matched matched matched not2matched matched matched matched

Linking2re#insertion2with2inversion3 not2matched not2matched not2matched not2matched not2matched not2matched matched
not2matched not2matched not2matched not2matched not2matched not2matched matched
matched matched matched matched matched not2matched matched

Total2number: 62 24 23 9 33 32 15 59

Pair;end0data Mate;pair0dataDescription0of0simulated0SVs

Table 9.3: Structural variants in simulated datasets and prediction sensitiv-
ity of SV-Bay, BreakDancer, GasvPro and Lumpy
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9.3.1 Experimentally validated structural variants

For the considered cancer cell line, we had a set of 11 SVs validated by
PCR and Sanger sequencing. Most of these (table 9.4) SVs correspond to
two breakpoints in the SNP array copy number profile. The following SVs
correspond to only one breakpoint:

(i) SV between the ALK gene (chromosome 2p, 29Mb) and a repetitive
peri-telomeric sequence; the exact position of the breakpoint could not
be defined;

(ii) SV between chromosomes 12q and 20q, as it corresponds to a more
complex SV on chromosome 12q;

(iii) the inverted duplication at chromosome 5q.

9.3.2 Predicted structural variations

Among the 11 experimentally validated SVs, 10 were successfully detected
by SV-Bay, Delly and BreakDancer (see Table 9.4). These three meth-
ods missed only one translocation between the ALK gene and a repetitive
region in a telomere: for this translocation the input data contains only one
read pair uniquely mapped to the corresponding peri-telomeric repetitive re-
gion. In the future, we plan to improve our approach by taking into account
non-uniquely mapped reads. This is expected to improve the sensitivity of
predictions. The GasvPro method was able to identify only five out of 11
validated SVs.

The total number of SVs predicted by Delly, GasvPro and Break-
Dancer was significantly higher than the number of SVs predicted by SV-
Bay (62822, 1648 and 5543 vs 733). The total number of predictions in the
SV-Bay output was 8 times less than in the output of BreakDancer and
85 times less than in the output of Delly. Thus, although the three tools
have equally good recall for the experimental data, SV-Bay has a much
better precision. This is explained by the use of a Bayesian probabilistic
approach in SV-Bay in addition to clustering of the abnormal fragments
performed by all the methods.

9.3.3 SNP6-experiments

For the dataset used in our comparison Curie Institute recently performed
experiments to characterize genotype and copy number alterations inde-
pendently from WGS data. A copy number profile was calculated using
A↵ymetrix SNP 6.0 array for the CLB-GA neuroblastoma cell line. The
Gap [PMSL+09] genotyping software was used to detect breakpoints in this
profile.
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Validated(SVs

Type Chr1 Chr2
Breakpoint(
position(1

Breakpoint(
position(2

Length(of(
rearranged(
genomic(
region

Breakpoint(
position(1

Breakpoint(
position(2

Unbalanced)translocation chr17 chr1 8)162)074 27)516)323 N/A 8)162)969 27)513)782
8)162)371 27)514)189
8)159)631 27)517)267

Unbalanced)translocation N/A chr2 N/A 29)953)070 N/A = =
= =
= =

Unbalanced)translocation chr4 chr3 139)766)568 62)979)925 N/A 139)766)091 62)979)935
= =
139)766)856 62)982)664

Unbalanced)translocation chr12 chr4 72)621)930 25)288)266 N/A 72)622)224 25)287)473
= =
72)625)146 25)288)411

Unbalanced)translocation chr4 chr17 175)025)151 47)031)747 N/A 175)025)749 47)031)837
= =
175)022)062 47)034)853

Unbalanced)translocation chr11 chr5 41)211)789 149)499)753 N/A 41)211)817 149)499)306
= =
41)211)729 149)500)094

Unbalanced)translocation chr20 chr12 45)595)787 91)633)260 N/A 45)594)994 91)632)602
= =
45)596)022 91)636)049

Inverted)duplication chr5 chr5 149)549)557 149)551)306 1)749 149)550)145 149)552)179
149)549)515 149)551)631
)))))))))) 149)551)034

Deletion chr6 chr6 75)177)076 99)278)189 24)101)113 75)178)401 99)278)425
75)177)942 99)278)844
75)175)748 99)281)103

Deletion chr11 chr11 83)456)916 129)223)461 45)766)545 83)457)498 129)222)712
83)456)794 129)223)278
83)453)876 129)226)215

Deletion chr12 chr12 91)663)005 132)088)108 40)425)103 91)663)806 132)087)801
91)663)213 132)088)221
91)660)371 132)091)409

Average(distance(to(the(validated(breakpoint((bp) 654
Median(distance(to(the(validated(breakpoint((bp) 593
Standard(deviation(for(the(distance(to(the(validated(breakpoint((bp) 539,566388

*as)breakpoint)coordinates)we)used)the)midpoints)of)the)confidence)intervals)provided)by)GASVPro

Figure 9.4: SV experimentally validated in the CLB-GA neuroblastoma cell
line. Orange color identifies SV-Bay results, green - GASV Pro and blue is
BreakDancer.
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Gap identified 27 breakpoints in the neuroblastoma cell line genome. Re-
sults for considered SV detection tools are presented in Figure 9.5. The copy
number profile is shown in black, short vertical bars indicate centromeres;
absolute copy numbers identified by Gap are shown in blue. Change points
in the copy number profile are shown with long vertical bars (explained with
SVs predicted by SV-Bay: red, unexplained: grey). Green question marks
indicate copy number changes not explained by each tested tool. Purple
question marks correspond to the cases where detected SVs are likely to
correspond to false positive predictions.

Figure 9.5: Prediction sensitivity on experimental data (neuroblastoma cell
line CLB-GA mate-pair dataset).

21 out of the 27 breakpoints predicted by Gap are explained by SVs
predicted by SV-Bay. The same 21 breakpoints are also explained by SVs
discovered by BreakDancer and Delly. The breakpoints on chromo-
somes 3 and 10 is predicted only by Delly. However, the corresponding SV
is marked ”LowQual”, which makes this prediction in fact unusable (con-
sidering that the total output of Delly includes around 62 thousand SVs).

In addition, Delly predicted two SVs that can potentially explain the
presence of breakpoints on chromosomes 5 and 17. These SVs were not
detected by other tools, but they do not seem to be accurate:

• they are confirmed only by 2 read pairs;

• they have a ”LowQual” tag in the output;

• their type is unbalanced translocation where the second ends are lo-
cated in chromosomes 17q25 (79Mb) and 18q12 (27Mb). Both regions
do not show any copy number change point according to the SNP array
analysis.
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GasvPro was able to identify SVs corresponding to only 8 breakpoints
in the SNP array copy number profile.

9.4 Discussion of the results

The comparison of SV-Bay with other SV calling methods on both sim-
ulated and real data demonstrates clear advantages of SV-Bay: it is able
to predict at least equal number of true SVs, showing a lower false positive
rate.

In this section we discuss several important aspects of the results. We
explain how the type of data (mate-pair or paired-end) and copy number
variation influence the SV prediction accuracy. Quality of breakpoint reso-
lution of each tool is also covered.

9.4.1 Sequencing technology and coverage

During the data simulation we assumed that the average number of abnor-
mal fragments required to confirm each novel genomic adjacency (physical
coverage) is higher for mate-pair data than for paired-end. We estimated the
physical coverage of each allele of the simulated tetraploid cancer genome to
be approximately 17 and 6 for mate-pair and paired-end data respectively.

Despite the fact that the simulated mate-pair library contains 5 times
less reads than the paired-end one, we observed (see Table 9.3) that all
tested methods could identify more correct SVs in the mate-pair dataset.
This observation supports the common choice of mate-pairs for annotation
of structural variants in tumor genomes, even though creating a mate-pair
library requires a more elaborate protocol.

9.4.2 Influence of the presence of copy number variation on
the SV prediction accuracy

The copy number variation around possible SV position is the main factor,
on which the Bayesian approach implemented in SV-Bay is based. The
accurate analysis of CNV considering mappability and GC-contents allows
to filter out false SVs and thus to reduce the false positive rate. It gives
SV-Bay a comparative advantage over the other algorithms.

This approach also gives another e↵ect: the accuracy of SV-Bay may
di↵er for SVs with and without CNV. The sensitivity for SVs with a variation
of the copy number, such as indels and linking-reinsertions, should be better
than for SVs without CNV, such as inversions or re-insertions.

To check this assumption, the list of SVs predicted by SV-Bay was
split into two groups, according to the possible presence of CNV. Two sepa-
rate precision/recall curves were created. This was done for both simulated
paired-end and mate-pair libraries.
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For simulated mate-pairs library, 99% of SVs were predicted by SV-Bay;
therefore, no variation can be observed between CNV-dependent and CNV-
independent SVs. For paired-end library, the prediction rate dramatically
varies: it is 40% for CNV-independent validated SVs and 70% for validated
CNV-dependent SVs.

9.4.3 Breakpoint resolution

SV-Bay shows a fair accuracy of identification of the exact breakpoint po-
sition. Figure 9.4 shows that SV-Bay significantly outperforms Break-
Dancer, even without using split-reads. The average distance between
validated and predicted breakpoints is 654bp vs 1906bp for SV-Bay and
BreakDancer. However, GasvPro and Delly provide a better break-
point resolution by taking into account split-reads. The average distance
between validated and predicted breakpoints for these methods is 314bp
and 373bp respectively.

SV-Bay does not use split-reads (explained in Chapter 8), but uses
a probabilistic approach to choose the most probable breakpoint position.
This approach gives reasonably good results. Using split-reads is one of the
possibilities to improve SV-Bay in the future.

9.5 Execution time comparison

In this section the runtime of considered tools is compared. The comparison
is presented in Table 9.4.

Data type SV-Bay BreakDancer GasvPro Lumpy Delly

Mate-pair dataset 1h 55m 32m 298h 47m N/A 45m
Paired-end dataset 3h 58m 19m 4h 39m 4h02 1h44

Table 9.4: Time of processing the whole genome data for each considered
tool.

BreakDancer and Delly are the fastest tools among the five for both
paired-end and mate-pair simulated datasets. SV-Bay demonstrates the
third best execution time: less than two and four hours for mate-pair and
paired-end datasets respectively.

GasvPro needed more than 12 days to analyse the mate-pair dataset.
The reason for this may be the long insert size of mate-pair data (more
than 4 Kb in our case). As a consequence, the range of all possible break-
point positions for each SV was extremely large and required a significant
amount of time to be analysed. SV-Bay also attempts to predict the most
likely breakpoint position for each SV. However, if the interval in which the
breakpoint can be possibly located is large, SV-Bay limits the analysis to
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only several positions equally spaced within the interval. Although this ap-
proach worsens the breakpoint detection accuracy, it significantly speeds up
the execution time for mate-pair libraries.
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Chapter 10

Conclusion and perspectives

10.1 Conclusion

In my thesis work, I introduce SV-Bay, a new computational method and
software to detect structural variants from whole genome sequencing mate-
pair or paired-end data. The proposed method does not only use information
about abnormal read mappings, but also assesses changes in the copy num-
ber profile and tries to associate these changes with candidate SVs. The
likelihood of each novel genomic adjacency is evaluated using a probabilistic
Bayesian model.

SV-Bay Bayesian model takes into account depth of coverage by normal
reads and abnormalities in read pair mappings. To estimate the model
likelihood, SV-Bay considers GC-content, ploidy and read mappability of
the genome, thus making important corrections to the expected fragment
count. This ensures sensitivity and selectivity, as many artefact clusters
of mismapped read pairs are discarded. Indeed, in comparison with other
methods, SV-Bay demonstrates a noticeably better SV detection accuracy.

SV-Bay was validated on mate-pair and paired-end simulated datasets
along with an experimental mate-pair dataset for the CLB-GA neuroblas-
toma cell line. A comparison of SV-Bay with BreakDancer, Lumpy,
Delly and GasvPro demonstrated its superior performance on simulated
and experimental datasets. SV-Bay has a better prediction accuracy in
terms of sensitivity and false positive detection rate. Moreover, for the
experimental neuroblastoma dataset, SV-Bay predictions explained 78%
of breakpoints in the copy number profile, calculated using an A↵ymetrix
SNP6.0 array, providing significantly less candidate SVs than other tools.

For the detection of somatic variants, SV-Bay makes use of a matched
normal sample when it is available. SV-Bay also allows to annotate dis-
covered genomic adjacencies according to their type and, where possible,
assembles detected genomic adjacencies into complex SVs such as balanced
translocations, co-amplifications, linking insertions, tandem duplications with

97
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inversion, etc. Notably, SV-Bay is the only tool which is able to assemble
the co-amplification events, which are important for many tests related to
cancer identification (for example, Mycn amplification).

SV-Bay allows the user to skip several data post-processing steps. One
example is filtering out links with low number of fragments that do not
correspond to copy number changes. Such links are discarded by SV-Bay
Bayesian approach. In other tools they contaminate the output making
it harder to interpret the results. Another example is filtering out events
present simultaneously in the tumor data and the matched normal control
(artifacts and germline SVs). Using clustering results for control sample,
SV-Bay discards structural variants knowingly not related to cancer devel-
opment. In several other tools such filtering is not available.

Another important part of my thesis work is the preparation of a novel
exhaustive catalogue of SV types. This catalogue is based on the previous
publications and experience in cancer data research, accumulated in Insti-
tute Curie. It is the most comprehensive SV classification existing to date.
I provide an illustrated list of seventeen structural variant types, including
seven SV types ignored by the existing SV calling algorithms. This list
is used in SV-Bay tool to automatically annotate and assemble predicted
SVs. Previously existing tools did not provide such functionality, making it
necessary to manually analyze the output and find corresponding complex
SVs. Considering big number of SVs in cancer genome, such manual anal-
ysis can introduce errors and often is not possible at all. Thus, automatic
SV assembly algorithm is an important advantage of SV-Bay.

The advantages of the proposed method allow SV-Bay to play an im-
portant role in simplifying the cancer rearrangement detection and under-
standing the mechanisms of cancer development.

10.2 Perspectives

Although the current version of SV-Bay algorithm, presented in this thesis,
outperforms other considered tools in terms of SV detection recall and pre-
cision, several directions for further method improvement can be proposed.
Possible improvements are related to both biological and algorithmic as-
pects. First the possible development directions from the biological point of
view are discussed. 10.1

Like other methods, SV-Bay is tolerant to a certain degree to contami-
nation of the tumor sample by normal cells. In figure 10.1 the average tumor
tissue is shown. Normal and tumor cells are shown in brown and blue col-
ors respectively. Contamination by normal cells can be detected by various
pattern matching algorithms.

In the future, it is possible to extend the SV-Bay model to handle
di↵erent normal cell contamination levels. The most straightforward way
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to do so is to request the contamination rate from the user and use this
coe�cient in the probabilistic model.

Figure 10.1: Contamination tumor tissue by normal cells. In blue colour are
shown cancer cells and in brown - normal cells.

Another direction that can be considered is the detection of sub-clonal
events. In tumor tissue di↵erent SVs can be presented in di↵erent cells. In
is illustrated in figure 10.2.

Sub-clonal mutations are challenging to detect. The DOC method is not
directly applicable, as the proportion of the expected and observed fragments
number should be calculated with respect to the number of cells containing
the considered structural variant. By now no methods exist to detect cells
with sub-clonal events. A probabilistic approach can be proposed, which
increases probability score of a structural variant based on the number of
confirmations, such as a signature, split-reads presence, association with a
complex SV and annotation with given diagnosis.

There are also several ways of SB-Bay improvement from the algorith-
mic point of view.

SV-Bay does not use split-reads to improve the resolution of predicted
breakpoints. There are two main reasons for this. First, the read cov-
erage on breakpoints must be su�ciently high. This is achieved only for
paired-end libraries, whereas SV-Bay was designed to also be applicable
to mate-pair data. Second, structural variants in cancer often occur in low
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Figure 10.2: Sub-clonal event. Sub-clonal SVs are presented in violet and
blue coloured cells. Figure is created by Layla Oesper

mappability repetitive regions or regions that have partial homology. These
incidents reduce the capacity of read mappers to align correctly reads com-
ing from SV junctions. However, in some cases, considering split-reads can
improve the power of the probabilistic model, especially for paired-end data.
If the breakpoint is covered by a split-read, this approach also allows for a
breakpoint resolution at the single nucleotide level. Thus, adding split-reads
support is a perspective direction of the method development.

The current version of SV-Bay analyzes only uniquely mapped frag-
ments. But, according to the known annotated SVs in real data, rearrange-
ments often occur in repetitive regions, such as telomeres or centromeres. To
be able to detect such SVs it is necessary to take into account fragments that
were mapped with multiple matches. This approach increases the algorithm
complexity and leads to performance degradation, but allows to increase the
sensitivity of the method.

Finally, the current version of SV-Bay analyzes only one tumor/normal
pair at once. One of the interesting possible extensions to the method is to
add the ability to analyze several tumor datasets extracted from the same
patient in order to increase the sensitivity of SV detection.
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Träger, Sta↵an Nilsson, Jonas Abrahamsson,
Per Kogner, and Tommy Martinsson. High-
risk neuroblastoma tumors with 11q-deletion
display a poor prognostic, chromosome
instability phenotype with later onset.

101



102 BIBLIOGRAPHY

Proceedings of the National Academy of
Sciences, 107(9):4323–4328, 2010.

[CLBM+13] Alex Cazes, Caroline Louis-Brennetot, Pierre
Mazot, Florent Dingli, Brangre Lombard,
Valentina Boeva, Romain Daveau, Julie
Cappo, Valrie Combaret, Gudrun Schleier-
macher, Stphanie Jouannet, Sandrine Fer-
rand, Galle Pierron, Emmanuel Barillot,
Damarys Loew, Marc Vigny, Olivier Delat-
tre, and Isabelle Janoueix-Lerosey. Charac-
terization of rearrangements involving the alk
gene reveals a novel truncated form associ-
ated with tumor aggressiveness in neuroblas-
toma. Cancer Res, 73(1):195–204, Jan 2013.

[CWM+09] Ken Chen, John W. Wallis, Michael D.
McLellan, David E. Larson, Joelle M.
Kalicki, Craig S. Pohl, Sean D. McGrath,
Michael C. Wendl, Qunyuan Zhang, Devin P.
Locke, Xiaoqi Shi, Robert S. Fulton, Timo-
thy J. Ley, Richard K. Wilson, Li Ding, and
Elaine R. Mardis. Breakdancer: an algo-
rithm for high-resolution mapping of genomic
structural variation. Nat Methods, 6(9):677–
681, Sep 2009.

[DEM+12] Thomas Derrien, Jordi Estell, Santiago
Marco Sola, David G. Knowles, Emanuele
Raineri, Roderic Guig, and Paolo Ribeca.
Fast computation and applications of genome
mappability. PLoS One, 7(1):e30377, 2012.

[DM11] Bell Stephane. DePamphilis Melvin. Genome
duplication. New York: Garland Science,
2011.

[dSK+97] M. de Lima, S. S. Strom, M. Keat-
ing, H. Kantarjian, S. Pierce, S. O’Brien,
E. Freireich, and E. Estey. Implications of po-
tential cure in acute myelogenous leukemia:
development of subsequent cancer and return
to work. Blood, 90(12):4719–4724, Dec 1997.

[ETB+13] Gergia Escarams, Cristian Tornador, Laia
Bassaganyas, Raquel Rabionet, Jose M C.



BIBLIOGRAPHY 103

Tubio, Alexander Martnez-Fundichely,
Mario Cceres, Marta Gut, Stephan Os-
sowski, and Xavier Estivill. Pesv-fisher:
identification of somatic and non-somatic
structural variants using next generation
sequencing data. PLoS One, 8(5):e63377,
2013.

[FKJ12] Josep V. Forment, Abderrahmane Kaidi, and
Stephen P. Jackson. Chromothripsis and can-
cer: causes and consequences of chromosome
shattering. Nat Rev Cancer, 12(10):663–670,
Oct 2012.

[GWNL00] Z. Gu, H. Wang, A. Nekrutenko, and W. H.
Li. Densities, length proportions, and other
distributional features of repetitive sequences
in the human genome estimated from 430
megabases of genomic sequence. Gene, 259(1-
2):81–88, Dec 2000.

[HA11] Donald F. Conrad Jonathan E.M. Keebler
Mark A. DePristo Sarah J. Lindsay Yu-
jun Zhang Ferran Cassals Youssef Idagh-
dour Chris L. Hartl Carlos Torroja Ki-
ran V. Garimella Martine Zilversmit Reed
Cartwright Guy Rouleau Mark Daly Eric
A. Stone Matthew E. Hurles and Philip
Awadalla. Variation in genome-wide muta-
tion rates within and between human fami-
lies. Ann Intern Med, June 2011.

[HAES09] Fereydoun Hormozdiari, Can Alkan, Evan E.
Eichler, and S Cenk Sahinalp. Combinato-
rial algorithms for structural variation detec-
tion in high-throughput sequenced genomes.
Genome Res, 19(7):1270–1278, Jul 2009.

[HBT13] Ayat Hatem, Doruk Bozda, Amanda E.
Toland, and mit V. atalyrek. Benchmarking
short sequence mapping tools. BMC Bioin-
formatics, 14:184, 2013.

[HHD+10] Fereydoun Hormozdiari, Iman Hajirasouliha,
Phuong Dao, Faraz Hach, Deniz Yorukoglu,
Can Alkan, Evan E. Eichler, and S Cenk



104 BIBLIOGRAPHY

Sahinalp. Next-generation variationhunter:
combinatorial algorithms for transpo-
son insertion discovery. Bioinformatics,
26(12):i350–i357, Jun 2010.

[HKNM11] Robert E. Handsaker, Joshua M. Korn,
James Nemesh, and Steven A. McCarroll.
Discovery and genotyping of genome struc-
tural polymorphism by sequencing on a pop-
ulation scale. Nat Genet, 43(3):269–276, Mar
2011.

[HLL08] Z. Harchaoui and C. Lvy-Leduc. Catching
change-points with lasso. Adv. Neural In-
form. Process. Syst., 20:617624., 2008.

[HYS+12] Xuesong Hu, Jianying Yuan, Yujian Shi,
Jianliang Lu, Binghang Liu, Zhenyu Li,
Yanxiang Chen, Desheng Mu, Hao Zhang,
Nan Li, Zhen Yue, Fan Bai, Heng Li,
and Wei Fan. pirs: Profile-based illumina
pair-end reads simulator. Bioinformatics,
28(11):1533–1535, Jun 2012.

[IJLB+15] D Iakovishina, Isabelle Janoueix-Lerosey,
Emmanuel Barillot, Mireille Regnier, and
Valentina Boeva. SV-Bay: structural variant
detection in cancer genomes using a Bayesian
approach with correction for GC-content and
read mappability. to appear., 2015.

[JWB12] Yue Jiang, Yadong Wang, and Michael
Brudno. Prism: pair-read informed split-read
mapping for base-pair level detection of inser-
tion, deletion and structural variants. Bioin-
formatics, 28(20):2576–2583, Oct 2012.

[KAM+09] Jan O. Korbel, Alexej Abyzov, Xinmeng Jas-
mine Mu, Nicholas Carriero, Philip Cayt-
ing, Zhengdong Zhang, Michael Snyder, and
Mark B. Gerstein. Pemer: a computational
framework with simulation-based error mod-
els for inferring genomic structural variants
from massive paired-end sequencing data.
Genome Biol, 10(2):R23, 2009.



BIBLIOGRAPHY 105

[LCQH14] Ryan M. Layer, Colby Chiang, Aaron R.
Quinlan, and Ira M. Hall. Lumpy: a proba-
bilistic framework for structural variant dis-
covery. Genome Biol, 15(6):R84, 2014.

[LD09] Heng Li and Richard Durbin. Fast
and accurate short read alignment with
burrows-wheeler transform. Bioinformatics,
25(14):1754–1760, Jul 2009.

[Lee07] Kevin A. W. Lee. Ewings family oncopro-
teins: drunk, disorderly and in search of part-
ners. Cell Research, 2007.

[LH00] Zipursky SL et al. Lodish H, Berk A. Molecu-
lar Cell Biology. New York: W. H. Freeman,
2000.

[LRD08] Heng Li, Jue Ruan, and Richard Durbin.
Mapping short dna sequencing reads and
calling variants using mapping quality scores.
Genome Res, 18(11):1851–1858, Nov 2008.

[Lup98] James R Lupski. Charcot-marie-tooth
polyneuropathy: Duplication, gene dosage,
and genetic heterogeneity. Pediatric Re-
search, 45:159–165, 1998.

[LV86] Gad M Landau and Uzi Vishkin. E�cient
string matching with k mismatches. Theo-
retical Computer Science, 43:239–249, 1986.

[MGB+14] Valent Moncunill, Santi Gonzalez, Slvia Be,
Lise O. Andrieux, Itziar Salaverria, Cristina
Royo, Laura Martinez, Montserrat Puiggrs,
Maia Segura-Wang, Adrian M. Sttz, Alba
Navarro, Romina Royo, Josep L. Gelp, Ivo G.
Gut, Carlos Lpez-Otn, Modesto Orozco,
Jan O. Korbel, Elias Campo, Xose S. Puente,
and David Torrents. Comprehensive char-
acterization of complex structural variations
in cancer by directly comparing genome se-
quence reads. Nat Biotechnol, 32(11):1106–
1112, Nov 2014.

[MSB09] Paul Medvedev, Monica Stanciu, and
Michael Brudno. Computational methods for



106 BIBLIOGRAPHY

discovering structural variation with next-
generation sequencing. Nat Methods, 6(11
Suppl):S13–S20, Nov 2009.

[MWS+11] Ryan E. Mills, Klaudia Walter, Chip Stew-
art, Robert E. Handsaker, Ken Chen,
Can Alkan, Alexej Abyzov, Seungtai Chris
Yoon, Kai Ye, R Keira Cheetham, Asif
Chinwalla, Donald F. Conrad, Yutao Fu,
Fabian Grubert, Iman Hajirasouliha, Fer-
eydoun Hormozdiari, Lilia M. Iakoucheva,
Zamin Iqbal, Shuli Kang, Je↵rey M. Kidd,
Miriam K. Konkel, Joshua Korn, Ekta Khu-
rana, Deniz Kural, Hugo Y K. Lam, Jing
Leng, Ruiqiang Li, Yingrui Li, Chang-
Yun Lin, Ruibang Luo, Xinmeng Jasmine
Mu, James Nemesh, Heather E. Peckham,
Tobias Rausch, Aylwyn Scally, Xinghua
Shi, Michael P. Stromberg, Adrian M.
Sttz, Alexander Eckehart Urban, Jeri-
lyn A. Walker, Jiantao Wu, Yujun Zhang,
Zhengdong D. Zhang, Mark A. Batzer,
Li Ding, Gabor T. Marth, Gil McVean,
Jonathan Sebat, Michael Snyder, Jun Wang,
Kenny Ye, Evan E. Eichler, Mark B. Ger-
stein, Matthew E. Hurles, Charles Lee,
Steven A. McCarroll, Jan O. Korbel, and
1000 Genomes Project . Mapping copy num-
ber variation by population-scale genome
sequencing. Nature, 470(7332):59–65, Feb
2011.

[Mye86] Eugene W Myers. Ano (nd) di↵erence algo-
rithm and its variations. Algorithmica, 1(1-
4):251–266, 1986.

[NRR11] Moshe Oren Noa Rivlin, Ran Brosh and
Varda Rotter. Mutations in the p53 tumor
suppressor gene. Genes Cancer, June 2011.

[OKM+92] J. D. Oliner, K. W. Kinzler, P. S. Meltzer,
D. L. George, and B. Vogelstein. Amplifi-
cation of a gene encoding a p53-associated
protein in human sarcomas. Nature,
358(6381):80–83, Jul 1992.



BIBLIOGRAPHY 107

[ORA+12] Layla Oesper, Anna Ritz, Sarah J. Aerni,
Ryan Drebin, and Benjamin J. Raphael. Re-
constructing cancer genomes from paired-end
sequencing data. BMC Bioinformatics, 13
Suppl 6:S10, 2012.

[PF00] Giovanni Manzini Paolo Ferragina. Oppor-
tunistic data structures with applications.
In Proceedings. 41st Annual Symposium on
Foundations of Computer Science, 2000.

[PMSL+09] Tatiana Popova, Elodie Mani, Dominique
Stoppa-Lyonnet, Guillem Rigaill, Emmanuel
Barillot, and Marc Henri Stern. Genome
alteration print (gap): a tool to visual-
ize and mine complex cancer genomic pro-
files obtained by snp arrays. Genome Biol,
10(11):R128, 2009.

[PSO+10] Erin D. Pleasance, Philip J. Stephens, Sarah
O’Meara, David J. McBride, Alison Meyn-
ert, David Jones, Meng-Lay Lin, David
Beare, King Wai Lau, Chris Greenman, Ig-
nacio Varela, Serena Nik-Zainal, Helen R.
Davies, Gonzalo R. Ordoez, Laura J. Mudie,
Calli Latimer, Sarah Edkins, Lucy Stebbings,
Lina Chen, Mingming Jia, Catherine Leroy,
John Marshall, Andrew Menzies, Adam But-
ler, Jon W. Teague, Jonathon Mangion,
Yongming A. Sun, Stephen F. McLaughlin,
Heather E. Peckham, Eric F. Tsung, Gina L.
Costa, Clarence C. Lee, John D. Minna, Adi
Gazdar, Ewan Birney, Michael D. Rhodes,
Kevin J. McKernan, Michael R. Stratton,
P Andrew Futreal, and Peter J. Campbell.
A small-cell lung cancer genome with com-
plex signatures of tobacco exposure. Nature,
463(7278):184–190, Jan 2010.

[QZ11] Ji Qi and Fangqing Zhao. ingap-sv: a novel
scheme to identify and visualize structural
variation from paired end mapping data. Nu-
cleic Acids Res, 39(Web Server issue):W567–
W575, Jul 2011.



108 BIBLIOGRAPHY

[RKMT03] MD; Brian J. Druker MD; Razelle Kurzrock,
MD; Hagop M. Kantarjian and
MD Moshe Talpaz. Philadelphia chro-
mosomepositive leukemias: From basic
mechanisms to molecular therapeutics. Ann
Intern Med, May 2003.

[RZS+12] Tobias Rausch, Thomas Zichner, Andreas
Schlattl, Adrian M. Sttz, Vladimir Benes,
and Jan O. Korbel. Delly: structural variant
discovery by integrated paired-end and split-
read analysis. Bioinformatics, 28(18):i333–
i339, Sep 2012.

[SCE+07] Manabu Soda, Young Lim Choi, Mune-
hiro Enomoto, Shuji Takada, Yoshihiro Ya-
mashita, Shunpei Ishikawa, Shin ichiro Fuji-
wara, Hideki Watanabe, Kentaro Kurashina,
Hisashi Hatanaka, Masashi Bando, Shoji
Ohno, Yuichi Ishikawa, Hiroyuki Aburatani,
Toshiro Niki, Yasunori Sohara, Yukihiko
Sugiyama, and Hiroyuki Mano. Identification
of the transforming eml4-alk fusion gene in
non-small-cell lung cancer. Nature, 448:561–
566, 2007.

[Sch]

[SGF+11] Philip J. Stephens, Chris D. Greenman,
Beiyuan Fu, Fengtang Yang, Graham R.
Bignell, Laura J. Mudie, Erin D. Plea-
sance, King Wai Lau, David Beare, Lucy A.
Stebbings, Stuart McLaren, Meng-Lay Lin,
David J. McBride, Ignacio Varela, Serena
Nik-Zainal, Catherine Leroy, Mingming Jia,
Andrew Menzies, Adam P. Butler, Jon W.
Teague, Michael A. Quail, John Burton,
Harold Swerdlow, Nigel P. Carter, Laura A.
Morsberger, Christine Iacobuzio-Donahue,
George A. Follows, Anthony R. Green, Adri-
enne M. Flanagan, Michael R. Stratton,
P Andrew Futreal, and Peter J. Campbell.
Massive genomic rearrangement acquired in
a single catastrophic event during cancer de-
velopment. Cell, 144(1):27–40, Jan 2011.



BIBLIOGRAPHY 109

[SHB+14] Jan Schrder, Arthur Hsu, Samantha E.
Boyle, Geo↵ Macintyre, Marek Cmero,
Richard W. Tothill, Ricky W. Johnstone,
Mark Shackleton, and Anthony T. Papen-
fuss. Socrates: identification of genomic
rearrangements in tumour genomes by re-
aligning soft clipped reads. Bioinformatics,
Jan 2014.

[SML+09] Philip J. Stephens, David J. McBride, Meng-
Lay Lin, Ignacio Varela, Erin D. Plea-
sance, Jared T. Simpson, Lucy A. Stebbings,
Catherine Leroy, Sarah Edkins, Laura J.
Mudie, Chris D. Greenman, Mingming Jia,
Calli Latimer, Jon W. Teague, King Wai
Lau, John Burton, Michael A. Quail, Harold
Swerdlow, Carol Churcher, Rachael Na-
trajan, Anieta M. Sieuwerts, John W M.
Martens, Daniel P. Silver, Anita Langerd,
Hege E G. Russnes, John A. Foekens,
Jorge S. Reis-Filho, Laura van ’t Veer, An-
drea L. Richardson, Anne-Lise Brresen-Dale,
Peter J. Campbell, P Andrew Futreal, and
Michael R. Stratton. Complex landscapes of
somatic rearrangement in human breast can-
cer genomes. Nature, 462(7276):1005–1010,
Dec 2009.

[SOP+12] Suzanne S. Sindi, Selim Onal, Luke C. Peng,
Hsin-Ta Wu, and Benjamin J. Raphael. An
integrative probabilistic model for identifi-
cation of structural variation in sequencing
data. Genome Biol, 13(3):R22, 2012.

[TEER14] Kathrin Trappe, Anne-Katrin Emde, Hans-
Christian Ehrlich, and Knut Reinert. Gustaf:
Detecting and correctly classifying svs in
the ngs twilight zone. Bioinformatics,
30(24):3484–3490, Dec 2014.

[TS12] Todd J. Treangen and Steven L. Salzberg.
Repetitive dna and next-generation sequenc-
ing: computational challenges and solutions.
Nat Rev Genet, 13(1):36–46, Jan 2012.



110 BIBLIOGRAPHY

[VB13] Stphanie Jouannet Romain Daveau Val-
rie Combaret Valentina Boeva. Breakpoint
features of genomic rearrangements in neu-
roblastoma with unbalanced translocations
and chromothripsis. PLoS One, Aug 2013.

[VBTPKBPCJCGSIJLOD12] Emmanuel Barillot Valentina Boeva Ta-
tiana Popova Kevin Bleakley Pierre Chiche
Julie Cappo Gudrun Schleiermacher Isabelle
Janoueix-Lerosey Olivier Delattre. Control-
freec: a tool for assessing copy number and
allelic content using next-generation sequenc-
ing data. Bioinformatics, Feb 2012.

[WKSA10] Kim Wong, Thomas M. Keane, James
Stalker, and David J. Adams. Enhanced
structural variant and breakpoint detection
using svmerge by integration of multiple de-
tection methods and local assembly. Genome
Biol, 11(12):R128, 2010.

[WME+11] Jianmin Wang, Charles G. Mullighan, John
Easton, Stefan Roberts, Sue L. Heatley, Jing
Ma, Michael C. Rusch, Ken Chen, Christo-
pher C. Harris, Li Ding, Linda Holmfeldt,
Debbie Payne-Turner, Xian Fan, Lei Wei,
David Zhao, John C. Obenauer, Clayton
Naeve, Elaine R. Mardis, Richard K. Wilson,
James R. Downing, and Jinghui Zhang. Crest
maps somatic structural variation in can-
cer genomes with base-pair resolution. Nat
Methods, 8(8):652–654, Aug 2011.

[YLG+13] Lixing Yang, Lovelace J. Luquette, Nils
Gehlenborg, Ruibin Xi, Psalm S. Haseley,
Chih-Heng Hsieh, Chengsheng Zhang, Xi-
aojia Ren, Alexei Protopopov, Lynda Chin,
Raju Kucherlapati, Charles Lee, and Peter J.
Park. Diverse mechanisms of somatic struc-
tural variations in human cancer genomes.
Cell, 153(4):919–929, May 2013.

[YXM+09] Seungtai Yoon, Zhenyu Xuan, Vladimir
Makarov, Kenny Ye, and Jonathan Sebat.
Sensitive and accurate detection of copy



BIBLIOGRAPHY 111

number variants using read depth of cov-
erage. Genome Res, 19(9):1586–1592, Sep
2009.

[ZBJL+10] Bruno Zeitouni, Valentina Boeva, Isabelle
Janoueix-Lerosey, Sophie Loeillet, Patricia
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