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Abstract

Applications and services have become more complex, while the Internet has become increas-
ingly difficult to evolve both regarding its physical infrastructure, and its protocols and perfor-
mance. Being responsible for policy configurations as well as network management and perfor-
mance tuning, network operators are shifting towards the use of more and more automated tools
to accomplish these tasks. The concept of “programmable networks” has emerged to alleviate the
challenges, and to facilitate network evolution. This includes paradigms such as (i) software-defined
networking (SDN) and (ii) network function virtualization (NFV), which decouple the forwarding
hardware into the control plane and data plane, and seek to abstract network forwarding, and
other networking functions, from the hardware. In the era of “big data” on cloud computing,
these paradigms have enabled rich network traffic processing services, while having also reduced
the granularity of task allocation in data centers. It has been recognized that shifting controllers
from logically centralized to distributed will increase not only scalability but also robustness to
inconsistency. Machine-Learning (ML)-based approaches have been proposed to deploy more in-
telligence in networks, when using decoupled control and data planes. In this context, the question
explored in this thesis is whether, and how, it is possible to offer generic, data-driven networking
functions in data center networks as services, for constructing autonomous networking systems
which optimize networking performances with minimal human intervention and operational com-
plexity. This thesis investigates the increasing scale, complexity, and heterogeneity of networking
infrastructure, and protocols, as well as the demand for virtualization and cloud support services
in terms of efficient resource management, rapid provisioning, and scalability present a set of new
challenges in effective network organization, management, and optimization. This is accomplished
by studying how certain network functions and primitives (traffic classification, auto-scaling, load
balancing) can be reliably enhanced by various data-driven algorithms, while bearing in mind the
in-production requirements in data center networks – high scalability, high throughput, low latency,
and low overheads.

The characteristics of networking features in the context of in-production overlay networks
are investigated first, which opens the discussion of the challenges of collecting measurements
and deploying data-driven networking policies in real-world systems. To tackle these challenges,
a generic tool to extract networking features from the data plane and deploy ML algorithms
for various networking functions in real-world networking systems is built. A methodological
framework is also designed and showcased, allowing for the developing of algorithms of different
learning paradigms for networking problems. This thesis then dedicates the study to network load
balancing problems in data center networks, on which a survey of state-of-the-art load balancers
is provided. A hardware-based load balancing mechanism is proposed, achieving line-rate load-
aware workload distribution by exploiting server load information embedded in packet headers as
feedback signals. Finally, both an open-loop and a closed-loop learning load balancing algorithms
are proposed based on learning algorithms, and they show better performance than state-of-the-art
load balancing methods.

Keywords — Data-Center Networking, Data-Driven, Network Functions, Load Balancing,
Learning Algorithms
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Chapter 1

Introduction

In the evolving digital world, the adoption of cloud services and management grows rapidly –
accelerated, especially as the post-pendamic era crystallizes since 20201. More workloads – com-
puting, storing, and distributing huge amounts of data – are migrated to the cloud [1], and the
amount of heterogenous applications – e.g., web services, video streaming, big data processing,
distributed storage – running in the cloud has been increasing [2]. With increasing demands for
elastic software and hardware configurations, emerging technologies – including virtualization [3,4],
software-defined networks (SDN) [5, 6], and programmable hardware devices [7, 8] – have offered
improved programmability of data center network architectures, since programmable networks
separate underlying hardware from control software and improve operational flexibility. The com-
bination of these technologies allows deploying various network functions in “middleboxes”, who
can be composed into chains of network services and meet high-level service requirements and
intents [9, 10]. Data center networks undergo continuous and frequent updates and changes at
large scales [11]. This makes the dynamicity and complexity of the deployed applications in the
cloud hard to be tracked manually in real-time [12]. Service providers and cloud operators are
thus confronted with more challenges when orchestrating and managing all provided services, in
order to provide scalable services and optimize quality of service (QoS) while constraining power
consumption and minimizing operational overhead [13,14].

Because of their complexity, large-scale, elastic, and heterogenous data center networks makes
simple heuristics or human interventions result in sub-optimal performance [12]. Consequently,
the development of data-driven algorithms – e.g., machine learning (ML), which are capable of
approximating complex interactions and dynamic systems – has given rise to an ambitious goal for
realizing autonomous network orchestration and management [15]. Data-driven algorithms benefit
from the data flowing in data center networks, to progressively learn and make informed decisions
that offer improved performance for customized applications and tailored use cases [16, 17], for
e.g., traffic classification [18–20], intrusion detection [21, 22], congestion control [23–25], traffic
optimization [26–28], and resource allocation [29,30]. However, it is challenging to use these data-
driven algorithms to drive management decisions and build autonomous networking systems which
function in production in real-time. This, because it requires (i) to collect reliable and scalable task-
specific networking measurements with minimal overhead, and (ii) to adapt appropriate learning
algorithms to infer system states, predict traffic patterns, and generate informed control policies.

In this context, the question explored in this thesis is whether, and how, it is possible to offer
generic, data-driven networking functions in data center networks as services, for constructing
autonomous networking systems which optimize networking performance with minimal human in-
tervention and operational complexity. This is accomplished by studying how certain network func-
tions and primitives (traffic classification, auto-scaling, load balancing) can be reliably enhanced
by various data-driven algorithms, while bearing in mind the in-production requirements in data
center networks – high scalability, high throughput, low latency, and low overhead.

1According to a report in 2022 (https://www.gartner.com/en/newsroom/press-releases/2022-04-19-
gartner-forecasts-worldwide-public-cloud-end-user-spending-to-reach-nearly-500-billion-in-2022), the
worldwide public cloud services market is predicted to grow from $411 billion in 2021 to $495 billion in 2022. Ac-
cording to a technical survey (https://info.flexera.com/CM-REPORT-State-of-the-Cloud), the number of heavy
cloud users – who run more than 25% of workloads in the cloud – increased from 59% in 2021 and 53% in 2020 to
63% in 2022.
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4 CHAPTER 1. INTRODUCTION

Figure 1.1: Three-tiered data center network topology [31]

The remainder of this introductory chapter is structured as follows. Section 1.1 introduces
and reviews the foundamental concepts in data center networks, including the network protocols,
topologies, management frameworks, emerging technologies, and key network functions that are
studied in this thesis. Section 1.2 provides a brief survey over the applications of data-driven
algorithms on networking problems, and identifies the challenges of constructing autonomous net-
working systems with ML algorithms in high-performance and large-scale cloud data center net-
works. Section 1.3 finally argues for the usage of these emerging technologies and adaptation of
various data-driven methods to augment data center primitives and network functions, by enabling
“middleboxes” to make informed decisions based on their observations in a distributed manner.

1.1 Background

This section presents background information on data centers: section 1.1.1 reviews data center
network architectures, section 1.1.2 introduces traditional network protocols used in the Internet
and in data centers, and section 1.1.3 introduces emerging technologies in data center networks
that offers imrpvoed performance and programmability.

1.1.1 Data Center Architectures

Behind the rise of cloud computing, data centers play a significant role, agglomerating mass
compute and storage resources and providing various scalable services, e.g., big data applica-
tions [32–36], high performance computing [37–39], and distributed and reliable storage [40–42].
In data centers, it is not surprising to find tens of thousands of servers interconnected by thou-
sands of switches2 [43, 44], which aim at meeting the throughput and latency requirements from
different applications. To avoid creating bottlenecks at the interconnection level, the link speed of
data center networks has increased from 25Gbps to more than 100Gbps because of the 100Gbps
per-storage-node throughput and the microsecond-level access latency of NVMe SSD [45,46]. Yet,
the ever-growing scale of data centers and service-level demands of applications push network ar-
chitects to design and study network topologies which deliver high-throughput capacities and low
end-to-end latency, while constraining hardware and operational costs, and reducing environmental
impacts [47,48].

The throughput capacity of a data center network is evaluated by calculating the bisection
bandwidth3. The bisection bandwidth is defined as the throughput between two bisected partitions
of a network topology. The bisection of the two partitions is conducted so that the throughput
between the two partitions is minimum. A topology is said to have full bisection bandwidth if its
bisection bandwidth is no less than the throughput of half of the total servers. Such topologies
that follow one family of data center network design – Clos-based designs [49] – allow for arbitrary
application instance placements to achieve optimal throughput capacity.

Clos-based designs – e.g., fat-tree [50], VL2 [51], Jupiter [52], Facebook Fabric [44], and F10 [53]
– are switch-centric, and have bi-regular, tree-based hierarchical structures, where leaf server nodes

2In this section, the word “switch” is used to designate devices that can perform Layer-2 and/or Layer-3
forwarding, indifferently.

3Beware that the bandwidth here actually refers to the throughput in networking systems.
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Figure 1.2: Switch-centric data center network topology

(a) DCell [55] with n = 3 and ℓ = 1 (b) BCube [56] with n = 4 and ℓ = 1 (c) Level-1 FiConn [57] with n = 4

Figure 1.3: Recursive data center network toplogies

are interconnected by low-level switches, which are then interconnected by high-level switches. As
depicted in figure 1.1, a 3-tier tree-based architecture consists the following components. Servers
are grouped as racks. Each rack is connected to a Top-of-Rack (ToR) switch, which is further
connected to an aggregation switch. The top-tier core switch finally connects the aggregation
switches. Connections between 2 arbitrary servers in the data center network thus traverse at most
5 switches. This topology may create over-subscription, where the total server-facing throughput
surpasses the total uplink-facing throughput. For instance, 8 10Gbps servers connected by a
40Gbps ToR switch give a 2 : 1 over-subscription ratio, which makes the ToR switch a bottleneck
in the network. In tree-based topologies, higher-tier switches and links are required to have higher
throughputs so as to avoid creating bottlenecks, especially among core and aggregation switches.
However, switches with high throughput capacities are expensive and power-consuming. The
fat-tree topology (figure 1.2a) replaces the high-throughput top-tier switches by interconnecting
multiple identical commodity switches, so as to achieve full-bisection bandwidth, while providing
higher scalability and removing single point-of-failure [50]. A k-ary fat-tree can connect k3/4
servers with k(k + 1) identical k-port switches. VL2 [51] (figure 1.2b) uses a topology similar
to fat-tree, yet, instead of connecting each aggregation switch in a pod to a portion of the core
switches, VL2 connects the aggregation switches and the core switches as a complete bipartite
graph. By connecting each rack to 2 aggregation switches, and leveraging high speed uplink-facing
links, VL2 has lower cabling complexity than fat-tree. Though both fat-tree and VL2 topologies
rely on centralised management and incur high operational costs.

To reduce operational costs and improve the network scalability, alternative designs adopt
expander-graphs to interconnect switches, and propose incremental installation, where every switch
connects to a group of servers – unlike aggregation switches and core switches which connect to
other switches. Jellyfish [54] (figure 1.2c) reserves several ports on each ToR switch to interconnect
switches and creates a degree-bounded random regular graph. It achieves incremental expansion
by purging a randomly selected link between 2 ToR switches, to which the added ToR switch is
linked. Connections between 2 arbitrary servers traverse less hops than in a fat-tree. DCell [55]
(figure 1.3a) is a recursively constructed topology, which offloads the interconnection and routing
responsibility to servers, instead of switches. At level-0, a rack of n servers are connected to a ToR
switch. A level-1 DCell is then constructed with n+ 1 level-0 DCells, so that each level-0 DCell is
connected to every other level-0 DCell via links between servers, as a full mesh. In a level-(l + 1)
DCell, sl +1 level-l DCells can be found, where sl is the number of servers in a level-l DCell. This
recursive design offers high scalability – the number of servers grows doubly exponentially with the
port number of each server. BCube [56] (figure 1.3b) is similar to DCell, sharing the same structure
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(a) Suboptimal VIP and DIP configuraiton [58] (b) VIP and DIP configuration exploiting local-
ity [59]

Figure 1.4: Service deployment in a fat-tree topology

of level-0 DCell. At level-(l+1), BCube interconnects n level-l BCubes with nl+1 n-port switches,
each of which is connected to 1 server in every level-l BCube. FiConn [57] further limits the port
number on each server to 2. Sharing the same topology of level-0 DCell, a level-(l + 1) FiConn is
constructed with b/2 + 1 level-l FiConns, where b is the number of server with available ports in
each level-l FiConn. These 3 recursive data center network topology requires, however, to deploy
a custom forwarding module in each server, which may incur additional operational complexity.

Atop these physical data center network topologies, virtualization technologies allow different
tenants4 sharing physical resources (e.g., CPU, disk, memory, network) in a data center or in the
same host machine (operating system kernel) in the form of virtual machines (VMs) [60], con-
tainers [61], or using the Lambda model [62]. These technologies motivate the development and
deployment of microservices [63] on commodity hardware, which reduces the expenses for dedicated
hardwares and improves the service scalability by elastically expanding or decreasing provisioned
instances [64–66]. The development of virtualization, where computers are emulated and/or shar-
ing an isolated portion of the hardware by way of Virtual Machines (VMs), or run as isolated
entities (containers) within the same operating system kernel, has accelerated the commoditiza-
tion of compute resources. Therefore, the gigantic in-production data center networks – which
may comprise thousands of servers – are partitioned into small pods (server clusters), where dif-
ferent services are hosted. Running over various data center network architectures, virtualization
technologies improve service transparancy not only for clients but also for service providers [67],
which can deploy their applications without worrying about server management. However, this
elastic computing scheme may lead to several issues, e.g., suboptimal configurations [59], resource
contention [68], and colocated-workloads [69]. Suboptimal performance can happen when, e.g.,
malicious tenants plunder shared resources to improve their network performance [70], or the same
configuration is applied in heterogenous architectures [71,72].

Similalry, suboptimality can happen in typical server cluster and service deployment. Each
service is provided at one or multiple virtual IP addresses (VIPs), running over a cluster of servers.
Each server in the cluster can be identified by a unique direct IP address (DIP). Traffic and queries
from the clients destined to a VIP are load balanced among the DIPs of the service. When deploying
the service in the data center network, suboptimal VIP and DIP placement (figure 1.4a [58]) can
incur substantial throughput usage overhead and break the full-bisection bandwidth because of
traffic redirection, which can be largely reduced by exploiting locality – placing DIPs so that the
traffic of a given VIP stays within the same rack (figure 1.4b [59]).

As described in this section, data center architectures have evolved to achieve scalable de-
sploymenet. However, to efficiently manage and operate these large distributed networking archi-
tectures, it requires complex overlay technologies and dedicated protocols, which will be introduced
in the following section.

1.1.2 Network Protocols

To provide optimized network performance, traffic and network management technologies play
an important role. These technologies are build on top of conventional layered network stacks –
e.g., “Open Systems Interconnection (OSI) reference model” [73], which consists of 7 layers, i.e.,

4For the purpose of this section, a tenant is defined as any entity using some of the resources of a data center
for a single purpose, be it an individual, a company, or a logical entity such as a project to which resources are
assigned, etc.
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(i) physical, (ii) data link, (iii) network, (iv) transport, (v) session, (vi) presentation, and (vii)
application layers. These layered architectures, where layer-n provides service to layer-n + 1 and
uses services from layer n− 1, allows for building large systems with complex functionalities with
high modularity and scalability, since the change of one layer’s design and implementation has no
impact on the remainder of the system.

From among the 7 layers of the OSI reference model, the most commonly used in the world is
the 4-layer TCP/IP model [74], summarized below:

1. The application layer (Layer-7), where various applications reside, allows different end-
points to communicate using corresponding application-layer protocols (e.g., HTTP [75],
HTTPS [76], SMTP [77], FTP [78] and DNS [79]), by transparently using the layers below.
A packet of information at the application layer is called a message.

2. The transport layer (Layer-4) transmits application-layer messages between application
endpoints via logical channels. The Transmission Control Protocol (TCP) [80] and the User
Datagram Protocol (UDP) [81] are two widely deployed transport protocols [1, 82]. TCP
provides a connection-oriented service to applications and uses acknowledgement of data
transmission to achieve reliable and ordered data transmission. UDP, on the other hand,
provides connectionless service to its applications, which guarantees no reliability for data
transmission. A transport-layer packet is called a segment.

3. The network layer (Layer-3), allows for moving messages across inter-connected net-
works, and provides the service of delivering transport-layer segments from a source host
to the transport layer in the destination host. A network-layer protocol data unit is called
a datagram. In the Internet, the Layer-3 protocol used is Internet Protocol (IP) [83, 84].
IP defines the fields of the datagram and stipulates the behavior of all Internet components
with the network layer. Layer-3 protocols also consists routing protocols, which build routing
tables between different devicess and determine the routes of datagrams between source and
destination hosts.

4. The data-link layer (Layer-2) provides, to the network layer, the service of moving data-
grams from one device to the next device. Layer-2 takes care of (wired or wireless) message
modulation/demodulation to/from physical mediums and controls access to these mediums
by way of collision avoidance, modulation selection, retransmissions, and auhentication. A
link-layer protocol data unit is called a frame. This manuscript focus on wired data centers,
where devices on the same data-link (e.g., physical machines in the same rack) can exchange
frames and handle datagrams by Ethernet.

This protocol stack is widely deployed over both the Internet and within data center networks.
It embraces the end-to-end [85] design, where the networking properties (e.g., reliability, security)
between two communicating processes rely on the endpoints of the logical transmission. In the
context of data center networks, the end-to-end communications follow the consumer-producer
paradigm [86] – where servers in data center networks provide contents to end users – and the
end hosts on two sides can be highly asymmetric. With (i) the ever-growing scale of data center
networks, (ii) elastically deployed resources, and (iii) dynamic and unpredictable traffic, various
protocols are proposed based on the protocol stack and networking topology abstraction to im-
prove scalability, handle system dynamics, and guarantee QoS with constraints over provisioned
resources.

In terms of scalability, the exhaustion of IPv4 addresses5 has triggered the use of Network
Address Translation (NAT) devices, and the development of IPv6 [84]. In multi-tenant networks,
Virtual Local Area Networks (VLANs) [87] enable each Ethernet packet to carry a 12-bit identi-
fier, which allow switches to forward packets only among per-VLAN-specified physical ports, so
as to hide the complexity of physical network architectures and provide consistent and isolated
services [67]. The limited amount of tenants (212 = 4096) that are supported by VLAN further
triggers the development of Virtual eXtensible Local Area Networks (VXLANs) [88] and Network
Virtualization using Generic Routing Encapsulation (NVGRE) [89], both of which support up to
224 tenants. Though requiring additional encapsulations – by way of UDP/IP and GRE pack-
ets, respectively, which incur additional communication overhead, VXLAN and NVGRE achieve
improved scalability, flexibility, and can be applied for inter-data-center communications. Other

5https://www.icann.org/en/system/files/press-materials/release-03feb11-en.pdf

https://www.icann.org/en/system/files/press-materials/release-03feb11-en.pdf
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protocols based on Virtual Private Network (VPN) – e.g., Virtual Private LAN Service (VPLS) [90]
and Ethernet VPN (EVPN) [91] – also enable inter-data-center communications. These protocols
use Multi-Protocol Label Switching (MPLS) [92] labels to identify and transmit – among different
tenants – Layer-2 frames across MPLS capable networks between data centers.

To handle bursty traffic (e.g., with a median flow inter-arrival time < 250 µs [93]) in distributed
systems, different traffic control techniques have been developed. For instance, Equal Cost Multi
Path (ECMP) [94] splits traffic across multiple equal cost paths and routes each flow through one
selected path using the hash of five tuples of the flow6. ECMP is a fundamental path selection
mechanism, and used in many multipath routing protocols e.g., Shortest Path Bridging (SPB) [95]
and Transparent Interconnection of Lots of Links (TRILL) [96]. As straightforward as ECMP is,
it is agnostic to both existing network utilization and the “size” of a new incoming flow, which can
cause overloaded or starved resource utilization and degraded QoS. To resolve this issue, protocols
are proposed that enable more fine grained contro, e.g., Hedera [97], which periodically monitors
edge switches and ToR switches to detect large flows based on the throughput occupation threshold
(i.e., > 10% link capacity). These large flows are then scheduled and allocated to different paths,
using simulated annealing by a centralized controller, to achieve max-min fairness sharing of the
Network Interface Controller (NIC) throughput, by calculating the number of large flows between
source-destination pairs. Unlike Hedera, which allocates path for each flow, Conga [98] splits traffic
to “flowlets” [99] – bursts of packets separated by spacing larger than the delay difference between
the parallel paths – so that sending two bursts of packets over different paths does not cause packet
reordering. Relying on hardware-modified devices, Conga encodes local link load estimation in
VXLAN headers at intermediate switches and switches, and decodes congestion information at
ToR switches, which make corresponding traffic placement decisions.

Extensions have also been made on top of TCP to reduce packet loss and timeout. Multipath
TCP (MPTCP) [100] stripes data to subflows at the sender, and reorders and reconstructs the
received data at the receiver. Similar to incast congestion TCP (ICTCP) [101] and data center
TCP (DCTCP) [102], MPTCP also enables congestion control by adjusting the subflow congestion
window size to improve network utilization and fairness. Traffic control techniques are also pro-
posed for inter-data-center applications [103,104]. B4 [103] utilizes centralized traffic engineering,
multipath routing, and rate restriction at the network edge to achieve high throughput utiliza-
tion. B4 detects and avoids using bottleneck links by iteratively and fairly allocating throughput
for traffic on their corresponding paths that exclude previously detected bottleneck links, until
all traffic allocation demands are fulfilled or every path contains bottleneck links. SWAN [104]
classifies traffic into 3 types – i.e., background, interactive, and elastic traffic – and assigns dif-
ferent priorities accordingly. Background traffic has large volumne of data to transfer yet it is
not latency-critical. It benefits from a small reserved amount of link capacity (10%) to improve
throughput utilization. Interactive traffic is sensitive to packet loss and latency yet it transmits
low volumne of data. Elastic traffic falls a the spectrum between the previous two types of traffic.
SWAN calculates the traffic rate and path allocations based on estimated interactive traffic and
reported background and elastic traffic before pushing configurations down to switches and hosts.

As described in this section, network protocols have been developed along with various data
center architectures to address scalability issues and to facilitate traffic management. However,
the applications running in data center networks grow more and more heterogeneous [44,69], where
latency-critical applications (e.g.,Web), computational-intensive tasks (e.g., big-data), throughput-
intensive services (e.g., database) are co-located in the same data center network. This gives rise
to – besides the high-performance requirements for data center networks – the demands for high
programmability in the data plane.

1.1.3 Towards High Performance and Programmability

As discussed, data center networks have become more and more scalable to support the growth
in networking traffic, and to provide high-throughput and low-latency services. In addition, the in-
creasing complexity of provided services require data center networks to quickly react to dynamic
requests and efficiently maintain appropriate levels of QoS with available resources. Therefore,
with diverse management and optimization objectives, the data plane in data center networks seeks
higher flexibility and programmability, in addition to high throughput and low latency. Though

6The five tuples of a flow typically refers to the source IP address, destation IP address, source port, destination
port, and protocal number.
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Figure 1.5: Transition from traditional network to SDN architecture

Figure 1.6: OpenFlow switch

networking systems have been conventionally developed and deployed statically in hardware net-
working devices – e.g., through application-specific integrated circuits (ASICs) [105] – technologies
and ideas have been proposed to increase network programmability, discussed in the following.

Software-defined networking (SDN) dissociates the routing and decision-making process (con-
trol plane) from the network packets forwarding process (data plane) [106, 107]. As depicted in
figure 1.5, in the traditional network architecture, networking devices conduct both control plane
and data plane operations in integrated software-hardware systems, whereas in SDN architectures,
based on different objectives, management logics are encapsulated in different centralized con-
trollers in the control plane to bridge the requirements from various applications with simple and
straightforward packet forwarding functions in the data plane. Applications can generate rules
– which decide how network traffic is handled – based on application-specific demands (e.g., for
QoS, routing constraints, resource utilization and fairness), and push these rules to the control
plane via the northbound interface7, which communicates with the layer above. These rules are
then compiled and translated to corresponding forwariding rules by the controllers, which then
configures via the southbound interface – which communicates with the layer below – network
devices (e.g., ToRs and switches), which forward packets based on the configured forwarding table.
Communications between the control plane and the data plane is achieved using OpenFlow [108],
a protocol with (i) internal flow tables, (ii) communication channel connected to the OpenFlow
controller, and (iii) standardized communication interfaces for adding/removing entries to/from
the flow tables. As depicted in figure 1.6, on receipt of network flows, an OpenFlow switch parses
packet headers to identify to which action the flow corresponds – from among 3 types of actions,
i.e., forwarding to one or multiple egress ports, forwarding to the controller, and dropping – defined
in the flow table. Though SDN provides programmable APIs to gather per-flow or application-
level statistics in a centralised way, to adaptively update configurations, it requires using network
equipments that supports the OpenFlow protocol [109,110].

Network Function Virtualization (NFV) [111] is a different technology that brings programma-
bility to networking systems. NFV extracts and abstracts different network functions (e.g., fire-
walls, load balancers, and VPN gateways [14, 63]) to provide reliable service management, and
transparent operations. These on-demand virtualized network functions (VNFs) are deployed
on commodity computing platforms, which increase not only network programmability, but also

7In the field of computer networking, a northbound interface is an interface that allows a lower-level network
component to communicate with a higher-level or central component. Contrariwise, a southbound interface allows
a higher-level component to communicate with a lower-level network components.
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improve scalability and elasticity, therefore they help balance the trade-off between capital ex-
penditures and QoS in data center networks. Unlike OpenFlow, VNFs – running on commodity
computing platforms – replace or augment dedicated hardware devices and play a significant role
in large-scale data center networks. For instance, as depicted in figure 1.7, a VNF can be instan-
tiated by way of a virtual router, which runs as an encapsulated service in a physical machine. In
multi-tenant setups, the VNFs configure (i) virtual interfaces that connect to each tenant (in the
form of containers or VMs) hosted in the same machine, and (ii) physical interfaces that connect
to physical NICs for inter-machine communications. Interconnecting different devices in the data
center networks, VNFs can be deployed – either as independent processes running in the host OS
or as containers or VMs themselves – to achieve more advanced functionalities, e.g., firewalling,
NAT-ing, encrypting, and load balancing.

SDN and NFV complement each other with their own technical benefits. NFV allows deploying
the key idea of SDN by way of virtualizing different network services along with the SDN con-
troller in the cloud, using commodity machines. In return, SDN allows for effectuating network
management decisions and configurations generated by VNFs [14].

To implement SDN and NFV, different systems and languages have been proposed [112–116].
The extended Berkeley Packet Filter (eBPF) [112] framework offers a set of instructions and a
Linux-kernel-based execution environment, serving as a universal in-kernel virtual machine [117].
It allows developers to program packet processing logic in C language, which is then compiled into
eBPF code. The compiled instructions in eBPF can then be executed in programmable hardware
devices (e.g., SmartNICs [118]) or be processed in the Linux kernel by attaching to an interface
called hook (figure 1.8). Hooks permit the registration of custom programs given specific events.
The eXpress Data Path (XDP) [119] is one type of the hooks that allow eBPF programs to attach.
Operating at the lowest layer of the network stack in the Linux kernel – only on the RX path of the
network driver, it enables fast packet processing applications – e.g., mitigating distributed denial-
of-service (DDoS) attacks and tunneling – with high programmability. XDP runs the attached
eBPF programs before socket memory buffer allocation by the kernel and it does not require kernel
recompilation when modifying the eBPF programs. Traffic controller (TC) [120] is another hook
for attaching eBPF programs. Though TC is not as performant as XDP, it can make use of more
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Figure 1.9: Basic building blocks of P4

statistics and data parsed from network packets, than can XDP, and it operates at both ingress and
egress path. Similar to eBPF and XDP, Click [114] also allows for plugging in custom networking
programs and applications for packet processing in the kernel. Click applications consist of multiple
components (called elements) implemented in C++. Defined in application-specific configuration
files, elements are organized and interconnected as packet processing graphs, which can be compiled
and executed in either the user space or the Linux kernel.

In high performance networks, where the link throughput capacity can easily surpasses 10
Gbps, inter-packet arrival times become sub-microseconds or even tens of nanoseconds [113]. Linux-
kernel-based instructions and operations can incur significant per-packet processing latency because
of e.g., context switches. The Data Plane Development Kit (DPDK) [115] bypasses the kernel and
keeps polling packets from NICs directly within user space. The application running in the user
space will then process the fetched packets according to different objectives. Based on DPDK li-
brary, the Vector Packet Processor (VPP) [121] – an open-source high performance programmable
data plane – provides a variety of network functions optimized with techniques including aligned
memory access, pre-fetching, loop-unrolling, multi-core processing, etc. Similar to Click, VPP is
based on packet processing graphs, which makes it modular and extensible. To bring programma-
bility to line-rate capable hardware devices, the P4 language [116] has been proposed for embedding
custom data plane programs in programmable switches (e.g., NetFPGA [7,122]). P4 embraces the
Protocol Independent Switch Architecture (PISA), which abstracts the packet processing operation
into 3 main steps (figure 1.9). On receipt of network packets, the parser inspects packet headers
and extracts values in different fields. These parsed values are fed forward to the ingress process,
which consists of configurable match-action tables. The match-action pipeline allows developers
to implement their core packet processing logics, before steering packets to corresponding egress
ports. Finally the deparser reassembles the packets and either drop or forward them to the next
device. With this architecture, P4 enables defining and programing various network functions in
line-rate physical switches.

The concept of “programmable networks” has been advanced with the paradigms of SDN and
NFV, which help alleviate the challenges emerged together with the evolution of data center net-
work architectures. In support of the role of cloud computing [123, 124], these paradigms have
enabled rich network traffic processing services while reduced the granularity of task allocation in
data centers. However, the increasing scale, complexity, and hererogeneity of networking infras-
tructures and protocols, as well as the demand for virtualization and cloud services in terms of
efficient resource management, rapid provisioning, and scalability presents a set of new challenges
in effective network organization, management and optimization [125–128].

1.2 Bringing Intelligence to Data Center Networks

The abstraction of network functions enhances scalability and elasiticity of network application
deployment in data center networks. This section introduces several key network functions and
the challenges that they are facing in modern data center networks (section 1.2.1). With the
advancement of machine learning algorithms, this section then discusses how data-driven methods
can help improve the performance of network functions (section 1.2.2).

1.2.1 Network Functions

By way of NFV, different and distinct network functions can be consolidated on physical ma-
chines. They support network applications based on different requirements. Chaining different
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(a) Scaling Out/Up (b) Scaling In/Down

Figure 1.10: Auto-Scaling

network functions can offer a combination of services – e.g., deep packet inspection (DPI), intru-
sion detection system (IDS), autoscaling, firewall, load balancing [129–131]. This has increased
network operation agility since network services can be updated on the fly, by simply reconfig-
uring corresponding network function instances. 3 categories of network functions in data center
networks will be covered in this manuscript:

• Service assurance [132–134]: service level agreement (SLA) monitoring, auto-scaling;

• Application-level optimization [64,65,135]: load balancing, caching;

• Security [136]: firewalls, IDS, DDoS and anomaly detector.

This section introduces network function with one example from each category.

Auto-Scaling

Auto-scaling is a service-aware network function [137,138]. To minimize operational costs, while
guaranteeing QoS, cloud operators need to elastically provision server capacities – dynamically
and ideally autonomously adjusting computing, networking, storage resources according to the
demands of clients. The objective of auto-scaling is to minimize the operational and resource cost
without breaking SLAs. For instance, when the incoming requests grow leading to overloaded
or congested resources, the auto-scaler can scale out (e.g., spin up more VMs) or scale up (e.g.,
append resources to existing VMs) for the application to meet an SLA (figure 1.10a). Likewise,
when the traffic goes down and the amount of incoming requests decreases, the auto-scaler can
scale in (e.g., shutdown some VMs) or scale down (e.g., detach resources from existing VMs). To
achieve this, the auto-scaler needs to keep monitoring the system performance (e.g., QoS in terms
of latency and throughput, cost of provisioned resources, etc). To this end, performance indicators
should be carefully selected so as to reflect the actual system state, in line with the operating and
management objectives. Based on measurements, the auto-scaler needs to analyse and determines
the necessity of planning scaling events, including e.g., the timing, the scale of impacted VMs, the
amount of added or removed resources, etc. The auto-scaler needs to consider the prediction of
the workload in the system, and need to avoid oscillating between opposite scaling actions within
a short period of time. Once scaling events are planned, the cloud operator will execute these
scaling actions. With the complex optimization goal of minimizing provisioned resources while
providing guaranteed SLAs, there are growing interests in intelligent server capacity configuration
systems [29,137,139,140].

Traffic Classification

As one of the key network functions in data center networks, traffic classification allows distin-
guishing between different types of traffic [19,22], to allocate appropriate resources and to achieve
service level agreements. It also helps detect anomalies and security threats to prevent potential
damages and losses [22]. Traffic classifiers therefore, are deployed as network functions on the
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Figure 1.11: Traffic classification procedure mapped to a switch pipeline, where M/A indicates match-
action [19].
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Figure 1.12: Workflow of Layer-4 load balancers in data center networks.

edge of data center networks, to prevent security issues and assign priorities to different sources of
network traffic. Port-based traffic classification mechanisms can identify packets associated with
specific applications, based on port numbers used. However, dynamic port-negotiation mechanisms
might be used to bypass firewalls and security applications. This motivates more traffic classifica-
tion techniques to be proposed. As depicted in figure 1.11, the first step of traffic classification is
to extract and select relevant and accurate features e.g., from packet headers when the payloads
are encrypted [141]. Based on the collected features, a decision making model – which can take
form of e.g., a decision tree – will be applied to decide whether the packets will be dropped or
forwarded to specific egress ports.

Load Balancing

In multi-tenant data center networks, in order to optimize cost and energy, network applications
and services are replicated among multiple instances running e.g., in containers or VMs, so as to
provide an optimized trade-off between cost and user QoS [142]. With constrained capacity and
huge volume of traffic, load balancers are indispensable “middleboxes” in data center networks
for transparent operation and optimal resource utilization. As the network traffic keeps growing
rapidly and network traffic becomes more dynamic and heterogenious [1,69], Layer-4 load-balancers
become a key component for efficient resource utilization in data center networks, distributing
network traffic addressed to a given cloud service evenly on all associated servers, while consistently
maintaining established connections [64, 65, 143,144]. The workflow of network LBs is depicted in
figure 1.12. On receipt of a new connection request 1 (e.g., a TCP SYN), LBs 2 determine to
which server the new connection is to be dispatched. Servers 3 respond to the request using direct-
source-return (DSR) mode8; LBs thus have no access to the server-to-client side of communication.
Finally, 4 the load balancing decision made upon the new connections is preserved until connection
terminates. There are two requirements for LBs:

• Per-Connection-Consistency (PCC): Packets from the same connection need to be forwarded
to, and handled by, the same server. This is a strong request, so as to gurantee per-connection
consistency and provide high service availability;

• Fairness: Workloads on all servers need to be balanced, and overloading and starvation of
provisioned resources must be avoided, so as to improve resource utilization and QoS.

8DSR is enabled for response packets from servers to clients to bypass LBs. It relieves LBs of handling 2-way
traffic, improving network throughput [64].
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Figure 1.13: Supervised learning

Network LBs have limited observations of the system availability and they are agnostic to application-
level information including task sizes and actual server load states. With different server VMs,
running on top of heterogeneous hardware and elastic infrastructures [72], it is challenging to
assign correct weights to servers according to their actual processing capacities. This process
conventionally requires human intervention, which can lead to error-prone configurations [65,145].

1.2.2 Demands for Learning in the Cloud

This chapter so far has introduced 3 key network functions in data center networks. They play
different roles yet they share common challenges that need to be addressed. In the context of cloud
computing, growing elasticity, scalability, and QoS requirements in data center networks demand
for heterogeneous yet adaptive and autonomous rules and decision-making policies to be installed
in network functions. These requirements attract a rising trend of applications of machine learning
(ML) algorithms to networking problems [22].

Data-driven mechanisms based on machine learning (ML) [27,146] and reinforcement learning
(RL) algorithms [26,28] can be applied and can show performance gains in various network appli-
cations. With large amount of data flowing in the networking systems, these learning algorithms
effectively helps network operators to extract information from the data and gain insights in data
center networks, so as to make informed management decisions and optimize networking perfor-
mance. For instance, auto-scaling systems and load balancers can achieve improved QoS with
reduced cost based on periodically polled resource utilisation of distributed network devices (e.g.,
application servers) [139,143]. Traffic classification and anomaly detection can help detect security
threats with increased accuracy, based on network traffic characteristics extracted from network
traces [17, 147]. This section introduces the 3 main families of data-driven mechanisms applied to
networking problems, i.e., supervised learning, unsupervised learning, and reinforcement learning.

Supervised Learning

As depicted in figure 1.13a, supervised learning takes labeled input data together with their
associated labels to train ML models, which can make predictions given new sets of input data.
Applications aiming at assigning input data to one of a finite amount of discrete categories are
called classification tasks. For instance, support vector machine (SVM) [148] and Bayesian neural
networks [149] are used to classify traffic using statistical characteristics of packet payload as appli-
cation signatures. More supervised classification algorithms – e.g., naive Bayes with discretization,
naive Bayes with kernel density estimation, C4.5 decision tree, Bayesian network, and naive Bayes
tree – are evaluated for conducting traffic classifcation [150] and intrusion detection [151]. Another
type of applications whose output consists of continuous variables is called regression tasks. For
instance, as depicted in figure 1.13b, Layer-4 per-flow-based networking features can be extracted
to infer server load states [152], which will be described in detail in chapter 5 in part III. Anomaly
detection and traffic classification tasks also attracts the application of supervised learning al-
gorithms, in the context of both SDN [153] and cloud data centers [154]. In wireless networks,
supervised learning algorithms also helps autonomously configure networking policies and optimize
communication latency and resource utilization [155,156].

Supervised learning algorithms have shown promising results in networking applications, yet
they require high quality labeled datasets. However, unlike in other fields e.g., computer vi-
sion [157–165] and speech recognition [166–171], few labeled datasets are available and considered
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(b) Example: traffic classification (PCA)

Figure 1.14: Unsupervised learning

as a benchmark for ML applications in networking systems (e.g., traffic analysis and anomaly de-
tection) [172–175]. The available open-sourced datasets have been accused of being inconsistent
and impractical [176,177].

Unsupervised Learning

Unsupervised learning algotihms do no rely on labeled datasets and take unlabeled input data
with no corresponding target values as training data (figure 1.14a). The goal of unsupervised
learning algorithms is to recognize patterns in the dataset. One type of unserpervised learning
tasks is to group input data with high similarity into different clusters. For instance, statisti-
cal characteristics of flow and payload can be combined to cluster network traffic and detecting
unidentified traffic [148, 178]. The authors of [148] combined flow statistical feature-based clus-
tering and payload statistical feature-based clustering for mining unidentified traffic. On top of
clustering network flows into a small set of clusters – e.g., using k-means or expectation maxi-
mization (EM) algorithms – efforts have been made to manually label each cluster to a network
application. In [178], the authors proposed to group traffic flows into a small number of clusters
using the expectation maximization (EM) algorithm and manually label each cluster to an ap-
plication. However, with little information about the real applications, this does not effectively
resolve the problem of clustering algorithms – mapping from clusters to real applications. Another
type of unsupervised learning tasks is to project the input data from a high-dimensional space
down to low-dimensional space – e.g., to 2 dimensional space so as to visualize the distribution
of input data as depicted in figure 1.14b [179], which will be described in detail in chapter 3 in
part II. This type of tasks are called dimensionality reduction, where networking feature selections
can be achieved by unserpervised learning algortihms [180]. It is also possible to infer functions
that indicates the analyzed data structure and help cloud operators investigate into correlations
between measurements and incidences. For instance, applications have been conducted to infer
QoS in wireless networks [181] and study the causation between weather and networking device uti-
lization [182]. Though no labeled dataset is required for unsupervised learning, the performance of
an unsupervised learning model may degrade when the fitted models are brought back encountered
with unseen datasets from a different distribution.

Reinforcement Learning

Reinforcement learning (RL) algorithms also do not rely on labeled datasets, yet their perfor-
mance can be quantitatively assessed by rewards generated during the interactions between the
learning agents and the environments [25, 183] (figure 1.15a). The learning process is based on
trial-and-error with learning agents keeping interacting with the environment to explore the state
space and action space with immediate reward for each action as feedback. The goal of the learning
agent is to maximize the reward over a sequence of interactions with the environment, where each
action not only has an impact on the immediate reward, but also influences the rewards at subse-
quent time steps. For instance, in the context of SDN, network operators can create a target policy
for maintaining the communication latency of a given set of connections below a threshold. A RL
agent can then take actions on the SDN controller and update configurations. For each configura-
tion update (an action), the RL agent receives a reward, which indicates the performance of the
previous action and guides the RL agent to bring the actual policy closer to, and finally achieve the
target policy. RL has shown performance gains in various system and networking problems – e.g.,
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Figure 1.15: Reinforcement learning

task scheduling [26], resource allocation [27], congestion control [25] and load balancing [183–185].
An example of the converged training process of a RL model for network load balancer is depicted
in figure 1.15b [28]. When subjected to traffic rates – thus different expected resource utilization
on the server side, the convergence rates are also different. With heavier traffic, load balancing
becomes more challenging, which makes the RL agent take longer to converge. This topic will be
discussed further in chapter 7 in part III in this manuscript.

RL helps avoid error-prone manual configurations. However, this learning paradigm has an in-
trinsic trade-off to balance between exploration (learning agents try out various actions to evaluate
how effective these actions are) and exploitation (learning agents take advantage of the collecte
information and select actions that yield high rewards). In addition, RL algorithms have been
developed and evaluated heavily relying on simulated environments [25], which does not guarantee
their performance in real-world systems.

Challenges

This chapter has so far introduced 3 learning paradigms that utilize fine-grained observations of
network and system states [25]. Periodically polling resource utilisation and system performance
allows for obtaining timely and dedicated observations to make data-driven management deci-
sions [30,135,139,143,186,187]. However this incurs additional control messages and reduces sys-
tem scalability, especially for large-scale distributed systems. Another way to collect a wide range
of fine-grained networking features is to parse and extract from offline collected network traces or
in simulated environments, which is employed for developing clustering algorithms and RL algo-
rithms [25,147,188]. However, this scheme assumes a minimal gap between real-time systems and
offline or simulated systems, which does not necessarily hold in networking systems [30,183]. The
data plane is constrained by low-latency and high-throughput requirements [114], which makes it
challenging to apply off-the-shelf ML algorithms on networking problems.

Applying advanced ML techniques alongside the data plane on the fly is computationally
intractable [8, 189]. Extracting fine-grained (sub-flow-level) observations (e.g., sketches [188])
from data planes can incur additional per-packet processing overhead and memory consump-
tion. Minimizing such performance overhead leads to either (i) heuristic algorithms in the data
plane [98,190,191], which may not be adaptive to dynamic environments, or (ii) control planes that
rely on reactive polling mechanisms, which incur additional control messages [139, 143, 145, 187].
Therefore, in real-world high-performance and large-scale networking systems, heuristics – which
may not be adaptive to dynamic environments – prevail over advanced learning alrogithms [30,65,
66,98,135,186,190–193].

1.3 Thesis Statement: Autonomous Data Centers

This chapter so far has introduced and discussed the development of data center architectures
and network protocols along with the evolution of challenges when operating large-scale, elastic,
high-performance data center networks. Section 1.1.1 has shown that in-production data center
network topologies can have elevated complexity, intended to improve system scalability. A large
variety of network protocols and frameworks to support the communication architectures have been
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demonstrated in section 1.1.2, in favor of multi-tenant setups in large-scale data center networks.
Section 1.1.3 has discussed the demands for high programmability in the data plane to enable
flexible and “intelligent” service management in the cloud and subsequent challenges. Then, the
applications of ML techniques to networking problems is discussed in section 1.2, enhancing net-
work functions for making informed decisions. Section 1.2.1 has introduced the responsibility and
limitations of network functions with 3 examples. Section 1.2.2 has described 3 main categories
of ML algorithms and their applications to enable autonomous and informed decision making in
different network functions.

There is a rising trend of embedding intelligence and applying ML techniques in the cloud
and distributed systems to dynamically monitor and adaptively configure system parameters and
characteristics (e.g., server configurations, forwarding rules) [22, 25, 30, 147, 184, 189]. This can be
achieved by enriching Layer-3 (with the help of data-driven algorithms), embedding feature col-
lection mechanism and decision making process in the network stack by transparently connecting
it to the applications. Large amount of data flows in data center networks and useful network-
ing features can be extracted for making informed decisions to improve networking performance.
Correlations can be identified between networking features and system states, which can provide
insights for better operating the cloud data center networks in an autonomous manner.

The challenges and trade-offs required to collect features efficiently so as to make informed
decisions in the context of different network functions in the cloud is the overall topic of this
thesis. Specifically, this manuscript:

• discusses the challenges of collecting measurement and deploying data-driven networking
policies in real-world (part II);

• builds generic tools to extract networking features from the data plane and deploy ML algo-
rithms for various networking functions in real-world networking systems (part II);

• proposes and showcases a methodological framework that allows developing algorithms of
different learning paradigms for networking problems (part II);

• presents a survey on network load balancing problems in data center networks (part III);

• proposes a hardware-based load balancing mechanism that achieve line-rate load-aware work-
load distribution by exploiting server load information embedded in packet headers as feed-
back signals (part III);

• investigates the challenges and potential performance gains using ML-based load balancing
algorithms and propose both an open-loop and a closed-loop learning load balancing algo-
rithms (part III).

In sum, the augmented programmable data plane allows offering autonomous data center net-
work orchestration, management, and load-balancing with autoscaling as a network service, while
using unmodified applications. As will be studied throughout this manuscript, this offers signifi-
cant benefits in terms of network traffic overhead, optimization of resource utilization, quality and
fairness of service, and energy reduction.
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Chapter 2

Thesis Contributions

This chapter concludes this introductory part of the manuscript by summarizing the thesis
contribution in section 2.1 and, by presenting a list of publications in section 2.2.

2.1 Thesis Summary and Outline

This thesis studies the usage of data-driven methods to optimize network functions – specifically
load balancing – performance in data center networks. It is comprised of 4 parts and 8 chapters,
structured as follows.

Part I provides an introductory discussion. In chapter 1, background on data-center architec-
tures and associated network protocols as well as management frameworks are introduced. Then,
the increasing requirements for embedding more programmability in the data plane are introduced,
which gives the potential of making more informed decisions and applying data-driven networking
policies. Four interesting network functions are introduced – VPN gateway, auto-scaling, load
balancing, and traffic classification – to demonstrate the roles of different network functions, along
with their expectations in modern data center networks. Finally, a discussion is presented about
how using different types of data-driven methods can help augment data centers by providing
adaptivity primitives directly at the network layer. Chapter 2 then summarizes the contributions
of applying this concept throughout this thesis and describes the outline of this thesis.

Valuable insights can be obtained from networking measurements. However, multiple challenges
and limitations of current in-production measurement mechanisms exist in networking systems –
(i) limited available features, (ii) additional management and communication overhead thus con-
strained scalability, and (iii) difficulties in deploying data-driven networking policies in real-time.
To tackle these challenges, Part II presents Aquarius, a tool to collect and exploit network-
ing features in data centers. In chapter 3 (published in a conference and a journal [179, 194]),
a framework that enables efficient data-driven network functions is introduced. To dynam-
ically manage and update networking policies in cloud data centers, Virtual Network Functions
(VNFs) use, and therefore actively collect, networking state information – and in the process,
incur additional control signaling and management overhead, especially in larger data centers. To
avoid intractable additional processing latency under high-performance and low-latency network-
ing constraints, VNFs in production adopt distributed and straightforward heuristics instead of
advanced learning algorithms. Chapter 3 identifies the challenges of deploying learning algorithms
in the context of cloud data centers, and proposes Aquarius to bridge the application of machine
learning (ML) techniques on distributed systems and service management. Aquarius passively
gathers reliable observations without introducing noticeable overhead, and enables the use of ML
techniques to collect, infer, and supply accurate networking state information — without incurring
additional signaling and management overhead. It offers fine-grained and improved visibility of a
flexible and configurable set of networking features to distributed VNFs, and enables both open-
and close-loop control over networking systems. Chapter 3 illustrates the use of Aquarius with a
traffic classifier, an auto-scaling system, and a load balancer -– and demonstrates the use of three
different ML paradigms — unsupervised, supervised, and reinforcement learning, within Aquarius,
for network state inference and service management. Testbed evaluations show that Aquarius suit-
ably improves network state visibility and brings notable performance gains for various scenarios
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with low overhead.

Part III studies the network load balancing problem in data center networks. Load-Balancers
play an important role in data centers as they distribute network flows across application servers
and guarantee per-connection consistency. It is hard, however, to make fair load balancing decisions
so that all resources are efficiently occupied yet not overloaded.

In chapter 4 (published in a workshop [195]), a NetFPGA-based load balancing mecha-
nism is proposed. Tracking connection states allows load balancers to infer server load states and
make informed decisions, but at the cost of additional memory space consumption. This makes
it hard to implement on programmable hardware, which has constrained memory but offers line-
rate performance. Specifically, Charon is designed, a stateless load-aware load balancer that has
line-rate performance implemented in P4-NetFPGA. Charon passively collects load states from
application servers and employs the power-of-2-choices scheme to make load-aware load-balancing
decisions and improve resource utilization. Per-connection consistency is guaranteed statelessly by
encoding the server ID in a covert channel. The prototype design and implementation details are
described in this chapter. Simulation results show performance gains in terms of load distribution
fairness, QoS, throughput, and processing latency.

Chapter 5 (published in a workshop [152]) applies ML algorithms to optimize network
load balancers. Workload distribution algorithms are based on heuristics, e.g., Equal-Cost Multi-
Path (ECMP), Weighted-Cost Multi-Path (WCMP) or naive ML algorithms, e.g., ridge regression.
Advanced ML-based approaches help achieve performance gains in different networking and system
problems. However, it is challenging to apply ML algorithms on networking problems in real-life
systems: it requires domain knowledge to collect features from low-latency, high-throughput, and
scalable networking systems, which are dynamic and heterogenous. This chapter conducts both
offline data analysis and model training, and online model deployment in real-world systems based
on Aquarius. The results show that the ML models improve load balancing performance yet they
also reveals more challenges to be resolved to apply ML for networking systems, including the lack
of generalization in dynamic environments.

In chapter 6 (published in a journal [196]), an open-loop load balancing algorithm based on
Kalman filter is proposed, to achieve load-aware workload distribution with increased generaliza-
tion. This chapter proposes a distributed, application-agnostic, Hybrid Load Balancer (HLB) that
– without explicit monitoring or signaling – infers server occupancies and processing speeds, which
allows making optimized workload placement decisions. This approach is evaluated both through
simulations and extensive experiments, including synthetic workloads and Wikipedia replays on a
real-world testbed. This work is, again, based on Aquarius. Results show significant performance
gains, in terms of both response time and system utilization, when compared to existing load-
balancing algorithms. With only passively observed networking features, HLB can achieve similar
performance as the shortest expected delay (SED) algorithm, which requires manual configurations
to make load balancers aware of server processing capacities.

In chapter 7 (published in a workshop and in 2 conferences [28,183,185]), a closed-loop load
balancing algorithm based on reinforcement learning (RL) is proposed. As central components
in data centers, load balancers operate in dynamic environments with limited monitoring of appli-
cation server loads and provide scalable services. Though HLB can achieve similar performances
with no prior knowledge about the system configuration, the state-of-the-art load balancers still
rely on heuristic algorithms that require manual configurations for fairness and performance. To
alleviate that, a distributed, asynchronous, reinforcement learning mechanism is proposed to –
with no active load balancer state monitoring and limited network observations – improve the
fairness of the workload distribution achieved by a load balancer. Since multiple load balancers
are deployed in data centers to avoid single point of failure, the multi-agent reinforcement learning
(MARL) framework is used. The challenges of this problem consist of the heterogeneous process-
ing architecture and dynamic environments, as well as limited and partial observability of each
LB agent in distributed networking systems, which can largely degrade the performance of in-
production load balancing algorithms in real-world setups. Centralised training and distributed
execution (CTDE) RL scheme has been proposed to improve MARL performance, yet it incurs
– especially in distributed networking systems, which prefer distributed and plug-and-play design
schemes – additional communication and management overhead among agents. We formulate the
multi-agent load balancing problem as a Markov potential game, with a carefully and properly
designed workload distribution fairness as the potential function. A fully distributed MARL al-
gorithm is proposed to approximate the Nash equilibrium of the game. Experimental evaluations
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involve both an event-driven simulator and a real-world system, where the proposed MARL load
balancing algorithm shows close-to-optimal performance in simulations and superior results over
in-production LBs in the real-world system.

Finally, part IV concludes this manuscript.

2.2 List of Publications

The following publications have been published, during the course of this Ph.D.

Journal Publications

• Zhiyuan Yao, Yoann Desmouceaux, Juan-Antonio Cordero-Fuertes, Mark Townsley, Thomas
Clausen. Aquarius-Enable Fast, Scalable, Data-Driven Service Management in the Cloud,
IEEE Transactions on Network and Service Management, August 2022 (chapter 3).

• Zhiyuan Yao, Yoann Desmouceaux, Juan-Antonio Cordero-Fuertes, Mark Townsley, Thomas
Clausen. HLB: Toward Load-Aware Load Balancing, IEEE/ACM Transactions on Network-
ing, June 2022 (chapter 6).

Conference or Workshop Publications

• Zhiyuan Yao, Zihan Ding. Learning Distributed and Fair Policies for Network Load Balancing
as Markov Potentia Game, Proc. 36th Conference on Neural Information Processing Systems
(NeurIPS’22), November 2022 (chapter 7).

• Zhiyuan Yao, Yoann Desmouceaux, Juan-Antonio Cordero-Fuertes, Mark Townsley, Thomas
Heide Clausen. Efficient Data-Driven Network Functions, Proc. 30th International Sym-
posium on the Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS’22 Best Paper Award Recipient), October 2022 (chapter 3)

• Zhiyuan Yao, Zihan Ding, Thomas Clausen. Multi-agent reinforcement learning for network
load balancing in data center, Proc. 31st ACM International Conference on Information and
Knowledge Management (CIKM’22), October 2022 (chapter 7).

• Zhiyuan Yao, Yoann Desmouceaux, Mark Townsley, Thomas Heide Clausen. Towards Intel-
ligent Load Balancing in Data Centers, 5th Workshop on Machine Learning for Systems at
35th Conference on Neural Information Processing Systems (NeurIPS’21), December 2021
(chapter 5)

• Zhiyuan Yao, Zihan Ding, Thomas Heide Clausen. Reinforced Workload Distribution Fair-
ness, 5th Workshop on Machine Learning for Systems at 35th Conference on Neural Infor-
mation Processing Systems (NeurIPS’21), December 2021 (chapter 7)

• Carmine Rizzi, Zhiyuan Yao, Yoann Desmouceaux, Mark Townsley, Thomas Clausen. Charon:
Load-Aware Load-Balancing in P4, Proc. 1st Joint International Workshop on Network Pro-
grammability and Automation (NetPA) at 17th International Conference on Network and
Service Management (CNSM’21), October 2021 (chapter 4).

Data Availability

All the data and scripts necessary to reproduce the graphs included in this thesis can be publicly
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1https://github.com/zhiyuanyaoj/phd-thesis-data

https://github.com/zhiyuanyaoj/phd-thesis-data


22 CHAPTER 2. THESIS CONTRIBUTIONS



Part II

Data-Driven Network Functions

23





Chapter 3

Aquarius - Enabling Fast,
Scalable, Data-Driven Service
Management in the Cloud

Demands for responsive, high-available, low-latency cloud services require content providers
and cloud operators to efficiently manage cloud data centers (DCs) [1, 69]. To increase network
programmability, and balance the trade-off between capital expenditures and quality of service
(QoS), Virtual Network Functions (VNFs) (e.g., firewalls, load balancers, and VPN gateways [14,
63]) are deployed in cloud DCs to provide flexible and reliable service management and transparent
operations. Running on commodity computing platforms, VNFs replace or augment dedicated
hardware devices, and play a significant role in large-scale DCs. To dynamically monitor and
configure VNFs, software-defined networking (SDN) can be deployed, dissociating the routing
and decision-making process (control plane) from the network packets forwarding process (data
plane) [5, 107].

The control plane adaptively manages and updates networking policies in dynamic cloud DC
environments to offer high service availability and QoS. Data-driven mechanisms based on machine
learning (ML) [27, 146] and reinforcement learning (RL) algorithms [26, 28] can be applied, and
show performance gains in various network applications. For instance, auto-scaling systems and
load balancers can achieve improved QoS with reduced cost based on periodically polled resource
utilization of distributed network devices (e.g., application servers) [139,143]. Traffic classification
and anomaly detection help detect security threats with increased accuracy based on network traffic
characteristics extracted from offline-collected network traces [17, 147]. However, it is challenging
to harness these algorithms to drive management decisions in networking systems in real-time, for
multiple reasons, detailed in the following.

ML and RL algorithms require fine-grained observations of network and system
states [25]. Periodically polling resource utilization and system performance allows for obtain-
ing timely and dedicated observations to make data-driven management decisions [30, 135, 139,
143, 186, 187]. However, this incurs additional control messages and reduces system scalability,
especially for large-scale distributed systems. Another way to gather a wide range of fine-grained
networking features is to offline parse collected network traces or in simulated environments and
extract traffic characteristics, which then are employed for developing clustering algorithms and RL
algorithms [25,147,188]. However, this scheme assumes a minimal gap between real-time systems
and offline or simulated systems, which does not necessarily hold in networking systems [30,183].

The data plane is constrained by low-latency and high-throughput requirements [114],
which makes it challenging to apply off-the-shelf ML algorithms on networking prob-
lems. Applying advanced ML techniques on-line in the data plane is computationally intractable [8,
197]. Therefore, in real-world high-performance and large-scale networking systems, heuristics –
which may not be adaptive to dynamic environments – prevail over advanced learning algorithms
in this environment [30,65,66,98,135,186,190–193].
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Figure 3.1: Linear regression on probing latencies (with and without background network traffic) and
additional response time collected on clusters of different numbers of servers.

Statement of Purpose

This chapter proposes Aquarius, a fast and scalable data collection and exploitation mechanism
that bridges different requirements for data planes (low-latency and high-throughput) and control
planes (making informed decisions). It enables learning algorithms to make inferences and open-
or closed-loop control decisions based on fine-grained observations, and it allows the deployment of
distributed and intelligent VNFs, which harness ML algorithms to make data-driven operational
decisions. This chapter makes the following contributions.

First, this chapter identifies the challenges of gathering networking features to make
valuable inferences and informed operational decisions in high-performance and large-
scale cloud DCs Experimental evaluations demonstrate that traditional mechanisms for feature
collection (e.g., active probing [143, 187, 198–202] and trace capture [172–177]) cause substantial
overhead.

Second, this chapter proposes a fast and configurable mechanism – Aquarius – that
allows collecting a wide range of fine-grained networking features in a scalable layout,
which is suitable for applying various ML techniques to networking problems Aquarius
embeds programmable and flexible feature collection state machines in the data plane. These state
machines are used to extract user-defined networking features. To efficiently gather observations,
Aquarius collects 2 types of features – counters and samples – using multi-buffering [203] and
reservoir sampling [204], respectively. Networking features are grouped separately corresponding
to different network applications and types of equipment (e.g., links, servers). Features are made
available in a scalable layout, which offers high flexibility when aggregating and processing data
under various requirements (e.g., by single equipment or by groups of equipment).

Third, this chapter provides an extensive performance and overhead evaluation of
Aquarius, using experiments in a realistic testbed Within the context of (i) an unsupervised-
ML-powered network traffic classifier, (ii) a supervised-ML-powered auto-scaling system, and (iii)
an RL-powered Layer-4 load balancer, this chapter shows that the collected features enable:

• unsupervised learning + offline data analysis: creating benchmark datasets to gain
insight into different networking problems with minimal data collection overhead;

• supervised learning + VNF management : embedding ML techniques to achieve self-
aware monitoring and self-adaptive orchestration in an elastic compute cloud;

• reinforcement learning + online policy updates: enabling closed-loop control, where
collected networking features help optimise routing policies and improve QoS.

Chapter Outline

The remainder of this chapter is organized as follows. Section 3.1 describes the challenges
of harnessing data-driven algorithms for networking problems and compares this chapter with
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Figure 3.2: Correlation (Spearman) increases when the probing frequency grows, yet, so do additional
control messages.

related work. Section 3.2 presents both the rationale and the design of the feature collection and
exploitation mechanism of Aquarius. Section 3.3 demonstrates the use of Aquarius in the context
of 3 different VNFs on a realistic testbed. Section 3.4 summarizes the results of this chapter.

3.1 Background

This section presents the challenges of efficient feature collection and data-driven VNFs in cloud
DCs, and, with a comparison of related work, motivates the design of Aquarius.

Efforts have been made to embed intelligence and apply ML techniques in the cloud, and
distributed systems, to dynamically monitor, and adaptively configure, system parameters and
characteristics (e.g., server configurations, forwarding rules) [22,25,30,147,184,189]. However, this
raises many challenges and trade-offs that require to be handled, to efficiently collect features and
make data-driven decisions. These challegnes are summarized in the following.

Online Feature Collection Datasets with high quality are essential to ML studies. However,
few datasets are available as a benchmark for ML applications in networking systems (e.g., traffic
analysis and anomaly detection) [172–177]. To collect a wide range of features (e.g., traffic rates,
packet sizes, TCP congestion window sizes), these datasets are collected based on logged network
traces (e.g., by TCPdump). Though log-based feature collection provides abundant information
for various types of applications, it does not scale in terms of log file size [205]. Log-based fea-
ture collection also incurs performance overhead when subjected to heavy traffic, which leads to
inaccurate and irrelevant measurements and makes it hard to bring ML algorithms “online” (i.e.,
making inference and management decisions in real-time) [189].

Scalability vs. Visibility Active probing is another feature collection approach to monitor the
system state and make informed decisions [143,187,198–202]. However, this requires modifications
on each networking device to maintain management and communication channels. There is also
a trade-off between the communications overhead via probing channels, and the visibility of the
state of VNFs. As depicted in figure 3.1, when a controller VM periodically (every 50ms) probes
a cluster of servers1 via TCP sockets, the latency overhead increases with the number of servers,
which diminishes the QoS. As depicted in figure 3.2, the visibility of the state of VNFs, unsurpris-
ingly, correlates with the probing frequency. Additional management traffic can exceed the 90-th
percentile of per-destination-rack flow rate (100kbps) in production [1].

Flexibility vs. Performance Developing, prototyping, and benchmarking ML applications on
different networking problems is hard in high performance networks because of the low-latency
and high-throughput expectations in the data plane. A general data processing framework has
been proposed [8] to accelerate data-driven network functions on reconfigurable hardware, which
provides line-rate performance. However, in dynamic and elastic networking environments, where

1In the 69-byte control packet emitted by the server, the 24-byte payload consists of the server ID, CPU and
memory usage, and the number of busy application threads.
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Property [198,199]
[109]

[209–211]
[29,139] [25,135,143] [26,152]

[22]
[200] [19]

[8] Aquarius
[110] [137,140] [27,186,187] [212] [201] [213]

No Control Message ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓
Distributed ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Commodity Device ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓

Use Case Generic
Management

Autoscaling
Traffic Traffic

Generic Generic
Protocol Optimisation Classification

Table 3.1: Comparison of data-driven VNF systems.

additions and removals of networking devices and services happen frequently [190], hardware de-
vices are scalable in terms of performance (e.g., throughput) but not in terms of network topology
(e.g., number of services and networking devices). Hardware programming and verification pro-
cedures can also be difficult and time-consuming [206], which thus relies more on simulations for
interdisciplinary research [25, 28, 207, 208]. Yet the flexibility offered by simulations hinders the
real-world deployment of ML algorithms because simulators fail to capture the complexity of high
performance networking systems [30].

3.1.1 Requirements

The challenges give rise to the following requirements for the forwarding plane enabling data-
driven VNFs in the cloud:

Universality – the feature collection mechanism should cover a wide range of features and be
application-agnostic (section 3.3.1);

Relevance – the collected features should be representative, providing useful information to
address real-world applications in different circumstances (section 3.3.3);

Scalability – the feature collection and exploitation mechanism should incur minimal perfor-
mance overhead and support large-scale and dynamically changing network topology (section 3.3.2);

Flexibility – the mechanism should be configurable and easy to be tailored for various use cases
and learning algorithms (section 3.2.1);

Deployability – the mechanism should be plug-and-play and require no additional installation
or configuration (section 3.2.1).

3.1.2 Related Work

Various mechanisms (summarised in table 3.1) dynamically configure and manage VNFs, mak-
ing data-driven decisions.

ML benefits various networking applications and network functions, e.g., congestion control [23,
24], intrusion detection systems [21, 22], traffic classification [18, 214], and traffic optimization by
way of task scheduling [26, 27]. It allows inferring system states from networking features. To
obtain networking features, these ML applications operate at the Application Layer. However,
they are not application-agnostic and do not generalize to different use cases. Acting as proxies,
they also terminate networking connections, increasing processing latency [215, 216]. Aquarius
collects a wide range of features at the Transport Layer and enables generic data-driven network
functions with minimal overhead.

Management and Orchestration (MANO) frameworks [198, 199] and autoscaling systems [139,
140] use centralized controllers to monitor and update VNF and topology configurations. Based
on active monitoring, MANO and autoscaling systems help provision computing, storage, and
networking resources. Software-Defined Network (SDN) provides programmable APIs to gather
per-flow or application-level features in a centralized way, to adaptively update configurations,
using network equipment that supports the OpenFlow protocol [109, 110]. Other management
protocols [209–211] collect and send data from network equipment to a centralized controller via
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active probing, but with high communication overhead. Aquarius passively extracts networking
features from the data plane and lets VNFs make decisions in a distributed and scalable way.

Distributed VNFs also use periodically polled network states (e.g., packet arrival rates, CPU
and memory usage), to ensure service availability, and improve QoS [143,187], or classify network-
ing traffic [200, 201]. Additional control messages and communication latency limit the system
scalability [17, 202]. In [186], controllers are notified of the occurrence of malfunctioning network
devices to avoid periodic probing. Some network functions gain more visibility via in-network
telemetry (INT) [212] and covert-channels [217]. However, these require either deploying agents or
modifying the protocol stack on network devices, which limit their deployability on generic hard-
ware or systems. Aquarius is designed to employ plug-and-play design, incurring no additional
modifications in the network stacks.

Learning algorithms incur additional inference and processing latencies. To reduce latency,
dedicated hardware, e.g., NPU [218], and NetFPGA [19], help improve data processing efficiency
for in-network ML applications [219]. Taurus [8] enables in-network distributed data plane intelli-
gence using a map-reduce abstraction for generic ML algorithms on a coarse-grained reconfigurable
array (CGRA) [220]. These hardware solutions boost performance, yet they lack flexibility when
developing ML algorithms for different use cases in elastic networking systems. MVFST-RL [25]
proposes to asynchronously update networking configurations to benefit from learning algorithms
without inducing additional latency in the data plane. However, performance gains are shown only
in simulators with a single use case. Aquarius is designed to incorporate intelligence in a variety
of VNFs, requiring no dedicated device, yet it is ready to be deployed in real-world systems.

3.2 Design

To meet the 5 requirements, summarised in section 3.1.1, Aquarius is designed as a 3-layer
architecture (figure 3.3). Aquarius embeds a feature collector at the Transport Layer in the data
plane (deployability), to efficiently and passively extract a wide range of features (universality)
with high quality (relevance), and low latency and performance overhead. It makes the features
available and easily accessible via shared memory (scalability), for applications of ML algorithms
on various use cases in the control plane (flexibility).

3.2.1 Parser Layer

To balance the tradeoff between scalability and visibility, networking features which indicate
system states can be passively collected from the data plane to avoid active probing and additional
installations and configurations. However, located within network function chains, VNFs in mod-
ern DCs may observe only 1-way traffic (i.e., half of the traffic, in only one direction of each flow)
addressing to their egress equipment (e.g., links and servers), to reduce additional processing la-
tency [64]. This requires: (i) careful design of feature collection mechanisms to offer high scalability
and configurability, and (ii) domain knowledge to extract valuable and representative networking
features and reason their correlations with system states. This chapter illustrates the design using
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Figure 3.5: A state machine of feature collector for TCP traffic.

TCP traffic, which is a widely used protocol [1,82,221]. The same workflow, however, also applies
to other network traffic (e.g., UDP).

Stateful Feature Collection

Network traffic consists of flows that traverse different nodes (e.g., edge routers, load balancers,
servers) in the system, whose states can be traced and retrieved from the flows – along with traffic
characteristics.

Stateless feature collection mechanisms – e.g., sketching [188,222], a family of streaming algo-
rithms for networking measurement summarisations – do not track the state of network flows, yet
they can gather counters as ordinal features for ML algorithms using hashing functions, with little
performance overhead. However, ordinal features (counters) contain less information than quanti-
tative features – time-related features (e.g., round-trip time, inter-arrival time, flow duration) and
throughput information (e.g., congestion window size, flow size) – all of which are not captured by
stateless mechanisms.

Aquarius tracks flow states in bucket entries with a stateful table (figure 3.4), which can be
configured to collect a wide range of features using a state machine depicted in figure 3.5. In the
flow table, Aquarius stores the information of each flow into a bucket entry indexed by the hash
of the flow id modulo the size of the flow table size – hash(fid)modM , where fid is the flow ID2

and M is the flow table size. An entry in the flow table can be in one of three states – SYN, CONN
and NULL (figure 3.5). When a new flow arrives (TCP SYN), it is registered in a bucket entry of the
flow table with its fid and state (SYN). On receipt of its subsequent packets, the state in the entry
is retrieved and updated to CONN (connected) if the flow starts transmitting data3. On receipt
of packets which terminate TCP flows (or timeout for UDP flows), the flow is evicted and the

2TCP network flows are identified by their 5-tuples: protocol number, source and destination IP addresses and
port numbers.

3For a TCP flow, if it is well-established (e.g., after 3-way handshakes), and the first data packet is received, its
state will be updated to CONN.



3.2. DESIGN 31

Space Complexity = O(kN)

Notation Explanation

tau

iat_f

byte_f

byte_p

win

d_win

iat_p

iat_ppf

pt_1st

pt_gen

lat_sa

fct

Flow duration

Flow inter-arrival time

Byte transmitted per packet
/per flow
/per on-going flow

TCP window size

Change of TCP window size

Packet inter-arrival time

Packet inter-arrival time per flow

Egress processing time derived 
from TCP timestamp options for 
the first/general data packets

SYNACK latency

Flow completion time

byte_f_on

f32

f32

u32

u32

u32

u32

u16

u32

u32

u32

u16

Space Complexity = O(M)

t0

t_last

ack0

ack_last

hash

timeout

state

egress

win_last

tsecr

vip

TypeNotation Explanation

Flow beginning timestamp

Last packet arrival time per flow

Connections’ First ACK number

Last ACK number

Hash digest of TCP 5-tuple

Timeout for packet validity

Connection state

Egress ID

Last TCP window size

Last TCP echo timestamp

VIP of the network application

O
pt

io
na

l
M

an
da

to
ry

u32

f32

f32

Space Complexity = O(N)

TypeNotation Explanation

t0_ecr

t_last_f

t_last_p

TCP timestamp option anchor

Last flow arrival time

Last packet arrival time

Bu
ck

et
R

eg
ist

er
s

Sa
m

pl
es

Tables on the left: Data structures in the data plane
Tables on the right: Network features
M: Number of bucket entries in flow tables
N: Number of egresses
k: Reservoir sampling buffer size
          : Dependency on additional variables
   : TCP-specific features

(f32, f32)

(f32, f32)

(f32, u32)

(f32, u32)

(f32, u32)

(f32, i32)

(f32, f32)

(f32, f32)

(f32, u32)

(f32, u32)

(f32, f32)

(f32, f32)

Type

(f32, u32)

Space Complexity = O(N)

Explanation

Number of flows

Number of completed flows

Number of packets

Number of normal data packets

Number of duplicated ACKs

Number of out of orders

Number of retransmissions

Number of hash collisions C
ou

nt
er

s

Type

u32

u32

u32

u32

u32

u32

u32

u32

n_f

n_fct

n_p

n_norm

n_dpk

n_ooo

n_rtr

n_cls

Notation

Th
ro

ug
hp

ut
Ti

m
e-

R
el

at
ed

<latexit sha1_base64="mRuZ0hbB50w2qd7BJ48j+Tj7Rog=">AAAB8HicbVBNS8NAEN34WetX1aOXxVbwICUpiB4LXjxWsB/ShrLZTNKlu5uwuxFK6K/w4kERr/4cb/4bt20O2vpg4PHeDDPzgpQzbVz321lb39jc2i7tlHf39g8OK0fHHZ1kikKbJjxRvYBo4ExC2zDDoZcqICLg0A3GtzO/+wRKs0Q+mEkKviCxZBGjxFjpsTYISRyDqg0rVbfuzoFXiVeQKirQGla+BmFCMwHSUE607ntuavycKMMoh2l5kGlICR2TGPqWSiJA+/n84Ck+t0qIo0TZkgbP1d8TORFaT0RgOwUxI73szcT/vH5mohs/ZzLNDEi6WBRlHJsEz77HIVNADZ9YQqhi9lZMR0QRamxGZRuCt/zyKuk06t5V3b1vVJuXRRwldIrO0AXy0DVqojvUQm1EkUDP6BW9Ocp5cd6dj0XrmlPMnKA/cD5/AP82j84=</latexit>†

<latexit sha1_base64="TvJWA6evu0RVvnZ9EIMsylPkLfQ=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURI8FLx4r2A9pQ9lsNunS3U3Y3Qgl9Fd48aCIV3+ON/+N2zYHbX0w8Hhvhpl5QcqZNq777ZQ2Nre2d8q7lb39g8Oj6vFJVyeZIrRDEp6ofoA15UzSjmGG036qKBYBp71gcjv3e09UaZbIBzNNqS9wLFnECDZWeqwPQxzHVNVH1ZrbcBdA68QrSA0KtEfVr2GYkExQaQjHWg88NzV+jpVhhNNZZZhpmmIywTEdWCqxoNrPFwfP0IVVQhQlypY0aKH+nsix0HoqAtspsBnrVW8u/ucNMhPd+DmTaWaoJMtFUcaRSdD8exQyRYnhU0swUczeisgYK0yMzahiQ/BWX14n3WbDu2q4981ayyviKMMZnMMleHANLbiDNnSAgIBneIU3RzkvzrvzsWwtOcXMKfyB8/kDAMaP0w==</latexit>†

<latexit sha1_base64="mRuZ0hbB50w2qd7BJ48j+Tj7Rog=">AAAB8HicbVBNS8NAEN34WetX1aOXxVbwICUpiB4LXjxWsB/ShrLZTNKlu5uwuxFK6K/w4kERr/4cb/4bt20O2vpg4PHeDDPzgpQzbVz321lb39jc2i7tlHf39g8OK0fHHZ1kikKbJjxRvYBo4ExC2zDDoZcqICLg0A3GtzO/+wRKs0Q+mEkKviCxZBGjxFjpsTYISRyDqg0rVbfuzoFXiVeQKirQGla+BmFCMwHSUE607ntuavycKMMoh2l5kGlICR2TGPqWSiJA+/n84Ck+t0qIo0TZkgbP1d8TORFaT0RgOwUxI73szcT/vH5mohs/ZzLNDEi6WBRlHJsEz77HIVNADZ9YQqhi9lZMR0QRamxGZRuCt/zyKuk06t5V3b1vVJuXRRwldIrO0AXy0DVqojvUQm1EkUDP6BW9Ocp5cd6dj0XrmlPMnKA/cD5/AP82j84=</latexit>†

<latexit sha1_base64="mRuZ0hbB50w2qd7BJ48j+Tj7Rog=">AAAB8HicbVBNS8NAEN34WetX1aOXxVbwICUpiB4LXjxWsB/ShrLZTNKlu5uwuxFK6K/w4kERr/4cb/4bt20O2vpg4PHeDDPzgpQzbVz321lb39jc2i7tlHf39g8OK0fHHZ1kikKbJjxRvYBo4ExC2zDDoZcqICLg0A3GtzO/+wRKs0Q+mEkKviCxZBGjxFjpsTYISRyDqg0rVbfuzoFXiVeQKirQGla+BmFCMwHSUE607ntuavycKMMoh2l5kGlICR2TGPqWSiJA+/n84Ck+t0qIo0TZkgbP1d8TORFaT0RgOwUxI73szcT/vH5mohs/ZzLNDEi6WBRlHJsEz77HIVNADZ9YQqhi9lZMR0QRamxGZRuCt/zyKuk06t5V3b1vVJuXRRwldIrO0AXy0DVqojvUQm1EkUDP6BW9Ocp5cd6dj0XrmlPMnKA/cD5/AP82j84=</latexit>†

<latexit sha1_base64="mRuZ0hbB50w2qd7BJ48j+Tj7Rog=">AAAB8HicbVBNS8NAEN34WetX1aOXxVbwICUpiB4LXjxWsB/ShrLZTNKlu5uwuxFK6K/w4kERr/4cb/4bt20O2vpg4PHeDDPzgpQzbVz321lb39jc2i7tlHf39g8OK0fHHZ1kikKbJjxRvYBo4ExC2zDDoZcqICLg0A3GtzO/+wRKs0Q+mEkKviCxZBGjxFjpsTYISRyDqg0rVbfuzoFXiVeQKirQGla+BmFCMwHSUE607ntuavycKMMoh2l5kGlICR2TGPqWSiJA+/n84Ck+t0qIo0TZkgbP1d8TORFaT0RgOwUxI73szcT/vH5mohs/ZzLNDEi6WBRlHJsEz77HIVNADZ9YQqhi9lZMR0QRamxGZRuCt/zyKuk06t5V3b1vVJuXRRwldIrO0AXy0DVqojvUQm1EkUDP6BW9Ocp5cd6dj0XrmlPMnKA/cD5/AP82j84=</latexit>†

<latexit sha1_base64="mRuZ0hbB50w2qd7BJ48j+Tj7Rog=">AAAB8HicbVBNS8NAEN34WetX1aOXxVbwICUpiB4LXjxWsB/ShrLZTNKlu5uwuxFK6K/w4kERr/4cb/4bt20O2vpg4PHeDDPzgpQzbVz321lb39jc2i7tlHf39g8OK0fHHZ1kikKbJjxRvYBo4ExC2zDDoZcqICLg0A3GtzO/+wRKs0Q+mEkKviCxZBGjxFjpsTYISRyDqg0rVbfuzoFXiVeQKirQGla+BmFCMwHSUE607ntuavycKMMoh2l5kGlICR2TGPqWSiJA+/n84Ck+t0qIo0TZkgbP1d8TORFaT0RgOwUxI73szcT/vH5mohs/ZzLNDEi6WBRlHJsEz77HIVNADZ9YQqhi9lZMR0QRamxGZRuCt/zyKuk06t5V3b1vVJuXRRwldIrO0AXy0DVqojvUQm1EkUDP6BW9Ocp5cd6dj0XrmlPMnKA/cD5/AP82j84=</latexit>†

<latexit sha1_base64="mRuZ0hbB50w2qd7BJ48j+Tj7Rog=">AAAB8HicbVBNS8NAEN34WetX1aOXxVbwICUpiB4LXjxWsB/ShrLZTNKlu5uwuxFK6K/w4kERr/4cb/4bt20O2vpg4PHeDDPzgpQzbVz321lb39jc2i7tlHf39g8OK0fHHZ1kikKbJjxRvYBo4ExC2zDDoZcqICLg0A3GtzO/+wRKs0Q+mEkKviCxZBGjxFjpsTYISRyDqg0rVbfuzoFXiVeQKirQGla+BmFCMwHSUE607ntuavycKMMoh2l5kGlICR2TGPqWSiJA+/n84Ck+t0qIo0TZkgbP1d8TORFaT0RgOwUxI73szcT/vH5mohs/ZzLNDEi6WBRlHJsEz77HIVNADZ9YQqhi9lZMR0QRamxGZRuCt/zyKuk06t5V3b1vVJuXRRwldIrO0AXy0DVqojvUQm1EkUDP6BW9Ocp5cd6dj0XrmlPMnKA/cD5/AP82j84=</latexit>†
<latexit sha1_base64="mRuZ0hbB50w2qd7BJ48j+Tj7Rog=">AAAB8HicbVBNS8NAEN34WetX1aOXxVbwICUpiB4LXjxWsB/ShrLZTNKlu5uwuxFK6K/w4kERr/4cb/4bt20O2vpg4PHeDDPzgpQzbVz321lb39jc2i7tlHf39g8OK0fHHZ1kikKbJjxRvYBo4ExC2zDDoZcqICLg0A3GtzO/+wRKs0Q+mEkKviCxZBGjxFjpsTYISRyDqg0rVbfuzoFXiVeQKirQGla+BmFCMwHSUE607ntuavycKMMoh2l5kGlICR2TGPqWSiJA+/n84Ck+t0qIo0TZkgbP1d8TORFaT0RgOwUxI73szcT/vH5mohs/ZzLNDEi6WBRlHJsEz77HIVNADZ9YQqhi9lZMR0QRamxGZRuCt/zyKuk06t5V3b1vVJuXRRwldIrO0AXy0DVqojvUQm1EkUDP6BW9Ocp5cd6dj0XrmlPMnKA/cD5/AP82j84=</latexit>†
<latexit sha1_base64="mRuZ0hbB50w2qd7BJ48j+Tj7Rog=">AAAB8HicbVBNS8NAEN34WetX1aOXxVbwICUpiB4LXjxWsB/ShrLZTNKlu5uwuxFK6K/w4kERr/4cb/4bt20O2vpg4PHeDDPzgpQzbVz321lb39jc2i7tlHf39g8OK0fHHZ1kikKbJjxRvYBo4ExC2zDDoZcqICLg0A3GtzO/+wRKs0Q+mEkKviCxZBGjxFjpsTYISRyDqg0rVbfuzoFXiVeQKirQGla+BmFCMwHSUE607ntuavycKMMoh2l5kGlICR2TGPqWSiJA+/n84Ck+t0qIo0TZkgbP1d8TORFaT0RgOwUxI73szcT/vH5mohs/ZzLNDEi6WBRlHJsEz77HIVNADZ9YQqhi9lZMR0QRamxGZRuCt/zyKuk06t5V3b1vVJuXRRwldIrO0AXy0DVqojvUQm1EkUDP6BW9Ocp5cd6dj0XrmlPMnKA/cD5/AP82j84=</latexit>†

<latexit sha1_base64="mRuZ0hbB50w2qd7BJ48j+Tj7Rog=">AAAB8HicbVBNS8NAEN34WetX1aOXxVbwICUpiB4LXjxWsB/ShrLZTNKlu5uwuxFK6K/w4kERr/4cb/4bt20O2vpg4PHeDDPzgpQzbVz321lb39jc2i7tlHf39g8OK0fHHZ1kikKbJjxRvYBo4ExC2zDDoZcqICLg0A3GtzO/+wRKs0Q+mEkKviCxZBGjxFjpsTYISRyDqg0rVbfuzoFXiVeQKirQGla+BmFCMwHSUE607ntuavycKMMoh2l5kGlICR2TGPqWSiJA+/n84Ck+t0qIo0TZkgbP1d8TORFaT0RgOwUxI73szcT/vH5mohs/ZzLNDEi6WBRlHJsEz77HIVNADZ9YQqhi9lZMR0QRamxGZRuCt/zyKuk06t5V3b1vVJuXRRwldIrO0AXy0DVqojvUQm1EkUDP6BW9Ocp5cd6dj0XrmlPMnKA/cD5/AP82j84=</latexit>†
<latexit sha1_base64="mRuZ0hbB50w2qd7BJ48j+Tj7Rog=">AAAB8HicbVBNS8NAEN34WetX1aOXxVbwICUpiB4LXjxWsB/ShrLZTNKlu5uwuxFK6K/w4kERr/4cb/4bt20O2vpg4PHeDDPzgpQzbVz321lb39jc2i7tlHf39g8OK0fHHZ1kikKbJjxRvYBo4ExC2zDDoZcqICLg0A3GtzO/+wRKs0Q+mEkKviCxZBGjxFjpsTYISRyDqg0rVbfuzoFXiVeQKirQGla+BmFCMwHSUE607ntuavycKMMoh2l5kGlICR2TGPqWSiJA+/n84Ck+t0qIo0TZkgbP1d8TORFaT0RgOwUxI73szcT/vH5mohs/ZzLNDEi6WBRlHJsEz77HIVNADZ9YQqhi9lZMR0QRamxGZRuCt/zyKuk06t5V3b1vVJuXRRwldIrO0AXy0DVqojvUQm1EkUDP6BW9Ocp5cd6dj0XrmlPMnKA/cD5/AP82j84=</latexit>†

<latexit sha1_base64="mRuZ0hbB50w2qd7BJ48j+Tj7Rog=">AAAB8HicbVBNS8NAEN34WetX1aOXxVbwICUpiB4LXjxWsB/ShrLZTNKlu5uwuxFK6K/w4kERr/4cb/4bt20O2vpg4PHeDDPzgpQzbVz321lb39jc2i7tlHf39g8OK0fHHZ1kikKbJjxRvYBo4ExC2zDDoZcqICLg0A3GtzO/+wRKs0Q+mEkKviCxZBGjxFjpsTYISRyDqg0rVbfuzoFXiVeQKirQGla+BmFCMwHSUE607ntuavycKMMoh2l5kGlICR2TGPqWSiJA+/n84Ck+t0qIo0TZkgbP1d8TORFaT0RgOwUxI73szcT/vH5mohs/ZzLNDEi6WBRlHJsEz77HIVNADZ9YQqhi9lZMR0QRamxGZRuCt/zyKuk06t5V3b1vVJuXRRwldIrO0AXy0DVqojvUQm1EkUDP6BW9Ocp5cd6dj0XrmlPMnKA/cD5/AP82j84=</latexit>†

Figure 3.6: Notations, categories, variable dependencies, and space complexity of all network features.

entry state returns to NULL, so that the bucket entry is available for new flows. In the case where
the bucket entry is not available when a new flow appears, the flow is considered a “miss” and is
excluded by the feature collector.

By passively extracting networking features from flow states, Aquarius does not require addi-
tional configurations and improves the deployability.

Network Features

Various features can gainfully benefit the decision-making process for different use cases. Count-
ing the number of ongoing flows helps track instant server load states, thus helping balance work-
loads distribution (section 3.3.3). Throughput information helps classify whether the network
traffic is IO-intensive (section 3.3.1). Time-related features help understand the QoS on servers,
thus helping predict resource utilization and schedule scaling events (section 3.3.2).

As a generic feature collection mechanism, Aquarius should be able to collect as much informa-
tion as possible with minimal overhead (e.g., memory space consumption). With the flow table,
Aquarius allows flexible configuration of attributes, to gather the most significant features and
optimize the memory usage overhead for different applications. Figure 3.6 lists all configurable
features that are implemented in this chapter4.

Ordinal features are collected as counters, which are incremented either as integer variables or
using sketches. For simplicity, this chapter uses accumulative integer variables, e.g., when a flow

4All features depend on the state and timeout attributes in the flow table, thus these dependencies are omitted
for clarity. More attributes can be potentially added to obtain more features, e.g., to track packet TTL.



32 CHAPTER 3. AQUARIUS: EFFICIENT DATA-DRIVEN NETWORK FUNCTIONS

Algorithm 1 Reservoir sampling with no rejection

1: k ← reservoir buffer size
2: buf ← [(0, 0), . . . , (0, 0)] ▷ Size of k
3: for each observed sample v arriving at t do
4: randomId← rand()
5: idx← randomId%N ▷ randomly select one index
6: buf [idx]← (t, v) ▷ register sample in buffer

state transits from SYN to CONN, the total number of received flows n f is incremented5. Counters
for general network protocols include:

1. Number of packets and flows (n p, n f), which quantifies the volume of network traffic ad-
dressed to each egress equipment.

2. Number of hash collisions (n cls), which evaluates the amount of untracked flows and can
be used to estimate the coverage of collected features.

3. Number of out-of-ordered packets (n ooo), which indicates the multiple path existence in
networks, where the packet ordering is not necessarily preserved.

For TCP traffic, additional counters can be gathered:

1. Number of completed flows (n fct), which is incremented when a flow terminates. The
number of ongoing flows (a canonical feature) is derived as #flows = n f−n fct, to estimate
instant queue lengths of ongoing tasks on the server side.

2. Number of duplicated ACK packets, retransmissions (n dpk, n rtr), which can be used for
diagnostics, reflecting e.g., the level of congestion on links.

Quantitative features are collected as samples, using reservoir sampling [204] (algorithm 1),
which is a statistical mechanism that helps gather a representative group of samples, in fix-
sized buffers from a stream, with minimized computational overhead and memory usage for high-
performance data planes [114, 121]. To capture the system dynamic, besides feature values, it
is also important to trace the timestamps of different events, e.g., for sequential ML algorithms.
Reservoir sampling collects an exponentially-distributed number of samples over time and gives
more importance to “fresher” observations. For a Poisson stream of events with rate λ, the ex-

pectation of the amount of samples that are preserved in buffer after n steps is E = λ
(
k−1
k

)λn
,

where k is the size of reservoir buffer. Based on the characteristics of different system dynamics,
e.g., long-term distribution shifts or short-term oscillations, the reservoir sampling mechanism can
to be tuned (e.g., number of buffers) to collect representative statistical distributions of the states
over time, since both the sampling timestamps and exponentially-distributed numbers of samples
are captured over a time window. Periodic queries to the reservoir sampling buffers can generate
generic time-series data, suitable for sequential pattern analysis.

For general network flows, the following features can be sampled in reservoir buffers:

1. Bytes transmitted per packet (byte p) and bytes transmitted per flow (byte f on), which help
estimate overall IO occupation in the networks. Bytes transmitted per flow keep increasing
as more data packets are received, until the flow ends or times out.

2. Flow and packet inter-arrival times (iat f, iat p), which reflect the arrival rates of flows
thus the burst of network requests. The values of iat f are updated when new flows arrive
while iat p requires no stateful flow tracking.

3. Flow duration (tau), which contributes to characterizing the type of network traffic, e.g.,
long-lived flows or short queries. This feature is updated on receipt of each data packet of
the flow.

For TCP traffic, additional features can be collected:

1. Congestion window size (win, d win), which embed the congestion states of networking sys-
tems. Their values are updated on receipt of new ACK packets, after 3-way handshakes.

5The counter n fct is incremented only if one flow ends with a previous flow state as CONN. A similar DDoS
mitigation mechanism based on flow tables is proposed in Prism [221], but it is out of the scope of this chapter.
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Figure 3.8: Cloud service topology.

2. Flow completion time (fct and flow byte size (byte f), which are collected when flows
terminate. Their values indicate the characteristics of the managed services.

3. SYN to first ACK latency (lat sa), which estimates the 3-way handshakes latency for TCP
traffic. When a SYN packet is received on one host, SYN cookies statelessly generate a imme-
diate SYNACK response. Their values help estimate and calibrate the baseline RTT between
two end hosts of the flows.

4. Data packet processing time (pt 1st and pt gen), which can be derived from TCP timestamp
options tsecr. Intuitively, the time difference between the reception and the response of a
data packet indicates the processing time and resource usage on the egress network equip-
ment. However, given the constraint of observing only 1-way traffic on VNFs (e.g., DSR
mode for layer-4 LBs), this information is hard to obtain. Using the TCP option fields, the
timestamp of the egress equipment’s response (tsval) is recovered from the ACK packets sent
by the client (tsecr). The procedure of rebuilding the processing time on the egress side
is illustrated in figure 3.7. With respect to Web applications, the processing time is further
distinguished by the first data packet (pt 1st) and the subsequent ones (pt gen).

In-Network Telemetry (INT) features can also be collected as samples and stored in reservoir
buffers [191,223]. For simplicity, these features are omitted in this chapter.

3.2.2 Partitioner Layer

As introduced in section 1.1, cloud service is identified by a virtual IP address (VIP) (figure 3.8),
which corresponds to clusters of provisioned resources – e.g., servers, each identified by a unique
direct IP (DIP). In production, cloud DCs are subject to high traffic rates and their environments
and topologies change dynamically. This requires to organize collected features in a generic, yet
scalable format, and make features available for ML algorithms without disrupting the data plane.

Features describing different cloud services should be separated to (i) avoid multimodal distri-
butions in collected features and (ii) allow dynamically adding or removing services. Based on use
cases, features collected from a given service should be further partitioned – by ingress or egress
equipment, e.g., links or servers – to have finer granularity for learning algorithms. Even under
heavy traffic and high access rates, features should be reliable and easy to access.

Aquarius organizes observations of each VIP in independent POSIX shared memory (shm) files,
to provide scalable and dynamic service management. In each shm file, collected features are further
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Operation / Complexity Computation Memory
Add / Remove VIP O(1) O(kN +mN)
Add egress node O(1) O(k +m)
Remove egress node O(1) O(1)
Register reservoir sample
Update counter (cache)

O(1) O(1)

Update counters / actions
(multi-buffering)

O(1) O(N)

Get the latest
observation

1 node O(m)
O(k +m)

All nodes O(kN +mN)
Update action in
the data plane

1 node O(m)
O(1)

All nodes O(N)

Table 3.2: Computation and memory complexity of different operations, where k is the size of reservoir
buffer, N is the number of egress nodes, and m is the level of multi-buffering.

partitioned by egress equipment6. Figure 3.10 exemplifies the shm layout and workflow (detailed
version in figure 3.9).

Bit-Index and Masking

The first byte in the shm file of a VIP defines the max number of egress equipment N , which
determines the number of “columns” to be reserved for feature collection. It is determined a priori
by the scale of the cloud service, so that N is large enough to cover all the networking devices
that are required in all circumstances. The N -bit bit-index header helps quickly identify activated
egress and its corresponding “column” – the i-th bit is set to 1 if the i-th egress is active and 0
otherwise. With minimal memory space, this design informs ML algorithms to skip features of
inactive equipment, gather features (e.g., also in separated shm files) and update policies only for
active equipment, reducing processing latency.

Independent Egress Memory Space

Each egress node has its own independent memory space, storing counters, reservoir samples,
and data plane policies (actions). As depicted in figure 3.10, on receipt of the first ACK from the
client to a specific egress node i, VNF increments the number of flows in the counters cache of
node i. Quantitative features (e.g., flow duration t3− t0 gathered at t3 in figure 3.10) can be stored
in the reservoir buffer of node i using algorithm 1. Gathered features (counters and samples) are
made available in a layout where they can be quickly accessed by ML algorithms running in a
different process. With the bit-index header, locating features for a given egress node requires

6Depending on different applications, observations for each VIP can also be organized in different ways, e.g., by
ingress ports.
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O(1) computational complexity and O(k) memory complexity, where k is the reservoir buffer size.
Obtained features for all active egress nodes can then be aggregated and processed to make further
inferences or data-driven decisions, which can be written back to the memory space of each egress
node.

Multi-Buffering and Asynchronous I/O

While quantitative features are collected using reservoir sampling, counters are directly incre-
mented by the data plane in a local cache, and then periodically copied from cache to shared
memory buffers with incremental sequence ID. Counters and actions are exchanged between cache
and buffer using m-level multi-buffering with incremental sequence ID. The bit-index binary header
is copied with the counters, to efficiently identify active equipment. When copying data between
cache and buffer, the sequence ID is set to 0 to avoid I/O conflicts. ML algorithms can pull the
latest observations from the buffers with no disruption in the data plane. Similarly, new network
policies (e.g., forwarding rules) can be updated via action buffers. The level of multi-buffering in
this chapter is set to m = 3 (as in figure 3.10). This design offers an asynchronous 2-way com-
munication interface to exchange fine-grained features extracted from data planes and data-driven
decisions made by control planes with low latency.

Both computation and memory space complexity is presented in table 3.2. The whole data-flow
is asynchronous and avoids stalling in the data exchange process in both the data plane and the
control plane. This design optimizes the scalability of Aquarius.

3.2.3 Implementation

Based on Aquarius (chapter 3), and similar to MLB (chapter 5), Aquarius is implemented as a
plugin to the Vector Packet Processor (VPP) [121] as in section 3.3.3. This chapter sets N = 64
since it suffices for the typical configuration in production [224] and the 64-bit bit-index header fits
in the cache line for modern computer processors. The flow table size is configured as M = 65536.
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To reduce hash collision probability, each bucket in the flow table is configured with 4 entries7.
The level of multi-buffering is set to 3 (as in figure 3.10). The buffers copy the latest counters from
the cache every 200ms (as the active probing frequency in [143]). Each sampled network feature
is a 2-tuple of a 32-bit float timestamp and a 32-bit value – which fits in a single cache line. The
reservoir buffer size is set to k = 128 for each feature per egress equipment.

7When a new flow is mapped into a bucket, an available entry can be found using Timeout attribute with O(1)
computational complexity.
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Figure 3.11: Network topology of the testbed across 2 physical servers.

All observed samples are gathered with probability p = 1 to further reduce the performance
overhead. In these conditions, to collect all features listed in figure 3.6, the flow table takes
10.24MB of memory. The shm file of each VIP consists 6KB 3-level multi-buffering counters and
832KB reservoir sampling buffers.
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Figure 3.12: Wikipedia 24 hour replay network trace.

System Platform

Kernel-based Virtual Machines (KVMs) are run on 4 UCS B200 M4 servers, each with one Intel
Xeon E5-2690 v3 processor (12 physical cores and 48 logical cores), interconnected by a UCS 6332
16UP fabric. The operating systems are Ubuntu 18.04.3 LTS (GNU/Linux 4.15.0-128-generic

x86 64), and applications are compiled using gcc version 7.5.0 (Ubuntu 7.5.0-3ubuntu1 18.04).
Applications used for the experiments provided in this chapter are: Apache 2.4.29, VPP v20.05,
MySQL 5.7.25-0ubuntu0.18.04.2, and MediaWiki v1.30. The VMs are deployed on the same
layer-2 link, with statically configured routing tables. An example network topology configuration
deployed across 2 physical servers is depicted in figure 3.11.

Apache HTTP Servers

All Apache HTTP servers share the same VIP address on one end of the GRE tunnel – with the
load balancer on the other end of this GRE tunnel. They use the mpm prefork module to boost
performance. Each server has maximum of 32 worker threads, and the TCP backlog is set to 128.
In the Linux kernel, the tcp abort on overflow parameter is enabled, so that a TCP RST will be
triggered when the queue capacity of TCP flow backlog is exceeded, instead of silently dropping
the packet and waiting for a SYN retransmit. With this configuration, the flow completion time
(FCT) measures application response delays rather than potential TCP SYN retransmit delays
(same as in [135]). Two metrics are gathered as ground truth server load state on the servers:
CPU utilization and instant number of Apache busy threads. CPU utilization is calculated as the
ratio of non-idle CPU time to total CPU time measured from the file /proc/stat and the number
of Apache busy threads is assessed via Apache’s scoreboard shared memory.

24-Hour Wikipedia Replay Trace

To create Wikipedia server replicas, an instance of MediaWiki8 of version 1.30, a MySQL server
and the memcached cache daemon are installed on each of the application server instance. The
WikiLoader tool [225] and a copy of the English version of Wikipedia database [226], are used
to populate MySQL databases. The 24-hour trace is obtained from the authors of [226] and for
privacy reasons, the trace does not contain any information that exposes user identities. Figure 3.12
depicts the traffic rates of the network trace.

PHP for-Loop Trace

To study CPU-bound applications, a PHP for-loop script is used, whose requested number
of iterations #iter follows an exponential distribution. The sizes of the query’s replies are pro-
portional to the number of iterations. This allows generating a heavy-tail distribution of flow
durations, and of transmitted bytes, as in [1]. Figure 3.13a depicts the correlation between the
number of iterations and FCT. Figure 3.13b shows the CDF of the trace being replayed on 2 dif-
ferent physical servers with moderate traffic rate (50% CPU usage on application servers), which
demonstrates the server capacity heterogeneity and the existence of artifact.

8https://www.mediawiki.org/wiki/Download
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Figure 3.13: PHP for-loop trace profile.

PHP File Trace

To simulate IO-bound applications, PHP queries for static files of different sizes are used as
in [187]. The sizes of files are 100KB, 200KB, 500KB, 750KB, 1MB, 2MB, and 5MB. 50 files are
generated for each size. Figure 3.14 depicts the corresponding FCT for files with different sizes
with sufficient resource provisioned.

3.3 Applications

This section shows 3 applications of Aquarius in cloud DCs in the context of 3 key VNFs –
traffic classification, resource prediction, and auto-scaling, and Layer-4 load balancing, along with
3 different ML paradigms.

3.3.1 Traffic Classification

As one of the key VNFs in the cloud, traffic classification allows distinguishing different types
of traffic [19, 22, 200, 201, 213], to allocate appropriate resources and achieve service level agree-
ments [200,213]. It also helps detect anomalies and security threats to prevent potential damages
or losses [22].

Task Description and Testbed Configuration

This section shows the capability of Aquarius to collect reliable features and conduct traffic
classification with unsupervised ML algorithms. A testbed is implemented using KVM, where a
virtual router embedded with Aquarius forwards different types of traffic to 4 VIPs (figure 3.15). In
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Figure 10: Notations, categories, variable dependencies, and
space complexity of all network features.

a packet is received, statistics will be updated and stored de-
pending on their types, as discussed in section 3.1. To avoid
I/O conflicts, sampled features are collected using reservoir
sampling over the latest time window and counters are col-
lected atomically and made available to the data processing
agent using multi-buffering. The bit-index binary header is
memcpy-ed along with the counters since it helps efficiently
identify active egress equipments.

Independent data processing agents, which conduct offline
data analysis and online policy updates, pull the latest observa-
tions from AC buffer and reservoir buffer with no disruption in
the data plane. Using the same multi-buffering scheme, action
buffer and AR allow to modify online policies by updating
policies, such as forwarding rules, load balancing weights,
and sampling frequencies for feature collection, which can be
defined specific to different applications and therefore are not
detailed. This shm-based mechanism offers an asynchronous
2-way data collection interface, which allows to exchange
fine-grained network observations extracted from the data
plane and data-driven decisions made by the control plane
with low latency.

3.2.2 Implementation

Aquarius is implemented in this paper as a plugin in Vec-
tor Packet Processing (VPP) [63], a high-performance pro-
grammable packet-processing stack for commodity CPUs. All
features implemented in this paper are listed in Figure 10, in-
cluding their notations, categories, variable dependencies and
memory complexity7. Additional attributes in the flow table

7All features depend on the state and timeout attributes in the flow ta-
ble, thus these dependencies are omitted for clarity. More attributes can be
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Figure 11: Network topology for applying Aquarius on traffic
classification.

helps gather more features, but it requires additional memory
proportional to the size of the flow tables M. Similarly, the
space complexity for adding registers, counters, or reservoir
sampling buffers are shown in Figure 10, as a reference to the
balance between the visibility on the data plane and memory
usage overhead based on specific applications.

The value of #egress is set to N = 64 since it suffices for
the typical configuration in production (48-64 equipments
per VIP) [20] and the corresponding 64-bit bit-index header
fits in the cache line for modern computer processors. The
flow table size for tracking connection states is configured as
M = 65536. To reduce hash collision probability, each bucket
in the flow table is configured with 4 entries8. The 3-buffer
mechanism9 is used to offer atomic data collection and policy
updates between the data plane and the control plane. The
buffers draw the latest counters from AC every 200ms to bal-
ance the trade-off between high-granular observations and
performance overhead as in [3]. Each sampled network fea-
ture is a 64-bit 2-tuple of a 32-bit float as timestamp and a
32-bit value, so that the sample can be stored within a single
cache line. The size of the reservoir buffer is set to k = 128
for each feature of an egress equipment. All observed sam-
ples are gathered with probability p = 1 to further reduce
performance overhead. In these conditions, to collect all the
features listed in Figure 10, the flow table occupies 10.24MB
of memory space and the registers occupy 750B. Within each
VIP’s shm file, the counters occupy 6KB considering the 3-
level multi-buffering mechanism, and the reservoir sampling
buffers occupy 832KB of memory space.

4 Application

This section demonstrates three application examples of
Aquarius in DC networks, i.e., traffic classification, autoscal-
ing, and load balancing.

potentially added to obtain more features, e.g., , to track packet TTL.
8When a new connection is mapped into a bucket, an available entry can

be found using Timeout attribute with O(1) computational complexity.
9The level of multi-buffering can be modified by changing rows of buffers.

7

Figure 3.15: Network topology for traffic classification.

VIP0, a simple PHP for-loop script on each server takes requests for a given number of iterations
(#iter) and replies with proportional sizes. The flow duration (200ms on average) and the number
of transmitted bytes follow an exponential distribution as in [1]. In VIP1, static files of different
sizes are served on each server9 as in [187], to represent IO-bound applications. In VIP2 and
VIP3, each application server is an independent replica of an Apache HTTP server [227] that
serves Wikipedia databases. Two samples of 600s duration are extracted and replayed from a real-
world 24-hour replay [226]. In VIP3, an additional 5000 queries per second SYN flooding traffic
is applied to simulate a DoS attack. Server clusters are scaled to be able to serve all the queries
when subjected to heavy traffic rates – when no attack happens – with reasonable FCT (under
400ms) as in [135].

Feature Engineering

The features are fetched every 250ms from counter buffers and reservoir buffers. This chapter
demonstrates the flexibility of feature engineering offered by samples collected in reservoir buffers,
by reducing each feature channel to 5 scalars, i.e., average, standard deviation, 90-percentile,
and exponential moving average (decay) of average and 90-percentile. The moving average is a
sequential feature calculated, whose weight is computed as, 0.9t

′−t, where t is the timestamp of
each sample and t′ is the moment when the reduced sample is calculated. This yields in total 8
ordinal features (counters) and 13× 5 quantitative features10.

9The sizes of files are 100KB, 200KB, 500KB, 750KB, 1MB, 2MB, and 5MB. 50 files are generated for each size.
10The collected dataset is preprocessed and converted to have zero mean and unit standard deviation. Outlier data

points (value beyond 99th-percentile) are dropped. The data preparation procedure is done using scikit-learn [228]
and it is the same throughout the whole chapter.
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Figure 3.16: Aquarius feature collection overhead.

Configuration 0 Feature 11 Features 73 Features PCAP

F
ir
st

P
a
ck
et CPU Cycles 938.232 1635.838 2609.019 1295.284

Delay (µs) 0.361 0.629 1.003 0.498
Difference 1.000× 1.744× 2.781× 1.381×

D
a
ta

P
a
ck
et CPU Cycles 576.357 1583.798 2602.684 885.041

Delay (µs) 0.222 0.609 1.001 0.340
Difference 1.000× 2.748× 4.516× 1.536×

CPU Usage (%) 26.687 40.858 49.716 31.480
CPU Difference 1.000× 1.376× 1.675× 1.060×
RAM Usage (GiB) 2.652 2.719 2.744 3.305
RAM Difference 1.000× 1.025× 1.034× 1.246×

Table 3.3: Per-packet processing overhead (on 2.6GHz CPU) and system resource consumptions (avg.)
comparison.

Algorithm KMeans MeanShift
Spectral

Ward
Agglomerative

DBSCAN OPTICS BIRCH
Gaussian

Clustering Clustering Mixture

Adjusted Rand Index 0.674 0.863 0.715 0.689 −0.002 0.696 0.757 0.742 0.687
Mutual Info Score 0.941 1.160 0.948 0.992 0.031 0.914 0.968 0.953 0.965
Adjusted Mutual Info Score 0.709 0.820 0.718 0.731 0.023 0.692 0.733 0.721 0.731
Homogeneity 0.713 0.878 0.718 0.752 0.024 0.692 0.733 0.722 0.731
Completeness 0.709 0.820 0.811 0.732 0.241 0.736 0.914 0.811 0.798
Fowlkes-Mallows Score 0.765 0.901 0.805 0.774 0.513 0.785 0.840 0.824 0.786
Fit Time (ms) 75.689 541.594 991.382 4806.554 2785.787 45.249 2769.734 52.959 18.505
Require Cluster Number ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓

Table 3.4: Comparison of (unsupervised) clustering algorithms for traffic classification.

Overhead Analysis

To study the feature collection overhead, Aquarius is compared with a “vanilla” router which
collects 0 features, and with a router logging packet information in the memory using pcap. When
subjected to 500 queries/s PHP loop traffic towards a 176-CPU server cluster, when collecting 11
features11 or collecting all 73 features12, Aquarius incurs different overheads depicted in table 3.3
and figure 3.16a. On a 2.6GHz CPU, the additional per-packet processing delays are trivial com-
pared with the typical round trip time between two directly connected network devices (higher than
200µs [229]). The mean CPU usage of Aquarius is 1.376× and 1.675× higher than the “vanilla”
router when collecting 11 and 73 features, respectively (figure 3.16b). As expected, the log-based

111 counter (n flow on) and 2× 5 sampled features (flow duration, FCT).
128 counters and 13× 5 quantitative features.
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Figure 3.17: Variance contribution of each feature in top-3 principal components (PCs).
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(b) PCA clusters (all features).
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Figure 3.18: PCA analysis and 2D visualization.

feature collection mechanism does not scale in terms of memory consumption13.

Feature Selection with PCA

More features provide multi-dimensional observations, yet at the cost of higher computation
and memory overhead. Principal Component Analysis (PCA) is thus conducted to understand the
relative importance of the feature and reduce dimensionality while preserving data representation.
As depicted in figure 3.18a, 90% of the data variance can be explained with 4 principal components
(PCs). Figure 3.17 shows that multiple features share similar contributions (cosine similarity) to
top-3 PCs, especially features reduced from the same reservoir buffer. Therefore, the number of
features can be decreased by using only 2 (standard deviation and decay-ed average) out of the 5
reduced scalars. Also by removing sampled data that has low contribution to the top-4 PCs (i.e.,
iat synack), 25 features are selected out of all 73 features.

As depicted in figure 3.18b, 4 clusters for the 4 traces are visualized in a 2D representation.
Among the 4 traces, PHP for-loop is pure CPU-bound and PHP file is pure IO-bound. The Wiki

13The results can be machine-dependent. This chapter aims at showing the order of magnitudes, rather than
providing a precise quantification.
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Figure 3.19: Unsupervised clustering using 25 features.
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Figure 3.20: Network topology for autoscaling system.

Algorithm
Linear Ridge Decision Random SVR SVR

XGBoost RNN LSTM GRU
GRU+

WaveNet
Active

Regression Regression Tree Forest (Linear) (RBF) 1dConv Probing

First Step MAE 9.216 9.232 12.135 8.717 9.255 9.040 8.544 7.629 7.433 7.488 7.492 7.830 3.504
First Step RMSE 11.779 11.763 15.558 11.125 11.876 11.395 10.871 9.591 9.403 9.478 9.481 9.770 4.593
Last Step MAE 10.640 10.638 15.043 11.009 10.683 11.206 10.797 9.774 9.855 9.798 10.001 9.652 11.892
Last Step RMSE 13.266 13.261 18.965 13.794 13.327 13.994 13.557 12.285 12.496 12.427 12.653 12.194 14.935
All Step Avg. MAE 10.038 10.044 14.109 10.090 10.063 10.335 9.891 8.986 9.046 9.022 9.123 9.010 8.334
All Step Avg. RMSE 12.575 12.575 17.866 12.742 12.616 12.963 12.512 11.331 11.505 11.464 11.594 11.390 11.057
Avg. Predict Time (ms) 1.429 1.375 1.765 152.558 629.212 1462.446 5.315 115.179 117.146 113.117 87.831 106.475 0.026
Predict Time Stdev. (ms) 0.380 0.294 0.013 0.305 0.093 2.015 0.288 1.961 4.100 3.592 1.680 1.968 0.001

Table 3.5: Comparison of supervised ML algorithms for resource prediction (using selected non-sequential
features to predict 8 steps ahead).

trace consists of both queries for SQL database (CPU-bound) and static files (IO-bound), thus its
cluster is located between the former 2 traces. The Wiki trace under DoS attack, however, can
be clearly noticed as an independent cluster. As depicted in figure 3.18c, using the 25 selected
features 14 still gives clear clustering results, yet it reduces data processing time from 30.90ms to
5.56ms.

Unsupervised Learning

Nine clustering algorithms are applied and compared over the obtained dataset. As in table 3.4,
MeanShift shift has the best overall performance, yet at the cost of relatively high fit time. As
depicted in figure 3.19, when applying unsupervised learning algorithms, K-Means [230] and Gaus-
sian Mixture [231] are able to generate clusters similar to the ground truth, while they require
the number of expected clusters (4) as input. Gaussian Mixture model has the shortest fit time
and can be an interesting candidate for online traffic classification. In case where the number of

14The input 25 networking features are: byte f std, byte f avg decay, byte p std, byte p avg decay, win std,
win avg decay, d win std, d win avg decay, fct std, fct avg decay, flow duration std, flow duration avg decay,
iat f std, iat f avg decay, iat p std, iat p avg decay, iat ppf std, iat ppf avg decay, n flow on, n flow, n fct, n packet,
n rtr, n dpk, n ooo.
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Figure 3.21: Comparison of ground truth distributions.

Algorithm
Linear Ridge Decision Random SVR SVR

XGBoost RNN LSTM GRU
GRU+

WaveNet
Active

Regression Regression Tree Forest (Linear) (RBF) 1dConv Probing

First Step MAE 9.186 9.206 12.134 8.697 9.232 8.999 8.486 7.577 7.379 7.458 7.496 7.527 3.505
First Step RMSE 11.715 11.723 15.538 10.991 11.838 11.302 10.716 9.515 9.414 9.559 9.578 9.595 4.593
Last Step MAE 10.858 10.861 14.976 11.129 10.897 11.322 10.964 9.794 9.935 9.579 9.786 9.504 12.238
Last Step RMSE 13.666 13.673 19.000 13.995 13.716 14.266 13.810 12.476 12.657 12.231 12.435 12.130 15.470
All Step Avg. MAE 10.399 10.404 14.587 10.555 10.424 10.776 10.362 9.342 9.478 9.165 9.374 9.146 10.216
All Step Avg. RMSE 13.039 13.046 18.393 13.262 13.077 13.525 13.035 11.852 12.069 11.700 11.933 11.625 13.335
Avg. Predict Time (ms) 2.689 2.659 3.557 304.490 1281.118 3026.451 10.445 96.102 120.756 111.489 89.297 105.831 0.033
Predict Time Stdev. (ms) 0.285 0.292 0.016 0.458 1.617 0.871 0.093 1.882 5.700 5.829 3.774 3.756 0.014

Table 3.6: Comparison of supervised ML algorithms for resource prediction (using selected non-sequential
features to predict 16 steps ahead).

clusters is not known a priori, DBSCAN [232] can distinguish the potential security threat, based
only on a predefined distance (0.1). With a training latency lower than 100ms, these algorithms
can be interesting candidates for online traffic classification and anomaly detection systems. OP-
TICS [233] also achieves the highest completeness – all members of a given trace type are assigned
to the same cluster, though with a much higher processing latency than DBSCAN.

Take-Away This section effectively has demonstrated the high universality of Aquarius. Aquar-
ius enables gathering fine-grained and reliable datasets – for different types of network traffic –
which allows feature engineering and in-depth data analysis. Aquarius’ fast and configurable design
help achieve the right balance between visibility and performance.

3.3.2 Resource Prediction and Auto-Scaling

To minimize operational costs while guaranteeing QoS, cloud operators need to elastically and
intelligently provision server capacity and configurations [29, 137, 139, 140]. This section explores
the capability of Aquarius as a platform to enable the development of supervised ML algorithms,
to infer resource utilization, and performance – thus, the need for up-scale or down-scale actions –
with no active signaling.

Task Description and Testbed Configuration

This section studies networking features and system utilization when subjected to different levels
of workloads, to avoid additional control messages in existing auto-scaling mechanisms [137]. 600s
samples, extracted from each hour of the real-world 24-hour Wikipedia trace [226], are replayed on
the network topology depicted in figure 3.20. Workloads are randomly distributed among running
servers (2-CPU each) by way of Equal-Cost Multi-Path (ECMP). The server cluster requires 8 ∼ 14
servers to provide “reasonable” QoS (median FCT ≤ 400ms [135]). A learning task can be framed
as predicting server load states (CPU usage15) on each server with the same set of features as
in section 3.3.1. The predicted utilization can be then used to plan and re-scale server clusters
to guarantee QoS with reduced operational cost. This task consists of 2 steps – offline model
training and online prediction. The first 23-hour samples are applied on 10 2-CPU servers to
gather datasets for offline model training. The last-hour sample, which is not seen by any trained

15This chapter uses CPU usage as the metric to evaluate and plan server cluster capacity for demonstration. The
same methodology can be applied to problems using multi-variate metrics.
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Figure 3.22: Prediction results of 7 selected models using sequential features to predict 8 steps ahead.

Algorithm
Linear Ridge Decision Random SVR SVR

XGBoost RNN LSTM GRU
GRU+

WaveNet
Active

Regression Regression Tree Forest (Linear) (RBF) 1dConv Probing

First Step MAE 9.219 9.223 12.419 8.892 9.241 8.953 8.758 8.205 7.842 7.622 7.785 8.040 3.504
First Step RMSE 11.543 11.553 15.745 11.328 11.582 11.288 11.141 10.370 10.012 9.716 10.005 10.207 4.593
Last Step MAE 10.658 10.662 15.023 10.840 10.689 10.855 10.704 9.787 9.627 9.442 9.566 9.550 11.892
Last Step RMSE 13.240 13.244 18.829 13.639 13.277 13.600 13.449 12.253 12.239 11.933 12.110 12.061 14.935
All Step Avg. MAE 10.059 10.063 14.077 10.073 10.074 10.056 9.950 9.272 9.091 8.855 8.949 9.027 8.334
All Step Avg. RMSE 12.528 12.534 17.772 12.743 12.552 12.647 12.585 11.646 11.564 11.225 11.379 11.433 11.057
Avg. Predict Time (ms) 1.394 1.390 1.727 150.036 604.762 1377.609 5.579 115.887 118.995 109.009 89.465 104.772 0.022
Predict Time Stdev. (ms) 0.301 0.316 0.009 0.186 0.023 0.056 0.243 3.537 2.673 4.954 3.413 2.584 0.008

Table 3.7: Comparison of supervised ML algorithms for resource prediction (using selected sequential
features to predict 8 steps ahead).

model, is synthesized to have 5 different levels of traffic rates for online prediction and real-time
auto-scaling.

Offline Model Training

To predict the resource utilization of server clusters using networking features, 12 widely used
ML algorithms are selected to cover different families of ML algorithms, e.g., sequential and non-
sequential, parametric and non-parametric, linear and non-linear [30]. The dataset is pre-processed
in the same way as described in section 3.3.1. To adapt the dataset for sequential models, the
sequence length (time steps) of input features is set as 32 and the stride as 16, which gives 50k
data points in total. These data points are sequentially split 70 : 20 : 10 into training, validation,
and testing sets. The distribution of the ground truth CPU usage in the training set covers the
other two datasets so that the prediction task is feasible, yet the ML models have not seen the
datasets for evaluations (figure 3.21). Sequential models are created and trained using Keras with
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Algorithm
Linear Ridge Decision Random SVR SVR

XGBoost RNN LSTM GRU
GRU+

WaveNet
Active

Regression Regression Tree Forest (Linear) (RBF) 1dConv Probing

First Step MAE 9.205 9.210 12.514 8.841 9.229 8.911 8.712 8.339 7.889 7.863 7.855 8.149 3.505
First Step RMSE 11.527 11.537 15.799 11.158 11.567 11.162 10.964 10.375 9.990 10.115 10.014 10.353 4.593
Last Step MAE 10.823 10.828 15.019 11.064 10.856 11.054 10.895 9.993 9.699 9.394 9.564 9.447 12.238
Last Step RMSE 13.605 13.612 18.834 13.884 13.645 13.916 13.706 12.634 12.303 12.020 12.200 12.002 15.470
All Step Avg. MAE 10.412 10.417 14.576 10.478 10.431 10.444 10.337 9.711 9.220 9.143 9.316 9.148 10.216
All Step Avg. RMSE 13.003 13.010 18.328 13.177 13.029 13.103 12.998 12.181 11.661 11.668 11.852 11.576 13.335
Avg. Predict Time (ms) 2.547 2.522 3.464 298.758 1228.016 2832.406 10.699 95.248 114.952 111.944 89.810 105.492 0.028
Predict Time Stdev. (ms) 0.310 0.164 0.011 0.319 0.051 70.800 0.419 1.787 4.793 2.463 3.843 3.036 0.007

Table 3.8: Comparison of supervised ML algorithms for resource prediction (using selected sequential
features to predict 16 steps ahead).

TensorFlow as backend [234]. Non-sequential models (built using scikit-learn [228]) use the last
time step features as input data. Each model is trained to predict the CPU usage multiple steps
ahead.

ML Models Six non-sequential models are implemented using scikit-learn with their default hy-
perparameters, i.e., linear regression, ridge regression, decision tree, random forest, SVM regression
(SVR) with both linear and RBF kernel, and XGBoost. 5 sequential models are implemented us-
ing Keras, i.e., RNN, LSTM, GRU, GRU with a 1-dimensional convolutional layer, and WaveNet.
RNN has 2 20-hidden-unit SimpleRNN layers (first layer with return sequence=True) and 1 output
layer. LSTM replaces the SimpleRNN in the RNN model with LSTM layers and GRU replaces
with GRU layers. GRU with 1d convolutional layer adds one 1-dimentional CNN (as in textCNN)
before the GRU model. Wavenet stacks 4 stacked dilated 1D convolutional layers with 1 layer of
20-hidden-unit GRU and 1 fully connected layers (output layer). As a benchmark, a naive model
is implemented to simulate active probing by using the last observed CPU usage as prediction.

Feature Selection To reduce input size, features are selected using feature selection.f regression
in scikit-learn [228], in two different procedures, namely in a non-sequential and a sequential
manner. In a non-sequential manner, the top 20-percentile features with the highest correlation
with the CPU usage are selected16. In a sequential manner, networking features are first re-arranged
by 32 time steps, then the features that appear more than 3 time steps in the top 20-percentile
features with the highest correlation with the CPU usage, are selected17.

Different Prediction Steps Ahead The further in the future that one can predict, the better
configuration plans can be made. Therefore, tasks are created to predict the different number of
time steps ahead, namely 8 or 16 steps, to study the capabilities of predicting the future among
different ML models.

Results Instances of the prediction results from a subset of ML models are visualized as in
figure 3.22. The scores achieved by each predicting model using the test set are shown in table 3.5-
3.8. The prediction time for each model is evaluated using 256 datapoints (as predicting resource
utilization on 256 servers). The results show that sequential models achieve better performance
when using sequential features as input data than using non-sequential features.

Simple and non-sequential ML models perform worse that sequential models, especially when
predicting 16 steps ahead as sequential models has more visibility on the history. WaveNet has
the best overall performance and robustness across all 4 different tasks among all ML models,
therefore it is chosen in this chapter to be applied online. Linear regression, on the other hand, is
the simplest ML model and has the shortest processing latency overhead when making prediction,
therefore it is chosen to be applied online as well.

16The 21 “non-sequential features” consist of: fct 90 decay, fct avg decay, fct std, flow duration 90,
flow duration 90 decay, flow duration avg, flow duration avg decay, flow duration std, iat f avg, iat f avg decay,
iat p std, iat ppf 90 decay, iat ppf avg, iat ppf avg decay, iat ppf std, n flow on, pt 1st 90, pt 1st 90 decay,
pt 1st avg decay, pt 1st std, pt gen 90 decay.

17The 15 “sequential features” consist of: n flow, n packet, iat f avg, iat f 90, iat f std, iat f avg decay,
iat f 90 decay, iat p avg, iat p std, iat p avg decay, pt 1st std, lat synack avg, lat synack 90, lat synack 90 decay,
flow duration std.
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Algorithm 2 Auto-scaling Rule
1: n servers min, n servers max← 8, 14 ▷ Server number range
2: S← Initial set of running servers
3: cpu lo, cpu hi← 0.7, 0.8 ▷ Desired CPU usage range
4: for each time step do ▷ ∆t = 250ms
5: δ ← 0 ▷ Initialize server state counter
6: y(S)← CPU usage prediction of 16 steps ahead

7: threshold← ⌈ |S|
3
⌉ ▷ Threshold that triggers scaling actions

8: for s ∈ S do
9: if y(s) < cpu lo then
10: δ ++ ▷ Increment δ if s is under-loaded
11: else if y(s) > cpu hi then
12: δ −− ▷ Decrement δ if s is over-loaded

13: if δ > threshold and |S| > n servers min then
14: S← downscale(S)
15: skip 8 time steps ▷ Cool-down period
16: else if δ < −threshold and |S| < n servers max then
17: S← upscale(S)
18: skip 8 time steps ▷ Cool-down period

400
550
700
850

#q
ue

rie
s/

s

#Servers Avg. CPU Usage Desired CPU Range

8
10
12
14

#S
er

ve
rs

Over Provision

8
10
12
14

#S
er

ve
rs

Active Probing

8
10
12
14

#S
er

ve
rs

Linear Regression

0 60 120 180 240 300
Time (s)

8
10
12
14

#S
er

ve
rs

Wavenet

20
40
60
80
100

CP
U 

(%
)

20
40
60
80
100

CP
U 

(%
)

20
40
60
80
100

CP
U 

(%
)

20
40
60
80
100

CP
U 

(%
)

Figure 3.23: Comparison of online auto-scaling performance using different algorithms. The (discrete)
numbers of running servers are plotted for each run in dashed lines, while CPU usage is summarised as
avg. ± stddev across 30 runs.

Online Auto-Scaling

To test the online performance of offline-trained ML models, a 300s Wikipedia replay trace
sample of the last hour (unseen by the ML models) is synthesized to have scheduled changing
traffic rates every 60s. Based on the 16-step-ahead CPU usage predictions of running servers
y(S), a simple heuristic is proposed (algorithm 2) to keep the CPU usage of 2

3 servers within
the desired range (70 ∼ 80%). Using the same counter ∆ for over- and under-loaded servers
reduces the variance induced by imbalanced workload distributions. As a reference, an active
probing mechanism is implemented, whose predicted CPU usage for running servers y(S) comes
from periodic polling (every 250ms, same as the prediction interval of ML methods). An “oracle”
benchmark is implemented to over-provision the number of servers proportional to the scheduled
traffic rates.
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Figure 3.24: Trade-off between QoS and cost using different autoscaling mechanisms.
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Figure 3.25: Comparison of system overhead using different autoscaling mechanisms.

Results

As depicted in figure 3.23, active probing keeps the average CPU usage within the desired range,
however, it requires frequent scaling events and leads to oscillating CPU usage with high variance.
Linear regression is simple yet not robust when applied to an online auto-scaling system. Its
under-estimated server load states lead to over-loaded servers. WaveNet takes sequential features
as input and is more robust when applied online. It keeps the average CPU usage close to the
desired range with fewer oscillations.

As depicted in figure 3.24, WaveNet is able to provide better QoS than active probing – 78.37ms
less page load time (26.04%) at 90th percentile and 35.70ms less (30.45%) on average – with 3.99%
additional server-second cost, and 42.44% less scaling events. When over-provisioning the server
cluster, the page load time is shorter than using WaveNet by 67.13ms at 90th percentile and
28.55ms average, though it requires 11.86% more server-second operational cost than WaveNet.

Overhead Analysis

As depicted in figure 3.25, ML models incur additional memory usage and predicting delay.
Active probing also incurs additional CPU usage. WaveNet, as a more sophisticated ML model,
incurs 1.844% additional CPU usage and 322.61MiB additional memory usage than active probing.
However, Aquarius parses features stored in the local shared memory with no control messages,
achieving more than 94.18µs less median latency than typical VM- and container-based prob-
ing mechanisms (figure 3.26). As dedicated hardware, NetFPGA achieves better performance by
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Figure 3.26: Feature collection latency comparison between Aquarius and active probing techniques.
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Aggregations

Figure 3.27: Overview of the RLB algorithm [28].

sending and receiving packets at line rate, yet it lacks adaptivity and flexibility in developing
data-driven algorithms when compared with Aquarius.

Take-Away In addition to feature universality, this section has shown the high scalability of
Aquarius. Aquarius enables agile development, offline model selection, and online deployment of
learning algorithms to improve network performance. It makes features quickly accessible – even
if the networking topology (e.g., number of servers) changes over time – while saving management
bandwidth for data transmission.

3.3.3 Traffic Optimisation and Load Balancing

As a key component in cloud DCs, Layer-4 load balancers (LBs) distribute workloads across
servers to provide scalable services. This section shows that Aquarius can enable applications of
RL algorithms to optimise load balancing performance.

Task Description and Testbed Configuration

In cloud DCs, servers can be virtualized on infrastructures with different processing speeds [72].
This section inherits the configuration of VIP2 (figure 3.15) – replaying the Wiki trace and load
balancing on 2 groups of servers of different processing capacities. The task is to extract and infer
server processing capacity information from networking features and make informed load-balancing
decisions. 3 benchmark LB algorithms are implemented – (i) ECMP [190] randomly distributes
workloads regardless of server processing speed differences; (ii) WCMP [64, 235] statically assigns
weights to servers based on their provisioned capacities; (iii) active WCMP [143, 186, 187] polls
server job queue lengths and updates weights every 200ms based on probed utilization information.

RL Algorithm

RLB [28] is an RL-based LB algorithm implemented and evaluated in simulators, similar to
many RL algorithms for networking [25,184]. In this chapter, RLB is implemented and evaluated
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Figure 3.28: Correlation between networking features and server states - VIP2 (Wikipedia trace).

Figure 3.29: Correlation between networking features and server states - VIP0 (PHP for-loop).

in a realistic testbed using Aquarius. As depicted in figure 3.27, with Aquarius, RLB (i) counts on-
going flows l̃i on servers and (ii) asynchronously updates (every 250ms) server weights w̃i (actions)
for each application server as server load state estimations, derived from flow durations τi sampled
in reservoir buffers as input features. The same architecture with a Soft Actor-Critic model as
in [28] is implemented. However, the actor and critic networks take the batch-normalised features
only based on locally observed per-server states. On receipt of new requests, RLB assigns servers
based on scores that estimate the time to finish all the workloads for each server using the shortest

expected delay algorithm [236], i.e., argmini
l̃i+1
w̃i

, which prioritizes servers with higher processing
speed and shorter queue lengths. Different from [28], which uses actively probed ground truth
information, this chapter derives the reward from features collected by Aquarius. The reward is

chosen as τ̃
2

τ̃2
− 1, where τ̃ is a list of discounted average of flow duration on each server, which is

also collected by Aquarius.

Feature Validation

RLB uses the number of ongoing flows to indicate server queue occupation and, it uses flow
duration as an input feature to infer server processing capacity. To verify the feature selection of
RLB and study the correlation of network features with server load states in real-world networking
systems, moderate and heavy network traces of both Wikipedia replay (VIP2 in figure 3.15)18

and PHP for-loop (VIP0 in figure 3.15) are applied on the testbed. The correlation between all
the features and server states when subjected to different traffic rates is depicted in figure 3.28
and 3.29.

18Using ECMP, which does not distinguish the server processing capacity difference, an average FCT of 45ms
and 836ms is achieved respectively when subjected to light and heavy traffic.
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As expected, one intuitive feature among the counters that helps infer server load state is the
number of ongoing flows (n flow on). For VIP2, since the replayed trace is not IO-intensive – SQL
queries with small file sizes whose average and standard deviation are both 12KiB, throughput-
related features are indicative of the different provisioned server processing capacities (the number
of CPUs #cpu).
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Figure 3.30: Evaluation during 20-episode training.
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Figure 3.31: Wikipedia trace replayed using different LBs.

However, for both VIP0 (requests are CPU-intensive) and VIP2, latency-related features (e.g.,
FCT, flow duration) show a higher correlation than achieved using active probing (figure 3.2),
since they capture the fact that heavily loaded or less powerful servers have slow processing speeds.
This effectively shows that networking features passively gathered by Aquarius are reliable and the
selected input features of RLB are representative.

Results

RLB is trained using the first hour of Wiki trace sample for 20 runs (episodes). As depicted
in figure 3.30, RLB learns server capacity differences. The rewards of RLB during training grow
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Figure 3.32: Query distribution (number of busy Apache threads) on 2 groups of application servers.
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Figure 3.33: Overhead comparisons.

higher and less variant, and the FCT becomes lower. The trained RLB model is then tested
on unseen traffic and compared with other LB algorithms (figure 3.31a). During off-peak hours,
servers are under-utilized and all algorithms show similar performance. As traffic rates grow, RLB
achieves lower FCT for both static pages and Wikipedia pages when compared with other LB
algorithms (figure 3.31b).

0 20 40 60 80 100
Local #flow / Actual #thread (%)

0.0

0.5

1.0

CD
F

Figure 3.34: Partial observations happen when traffic is split across 2 VNFs.

RLB is trained to learn server processing speed differences and assigns higher weights, thus
more queries, to more powerful servers (figure 3.32). When using RLB, 4-CPU servers handle
respectively 1.258× and 1.523× more tasks than 2-CPU servers when subjected to 676.92 and
372.01 queries/s traffic.

Overhead Analysis

As depicted in figure 3.33a, throughout all test runs, RLB consumes on average 692.89 more
CPU cycles (0.26µs on 2.6GHz CPU) than ECMP, as it computes and compares the server scores
when making load balancing decisions. Figure 3.33b depicts CPU and memory consumptions of
all LBs. RLB incurs 0.22× additional CPU usage and 45.99MiB memory usage on average.
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Figure 3.35: Methodology blueprint. The application of ML techniques starts from understanding the
problem to solve, including e.g., the objectives and constraints. Aquarius provides high configurability
and programmability to conduct extensive and iterative feature engineering and selection process to prune
unrelated features (reduce additional feature processing overhead) and to pick a minimally viable set of
features that can be gainfully used for solving the target problem. The selected features can be passed
to both offline application (e.g., clustering algorithms + traffic classification in section 3.3.1) and online
application (e.g., RL + load balancing in section 3.3.3). Offline trained ML models can also be brought
online to evaluate their performance in real-time (e.g., supervised learning + autoscaling in section 3.3.2).
As a platform that helps harness reliable networking features and learning algorithms, Aquarius allows
iteratively investigating networking features, developing models, and designing algorithms.

Partial Observations

Though RLB achieves better performance than heuristic load balancing methods, it relies on
ordinal features, which, collected in a distributed system, risk reflecting only partial system states.
For instance, when traffic is split across multiple load balancers, the locally counted number of
ongoing flows does not reflect the actual queue length on the application server. As is depicted
in figure 3.34, in presence of 2 load balancers, the ratio of the locally observed number of flows
over actual queue length #thread has a standard deviation of 22.49%. However, RLB relies also
on latency-related features (flow duration), which can be gainfully used to infer server load states
and compensate for the impacts of partially observed ordinal features.

Take-Away This section effectively demonstrated the high feature relavance of Aquarius, even
under changing environments. Aquarius enables closed-loop control (RL) to dynamically adapt to
networking systems and optimize performance. It empowers real-world deployment and evaluation
of learning algorithms developed in simulated environments.

3.4 Summary

Networking features and system state information help Virtual Network Functions (VNFs) make
informed decisions, and intelligently manage and update networking policies in cloud data centers.
Actively collecting features and system state information entails substantial control signaling and
management overhead, in particular in large-scale data center networks.

This chapter has proposed Aquarius, a framework that collects, infers, and supplies accurate
networking state information with little additional processing latency, in a scalable buffer layout.
By using multi-buffering and reservoir sampling, Aquarius extracts representative features from
network traffic, and allows VNFs – in particular ML-based VNFs – to exploit these features. Aquar-
ius can be deployed in the network on commodity CPU, empowering real-world learning algorithm
deployments and evaluations. Following the methodology blueprint summarised in figure 3.35,
this chapter has illustrated the use of Aquarius for various ML-based VNFs: traffic classification
(offline, unsupervised learning), autoscaling (online, supervised learning), and load-balancing (re-
inforcement learning) purposes, and evaluates experimentally the impact of Aquarius in the system
performance.
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The application of ML techniques to networking problems starts from understanding the target
problem to solve. Aquarius improves the visibility on the data plane and allows collecting a wide
range of networking features for feature engineering, which iteratively prunes unrelated features
to reduce additional feature collection processing latencies and selects the minimal set of viable
features that can be gainfully used for the task. The selected features can be passed to both offline
and online applications for data analysis, model training, and benchmark evaluations. Aquarius
provides a reliable feature collection and experimenting platform in real-world systems that allows
iteratively studying model selection, parameter tuning, and algorithm design for various use cases.
Both open-loop (e.g., supervised learning + autoscaling system) and close-loop (e.g., reinforce-
ment learning + load balancer) control can be achieved based on Aquarius to improve resource
orchestration and utilisation. Extensive evaluations show that Aquarius helps bring significant
performance gains – reduced flow completion time, improved resource utilisation – in the three
considered cases of data-driven VNFs.

The results from this chapter have been published in [179, 194]. The source code and data
of the Aquarius framework, and both simulation and experimental evaluations are open-sourced
at https://github.com/ZhiyuanYaoJ/Aquarius. This chapter has shown that Aquarius is a key
enabler for data-driven network functions that are ready to be deployed in real-world data
plane.

https://github.com/ZhiyuanYaoJ/Aquarius


Part III

Load-Balancing

55





Chapter 4

Charon: Load-Aware
Load-Balancing in P4

As discussed in section 1.1, data centers are expected to manage significant volume of flows [64,
224], and users expect an elevated server responsiveness [58]. To provide this degree of respon-
siveness, applications are replicated into multiple virtualized instances in data centers to provide
scalable services [63,237]. A given service provided in a data center is identified by virtual IP (VIP).
Each application instance behind the VIP is identified by direct IP (DIP). In this architecture, load
balancers (LBs) play an important role. They distribute requests from clients among application
servers and maintains per-connection consistency (PCC) for each flow [64, 65], as introduced in
section 1.2.1 in chapter 1.

This chapter exemplifies the challenges that LBs aim to handle by way of a simple heuristic
load-balancing mechanism based on Equal-Cost Multi-Path (ECMP) used for load-balancing TCP
requests. As is depicted in figure 4.1, on receipt of a new request (step 1○), ECMP LBs randomly
select a server from among the server pool to which the request is forwarded (step 2○). This
selection is based on the hash over the 5-tuple of the flow1. The replies for the service are sent
back directly to the client instead of traversing the LBs (step 3○) in what is called “direct source
return” (DSR) mode. DSR mode was proposed in [64] so that LBs avoid handling 2-way traffic, and
avoid becoming a throughput bottleneck between servers and clients. Though easy to implement,
ECMP is agnostic to the server load states: ECMP randomly distributes workloads, thus new
requests may be forwarded to overloaded servers, reducing load-balancing fairness. ECMP is also
not able to guarantee PCC since server pool updates may cause changes to the DIP entries in
the hash table, potentially forwards subsequent packets of connected flows to be sent to different
servers, and breaks connected flows.

Statement of Purpose

This chapter proposes Charon, a stateless, load-aware, hardware load balancer, which addresses
3 key aspects of load-balancing performance as follows:

• Availability : encapsulates the chosen server id in a “covert channel” within packet headers.
Different “covert channels” are available (e.g., flow-id of QUIC flows and the least significant
bits of IPv6 addresses) [144]. This chapter uses the higher bits of TCP timestamp options.

• Fairness: Charon makes load-balancing decisions on predicted server load states based on
passive feedback from the application servers with actual load states encoded in SYNACK

packets. Two factors are integrated at the same time, i.e., queue lengths and processing
speed.

• Performance: Charon implements all functionalities on programmable hardware, so as to
maximize performance and achieve low latency and high throughput.

Virtual simulations show promising results and performance gain using Charon. Physical testing
also demonstrates the high throughput of the solution when implemented.

1The 5-tuple corresponds to IP source, IP destination, protocol number, TCP source port, and TCP destination
port.
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Figure 4.1: Network load balancer in data centers.
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Figure 4.2: Charon overview.

Related Work

PCC needs to be ensured by LBs. The alternative is that, flows will break, and re-establishments
may occur, which take time and degrade the quality of service (QoS) [238, 239], thus potentially
causing revenue loss for cloud providers [240]. PCC can be achieved by LB algorithms from two
categories: stateful and stateless.

Stateful LBs [59,64, 65, 190,235,241] use flow tables to store mappings between flow IDs (e.g.,
5-tuple hashes2) and servers. To guarantee PCC, stateful LBs track the state of the flows they
forward [64,65,135,143]. Advanced hashing mechanism (e.g., consistent hashing [65,135]) permits
that server pool updates have little impact on the hashing table – and therefore the amount of
disrupted flows when servers are added or removed is minimized. However, stateful LBs require
additional memory, for flow tables to store flow states. When encountering DoS attacks, flow
tables risk of overflowing, and as a result they no longer track all valid flows. Also, in case of
LB failures, the flow states are lost, and all flows via the failed LBs need to be re-established.
This degrades the QoS. Stateless LBs [192,193,217] use alternative techniques to recover the right
server destinations, without monitoring flow states. They encode flow-server mapping information
in “covert channels” (e.g., TCP timestamps) [144], or delegate the task of redirecting misrouted
packets to servers [192,193,242,243]. SHELL [217], Faild [193], and Beamer [192] daisy-chain two
possible server candidates, to retrieve a potentially changed flow-server mappings.

Charon adopts stateless load-balancing scheme [144, 193, 217] by encapsulating the server id
inside the packet. In particular, the TCP timestamp option [244] is used in Charon to transport
this information.

To improve load-balancing fairness, different mechanisms are proposed to evaluate server load
states before making load-balancing decisions. Segment Routing (SR) [245] and power-of-2-choice
[246] are used in [135, 217] to daisy chain 2 servers, and let each decide independently, based on
their actual load states, to which server a new flow is assigned. Another approach is to periodically
poll servers’ instant “available capacities” [143]. Ridge Regression is used in [187] to predict server
load states and compute the relative “weights.” In [186], the servers are clustered based on their
load states. Clusters with less workload are prioritized. The servers notify the LBs about load
state changes if their resource consumption surpasses pre-defined thresholds. LVS [236] presents
a heuristic that combines the queue lengths of active flows and provisioned server capacity to
determine server load states.

Unlike these approaches, Charon passively polls and retrieves the server load from a server

2TCP 5-tuple consists of source IP address, destation IP address, source port, destination port, and protocal
number.
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when a new flow is assigned to it. This is used to predict the future server load states and make
informed – and fair – load-balancing decisions, to improve resource utilization and QoS.

To optimize performance in terms of throughput and latency, hardware solutions have also
been proposed. SilkRoad implements LB functions on a dedicated hardware device [190], while
other designs implement a hybrid solution combining software and hardware LBs [58, 59]. As a
hardware solution, Charon is realized on a NetFPGA board using P4-NetFPGA tool-chain [247]
and achieves low jitter and delay.

Chapter Outline

The rest of this chapter is organized as follows. In section 4.1 the overview of Charon is
described. Section 4.2 presents the design choices of Charon. Section 4.3 presents the implemen-
tation of Charon, and section 4.4 shows the results obtained. Finally, section 4.5 summarizes the
contribution of this chapter.

4.1 Overview

Charon relies on 3 tables and 1 server agent to achieve stateless load-aware load balancing on
NetFPGA. 2 tables are constructed and managed by the control plane. The Alias Table allows
selecting servers, based on various weights, with low computational complexity and low memory
space consumption. The IP Table is used to map the server id to an actual IP address. The Score
Table, is updated in the data plane on a per-flow basis.

The workflow is depicted in figure 4.2. When a SYN packet arrives at the LB (step 1○), Charon
employs power-of-2-choices and applies 2 hash functions to the 5-tuple of the packet. The 2
hashes are then used as indexes in the “Alias Method” [248] (step 2a) to generate 2 random server
candidates, based on their relative weights. This is further detailed in section 4.2. Referring to the
Score Table, Charon calculates and compares the load states of the 2 candidate servers (step 2b).
The server with a lower score is assigned to the new flow. In the example of figure 4.2a, the DIP
of the selected server is retrieved from the IP Table as server B (step 3○). At step 4○, along with
the reply to the flow request, the agent on server B encapsulates its load state information and
its server id in the packet header. In this chapter, the server load state is encoded inside the key
option field of the GRE header [249], which encapsulates the original IP packet3. This “passive
feedback” design differs from other LBs and reduces communication overhead concerning periodic
polling mechanisms yet keeps LBs informed before application servers reach a critical load level.
On reception of the SYNACK packet from the server (DSR is disabled for step 4○), Charon updates
the load state information in the Score Table. The packet is decapsulated and the response is
forwarded back to the client (step 6○). The server id (0 in the example) is preserved in the higher
bits of the TCP timestamp option. In this way, the subsequent packets from the same flow (step
7○) contain the server id, which helps Charon retrieve the server’s IP address (step 8○) from the
IP Table and redirect immediately to the right server (step 9○). The server can directly answer
the client using DSR mode (step 10○) till the end of the flow.

4.2 Design

The first building block of the design of Charon is the Alias Method. It is a probabilistic
algorithm that, given initial weights, generates a table of probabilities and “aliases.” The role
of the Alias Method is to distribute – with higher probability – the flows to servers with higher
weights. The weights are derived from the instant load states of the servers and are updated
periodically. The update time interval is 1s, and this design choice is explained in section 4.4.

As shown in figure 4.2a, each entry of the Alias Table has a threshold and an alias. The former
determines which value is chosen, while the latter is the alternative index with respect to the entry
initially selected. Generating a server candidate requires 2 input values, i.e., an entry index and
a random number. If the random number is bigger than the threshold, the output of the Alias
Method is the alias, otherwise the entry index. In the given example, four values are taken into
considerations when generating 2 server candidates. The idx0=0 and idx1=2 are the two initial

3IPv6’s flow-id field can also be exploited to store server load information. Charon uses the key option field of
the GRE header to achieve better compatibility between IPv4 and IPv6.
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Figure 4.3: Schematic of dip reg score module.

entry indexes of the table. Given that the random value is smaller than the threshold x0 < 3, the
first output is the entry index 0. Similarly, since x1 ≥ 9, the second output is the alias 1.

The 2 values obtained from the Alias Method are then used as the ids of the 2 server candidates.
Their associated scores are computed with the function g′ = max(0, g− v ∗ (Time()− t)), where g′

is the new score, g is the previous score of the server, v is the “velocity” or the server processing
speed, Time() is a function that returns current timestamp and t is the previous timestamp. The
3 variables, g, v, and t, are saved in the Score Table. The score g is the amount of work remaining
or the number of active flows on the server to execute. The processing speed v is derived from
the average flow completion time (FCT) on the server side. The timestamp t corresponds to the
last time the score was updated. The time difference Time()− t measures the elapsed time since
the last update. The intuition of this function is to predict the remaining amount of tasks or
queue length that a server needs to accomplish. A higher score translates into a busier server.
The max() function guarantees that the score stays non-negative. Once the scores of the servers
are computed, the server with a lower score is assigned to the flow. In the example in figure 4.2a,
supposing that Time() = 8 then the scores of index 0 and 1 are g′0 = max(0, 1 − 2 ∗ (8 − 5)) = 0
and g′1 = max(0, 3 − 1 ∗ (8 − 7)) = 2 respectively. The selected server is the server with index 0,
which is then mapped to server B in the IP Table. The power-of-2-choices is applied as it has lower
computational complexity than calculating the minimum yet it offers recognizable performance
gains [135]. This increases the applicability of Charon for load balancing in large-scale data centers.

4.3 Implementation

The main functions of Charon are implemented in a single Verilog module called dip reg score.
This design choice depends mainly on the read and write actions that should be executed on mul-
tiple indexes. Figure 4.3 shows the architecture of this module. It takes as input data in valid,
data in and clk lookup and as output OUTPUT VALID and OUTPUT. The core logic of dip reg score

locates in the STATE MACHINE block. It interacts with FIFO and BRAM (Block RAM). The former
receives and stores the inputs of the block, while the latter is used to save the server load states
information. Figure 4.4 depicts in detail the workflow of STATE MACHINE. It consists of two states
RMW START and WAIT BRAM. Each state can be further decomposed into several states. The initial
state in RMW START is READ FIFO. In this state, the input saved in the FIFO is extracted. Depend-
ing on the opCode value, different operations can be executed. Three operations are available:
UPDATE OP, COPY OP and GET INDEX OP. The code UPDATE OP is used to update the server load
states in the Score Table given the feedback extracted from the SYNACK packets sent by the ap-
plication servers. The code COPY OP is a buffering operation. It copies the data received from the
input into the output. The code GET INDEX OP is executed when a SYN packet reaches the LB. It
extracts the server load states with the 2 given server indexes. The reading operations require 2
clocks for each value, which yields 4 clocks in total for reading 2 blobs from BRAM. In the WAIT BRAM

state, with the fetched blobs, the two scores are then computed, and stored in the Score Table.
The server with a lower score is selected and its corresponding score is increased by 1 unit task so
that the new flow can be taken into account immediately. The two scores are then stored back in
the Score Table before Charon forwards the flow to the chosen server.

Charon is implemented using a P4-NetFPGA framework. P4 is a programming language in
the family of Software-Defined Networking (SDN) [4]. It is used to program network device data
planes and has been used for implementing other LBs [187, 190, 192]. P4 being flexible, it can be
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Note
MASK = 0xffffffff
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next cycle: @VAR@ <= @VAR@_next
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result_r_next = data
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d_we_bram = 1
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Figure 4.4: State machine in the dip reg score module.

translated into Verilog – and the created module can be compiled into bitstream files using Vivado
toolkit [250].

Figure 4.5 shows the workflow of Charon in the PISA model of P4. It can be split into 3
parts: Parser, Match-Action Pipeline (MAP) and Deparser. The Parser separates different packet
headers, depending on the values of different fields. Packets with unexpected packet headers are
dropped while the others will be forwarded to the MAP. In MAP, the main logic of P4 takes
place using tables, which are a collection of keys and values. A possible input could be an IP
address. Using the longest-prefix match, one key is matched, associated with which an action can
be executed as, for instance, setting the egress port value. Multiple tables can be applied during
one packet processing. Charon uses 2 tables, one for each of the two server indexes obtained from
the Alias Method. The last step is the Deparser, which assembles all the header information and
sends a new packet out of the egress port.

Despite the flexibility of P4, it presents several limitations. For instance, an external function
is necessary to create memory cells to store additional information. Depending on the hardware
targets, different languages can be used to describe these external modules. Verilog is used for the
NetFPGA target, which is the reason why the external module dip reg score is implemented in
Verilog. Its complexity cannot be expressed using the P4 language. This block is mainly accessed
for SYN and SYNACK packets. For other types of packets, it is simply used as a buffer. The other
external modules of Charon implemented in Verilog are the IP table, current timestamp calculation,
and server id extraction from the TCP timestamp option. The IP table is a fundamental component
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Figure 4.5: P4 workflow.

used to redirect packets coming from the client. The timestamp calculation takes place when a
score computation or update happens. Server id extraction is used for any packet traversing the
LB with the presence of TCP timestamp option, except for SYN packets because in this case the
LB has not yet assigned any server to the flow.

Some design choices were made for these external blocks. First, the target number of servers
is set to 16, which yields O(16) memory space complexity with the 3 tables4. Next, the FIFO
memory inside the dip reg score module has a queue length of 64. As a small-scale prototype
implementation, the Vivado simulations have been applied only to 1 of the 4 possible Ethernet
interfaces. Another assumption of this chapter concerns the server id encapsulation in the TCP
timestamp option. To be able to encode up to 16 servers, the server id uses the 4 higher-bit of the
total 32 bits timestamp value. However, it is possible to increase the amount of servers to 2565.
To simplify the P4 code, the only option considered in the TCP header is the timestamp option.

Finally, the server agent is then implemented as a VPP plugin [121] on each application server,
which uses an Apache HTTP. This VPP plugin corresponds to a modified version of GRE, which
encodes the instant server load state in the key option field and encapsulates the original IP packet.
The number of Apache busy threads, which can be retrieved from Apache scoreboard is used in
this chapter as server load state and the score of the server. Other metrics for the score could be
applied for different applications.

4.4 Evaluation

This section evaluates Charon on, (i) the acceptance rate of covert channel modification in
packet headers, (ii) the performance gain in terms of load balancing fairness and QoS, and (iii) the
throughput and additional processing latency using P4-NetFPGA implementation.

4.4.1 Covert Channel Acceptance

To understand how the Internet would react to the presence of the timestamp option in the
TCP header, an initial experiment is conducted, where requests are sent from Paris to random
sets of over 60k distinct IP addresses, and the connection success rates were recorded. The results
obtained read as follows:

• NO CONNECTION = 45019

• SUCCESS = 12876

• FAILURE = 5787

• TOTAL = 63682

NO CONNECTION indicates the number of flows which have not received any response regardless
of the presence of the timestamp option – likely because no host with the destination IP address is
present on the Internet. SUCCESS indicates the number of flows that have answered to a packet with

416 is small yet can be updated at ease.
5The assumed maximum number of bits used for encoding server id is 8, i.e., 256 servers in total, which is

sufficient for modern data centers [224]. Any change in the timestamp value that modifies more than 24 bits is
ignored.
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Figure 4.6: Flow completion time (FCT) when subjected to different expected resource utilization.

the timestamp option. FAILURE indicates the number of flows that have not answered to a packet
with the timestamp option, but which answered to packets without timestamp option. Excluding
the NO CONNECTION cases, and analyzing only SUCCESS and FAILURE gives an acceptance rate of the
timestamp option of 68.99%. This experiment does not study the different geographic locations
of the clients and servers, or other factors, yet it validates that the stateless design of Charon
works for most end hosts. It is also confirmed by a high acceptance rate (over 86%) obtained by
experimenting on a larger scale testbed in [251].

4.4.2 Load Balancing Fairness

Charon was tested using a virtual simulator with 2 LBs and 64 application servers with different
processing capacities6, to study the load balancing performance in terms of workload distribution
fairness. 3 episodes of 50k requests of clients for flows that last 500ms, on average, are simulated
with Poisson traffic at different variances. The traffic rates are normalized by the total server cluster
processing capacities. Figure 4.6a- 4.6d depicts the cumulative distribution functions (CDFs) of
flow completion time (FCT), which is the time necessary to complete a flow. Different LB designs
are compared. Global shortest queue (GSQ), as the name suggests, chooses the application server
with the shortest queue. It is an oracle solution that can be achieved assuming that the LBs are
aware of the actual queue lengths on each server and no computational overhead is incurred when
computing the minimum queue length. It represents the best performance an LB can achieve.
GSQ-PO2 applies power-of-2-choices over GSQ. Similar to GSQ, the LBs are assumed to be aware
of the exact instant queue lengths on each server. Unlike GSQ, GSQ-PO2 selects 2 random server
candidates and then pick the one with a shorter queue. This represents the theoretical best
performance that Charon can achieve.

ECMP randomly selects the application servers and is widely employed as a load-balancing
mechanism [64, 65, 144, 190, 235, 243]. Weighted Cost Multi-Path (WCMP) selects the applica-
tion servers according to their statically configured weights which are proportional to the server
processing capacities. W-SAPP denotes the implementation of Charon. SAPP corresponds to a
simplified version of Charon, where the 2 server candidates are chosen using a uniform distribution
instead of using weighted sampling with the Alias method. The main difference between SAPP and
W-SAPP is therefore the probabilistic method that W-SAPP applies to obtain the 2 choices. The
weights, which are used later as probabilities, are defined using the relative processing capacities of
application servers. As depicted in figures 4.6a-4.6d, the performance of both SAPP and W-SAPP
is similar to the performance of GSQ, which is considered as the method that takes the perfect

6Half of the application servers have 2 times higher processing capacities than the other half.



64 CHAPTER 4. CHARON: LOAD-AWARE LOAD-BALANCING IN P4

Utilization GSQ GSQ2 W-SAPP SAPP WCMP ECMP

64.5% 0.59 0.54 0.52 0.51 0.43 0.34
76.5% 0.64 0.59 0.56 0.57 0.47 0.47
84.5% 0.68 0.63 0.61 0.60 0.49 0.49
92.5% 0.69 0.67 0.66 0.66 0.54 0.51
100% 0.75 0.74 0.76 0.74 0.63 0.52

Table 4.1: Jain’s fairness indexes of different LBs at different traffic rates.
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(b) 92.5% expected resource utilization.

Figure 4.7: FCT of different Alias Table update interval LB designs at various traffic rate.

choice. Improvements can be observed for W-SAPP over SAPP, which is the reason why the Alias
Method is used in Charon. Despite its limited additional complexity, W-SAPP would be able to
capture the different capacities of servers.

Another interesting metric for evaluating load balancing fairness is Jain’s fairness index [252],
which computes the fairness of workload distribution. Considering n servers each one with a

particular amount of flows xi, the fairness index is computed as
(∑n

i=1 xi

n

)2

·
(∑n

i=1 x2
i

n2

)−1

. The

maximum and minimum values that the index can reach are respectively 1 and 1
n with n as

the number of servers. If the index reaches the value 1, it means that the load has been fairly
distributed. The worst case is when the index is equal to 1

n which proves that only one server has
taken all the flows.

Using the same configuration as in previous simulations, the fairness indexes of different LB
designs are computed. These values have been obtained by periodically computing the fairness
over the remaining workload of each of the application server during the simulation execution.
These results also take the different capacities of the servers into consideration. As shown in
table 4.1, ECMP and WCMP have the worst performance. Random choices do not guarantee a
fair distribution of flows. In addition, GSQ and GSQ-PO2 get the best fairness: they have perfect
knowledge of the flows, and they always choose the server with the shortest queue length. W-SAPP
and SAPP achieve similar performance to GSQ and GSQ-PO2. Although the fairness indexes of
SAPP and W-SAPP are not so different, W-SAPP takes into account the processing capacities of
the servers which can be useful when their capacities are different inside the same server cluster.
The Alias Method in Charon, however, uses dynamic weights to select a subset of candidates.

Another important parameter to analyze is the update time intervals of the Alias Table. If the
update time interval is too high, the LB choice would not reflect the real-time load states of the
application servers. For this reason, different update time intervals are simulated.

The results of the simulations are depicted in figure 4.7. 4 values have been considered: per-
centile 90, percentile 99, median and average of FCT at 2 different rates. Five different time
intervals of Alias Table updates have been used: 0.2 ms, 0.5 ms, 1 ms, 1 s, and 2 s. The plots show
a slight improvement in FCT when the update time interval is lower (higher update frequency).
This difference is too small to justify a shorter time interval update. The LBs are not signifi-
cantly influenced by a real-time update of the weights. However, it has to be considered that these
simulations are virtual. Physical experiments are necessary to further justify this assumption.
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Figure 4.8: Delay in packet departure with respect to the number of packets sent.

4.4.3 P4-NetFPGA Implementation Performance

The per-packet processing performance of NetFPGA has been illustrated in figure 3.26. This
chapter describes in detail how the evaluation is conducted, especially when comparing with soft-
ware solutions. On the NetFPGA, the reference NIC bitstream file is loaded. This program
returns the packets that the NetFPGA receives from the Ethernet interface to the PCI interface
on the motherboard. Similarly, a packet received on the PCI interface is then sent onto the Ether-
net interface – i.e., the NetFPGA behaves as a NIC. Using this, it is possible to estimate at which
time the packet sent through the PCI traverses one of the four Ethernet interfaces and it reaches
the host machine. Figure 3.26 shows the CDF of the latency. The Round-Trip Time (RTT) of
ping packets of other software solutions are also depicted. In particular, four cases are considered:
when there are two containers or two VMs on the same machine, or on different machines. The
performance of the NetFPGA implementation largely outperforms the software solutions, which
makes NetFPGA a preferred solution in terms of performance.

To demonstrate the performance of the Verilog module dip reg score, Vivado behavioural
simulations have been executed. A burst of 600 packets is sent to the NetFPGA board. The delay
between packet arrival and departure is shown in figure 4.8.

The difference between the first 16 packets and the remaining packets is due to the nature of
the packets sent. The first batch of 16 packets traverses a shorter path as they upload the IP
addresses in the IP table. The remaining packets are TCP SYN packets. They traverse the longest
path in which the destination application server of the flow is chosen. The delay is almost linear
with the number of cycles required for packet processing and stays constant. The sinusoidal shape
is because of the jitter, which is low. This plot shows the high performance of the designed module
and its efficiency in executing the proposed LB algorithm.

4.5 Summary

This chapter proposes Charon a stateless, load-aware, hardware load balancer in data centers,
which (i) fairly distributes flow requests, (ii) avoids flow disruptions, and (iii) avoids additional
latency due to its presence. The design choices of Charon make it suitable for implementation on
programmable hardware. Simulation results show that Charon improves load balancing fairness
and helps achieve a better quality of service than other load balancing mechanisms. Evaluations of
throughput and processing latency demonstrate the advantage of hardware implementations. How-
ever, with limited and delayed observations, Charon does not outperform heuristic load balancing
algorithms in terms of workload distribution fairness.

The results from this chapter have been published in [195]. The source code and data of simu-
lation results are available under an open-source license at: https://github.com/ZhiyuanYaoJ/
SimLB/tree/charon.

https://github.com/ZhiyuanYaoJ/SimLB/tree/charon
https://github.com/ZhiyuanYaoJ/SimLB/tree/charon
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Chapter 5

MLB: Load Balancing with
“Intelligence”

In data centers (DCs), cloud services and network applications are associated with server clus-
ters to provide high scalability, availability, and quality of service (QoS) [63, 142]. As a key com-
ponent for efficient resource utilization in DCs, Layer-4 load-balancers (LBs) distribute network
traffic addressed to a given cloud service evenly on all associated servers, while consistently main-
taining established flows [64, 65, 135, 143, 144]. As already demonstrated in Chapter 3, as well as
in [17, 147], Machine Learning (ML) can help achieve performance gains in different networking
problems. This chapter investigates challenges and potentials when applying ML algorithms to
improve network load balancing performance, with various networking features extracted based on
the Aquarius framework.
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Figure 5.1: Workflow of Layer-4 load balancers in data center networks.

As a reminder, the workflow of network LBs is depicted in figure 5.1. On receipt of a new flow
request 1 (e.g., a TCP SYN), LBs 2 determine to which server the new flow is to be dispatched.
Servers 3 respond to the request using direct-source-return (DSR) mode1; LBs thus have no access
to the server-to-client side of communication. Finally, 4 the load-balancing decision – once made
– is preserved until flow terminates.

Statement of Purpose

As discussed already in the related work section in chapter 4, per-connection consistency (PCC)
of network flows has been explored in the literature [59, 64, 65, 144, 190, 192, 193, 221]. Yet many
Layer-4 LBs in data centers [58, 64, 65, 190, 192, 193] do not consider application server load when
distributing workloads, which can lead to suboptimal load-balancing fairness and resource utiliza-
tion. Without considering real-time server utilization, heterogeneous traffic will potentially incur
collisions of elephant flows on the same application server and lead to uneven load distribution.
Hence, this chapter stresses the significance of LB load distribution fairness and investigates an
ML-based scheme to help address this issue.

This chapter explores how the features extracted by Aquarius (chapter 3) can be exploited
for network load balancing in data centers, and discusses the constraints as well as the tradeoffs
between performance gain and additional complexity when applying ML algorithms. This chapter

1DSR is enabled for response packets from servers to clients to bypass LBs. It relieves LBs of handling 2-way
traffic, improving network throughput [64].

67
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(b) Average load L̄t.
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(c) Jain’s fairness index.
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(d) Overprovision.

Figure 5.2: Simulation result with a sample setup.

also studies the potential benefits and challenges of the application to help improve load-balancing
fairness by learning and extracting correlations between networking observations and available
server resources.

Chapter Outline

The remainder of this chapter is organized as follows. Section 5.1 describes the network load-
balancing problem in data centers, and presents a quantitative study based on simulations that
demonstrate the challenges of improving load-balancing fairness. Section 5.2 describes the design
of MLB and its load-balancing decision-making process. Section 5.3 describes the implementation
details of the experimental setups. Section 5.4 presents quantitative evaluations, comparing and
contrasting different ML algorithms load-balancing algorithms, by way of both offline and online
applications. Section 5.5 finally concludes this chapter.

5.1 Background

An abstract way of understanding the process of load balancing is as a stream of tasks (each
requiring a certain amount of processing time) dispatched towards a cluster of workers or servers,
each with constrained capacities. The key motivation of this chapter is that making dispatching
decisions based on the state of real-time resource utilization can not only improve quality of service
(QoS), but also reduce cost and energy required. This can be demonstrated by a simple simulation
of a service provided by a pool of servers with constrained capacity below.

Given a cluster of N servers S = {si|i ∈ {1, . . . , N}}, each with finite processing capacities
C(Si, t), i ∈ [1, N ], and a Poisson stream ofM jobs J = {jk|k ∈ {1, . . . ,M}} with different estimated
time to complete T (jk) ∈ (0,+∞), as well as a Poisson arrival rate λ (i.e., the number of arriving
jobs per second), and constrained processing capacities of each server as C (si) ∈ (0,+∞), and
an actual load of each server at timestamp t as Lt (si). To simulate the nature of a DC network,
where traffic follows heavy-tail distribution [1], the estimated time to complete of a job is assumed
to follow an exponential distribution, with a standard deviation equal to its mean µ. With the
arrival of a new job, jk, the task of the LB is to dispatch jk to a server si, which will enqueue jk
locally and keep processing jobs in its queue with its capacity C (si).

Different task-dispatching strategies can be employed. Whenever a new task arrives, LB can:

• randomly select a server,
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(b) Avg. load L̄t.
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(c) Jain’s fairness index.
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(d) Avg. Overprovision.

Figure 5.3: Simulation result with various expected capacity utilization.

• select a server in a round-robin fashion,

• “guess” the current load of each server L̂t (si) and, use a dispatching method such as:

– least-loaded-first (LLF): select a server with least load (argmin
si∈S

L̂t (si)),

– power-of-two (Po2): randomly select two servers (sp, sq ∈ S) and choose the less loaded

one ( argmin
si∈{sp,sq}

L̂t (si)),

– weighted sampling (WS): select a server in a weighted sampling scheme.

Among these, the last two are respectively implemented as the power of two [246] and the alias
method [248]. When L̂t (si) = Lt (si), optimal performance is expected to be achieved by adopting
LLF. To evaluate and compare the performance of each dispatching strategy, four metrics can be
employed to evaluate:

• quality of service: job complete time (JCT),

• cost and energy: average load L̄t =
(∑

Lt(si)
N

)
,

• distribution fairness:

– Jain’s fairness
(

E(Lt(si))
2

E(L2
t (si))

∈ [0, 1]
)
[252],

– overprovision
(

maxLt(si)
L̄t

)
.

The simulation results presented in figure 5.2 are of a sample setup, where N = 128 identical
servers with capacity C(si) = 4 are subjected to a Poisson stream (traffic rate λ = 450) of M = 80k
jobs with average estimated time to complete T̄ (jk) = 1. This setup challenges the server cluster

with jobs that consumes potentially
¯T (jk)λ

C(si)N
≈ 87.89% of their total theoretical capacity. The

optimal dispatching strategy llf-optimal assumes that the LB knows the exact current load of
each server, such that all new queries are forwarded to the least-loaded server in the cluster. The
“guessing” process is then simulated by adding Gaussian noise with a standard deviation (an error

E(∥L̂t−Lt∥) which equals to C(si)
2 = 2) to the actual ground truth. Figure 5.2 shows that, if LB can

make load-balancing decisions based on the information of server load state, better performance
can be achieved in terms of quality of service, average load, and distribution fairness. Even if
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(c) Jain’s fairness index.
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Figure 5.4: Simulation result with various “guessing” error E(∥L̂t − Lt∥).

the information of server load state is inferred (“guessed” with bounded error), load-balancing
performance can still be improved when compared with load-agnostic load-balancing methods.

As depicted in figure 5.3, with an increased load (or, expected capacity utilization, by varying
the Poisson traffic rate λ), the performance gain becomes significant when load balancers are aware
of server load states, even if the information is inferred with a bounded error. The average JCT and
server load increase drastically when LB is load-agnostic. However, regardless of the “guessing”
error E(∥L̂t − Lt∥) = 2, the 3 load-balancing strategies, based on inference, reduce the JCT, and
decrease the average server load, achieving performance similar to the optimal solution llf.

Adjusting the accuracy of the “guessing” process, by adding Gaussian noise with different
standard deviation (E(∥L̂t − Lt∥)), influences the performance of each load-balancing strategy, as
depicted in figure 5.4. The performance of each of the 3 dispatching strategies (LLF, WS, Po2)
degrades when the accuracy of inference decreases. Especially with LLF, when making wrong load-
balancing decisions when undertake high server load inference error (e.g., dispatching more tasks
to servers which, according to the load balancer inference, have a lower load, however in reality
they are already overloaded), a new task is potentially dispatched to a server which is actually
more loaded than average, resulting in a worse performance as is shown in figure 5.4. The impact of
wrong server load inference is somewhat neutralized by randomization with Po2 or WS. However,
the benefit of load-aware load balancing using a lower server load inference error is evident.

5.1.1 From Simulator to Testbed

To implement, deploy, and compare the performance of different methods (Maglev [65], active-
probing, and a simple heuristic counting number of ongoing flows), a set of experiments are con-
ducted with a testbed2, whose topology is shown in figure 5.5. A simple Poisson stream of queries
with expected job complete time (JCT) following a heavy-tail distribution is employed. The fol-
lowing load balancing algorithms are then tested:

• maglev : Randomly dispatch new-coming flows to server cluster [65].

• maglev-ws (Maglev with weighted-sampling): Randomly dispatch new flows to server cluster,
using a statically configured weighted-sampling based on the server resource allocation.

2The testbed configuration details can be found in section 3.2.3.
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Figure 5.6: A sample experiment result.

• active-ws (active probing with weighted-sampling): Actively probe server load (i.e., the
number of busy Apache threads), based on which a list of weights are generated and new
flows are dispatched with weighted-sampling.

• active-po2 (Active probing with power-of-2): Actively probe server load (i.e., the number of
busy Apache threads) and randomly (with consistent hashing) select 2 servers, then choose
the least-loaded from among these. Presumably, this method outperforms 6LB [135] as long
as the probing frequency is high enough, and as long as there are no extreme bursts of new
flows. This is because 6LB daisy-chains 2 servers and offloads the decision-making process
to the servers, which can compare the predefined “overload” threshold with their actual load
states. 6LB improves load-balancing performance only when the second server in the chain
is less loaded than the first server. Otherwise, the request can not be sent back to the first
server, therefore it ends up with the heavier-loaded server.

• nf-po2 (Counting number of ongoing flows with power-of-2): Keep recording the number of
ongoing flows to each server and randomly (with consistent hashing) select 2 servers, and
choose the one that currently serves the least ongoing flows.

• nf-llf (Counting number of ongoing flows with least-loaded-first): Keep recording the number
of ongoing flows to each server and choose the one with the least ongoing flows.

The first experiment is conducted with single LB and Poisson traffic with heavy-tail distributed
tasks. Co-located workloads are applied in one scenario on half of the servers to emulate, a
data center environment where servers can have heterogeneous architectures, or multiple different
services run on shared hardware resources.



72 CHAPTER 5. MLB: LOAD BALANCING WITH “INTELLIGENCE”

(a) 100 (b) 100 with co-located workloads

(c) 110 (d) 110 with co-located workloads

(e) 120 (f) 120 with co-located workloads

Figure 5.7: Page load time CDF with different traffic rate without (upper) or with (lower) co-located
workload

As depicted in figure 5.6, Maglev (with weighted sampling) is very sensitive to co-located
workloads, when resources are not even. Both active probing (labeled as active in the plot) and
counting the number of established flows (labeled nf in the plot) can largely prevent performance
degradation in terms of page load time. Between the two, nf always outperforms active since
with a single LB, the metric that nf uses to evaluate the current server load state (number of
established flows) accurately reflects the actual number of threads on each server, whereas active
requires at least 1 round-trip time between LB and server for accurate and timely observation of
server load.

Experiments with different traffic rates are are depicted in figure 5.7. With a higher traffic rate,
the advantage of counting the number of flows and of active probing becomes more significant – up
to a point where the rate is so high that server capacity is saturated. With co-located workloads
(constrained capacity), the pattern is similar. However, the performance improvement is limited
when the traffic rate grows high: neither nf nor active can capture the actual server capacity
difference (8 servers with 2 CPUs and 4 servers with 1 CPUs).

Figure 5.8 shows that Maglev is not able to allocate resources according to the actual workload,
especially when co-located workloads are present on the servers. However, both active and nf

help LB minimize average load when traffic rate is low, and take fully advantage of all server
capacities when traffic rate becomes high. The lower average number of (Apache) worker threads
when using Maglev is because some servers are overloaded while others are starving. Both nf and
active approaches can effectively reduce timeouts or connection resets caused by heavy traffic.

Since multiple LBs are deployed in data center networks to avoid a single point of failure,
another point to investigate is the load-balancing performance when the LB has a global or local
observation. Figure 5.9 demonstrates that (i) nf-llf is more sensitive to local observations –
biased server state measurements lead to its performance degradation; (ii) nf-po2 is more resilient
to local observations, however, it is less resilient comparing with active approach, which can obtain
global observations.
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Figure 5.8: Comparison with different traffic rate on other metrics

5.1.2 Challenges

The simulation and experimental testbed results in section 5.1.2 demonstrate that load-balancing
performance (i.e., the average flow complete time, resource utilization, load distribution fairness,
and overprovision) can be improved when the load balancer is aware of its corresponding servers.

To this end, Machine Learning (ML) is increasingly applied in the field of networking [147], to
infer information about the global system and network states from local observations. Recurrent
neural networks (RNN), built for analyzing time-series datasets, have shown feasible for processing
and analyzing networking observations, within the field of computer networking [21,22]. However,
the high computational complexity required to run advanced and complicated ML models hinders
their application in the field of high-performance network [26], where a high degree of reactivity,
and “line speed” communications are expected.

For instance, consider a simple 3 layer neural network with 4865 parameters, built Keras/Ten-
sorflow [234]. If input datapoints have 32 features, to obtain an output from the neural network
requires around 100ms processing time (10Hz), using single CPU core (Intel Xeon CPU E5-2690
v3 at 2.60GHz), as depicted in figure 5.103. This result shows the difficulty of applying off-the-shelf
ML techniques to per-flow based L4 LB for DC in production, where flows arrive with much higher
frequency than 10Hz (as shown in [253] where packets can arrive at “line speed” – 1Gbps – in data
center networks). As a result, the capacities of ML models (e.g., number of parameters) applicable
off-the-shelf are limited.

Apart from the computational complexity of ML, server load inference is expected to be adaptive
to incoming traffic. In a DC network setup, LBs are expected to handle requests with various
distribution, for different applications running on the servers, as well as diurnal and nocturnal
patterns of user activities [254]. Hence, ML schemes deploy offline-trained ML models for online
tasks, “hoping” that training and testing datasets share similar distributions. This however does
not apply for the load-balancing problem in DC networks. Continual lifelong learning (CLL) [255]
is one technique for adapting to a stream of various incoming tasks. However, this requires not

3The measurement is conducted on CPU machines since no Cisco device is equipped with GPU.
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(a) nf-llf with different # LB (b) nf-po2 with different # LB

(c) active-po2 with different # LB

Figure 5.9: Comparison with different number of LB devices
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Figure 5.10: Inference latency using 3-layer neural networks.

only identifying and classifying different tasks, but also incrementing the capacity of ML models
(e.g., adding hidden neurons or layers to the original models) as more types of tasks are introduced.
Another option to achieve adaptivity is to use reinforcement learning (RL) [256]. RL model learns
a policy based on previously observed states and rewards and has achieved great performance in
complicated environments together with deep neural networks (DNN) [257]. However, RL requires
careful design of reward function and an optimization algorithm to achieve fast convergence. This
will be studied further in chapter 7.

Last but not least, it is not a trivial task to integrate the server load inference engine into LB,
without disrupting its intrinsic properties, e.g., PCC, availability, robustness, etc. For instance,
an LB should guarantee that the same flow will always be directed to the same application server
once a decision has been made, regardless of the latest server-load circumstance. When adopting
weighted hashing techniques [241, 258] for making load-aware dispatching decisions, it requires
reconstructing the hash table, which may cause inconsistent mapping between network flows and
servers when the weights need to be updated frequently.

To summarize, MLB needs to resolve the following key challenges:

• minimizing inference error to avoid making wrongful server-load dispatching decisions (re-
gardless of local observations),

• minimizing potential performance and management overhead of the inference engine (tradeoff
between sampling frequency and performance),

• adapting to different and/or time-variant incoming traffic (stream of tasks),

• retaining the properties of LB – PCC, availability, robustness, etc.
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Figure 5.11: Overview: the scope of study is to find new approaches to load-aware load-balancing so as
to improve traffic distribution fairness meanwhile restrict performance overhead.

5.2 Design

The proposed architecture of MLB is depicted in figure 5.11: 1 whenever receiving new flow
request (e.g. TCP SYNs), 2 the load-balancer looks up the table of predicted server load, up-
dated concurrently by steps a - c . Based on this, the load-balancer is able to make a load-balancing
decision – selecting predicted least-loaded application server based on local observations, and deter-
mining to which application server the new flow is directed in step 3 . Then 4 the load-balancer
constructs a mapping between the server and network flow, hence 5 subsequent packets from the
client can directly be forwarded to the corresponding server without further decisions. Based on
Aquarius, this workflow follows the principles laid out in section 3.3.3.

While purely passive (i.e., random and round-robin) load-balancing strategies and active ap-
proaches sit at the two ends of the trade-off between traffic distribution fairness and performance
overhead, MLB strives for an optimal solution by exploring networking features that could be
observed by LB and be used to infer server load (section 5.2.1).

5.2.1 Networking Features: From LB’s Perspective

As a “middlebox”, in between clients and servers, an LB could observe 2-way traffic, which
allows LB to estimate processing time for each server, and therefore infer server load and make
load-aware load-balancing decisions. However, as discussed in chapter 4, the Direct Source Return
(DSR) mode can be enabled in most LB to improve system throughput. The flows from servers to
clients can be (and often are) up to several times bigger than the incoming requests from clients
to servers. In this case, the risk of the load balancer becoming a bottleneck increases considerably.
Hence the role of DSR, which modifies the traffic flow by permitting the server to respond directly
to the client, is to relieve the network load balancer of the need to handle the heavy traffic load. A
consequence of this is, that the LB limits the insights that can be obtained by observation of the
traffic by the LB since only traffic from the client can be observed. Therefore, the first challenge is
to extract features that can embed server load information, from the network traffic that the LB
sees.

One feature to infer server load for TCP traffic is to count the number of SYNs and FINs (or
RST) that the LB has seen, to estimate the number of established flows (#flows). As is shown in
figure 5.12, when there is only one LB, #flows reflects the number of busy threads on the server.
However, as is discussed in section 5.1.2, when there are multiple LBs, it is not necessarily the
case. It is visible in figure 5.12 at the bottom. Even though the summarized #flows correlates
with the actual number of busy threads on the server, the observation on the second LB (green)
loses track of the actual server load (especially during the period from 40 to 60 seconds). Also,
this feature may not be robust when faced SYN flood attacks. Therefore, it is necessary to explore
various types of networking features, to augment the information that can be extracted from the
data plane for making inferences about the system and network states in different scenarios.
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Figure 5.12: A simple heuristics counting number of SYNs and FINs to infer the current load on the
server.

Type Notation Observation

T
em

p
o
ra
l

iatf flow inter-arrival time
iatp flow-agnostic packet inter-arrival time
iatppf per-flow packet inter-arrival time
fct flow complete time
latsynack SYN to first ACK latency

pt1st
first data packet processing time

derived from TCP tsecr

ptgen
general data packet processing time

derived from TCP tsecr

C
o
u
n
te
r

np number of packets
nf number of flows
nfc number of completed flows
nooo number of out of ordered ACK packets
nrtr number of packets retransmission
ndpk number of duplicated ACK

O
th
er

win congestion window size
δwin 1st direvative of congestion window
bytep bytes transmitted per packet
bytef bytes transmitted per flow
byteff bytes transmitted per flow on the fly

Table 5.1: Features extracted from the data plane at the load-balancer.

For simplicity, this chapter considers TCP traffic and revisits all the networking features that
can be extracted using Aquarius, as introduced in section 3.2.1. However, many of these features
are also available for other Transport-layer protocols (e.g., UDP and QUIC). The notations and
descriptions of all collected features that are available in TCP and to the LB, to infer server load
are shown in table 5.1, and explained in the following.

Temporal Features: Temporal features are significant metrics for networking applications.
For example, round-trip-time (RTT) is employed to evaluate QoS for software-defined network
(SDN) [259]. As for heterogeneous and complex data center network setups, more such temporal
features are candidates for server load inference.

1. Flow inter-arrival time (iatf ): The arrival rates of flows reflect the density of requests from
clients. This feature captures all flow inter-arrival times to one application server, repre-
senting general flow-based traffic load going through one LB to its application servers. It is
updated whenever a new flow is observed targeting each application server, e.g., for TCP
traffic whenever a first SYN packet is seen for a new 5-tuple digest (flow ID).

2. Packet inter-arrival time (iatp): The arrival rates of packets have similar meanings but with
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Figure 5.13: Calculation of server processing time with TCP timestamp options in the context of network
load balancers.

finer granularity. Instead of being flow-based, it captures all the packet inter-arrival times to
one application server regardless of flow ID. It can be used together with iatf as canonical
features, indicating the distribution of flow duration, packet arrival density, etc.

3. Per-flow packet inter-arrival time (iatppf ): Unlike previous inter-arrival time, iatppf is spe-
cific to each flow (each request from a client), estimating all the packet inter-arrival times to
one application server for each network flow. It is then the accumulation of processing time
on the server, on routers, and on clients – as well as the communication latency along the
path – which potentially can be used to learn the distribution of clients (e.g., their distance
from the servers).

4. Flow complete time (fct): Capturing the distribution of flow duration can potentially indicate
server load. With the same type of application, when fct is observed to increase, it can be
used as an indicator that the corresponding application server is overloaded4. This feature
encodes not only the duration of a flow, but also the timestamp when a flow is finished. It is
updated whenever a flow finishes, e.g., for TCP traffics, whenever received the first FIN/RST
for an established flow. Since there might be more than one flow that finishes at the same
time, the number of finished flows is also estimated as one of the counter features introduced
below.

5. SYN to first ACK latency (latsynack): This feature is constructed to calculate the time
difference between the first SYN and the first ACK packet from the client. For TCP traffics,
the initialization process (the 3-way handshake) allows detecting the round trip time (RTT)
between the server and the client. Whenever a SYN is received, SYN cookies statelessly
generate a SYN+ACK response immediately, hence the processing time on the server is
negligible. This allows estimating the baseline RTT between the client and the server, for
each flow. It is updated whenever the first ACK of an established flow is received.

6. Data packet processing time derived from TCP timestamp option tsecr (pt1st and ptgen):
As already discussed in section 3.2.1, this feature exploits TCP options (tsval and tsecr

w/ 1ms granularity) and tries to capture the variation of processing time on the server. The
way this feature is calculated in the context of network LBs in data center networks is shown
in figure 5.13. Intuitively, the time difference between when the server receives a packet, and

4This shares the same principle as TCP congestion control algorithms (e.g., Reno and Vegas) [260] – an “early”
ML application in networking – which detects congestions based on increasing round trip time (RTT).
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when the server replies, indicates the processing time of a query on the server. However,
this information is hard to observe by LB because of DSR. By exploiting the TCP option
fields, the timestamp of when the server processes the request and replies to the client can
be obtained from tsecr: tsecr in a TCP segment from the client is equivalent to the tsval
recorded in the previous TCP segment from the server. The difference between tsecr and
previously stored timestamp when LB received last packet is then calculated, which serves
as an estimation of processing time on the server. As the clocks on LB and server are not
synchronized, all timestamps need to be initialized with the first network flow. An example
procedure of calculating pt is demonstrated in figure 5.13. This calculated value might be
corrupted by the time spent on the wire from LB to server, however, in DC network, this is
trivial when compared to processing time on the application server. This feature is updated
for each received ACK to data packets. To make it more favorable to Web applications,
distinctions are made between the first data packet and the following data packets. One
limitation of this feature is that it requires clients to enable the TCP option field.

Counter Features: As a virtual network function located on the path between clients and servers,
LB can accumulate a set of counters for each application server it is connected to, which could
potentially help infer traffic throughput and server load. However, the non-stationary counters
could induce noises when there is a scaling event or failover of LB.

1. Number of packets (np): This feature captures the amount of all newly arrived packets to
each application server via an LB. It is a local observation of how many packets are directed
to each application server, which serves as a primitive baseline of the current traffic load.

2. Number of flows (nf ): Similarly, the amount of newly arrived flows to each application server
via an LB can be collected. It is a local observation of how many flows are directed to a
specific application server. Together with fct, it helps indicate the lifecycle of flows.

3. Number of completed flows (nfc): In addition to counting the arrival of new flows, the amount
of all terminated network flows to each application server also sketches the lifecycle of flows.
Together with nf , it gives a locally observed number of ongoing flows.

4. Number of out-of-ordered and duplicated ACK packets, and retransmissions (nooo, ndpk, and
nrtr): These features are specific to TCP. They reflect the congestion level on the path
between servers and clients.

Other Features: other than temporal and counter features, more observations can be obtained
to reflect the congestion level and throughput, which may allow decoupling server-load information.

1. Congestion window size (win): An estimation of the current TCP congestion window size
embeds various information, including the congestion state for each flow as perceived by the
clients, distribution of elephant and mouse flow, etc. It is updated whenever a new ACK
packet is observed targeting each application server from an LB’s perspective.

2. 1st derivative of congestion window size (δwin): The congestion state is encoded in the
varieties of TCP congestion window size during a flow lifetime, i.e., 1st derivative of window
size for each network flow. A negative value indicates that TCP fast retransmission is taking
place, hence it allows the LB to know the congestion level for the corresponding flow. It is
updated whenever a new ACK packet (after the first ACK packet) is received.

3. Bytes transmitted per packet (bytep): To take a glimpse of the traffic from the server, ACK
numbers in packets from the clients’ side can be utilized to calculate the amount of data
that are successfully transmitted. It is determined largely by the application running on the
server and the type of query. In addition, it indirectly suggests the congestion level from the
server’s point of view. Along with the number of packets, local observation on throughput
can be estimated, which serves as an IO metric for server load after scaling by the number
of LBs.

4. Bytes transmitted per flow (bytef ): This feature captures information concerning only com-
pleted flows. It’s a feature that helps look back into the history, which gives hints on the
throughput utilization in the past few time steps.
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Figure 5.14: Simplified flow chart of TCP traffic feature collector: when receiving a new packet, load-
balancer parses the 5-tuple (source & destination addresses, L4 protocol, source & destination port) digest
as flow ID. Parsed header information is fed to an embedded state machine which collects and calculate
various features according to the flow state and current packet for the corresponding application server.
The features are summarized every δt. The arguments in square brackets denote conditions while the
ones in blue are actions. For clarity, some transitions are broken into dashed lines pointing out and into
corresponding boxes.

5. Bytes per flow on the fly w/ reservoir sampling (byteff ): Feature bytef cannot be easily
obtained for some transport layer protocol which has no indicator of flow completion (e.g.,
FIN/RST flag for TCP traffics). Instead, capturing the number of bytes on the fly can be
generalized to many protocols (e.g., UDP, QUIC). With reservoir sampling, whenever an
ACK packet is received, the transmitted byte can be calculated and put in the buckets with
a fixed probability.

To collect all the features described above, a feature collector is designed and embedded, using
Aquarius in the LB. Other than the network 5-tuple, TCP flags flag, acknowledgment number ack,
congestion window size win, and TCP timestamp options tsecr are taken as inputs. Additionally,
local timestamp t, flow-id fid constructed from the 5-tuple digest, and assigned application server
id as id from the LB are used to keep tracking per server and per-flow observations.

A simplified feature collection workflow for TCP traffic is depicted in figure 5.14. For each
application server, there is an independent table of variables that is updated with the state machine
whenever a new packet shall be directed to the corresponding application server. For each flow, its
state is tracked according to the flags of the packets (for TCP traffic). Whenever a new flow arrives,
a state is initialized and stored in the flow table. Whenever the first FIN/RST packet is seen, the
state is evicted from the flow table to create space for future flows. The list of features is collected
with incremental counter and accumulated sum, with which average and standard deviation can

be calculated as x̄ =

∑
x

n
, stddev(x) =

√∑
x2

n
− x̄2. Periodically, the LB takes a “snapshot” of

the current set of features collected, from which proper statistical features (e.g., average, standard
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Figure 5.15: An instance of testbed network configuration with one layer of load balancers.

deviation, percentiles) for server load inference can be generated.

5.3 Experimental Setup

Similar to the setup used in chapter 3, the experimental platform consists of VMs representing
clients, edge routers, load balancers and server agents. Its topology is depicted in figure 5.15. As
a reminder of what has been described in section 3.2.3, several explications are made as follows:

1) Load-Balancer: A simple load-balancer, that randomly maps flows to servers, is implemented
as a VPP plugin [121]. With high modularity and extensibility, as well as kernel-bypass capabilities,
VPP provides a platform to build a prototype predictive application load balancer. Based on the
load-balancing plugin in VPP, a variety of load-balancing schemes are implemented, including
active-probing-based WCMP, simple heuristics counting the number of ongoing flows, and ML-
based load-balancing algorithms.

2) Apache HTTP Server Agent: An Apache HTTP server agent [227] is running on each
application server. Three metrics are periodically (10Hz) gathered as ground truth for the load
state: CPU utilization, memory usage, and the number of Apache busy worker threads. To be
more precise, the CPU utilization is calculated as the ratio of non-idle CPU time to total CPU time
measured from the file /proc/stat that keeps track of statistics about the system; the memory
status is obtained from /proc/meminfo; and the number of Apache busy threads is accessed via
Apache’s scoreboard shared memory.

3) System Platform: Experiments are conducted on one physical machine with a 24-physical-
core (48-logical-core) Intel Xeon E5-2690 CPU. Load-balancer instances (VPP) are, by default,
deployed as a 2-core (logical) VM. Application instances of an Apache HTTP server reside each
also as a 2-core (logical) VM. All the VMs are on the same link (Layer 2), with routing tables
statically configured. All Apache HTTP application servers share the same virtual IP address on
one end of GRE tunnels with the load-balancer on the other end, as is shown in figure 5.15.
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Figure 5.16: Networking feature distribution collected on the LB.

Figure 5.17: Networking feature correlation with p-value.
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(a) Visualization of prediction error (GBM). (b) Visualization of prediction error (XGB).

(c) Feature importance (GBM). (d) Feature importance (XGBoost).

Figure 5.18: Feature engineering and preliminary evaluation using GBM and XGBoost after fine-tuning.

4) Network Traces: Similar to in section 3.3.1, 3 types of network traces are used for conducting
experiments in this chapter:

• Poisson stream of PHP for loop, both CPU-intensive (two subcategories are exponential and
lognormal distributions), as described in section 3.2.3;

• Poisson stream of PHP file transmission, IO-intensive, as described in section 3.2.35;

• Wikipedia 24 hour replay, as described in section 3.2.3.

5.4 Experiment

The first experiment is carried out offline, by collecting networking features, as detailed in
section 5.2.1, as well as instantaneous server load as ground truth on a 12-server cluster with 1 LB.
This is designed to study whether ML models can infer server load from networking observations.
The feature distribution is shown in figure 5.16. Correlations between some networking features
and ground truth label data (i.e., CPU usage and the number of busy Apache threads) are depicted
in figure 5.17.

To further understand the correlation and feature importance in terms of server load inference,
a Gradient Boost Regressor (GBM) and an XGBoost model are trained and fine-tuned using
the collected dataset, whose results are shown in figure 5.18. It is shown that temporal features
especially flow complete time and first packet processing time are the two major contributors to
the inference process. The performance of the two Boosting models is not ideal because they are
not designed for sequential datasets.

To select the best sequential ML model, a list of models with different structures are imple-
mented with TensorFlow. They are compared with a simple benchmark with candidates including
active probing and a naive neural network which is not sequential.

5Traffic rates are generated from 24 to 128 requests per second for a 12 server cluster.
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(a) Active probing performance with different polling intervals (10, 20, 50, 100 ms interval in the 1st row and 150,
200, 300, 500 in the 2nd row).
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Figure 5.19: Active probing performance evaluation and comparison.
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Figure 5.20: Validation results comparing predicted and ground truth #apache.

The results using synthesized Poisson traffics are depicted in figure 5.19b and figure 5.20. And
the full compare and contrast table for both Wiki and Poisson traces is shown in table 5.2.

Active probing is implemented by inferring server load, based on previously observed server
load. The ML benchmark is built as a neural network with one flattened layer and one dense layer,
which takes into account features collected across all of the sequences. For ML models, only a
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Task Metrics Dense1 RNN2 LSTM2 GRU2
1DConv-
GRU1

Wavenet-
GRU1

Wavenet-
Reconst.

W
ik
i
R
e
p
la
y

MSE 253.203 2.557 1.553 1.660 1.878 1.923 2.421
RMSE 15.912 1.599 1.245 1.288 1.371 1.387 1.556
MAE 1.804 1.099 0.916 0.931 0.988 0.996 1.117

Avg. Latency (Train) (ms) 116 116 194 162 78.8 137 136
Latency std. (Train) (ms) 2.53 2.53 6.91 2.33 2.48 1.48 0.89
Avg. Latency (Infer) (ms) 50.5 52.1 53.4 53.7 44.8 54.9 54.6
Latency std. (Infer) (ms) 1.03 1.74 3.01 1.3 2.8 0.80 0.52

P
o
is
so

n
T
ra

ffi
c MSE 1520.888 2.804 0.801 0.774 0.874 0.965 0.946

RMSE 38.999 1.675 0.895 0.880 0.935 0.982 0.973
MAE 3.176 1.162 0.602 0.600 0.635 0.648 0.649

Avg. Latency (Train) (ms) 60.5 305 214 215 110 162 195
Latency std. (Train) (ms) 1.66 29.5 13.8 14.4 6.57 7.16 27.4
Avg. Latency (Infer) (ms) 55.4 91.4 69.3 70.9 61.5 65.6 70.2
Latency std. (Infer) (ms) 0.714 6.41 2.23 1.32 2.51 1.67 0.429

Table 5.2: Accumulated score board for different models and different jobs executed with 1 CPU core.

part of the dataset is selected as the training dataset while the rest are kept as the test set6. The
configuration of sequence length as 64 and stride as 32 gives around 160k datapoints. Validation
results are depicted in figure 5.20, and summarized in table 5.2. The results show that neural
networks with simple structures (e.g., Dense1) have lower latency in terms of both the training
and the inference process. However, Dense1 is not able to predict server load states with high
accuracy. Sequential models (e.g., RNN, LSTM, and GRU) achieve the best prediction accuracy
at the cost of higher training and inference overhead. Simplified sequential NN structures including
1D convolutional networks and Wavenet help balance the trade-off between accuracy and learning
overhead.

5.4.1 Applying Poisson-Trained LSTM on Poisson Traffic

Based on the offline training results using Poisson traffic, ML models can predict server load
states with reduced errors. The trained models are brought online to verify their performance
when subjected to real traffic. The set of traffic rates is extended from [100, 160] to [100, 175],
which is based on the scale of the configured testbed. The testbed consists of 12 2-core (log-
ical) servers. Therefore the theoretical processing capability “per second” of the cluster is 24
for 1-second-duration jobs. Given the average process time of the generated queries (simple
for-loop with iterations of exponential distribution whose mean equals 400k) is around 140ms,
the expected 100% loaded traffic rate is, therefore, 170. With different traffic rates, one round
of experiment takes from 800s to 1000s with 100k queries. The set of traffic rates tested is
[100, 115, 125, 135, 142, 146, 150, 154, 158, 162, 165].

In addition to varying the traffic rate, it is also interesting to vary the query length (i.e., the
mean of the exponential distribution of number of iterations µquery len) to verify if ML model is
able to generalize to different queries. Since the ML model is trained with µquery len = 4, another
set of queries is generated with µquery len = 8, thus increasing the average process time from 140ms
to 160ms, while also pushing the saturating traffic rate to around 150. The characteristic of the
two types of queries of an exponential distribution is depicted in figure 5.21. Since the PHP for
loop application running on servers print the current number of iteration every 1000 iterations,
the flow size for each query can be calculated based on their number of iterations. For instance, a
query for 4e6 iterations will generate around 36kb flow.

The results of these experiments are shown in figure 5.21. As the LSTM network is trained on
Poisson traffic, it can help select the less loaded server hence has great improvement on average
page load time, for both short queries and long queries, as is shown in figure 5.21c. It’s also
interesting to see that with a higher average expected job duration (µquery len = 8), the page load
time with ML is close to Maglev when the traffic rate is around 150 to 155. Another observation
from figure 5.21c is that the difference between the average page load time using Maglev and ML
becomes less significant when the traffic rate becomes high enough to saturate all servers, and
when the ML model performance degrades as is shown in figure 5.21g. Similarly, improvements
can be found in terms of the number of busy Apache threads as well as CPU usage.

6For instance, for Poisson traffic, traces with traffic rates of 105, 120, 130, 140, 144, 148, 150, 152, 155, 157 are used
as the training dataset
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Figure 5.21: Results of online scaling experiments on synthesized Poisson traffic using LSTM model
trained with Poisson traffic.

In figures 5.21d, 5.21e, and 5.21f, it may appear confusing at the first glance that the average
number of Apache threads using ML-based LB can surpass Maglev when traffic rate grows to a
certain level. However, this is an instance where the averaged networking measurements fail to
reflect the system states. With higher fairness, ML-based LB is able to spread flows across all
servers instead of having skewed flow distribution (e.g., two or more elephant flows with super
high number of iterations on the same server).

In figures 5.21h, 5.21i, and 5.21j, it is more clearly visible that the improvement with ML-
based LB increases as loads get higher7. As depicted in figures 5.21e, 5.21f, 5.21i, and 5.21j, the
performance of Maglev starts to degrade when the server cluster is subjected to lower traffic rates
than the ML-based LB. The ceiling of the Apache thread pool (32), as well as the CPU usage
(100%), implies an absolute capacity limit. When subjected to lower traffic rates, Maglev tends to
assign new flows to the server which has already reached its capacity limit. Therefore, the fairness
of #apache decreases while the overprovision increases. When subjected to heavier loads, more
servers reach their capacity limits and therefore the load-balancing fairness is improved and the

7The general level of overprovisioning/utilization rate in a DC setup would be 75% to 90% [65].
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(d) #apache fair.

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Hour

2

3

4

5

6

# 
Bu

sy
 A

pa
ch

e 
Th

re
ad

s O
ve

rp
ro

vi
sio

n

query rate
maglev (10 AS)
ml-po2 (10 AS)
nf_po2 (10 AS)
nf_least (10 AS)

400

500

600

700

800

Qu
er

ie
s P

er
 S

ec
on

d
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Figure 5.22: Results of online experiments on real-world Wiki replay traces using LSTM model trained
with Wiki replay traces.

overprovisioning factor becomes lower. However, the ML-based LB is more aware of server load,
and thus can make “smarter” load-balancing decisions. This increases the traffic rate that starts
saturating the server cluster, when the load-balancing performance degrades. In simpler words,
ML-based LB helps handles not only more intensive traffic but also more computational-intensive
queries with fewer servers.

5.4.2 Applying Wiki-Trained LSTM on Traffic with Wiki Replay

The LSTM networks with the same structure as is described above trained with Wiki replay
traces are applied online with 2 different configurations: 12 servers (when servers are not heavily
loaded) and 9 servers (when servers are supposed to be overloadeded). The first 3 hours of the
24-hour network trace are used to train and validate the LSTM networks using both configurations
– which achieves 1.800 MSE, 1.342 RMSE, and 0.874 MAE in the validation set.

Next, deploying the trained LSTM networks online allows the LB to make dispatching decisions
for the remaining traces of hours 4− 24. The results are shown in figure 5.228. It can be observed

8The data point of the hour 18 is corrupted by an unexpected co-located workload running on the physical
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Figure 5.23: Visualization of active probing performance with different intervals

that – especially when the server cluster is subjected to heavy traffic rates during peak hours (4−7
and 19−23) – ML-based LB can help improve the load-balancing performance in terms of not only
page load time (figure 5.22b), but also work load distribution fairness (figure 5.22d). However,
the ML-based load-balancing mechanism is marginally outperformed by heuristic load-balancing
algorithms based only on the number of ongoing flows (nf-po2 and nf-llf). This indicates that more
networking features do not necessarily provide improved server load inferences.

5.4.3 Applying Poisson-Trained LSTM on Traffic with Realistic Distri-
bution

Performance gains have been shown with Poisson traffic and Wikipedia replay. It is also inter-
esting to apply it on network traffic with multi-modal distributions. As discussed in [1], web server
traffic is not a simple exponential distribution, but, the distribution is a combination of several
heavy-tail queries, as is illustrated in figure 5.23a. Hence, the query length – as determined by the
number of iterations (same PHP application) with log-normal distribution instead of exponential
distribution – is applied as heavy-tail distribution traffic.

Three distributions of queries are generated, to construct a CDF similar to the one depicted
in figure 5.23b. The traffic of distribution 1 ∼ Lognormal(10.5, 0.12) has 2e4 queries, repre-
senting some short queries that terminate within milli-seconds e.g., 404 error; distribution 2
∼ Lognormal(12, 0.82) has 1e5 queries, representing the majority of mice flows; and distribu-
tion 3 ∼ Lognormal(16, 0.32) has 1e4 queries, representing elephant flows9. The average iterations

(exp
(
µ+ σ2

2

)
) for these sets of queries are respectively 36497.535, 224134.142, and 9295119.171,

which yield a weighted average of 893035.051. Even though the weighted average of iterations
is smaller than the traces we used for previous experiments (in section 5.4.1), the elephant flows
dominate the servers’ load. Hence the expected saturating traffic rate is estimated with traffic
of distribution 3, which is around 140. To infer server load from this combined distribution is a
challenging task for ML-based LB trained with only Poisson traffic with exponential flow duration
or size.

Results are shown in figure 5.24. The CDFs of page load time for two Poisson traffic rates (120
and 130 queries/s) as depicted in figure 5.24a, demonstrate improvements using ML-based LB over
Maglev. It can also be observed that the shape of CDF for Maglev, when subjected to Poisson
traffic rate with 130 queries/s, has similar shape as in figure 5.23a, which means the composition
of three log-normal distribution traffics is close to reality.

server which hosts the experimental testbed.
9Elephant flows conventionally refers to continuous TCP flows with a large amount of data to transmit – over

a certain period. Similarly, mice flows refer to the TCP flows that transmit little data during a short period.
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Figure 5.24: Experiment results using Poisson-trained LSTM model on composed heavy-tail traffic.

In figure 5.24f, it can be seen that the Maglev LB saturates, when the traffic rate surpasses 120
queries/s while the ML-based LB can extend this limit to 140 – the estimated theoretical limitation
for this configuration. It is another proof that with ML-based LB, in simple words, more queries
could be served with fewer servers.

Compared against figure 5.21, the improvement with ML-based LB is significant in terms of
page load time, fairness, and CPU overprovision. It can be observed that the “gap” of page load
time between Maglev and ML-based LB is larger and wider, since fairness in this experiment is
more sensitive given the existence of some elephant flows (traffic of distribution 3).

All of the improvements are at the expense of one additional CPU core (logical) running with
50% ∼ 70% usage alongside LB, parsing observations, and inferring server load with LSTM net-
works with 10Hz update frequency.

5.4.4 Limitation: Generalization

To study whether the trained ML models can generalize, the LSTM model is trained only
using Poisson for-loop traffic and brought online to work with both for-loop and Wiki traces.
By comparing the performance of all models in table 5.2, for Poisson traffic GRU outperforms
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Figure 5.25: Experiment results using Poisson-trained LSTM model on 300s Wiki replay trace.

the rest and LSTM is the closest match. However, since LSTM has better performance dealing
with more realistic traffic (Wiki replay), the LSTM model trained with Poisson traffic is reused
to cross-validate if it can be generalized to Wiki replay. With a sample of 300s Wiki replay trace,
the LSTM model achieves an MSE of 15.119, an RMSE of 3.888, and an MAE of 2.846, which is
much worse than on Poisson traffic, which means online training is required to adjust a pre-trained
model to the new traffic pattern. Figure 5.25 shows that the trained model generalizes poorly if
the applied traffic is not seen by the model before, which is consistent to [30].

5.5 Summary

Machine Learning (ML) algorithms show promising results on different problems yet it is chal-
lenging to apply on realistic networking problems and in real-life systems. Aquarius bridges ML
and distributed networking systems and takes a preliminary step to integrate ML approaches in
networking field. Based on Aquarius, this chapter investigates a wide range of networking features
that can be extracted from the data plane for optimizing load balancing performance. All the
collected features are used as input data for offline data analysis pipelines first, and the trained
ML models are then brought online to make decisions on the fly.

In addition to the evaluation results demonstrated in section 3.3, this chapter further illustrated
demonstrates the potential of MLBto conduct feature engineering, model selection, and online
model deployment. The models applied in this chapter have shown the ability to learn and infer
server load states with networking features. It also shows that networking problems are dynamic
and heterogenous, thus it is challenging to train a model that generalizes well. To that end, the
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following two chapters will explore two different approaches to improve the model generality. As
demonstrated in section 5.4, more features do not necessarily lead to improved performance than
heuristic load balancers, in-depth analysis of the key factors that indicate server load states will
be further provided in this thesis. More extensive evaluations will be conducted, including e.g.,
the impact of asynchronous and delayed decision making process.

The work and results from this chapter have been published in [152].



Chapter 6

HLB: Towards Load-Aware Load
Balancing

As is discussed in chapter 5, networking features can help achieve optimized load-balancing
performance, with the help of Machine Learning (ML) algorithms. However, the ML algorithms
do not generalize well when facing a various spectrum of networking traffic. The purpose of this
chapter is to investigate the different factors that influence workload distribution fairness of network
load balancers (LBs). To this end, this chapter proposes Hybrid LB (HLB), a distributed, load-
aware, open-loop control load-balancing algorithm that infers server occupancy and processing
speeds for making optimized load-balancing decisions, with no need for offline training. HLB
requires no explicit monitoring or signaling, thus generating no additional management traffic that
would grow with the size of server pools and probing frequencies1, and thus would reduce the
effective capacity available in core links [59].

This chapter also argues that to improve workload distribution fairness and quality of service
(QoS), the server load information needs to be taken into consideration, including:

• server occupancy, which indicates queuing delays,

• processing speed, determined by available resources.

Doing so allows HLB to make per-flow-level load-balancing decisions and offer each server
subject to a fair share of workloads. HLB estimates these factors with no additional overhead for
coordination among LBs, or with servers. HLB works out of the box and requires no network or
application modification, nor additional control message.

Statement of Purpose

The contributions of this chapter are three-fold: (i) a study of the dominating factors in load-
balancing performance, with a taxonomy of existing approaches, (ii) specification of a “fair” LB
algorithm, HLB, that requires no manual configuration, or additional interaction with servers or
other LBs, (iii) evaluations, by way of simulations and testbed experiments, that compare HLB
with existing LB algorithms, in various data center configurations, and under realistic network
traffic.

Related Work

LVS (Linux Virtual Server) [236] implements a wide range of load-balancing algorithms to
improve fairness, however, without attaining throughput and latency characteristics meeting pro-
duction requirements for data centers. Using statically configured match action tables or hash
tables [64, 65, 190] increases throughput and reduces packet processing latencies. However, these
tables do not support advanced load-balancing algorithms, e.g., weighted round-robin [262] or least
loaded server [261], which requires dynamically managing flow-server mappings. Cheetah [144] al-
lows dynamically registering and recovering mappings of flows and servers, by encoding mappings

1With 50-byte packets, active probing 128 servers at 10Hz generates 64kbps traffic, while the 90-th percentile
of per-destination-rack flow rate is 100kbps in production [1].
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LB Algorithms Description
Aware of Server

Capacities
Aware of Server

Occupancy
No Error-Prone
Configurations

ECMP
[58,59,193]

Randomly assigns a server. ✗ ✗ ✓

WCMP [64,65],
[190,192,221,241]

Assigns servers based on weights
defined by provisioned resources.

✓ ✗ ✗

AWCMP
[143,186,187]

Assigns servers based on weights
defined by polled resource utilization.

✗ ✓ ✗

LSQ [144,261],
GSQ2 [135,217]

Assigns servers with the shortest/shorter
queue occupancy based on local/global
observations.

✗ ✓ ✓

SED [236]
Assigns servers with the lowest delay
derived from static server weights
defined by provisioned resources.

✓ ✓ ✗

HLB
(This chapter)

Assigns servers with the lowest delay
derived from adaptive server weights
based on passive observations.

✓ ✓ ✓

Table 6.1: Taxonomy of Related Work.

as cookies in covert channels in packet headers. This allows retrieving the server handling a given
flow if it is lost, e.g., when an LB fails. Prism [221] statelessly maps flows to their hash buckets
and statefully registers flow-server mapping information in a table of migrated flows when facing
potential risks of flow disruptions, e.g., during server pool updates. When servers are added or
removed, it creates an independent table to track migrated flows, and updates server weights for
balanced workloads distribution2. Integrating these algorithms [144, 221] will allow HLB to build
load-aware algorithms while guaranteeing PCC for large-scale data centers.

The load-aware load-balancing decision-making process uses the estimation of server occupancy
and processing speeds, as well on use of the application of different rules (probabilistic or min-
imisation rules). Table 6.1 summarises the taxonomy of network LB algorithms, based on their
awareness of server occupancies and processing speeds.

1. Equal-Cost Multi-Path (ECMP) treats all servers as equal, and is agnostic to server load
state differences. It is applied in many LB mechanisms [58, 59, 190, 193, 243] that aim at
minimizing performance overhead.

2. Weighted-Cost Multi-Path (WCMP) assigns weights to servers proportional to their provi-
sioned resources [64, 65, 221, 235, 241], which may not correspond to their actual processing
capacity. However, as available server capacities change with time in elastic data centers [63]
or when workloads are co-located in a shared infrastructure [69,72], these quantified capacities
may not correspond to the actual processing capacities of servers.

3. Active WCMP (AWCMP) is a variant of WCMP. It periodically updates server weights,
based on probed resource utilization information (CPU/memory/IO usage) [143, 186, 264,
265]. AWCMP requires server modifications to manage communication channels and collect
observations. Higher probing frequencies help achieve more accurate server load estimation,
yet lead to an increased volume of control messages and reduced throughput [59,143].

4. Local Shortest Queue (LSQ) tracks for each server the number of connected flows [144,261].
On arrival of new flow requests, LBs assign the corresponding flows to the server with the
shortest queue based on observed traffic. Global Shortest Queue with Power-of-2-Choices
(GSQ2) is an LSQ variant that leverages (i) the actual server queue occupancy, and (ii) the
power of choices [246,266].

5. Shortest Expected Delay (SED) derives the “expected delay” as server occupancy divided
by statically configured server processing speed [236]. New flows are then assigned to the
server with the minimal “expected delay.”

Among load-aware LBs, TWF [261] obtains the actual queue lengths on each server via pe-
riodic out-of-band communications. It uses statistical models to reduce the impact of outdated

2This approach of adding a table to track migrated flows is also employed in Yoda [263], a Layer-7 LB.
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observations. However, TWF assumes that all servers have the same processing speed, which is not
the case with servers instantiated on heterogeneous architectures [72], malfunctioning servers, or
servers running colocated workloads [69]. SED [236] statically configures server processing speeds
(based on provisioned server CPU numbers) which neither reflect the actual processing speed for
a given application (e.g., IO-intensive) nor adapt to server health or operational status. HLB
considers server occupancies and adaptively updates server processing speeds based on passive
observations to improve load-balancing performance with little additional overhead.

6LB [135] and SHELL [217] offload the fine-grained load-balancing decision-making processes
to servers, and allow them to hand off requests to another server using SRv6 [267], if they are
already overloaded. Spotlight [143] and LBAS [187] periodically poll each server for their resource
utilization information, and either classify servers into several priority classes, or predict server
load states using Ridge Regression [268], to dynamically update server weights. INCAB [186] tunes
server weights on receipt of notifications from overloaded servers, which are defined by manually
configured thresholds.

Compared to all these LB algorithms, HLB is an out-of-the-box LB – requiring no modification
in the networking systems – that passively collects networking features. It requires no monitoring
or signaling among networking devices, and avoids error-prone manual configuration.

Chapter Outline

The remainder of this chapter is organized as follows. Section 6.1 studies 2 dominating factors
in LB performance, and discusses the challenges of implementing load-aware LBs. Section 6.3
describes the design of HLB and its load-balancing decision-making process. Section 6.4 describes
the implementation details of the testbed and the simulator for conducting evaluations. Section 6.5
presents quantitative evaluations, comparing and contrasting different load-balancing algorithms
under various scenarios. Section 6.6 concludes this chapter.

6.1 Problem Formalization

A load balancing system consists of one or several LBs, connected to a set of servers in a data
center. The set of servers is denoted S = {s1, ..., sN}, with |S| = N . Given a server, si ∈ S, its
processing speed is denoted µi, and its total number of jobs or flows in the queue is denoted li.

All LBs implement the same LB algorithm. When there are multiple LBs, the traffic (a stream
of jobs) injected into the system is randomly distributed among the LBs, e.g., by the edge router
of the data center. Each LB thus is exposed only to a fraction of the flows in the system - those
traversing that LB. The occupancy estimator of server si on LB j, is denoted l̃ij (l̃ij ≤ li). The
observed and unobserved traffic rates on server si are denoted λi and γi respectively, with the total
observed traffic rates as λ =

∑
si∈S λi, and total unobserved traffic rates as γ =

∑
si∈S γi, that

subject to the system.

The following hypotheses are made for the remainder of the chapter:

• TCP still is the most widely used protocol in content delivery networks (CDNs) [1, 82].
Further, this assumption allows experimenting using existing flow traces [226], and does not
limit the generality of the results over any other connection-oriented transport protocols (e.g.,
QUIC [269]).

• Finite-duration flows are assumed for a flow q with a flow-completion time (FCT) of
T (q) < ∞. T (q) is modeled as a random variable with a uni-modal distribution (e.g., a
long-tail distribution as in [1, 69]).

• Non-communicating LBs, i.e., LBs do not communicate with each other. LBs imple-
mentation complexity is reduced [65, 192], especially for high-performance LBs deployed on
dedicated hardware [58,190].

• Unless otherwise specified, modeling, simulations, and experiments rely on the hypothesis
that traffic follows the Poisson distribution.
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Algorithm λi

ECMP 1
2

WCMP (AWCMP) λ · µ1

µ1+µ2

LSQ (GSQ2) λ · Pr{i = argminj=1,2 l̃j}
SED λ · Pr{i = argminj=1,2

l̃j+1
w̃j

}

Table 6.2: Traffic distribution in 2-servers LB system.

6.2 Analysis of Existing LB Algorithms

Given the defined problem space, this section provides an analytic examination of the perfor-
mance of different LB algorithms in a simple setup, and analyze the impact of inaccuracies in their
input parameters. The trade-off between performance and overhead of different design choices is
discussed, and the remaining challenges, that motivate the design of HLB, are presented.

6.2.1 Stochastic Modeling and Simulation

The performance and operation of the LB algorithms described in section 6, as well as their
sensibility to inaccuracies in their input parameters, is analyzed stochastically, on a basic load
balancing setup, with 2 servers with a processing speed ratio µ1

µ2
= 2 (i.e., server 1 is 2x faster than

server 2).
Each server has a queue of size Q, such that 0 ≤ l1, l2 ≤ Q. Traffic arrivals and departures are

modeled as Poisson processes with rates λ (observed traffic), γ (unobserved traffic), and µ1, µ2.
With sufficiently short timeslots, it can be assumed that only one arrival or departure (at most)

happens at a given timeslot (i.e.,
∑2

i=1(λi + γi + µi) ≤ 1); the system is then Markovian with the
state (l1, l2), departure rates (µ1, µ2), and arrival rates (λ1, λ2, γ1, γ2). For simplicity, the system
works at nominal capacity (i.e., λ + γ = µ). In these conditions, table 6.2 describes the traffic
arrival rate λi assigned to server i using different LB algorithms. Note that this section studies LB
algorithms (ECMP, WCMP, LSQ, SED) that correspond to fundamentally different design choices,
while AWCMP and GSQ2 are variants of WCMP and LSQ respectively.

With si(n)li denoting the probability (or probability density function), of server si to have a
queue length of li at time-step n, the transition of server occupancies between two time-steps can
be described as:

si(n)li − si(n− 1)li = (λi + γi) · si(n− 1)li−1 +

+µi · si(n− 1)li+1 −
−(λi + γi + µi) · si(n− 1)li

for 0 < li < Q (corner cases are treated accordingly).
Figure 6.1 depicts the LB performance of each LB algorithm, measured as the weighted service

duration of a flow (
∑

i∈{1,2}
li

l1+l2
li
µi
), for different configurations.

When the LB observes 100% traffic (i.e., γ = 0) and assigns server weights based on actual
processing speeds w1

w2
= µ1

µ2
= 2, the WCMP and SED have the best performance. By considering

the state of the queues, LSQ can largely outperform ECMP. When the LB observes only 50% of
traffic (i.e., γ = λ) and the other 50% of traffic is uniformly split between the two servers (γ1 = γ2),
LSQ and SED outperform WCMP, which is agnostic to instant server occupancy. However, partial
traffic observation substantially degrades the performance of LSQ and SED. As an LSQ variant,
GSQ2 gets global observations thus it is not subject to any impact from this source of inaccurate
observation.

When LBs have inaccurate server weights (e.g., in case of misconfiguration, w1

w2
= 1

2 , while
µ1

µ2
= 2), WCMP and SED exhibit degraded performance even when the LB sees all the traffic

(γ = 0). As a WCMP variant, AWCMP derives server weights from servers and may avoid the
negative impact of misconfigurations, though with additional communication overhead. Taking
both server occupancies and processing speeds into account, SED makes more informed load bal-
ancing decisions. However, while LSQ is only sensitive to partial observation, the performance of
SED can be degraded by both inaccuracy sources: (i) partial observations on server occupancies,
and (ii) inaccurate server weights.
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Figure 6.1: Load balancing performance for a cluster of 2 servers with different processing speeds (µ1
µ2

= 2)
in different scenarios for algorithms that consider different factors under system steady state (λ + γ =
µ1 + µ2).

6.2.2 Challenges

Section 6.2.1 shows that performance degrades with 2 sources of inaccuracies (partially ob-
served traffic, and misconfigured server weights), which are found to be present in production data
centers [65,135], which are challenging to resolve.

A single LB allows observing all network traffic, but also constitutes a single point of fail-
ure [224]. Multiple LBs are thus deployed for reliability, leading to partial observations.

Existing load-aware LBs gather observations of server occupancies either by actively probing
or passively observing networking traffic, to update weights allocated to different servers and to
improve workload distribution fairness [143,144,187,261]. 6LB and Shell hand the load balancing
decisions to the end host who knows better whether it is overloaded [135, 217]. As such, these
mechanisms are exposed to the trade-offs between performance and overhead:

• Estimating occupancies based on passive traffic observation at the LBs requires tracking flow
states – whereas incurs substantial underestimation of server occupancies, if multiple LBs
exist in the system [261].

• Actively probing server load information allows an LB to obtain accurate but delayed server
occupancies. Higher probing frequencies may increase load balancing fairness – but main-
taining additional communications incurs management traffic and complexity [143].

While it is possible to avoid inaccuracies due to partial or delayed observations (as in [135, 217]),
this requires server modifications to accommodate further feedback mechanisms.

Apart from partial observations and delayed updates, it is hard to determine the optimal weights
for different applications that rely on different resources [270]. In addition to this, explicit weights
configuration cannot capture or adapt to the dynamic networking environment. “Correctly” as-
signing weights to servers is therefore challenging in cloud data centers because:

• servers may have different provisioned resources;

• colocated workloads not captured by the LB may reduce available resources [69] on shared
infrastructures;

• applications may have different profiles (e.g., CPU-intensive, IO-intensive) and consume pro-
visioned resources differently, whose impact is hard to quantify [26].

6.3 HLB Design

HLB dynamically distributes workloads on servers using estimations of both server occupancies
and processing speeds. HLB estimates server weights and queue occupation from passive observa-
tions on network flows, by sampling flow durations and counting ongoing flows, respectively. HLB
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Soft Update with Kalman Filter F

<latexit sha1_base64="3FbIf5xYHd0ZNg9LkuQUptleQdE=">AAAB9HicbVA9TwJBEN3DL8Qv1NJmIzGxIncUakmwsbDARD4SuJC5vT3YsLd77u6RkAu/w8ZCY2z9MXb+Gxe4QsGXTPLy3kxm5gUJZ9q47rdT2Njc2t4p7pb29g8Oj8rHJ20tU0Voi0guVTcATTkTtGWY4bSbKApxwGknGN/O/c6EKs2keDTThPoxDAWLGAFjJf9eQogbwEEQqgblilt1F8DrxMtJBeVoDspf/VCSNKbCEA5a9zw3MX4GyjDC6azUTzVNgIxhSHuWCoip9rPF0TN8YZUQR1LZEgYv1N8TGcRaT+PAdsZgRnrVm4v/eb3URDd+xkSSGirIclGUcmwknieAQ6YoMXxqCRDF7K2YjEABMTankg3BW315nbRrVe+q6j3UKvVGHkcRnaFzdIk8dI3q6A41UQsR9ISe0St6cybOi/PufCxbC04+c4r+wPn8AS8Ykbg=</latexit>

Load Balancer

<latexit sha1_base64="hHfNEirhywyD+/uLKcrcdHXHTu0=">AAAB+3icbVDLSgNBEJyNrxhfazx6GQyCp7AbED0GvHiMjzwgWcLspDcZMjO7zMwGw5Jf8eJBEa/+iDf/xkmyB00saCiquunuChPOtPG8b6ewsbm1vVPcLe3tHxweucfllo5TRaFJYx6rTkg0cCahaZjh0EkUEBFyaIfjm7nfnoDSLJaPZppAIMhQsohRYqzUd8v3oEFNYqbwAxF2oxz23YpX9RbA68TPSQXlaPTdr94gpqkAaSgnWnd9LzFBRpRhlMOs1Es1JISOyRC6lkoiQAfZ4vYZPrfKAEexsiUNXqi/JzIitJ6K0HYKYkZ61ZuL/3nd1ETXQcZkkhqQdLkoSjk2MZ4HgQdMATV8agmhitlbMR0RRaixcZVsCP7qy+ukVav6l1Xvrlap1/M4iugUnaEL5KMrVEe3qIGaiKIn9Ixe0Zszc16cd+dj2Vpw8pkT9AfO5w8gIZR7</latexit>

Reservoir Sampling

<latexit sha1_base64="rdvryBbrJ0t0IQoe7/YgM9hNg7I=">AAAB7XicbVA9SwNBEJ3zM8avqKXNYiJYhbsUahm0sYxgPiA5wt5mL1mzt3fszgnhyH+wsVDE1v9j579xk1yhiQ8GHu/NMDMvSKQw6Lrfztr6xubWdmGnuLu3f3BYOjpumTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilVqWHNK30S2W36s5BVomXkzLkaPRLX71BzNKIK2SSGtP13AT9jGoUTPJpsZcanlA2pkPetVTRiBs/m187JedWGZAw1rYUkrn6eyKjkTGTKLCdEcWRWfZm4n9eN8Xw2s+ESlLkii0WhakkGJPZ62QgNGcoJ5ZQpoW9lbAR1ZShDahoQ/CWX14lrVrVu6x697Vy/SaPowCncAYX4MEV1OEOGtAEBo/wDK/w5sTOi/PufCxa15x85gT+wPn8AdvVjqg=</latexit>⌧

<latexit sha1_base64="34WVOUCS6JMoOoP0crzz9ff58U8=">AAAB8XicbZBNS8NAEIYn9avWr6pHL4tF8FSSguix4MVjBfuBbSibzbRdutmE3Y1QQv+FFw+KePXfePPfuGlz0NYXFh7emWFn3iARXBvX/XZKG5tb2zvl3cre/sHhUfX4pKPjVDFss1jEqhdQjYJLbBtuBPYShTQKBHaD6W1e7z6h0jyWD2aWoB/RseQjzqix1mNLYchZjsNqza27C5F18AqoQaHWsPo1CGOWRigNE1Trvucmxs+oMpwJnFcGqcaEsikdY9+ipBFqP1tsPCcX1gnJKFb2SUMW7u+JjEZaz6LAdkbUTPRqLTf/q/VTM7rxMy6T1KBky49GqSAmJvn5JOQKmREzC5QpbnclbEIVZcaGVLEheKsnr0OnUfeu6u59o9ZsFnGU4QzO4RI8uIYm3EEL2sBAwjO8wpujnRfn3flYtpacYuYU/sj5/AG4m5Dv</latexit>

Prediction
<latexit sha1_base64="hsKVKhKH3R1rQyERofOHDyWLN4I=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0kKoseCF48VTFtoQ9lsNu3azSbsToRS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8MJPCoOt+O6WNza3tnfJuZW//4PCoenzSNmmuGfdZKlPdDanhUijuo0DJu5nmNAkl74Tj27nfeeLaiFQ94CTjQUKHSsSCUbRS288iinxQrbl1dwGyTryC1KBAa1D96kcpyxOukElqTM9zMwymVKNgks8q/dzwjLIxHfKepYom3ATTxbUzcmGViMSptqWQLNTfE1OaGDNJQtuZUByZVW8u/uf1coxvgqlQWY5cseWiOJcEUzJ/nURCc4ZyYgllWthbCRtRTRnagCo2BG/15XXSbtS9q7p736g1m0UcZTiDc7gED66hCXfQAh8YPMIzvMKbkzovzrvzsWwtOcXMKfyB8/kDjQyPGQ==</latexit>

Update

<latexit sha1_base64="t2AmK0Tgy7aMN4DnfPYGfoKNLNY=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVZKC6LLgxo1QwT6gDWUyvWmHTmbCzEQooZ/hxoUibv0ad/6NkzYLbT0wcDjnHubeEyacaeN5305pY3Nre6e8W9nbPzg8qh6fdLRMFcU2lVyqXkg0ciawbZjh2EsUkjjk2A2nt7nffUKlmRSPZpZgEJOxYBGjxFipf49EpwpjFGZYrXl1bwF3nfgFqUGB1rD6NRhJmuZZyonWfd9LTJARZRjlOK8MUo0JoVMyxr6lgsSog2yx8ty9sMrIjaSyTxh3of5OZCTWehaHdjImZqJXvVz8z+unJroJMiaS1KCgy4+ilLtGuvn97ogppIbPLCFUMburSydEEWpsSxVbgr968jrpNOr+Vd17aNSazaKOMpzBOVyCD9fQhDtoQRsoSHiGV3hzjPPivDsfy9GSU2RO4Q+czx+TCpFu</latexit>

Measurement
<latexit sha1_base64="hsKVKhKH3R1rQyERofOHDyWLN4I=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0kKoseCF48VTFtoQ9lsNu3azSbsToRS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8MJPCoOt+O6WNza3tnfJuZW//4PCoenzSNmmuGfdZKlPdDanhUijuo0DJu5nmNAkl74Tj27nfeeLaiFQ94CTjQUKHSsSCUbRS288iinxQrbl1dwGyTryC1KBAa1D96kcpyxOukElqTM9zMwymVKNgks8q/dzwjLIxHfKepYom3ATTxbUzcmGViMSptqWQLNTfE1OaGDNJQtuZUByZVW8u/uf1coxvgqlQWY5cseWiOJcEUzJ/nURCc4ZyYgllWthbCRtRTRnagCo2BG/15XXSbtS9q7p736g1m0UcZTiDc7gED66hCXfQAh8YPMIzvMKbkzovzrvzsWwtOcXMKfyB8/kDjQyPGQ==</latexit>

Update

<latexit sha1_base64="oZt8+JAOnoKbahYE7wuticoJ4BQ=">AAAB73icbVBNS8NAEN3Ur1q/qh69LBbBU0kKoseKF48V7Ae0oWw203bpZhN3J4US+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSMnGqOTR5LGPdCZgBKRQ0UaCETqKBRYGEdjC+m/vtCWgjYvWI0wT8iA2VGAjO0Eqd25AlKCbQL1fcqrsAXSdeTiokR6Nf/uqFMU8jUMglM6bruQn6GdMouIRZqZcaSBgfsyF0LVUsAuNni3tn9MIqIR3E2pZCulB/T2QsMmYaBbYzYjgyq95c/M/rpji48TOhkhRB8eWiQSopxnT+PA2FBo5yagnjWthbKR8xzTjaiEo2BG/15XXSqlW9q6r7UKvU63kcRXJGzskl8cg1qZN70iBNwokkz+SVvDlPzovz7nwsWwtOPnNK/sD5/AEPUY/4</latexit>

Adaptive
<latexit sha1_base64="hsKVKhKH3R1rQyERofOHDyWLN4I=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0kKoseCF48VTFtoQ9lsNu3azSbsToRS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8MJPCoOt+O6WNza3tnfJuZW//4PCoenzSNmmuGfdZKlPdDanhUijuo0DJu5nmNAkl74Tj27nfeeLaiFQ94CTjQUKHSsSCUbRS288iinxQrbl1dwGyTryC1KBAa1D96kcpyxOukElqTM9zMwymVKNgks8q/dzwjLIxHfKepYom3ATTxbUzcmGViMSptqWQLNTfE1OaGDNJQtuZUByZVW8u/uf1coxvgqlQWY5cseWiOJcEUzJ/nURCc4ZyYgllWthbCRtRTRnagCo2BG/15XXSbtS9q7p736g1m0UcZTiDc7gED66hCXfQAh8YPMIzvMKbkzovzrvzsWwtOcXMKfyB8/kDjQyPGQ==</latexit>

Update

<latexit sha1_base64="CzLeuE8DTDkR0WoBoY7xOcypl2I="></latexit>

K(n) = P (n)(P (n) + R)�1

µ̃i(n) = µi(n) + K(n)(z̃i(n) � µi(n))

P̃ (n) = (1 � K(n))P (n),

<latexit sha1_base64="G5pzcoPxFDutlz3P0d5a6KKMAB4="></latexit>

R(n) = (1 � ↵)R(n � 1) + ↵�2(z̃i(n))

<latexit sha1_base64="ube8C7qW0wUqS8+QUnajDI5S3nY=">AAACBHicbVBNS8NAEN3Ur1q/oh57WWwFTyXpQT0WhCJ4qWBboQ1lst20SzebsLsRSujBi3/FiwdFvPojvPlv3LQ5aOuDgcd7M8zM82POlHacb6uwtr6xuVXcLu3s7u0f2IdHHRUlktA2iXgk731QlDNB25ppTu9jSSH0Oe36k6vM7z5QqVgk7vQ0pl4II8ECRkAbaWCXb4CHIHCTcU0lrvZD0GMCPG3OqgO74tScOfAqcXNSQTlaA/urP4xIElKhCQeleq4Tay8FqRnhdFbqJ4rGQCYwoj1DBYRUeen8iRk+NcoQB5E0JTSeq78nUgiVmoa+6cxuVMteJv7n9RIdXHopE3GiqSCLRUHCsY5wlggeMkmJ5lNDgEhmbsVkDBKICUSVTAju8surpFOvuec197ZeaTTyOIqojE7QGXLRBWqga9RCbUTQI3pGr+jNerJerHfrY9FasPKZY/QH1ucPorSXcQ==</latexit>

Kalman Filter F

<latexit sha1_base64="b3fSGSRZ+dQ/ISQctdejVFS67c4=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hd2A6DHgxWNE84BkCbOT2WTIzM4y0yuGkI/w4kERr36PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVmeG8QbTUpt2RC2XIuENFCh5OzWcqkjyVjS6mfmtR26s0MkDjlMeKjpIRCwYRSe17nWMij71SmW/4s9BVkmQkzLkqPdKX92+ZpniCTJJre0EforhhBoUTPJpsZtZnlI2ogPecTShittwMj93Ss6d0iexNq4SJHP198SEKmvHKnKdiuLQLnsz8T+vk2F8HU5EkmbIE7ZYFGeSoCaz30lfGM5Qjh2hzAh3K2FDaihDl1DRhRAsv7xKmtVKcFnx76rlWi2PowCncAYXEMAV1OAW6tAABiN4hld481LvxXv3Phata14+cwJ/4H3+AHUGj6I=</latexit>

Softmax
<latexit sha1_base64="QtlCQRaIbixFwPqVSqL3QOguAsY="></latexit>

w̃i(n) = e�µ̃i(n)
P

si2S e�µ̃i(n)

<latexit sha1_base64="3vhlNF6yy8QhyflHLz53xQ+jsvE=">AAAB/HicbVBNSwMxEM3Wr1q/qj16CRbBU9ktiB6LXjxJBfsB7VKyabYNTbJLMiusS/0rXjwo4tUf4s1/Y9ruQVsfDDzem2FmXhALbsB1v53C2vrG5lZxu7Szu7d/UD48apso0ZS1aCQi3Q2IYYIr1gIOgnVjzYgMBOsEk+uZ33lg2vBI3UMaM1+SkeIhpwSsNChXrgjQMb6NtCSCP+Zq1a25c+BV4uWkinI0B+Wv/jCiiWQKqCDG9Dw3Bj8jGjgVbFrqJ4bFhE7IiPUsVUQy42fz46f41CpDHEbalgI8V39PZEQak8rAdkoCY7PszcT/vF4C4aWfcRUnwBRdLAoTgSHCsyTwkGtGQaSWEKq5vRXTMdGEgs2rZEPwll9eJe16zTuvuXf1aqORx1FEx+gEnSEPXaAGukFN1EIUpegZvaI358l5cd6dj0VrwclnKugPnM8fvO+U0g==</latexit>

Batch Normalization
<latexit sha1_base64="aJy32Ryh9ofmtnM8fRsxuw//Y7k="></latexit>

z̃i = ⌧ i
1
N

P
si2S ⌧ i

1
2

<latexit sha1_base64="pp5gI2ExkmjzFFWQapUiBZdJBWs=">AAAB8XicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsKtSTaWGKUjwgXsrfMwYa9vcvungkh/AsbC42x9d/Y+W9c4AoFXzLJy3szmZkXJIJr47rfTm5tfWNzK79d2Nnd2z8oHh41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6mfmtJ1Sax/LBjBP0IzqQPOSMGis93qOyLinzcq9YcivuHGSVeBkpQYZ6r/jV7ccsjVAaJqjWHc9NjD+hynAmcFrophoTykZ0gB1LJY1Q+5P5xVNyZpU+CWNlSxoyV39PTGik9TgKbGdEzVAvezPxP6+TmvDKn3CZpAYlWywKU0FMTGbvkz5XyIwYW0KZ4vZWwoZUUWZsSAUbgrf88ippViveRcW7q5Zq11kceTiBUzgHDy6hBrdQhwYwkPAMr/DmaOfFeXc+Fq05J5s5hj9wPn8AiD6QKg==</latexit> S
er

ve
r

i

a

b

c

<latexit sha1_base64="9kEGPWwh2SCgmagpp7L6+dhav+A=">AAAB63icbVDLSgMxFL3xWeur6tJNsAiuykwX6rJQBDdCBfuAdpBMmmlDk8yQZIQy9BfcuFDErT/kzr8x085CWw8EDuecS+49YSK4sZ73jdbWNza3tks75d29/YPDytFxx8SppqxNYxHrXkgME1yxtuVWsF6iGZGhYN1w0sz97hPThsfqwU4TFkgyUjzilNhcumnetR4rVa/mzYFXiV+QKhRw+a/BMKapZMpSQYzp+15ig4xoy6lgs/IgNSwhdEJGrO+oIpKZIJvvOsPnThniKNbuKYvn6u+JjEhjpjJ0SUns2Cx7ufif109tdB1kXCWpZYouPopSgW2M88PxkGtGrZg6QqjmbldMx0QTal09ZVeCv3zyKunUa/5lzb+vVxuNoo4SnMIZXIAPV9CAW2hBGyiM4Rle4Q1J9ILe0cciuoaKmRP4A/T5A12djck=</latexit>

ECMP

<latexit sha1_base64="QYFHIcvOCXe0nkcTHq0gC7GTn7I=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKezmoB4DXrwIEcwDkiXMTmaTIfNYZmaFsOQXvHhQxKs/5M2/cTbZgyYWNBRV3XR3RQlnxvr+t1fa2Nza3invVvb2Dw6PqscnHaNSTWibKK50L8KGciZp2zLLaS/RFIuI0240vc397hPVhin5aGcJDQUeSxYzgm0u3TNjhtWaX/cXQOskKEgNCrSG1a/BSJFUUGkJx8b0Az+xYYa1ZYTTeWWQGppgMsVj2ndUYkFNmC1unaMLp4xQrLQradFC/T2RYWHMTESuU2A7MateLv7n9VMb34QZk0lqqSTLRXHKkVUofxyNmKbE8pkjmGjmbkVkgjUm1sVTcSEEqy+vk06jHlzVg4dGrdks4ijDGZzDJQRwDU24gxa0gcAEnuEV3jzhvXjv3seyteQVM6fwB97nDxKSjkA=</latexit>

Miss

<latexit sha1_base64="d2XnOtFuQRqNuRlYJlQ16nLK4CE=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5SGMuATcqI5gOSI+xt9pIle3vH7pwQjvwEGwtFbP1Fdv4bN8kVmvhg4PHeDDPzgkQKg6777RS2tnd294r7pYPDo+OT8ulZx8SpZrzNYhnrXkANl0LxNgqUvJdoTqNA8m4wvVv43SeujYjVI84S7kd0rEQoGEUrPTQFDssVt+ouQTaJl5MK5GgNy1+DUczSiCtkkhrT99wE/YxqFEzyeWmQGp5QNqVj3rdU0YgbP1ueOidXVhmRMNa2FJKl+nsio5ExsyiwnRHFiVn3FuJ/Xj/F8NbPhEpS5IqtFoWpJBiTxd9kJDRnKGeWUKaFvZWwCdWUoU2nZEPw1l/eJJ1a1bupeve1SqORx1GEC7iEa/CgDg1oQgvawGAMz/AKb450Xpx352PVWnDymXP4A+fzBzgMjb8=</latexit>

Hit

<latexit sha1_base64="a5vUEiKpAyAt5c6WNy1DDTzGSA0=">AAACPXicbVBNS8MwGE79nPVr6tFLcCjbwdGKqBdh6MXjhH3BWkqapltYmpYkFUbpH/Pif/DmzYsHRbx6NfsA5+YLgYfngzfv4yeMSmVZL8bS8srq2nphw9zc2t7ZLe7tt2ScCkyaOGax6PhIEkY5aSqqGOkkgqDIZ6TtD25HevuBCElj3lDDhLgR6nEaUoyUprxiw4m1PEpnTpTmXkbzMq/Ak2voKMqCWfbUrkDHMSH8jdTnzPWJzSuWrKo1HrgI7CkogenUveKzE8Q4jQhXmCEpu7aVKDdDQlHMSG46qSQJwgPUI10NOYqIdLPx9Tk81kwAw1joxxUcs7OJDEVSDiNfOyOk+nJeG5H/ad1UhVduRnmSKsLxZFGYMqhiOKoSBlQQrNhQA4QF1X+FuI8EwkoXbuoS7PmTF0HrrGpfVO3781LtZlpHARyCI1AGNrgENXAH6qAJMHgEr+AdfBhPxpvxaXxNrEvGNHMA/ozx/QOd86zx</latexit>

µi(n) = µ̃i(n � 1)

P (n) = P̃ (n � 1)

Figure 6.2: HLB workflow overview. Step 1○ and 2○ represent the decision making process on arrival of
new flows. In step a○− c○, HLB collects networking observations and periodically learns server load states.

minimizes: (i) instant server load state estimation errors due to inaccurate observations, (ii) mis-
matches between assigned server weights and actual server processing speeds, and (iii) performance
and management overhead, to improve load balancing performance.

HLB consists of two components: (i) a server state observation mechanism, and (ii) an algorithm
that uses observed server states to place the incoming flow onto a server.

The first component tracks flow states using reserved memory locations (buckets) in flow tables,
and extracts server state observations, without additional control or signaling. As depicted in
figure 6.2, on receipt of new packets, HLB:

a○ inspects headers, and passively gathers observations (numbers of ongoing flows l̃i and flow
durations τ),

b○ gathers statistical flow duration distributions on each server, using reservoir sampling,

c○ at each time-step n, periodically learns from gathered flow durations and updates estimated
processing speeds of each server, using Kalman filters.

For the second component, when receiving 1 a new flow request, HLB 2 computes the hash
digest of the flow ID and, maps the flow to a corresponding bucket in its flow table. HLB then
integrates estimated server occupancies and processing speeds using the SED rule, to generate
server state estimations, for all servers. The server with the lowest estimated load, then, receives
the flow. HLB uses an adaptive approach based on passively collected observations of network
flows, with no additional monitoring or management overhead – in contrast to SED, which relies
on manual server weight configurations.

6.3.1 Observation Extraction from The Data Plane

As the LB sees only traffic from clients and to servers within the data center network, and not
the return traffic, HLB statefully maintains flow states using flow tables, and estimates (i) server
occupancies (l̃i) by counting the number of ongoing flows per server, and (ii) server processing
speeds by collecting flow durations on each server.

Stateful Observation Extraction

TCP flows are identified by their 5-tuples – as discussed in chapter 4 – and are statefully tracked
in flow tables. As depicted in figure 6.3a, for LB, a flow exists in one of the three states. On receipt
of the first TCP SYN packet from the client, the LB selects a server si to which the new flow is
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<latexit sha1_base64="GsYtUgSCkmK2zB+Ykz1Ed+ifsmk=">AAAB7HicbVBNSwMxEJ3Ur1q/qh69BFvBU8kWRI8FLx4ruK3QLiWbZtvQbHZJskJZ+hu8eFDEqz/Im//GtN2Dtj4YeLw3w8y8MJXCWEK+UWljc2t7p7xb2ds/ODyqHp90TJJpxn2WyEQ/htRwKRT3rbCSP6aa0ziUvBtObud+94lrIxL1YKcpD2I6UiISjFon+XUzIPVBtUYaZAG8TryC1KBAe1D96g8TlsVcWSapMT2PpDbIqbaCST6r9DPDU8omdMR7jioacxPki2Nn+MIpQxwl2pWyeKH+nshpbMw0Dl1nTO3YrHpz8T+vl9noJsiFSjPLFVsuijKJbYLnn+Oh0JxZOXWEMi3crZiNqabMunwqLgRv9eV10mk2vKsGuW/WWqSIowxncA6X4ME1tOAO2uADAwHP8ApvSKEX9I4+lq0lVMycwh+gzx+2Wo3m</latexit>s0
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Figure 6.3: HLB’s observation collection mechanism.

assigned. The LB also registers the flow state SYN, along with the flow ID and other corresponding
information, in a bucket in its flow table. Once the flow is established, its state is updated to
CONN (connected) on receipt of the first data packet. On flow termination (reception of FIN or RST
packets), or in the case of flow timeout, the flow state is reset to NULL to evict the registered flow
from the flow table, and the bucket is available for a new flow.

The state machine in figure 6.3a allows dynamically (i) tracking the number of ongoing flows
l̃i when flows transit from SYN to CONN or from CONN to NULL, and (ii) collecting samples of flow
durations from flows in state CONN, without interrupting the data plane.

Flow Table Workflow

HLB stores flow states in a flow table (figure 6.3b). Each bucket in this table comprises: (i)
the hash digest of the TCP 5-tuple (hash) as flow ID, (ii) the target server ID assigned by the LB
(DIP), (iii) flow “liveness”, renewed on receipt of new packets (timeout), (iv) the first data packet
arrival time (T0), for computing flow durations, and (v) the state of the flow (state).

A new flow is hashed and registered in corresponding bucket in the flow table, along with
its assigned application server, which is identified with a direct IP address (DIP). Subsequent
packets of the established flow are encapsulated with the target DIP as destination and forwarded
to the corresponding server. When a bucket is not available on receipt of a new flow request, the
flow gets a “miss” and is excluded by both the observation extraction and the load-aware load
balancing process. In that case (hash collision3), HLB falls back to ECMP for the “miss”-ed flow
yet guarantees PCC. A “miss” can happen in 2 cases:

• if there is no available entry for new flows;

• if no matched entry is found for connected flows;

where available buckets have NULL state. For flows registered in buckets that have SYN/CONN states,
the counter of ongoing flows l̃i is not incremented until the first data packet is received, so that
the counter is not corrupted when subjected to SYN flooding attacks. l̃i is decremented only if the
flow ends and its state transits from CONN to NULL4.

6.3.2 Load-Aware Load Balancing Algorithm

HLB estimates server occupancies, and server processing speeds, with li and τi, respectively,
extracted from the data plane as described in section 6.3.1. To minimize the additional processing
and memory overhead, HLB uses reservoir sampling to collect flow durations for each server. HLB

3To reduce hash collision probability, each bucket can have multiple entries. The implementation detail is
omitted since it is out of the scope of this chapter.

4Similar DDoS mitigation mechanism using flow tables is proposed in [221], but it is out of the scope of this
chapter.
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Algorithm 3 Collect flow durations with reservoir sampling

N ← number of servers
k ← reservoir buffer size
L← flow table size
buf ← [(0, 0), . . . , (0, 0)] ▷ Size of k

5: tauBuf ← [buf, . . . , buf ] ▷ Size of N
t0Table← [0, . . . , 0] ▷ Size of L
stateTable← [0, . . . , 0] ▷ Size of L
for each packet (towards si from query q arriving at t) do

qid← Hash5Tuple(q)
10: i← si.id

if t0Table[qid] == 0 & SYN packet then
t0Table[qid]← t ▷ store t0
stateTable[qid]← SYN

else if t0Table[qid] ! = 0 & not SYN packet then
15: lastState← stateTable[qid]

if lastState == CONN then
randomId← rand()
idx← randomId%N ▷ randomly select one index
τ ← t− t0Table[qid] ▷ calculate duration

20: tauBuf [i][idx]← (t, τ) ▷ register τ in buffer
else

stateTable[qid]← CONN

if FIN packet then
t0Table[qid]← 0 ▷ evict finished query

25: if lastState == CONN then
stateTable[qid]← NULL

then processes collected flow duration samples using Kalman filters, to smoothly adapt server
weights w̃i(n) at each time-step n, and uses both parameters, l̃i and w̃i, for making load-aware
load balancing decisions.

Sampling Flow Durations to Estimate Processing Speeds

Based on Aquarius, which is described in chapter 3, HLB collects flow duration information on
each server using reservoir sampling.

The procedure of reservoir sampling that implements the state machine from figure 6.3a, which
collects flow durations in flow state CONN, is shown in algorithm 3. The arrival times t of data
packets received from a connected flow with server si are compared with the arrival time of the first
packet t0 stored in t0Table to compute flow durations τ . These flow durations τ , along with their
corresponding packet arrival times t, are stored in a fix-sized buffer tauBuf of the corresponding
server si. These buffers thus serve as a snapshot that captures a statistical distribution of flow
durations on each server, and are made available for data processing.

HLB uses flow durations to estimate and infer server processing speeds for the following reasons.
First, since flows addressed to the same network application are expected to terminate with FCTs
of a certain distribution T (q) given sufficient privisioned resources, observed flow durations are
correlated to server processing speeds depending on available resources in each server (e.g., over-
loaded CPUs, drained memory space, congested IO). Second, flow duration is collected on receipt
of each new packet of the flow in state CONN, thus provides measurements with finer granularity
(higher update frequency) and reduced delay. Third, as an estimator of server processing speeds,
the flow duration can be generalized for connection-less transport protocols (e.g., UDP).

Periodic Processing Speed Inference with Kalman Filter

With flow durations gathered in reservoir buffers, HLB computes the average flow duration
τ i on server i as observed by the LB, and then derives the normalized server processing duration
measurement z̃i(n) =

τ̄i
1
N

∑
si∈S τ̄i

at each time-step n. Between different time steps, the samples of

z̃i may have high variance, and their values can change significantly. As a function of flow duration
τi, z̃i is correlated to server processing speeds. In addition, z̃i also depends on the distribution
of T (q), which may vary in time. To decouple the possibly abrupt variations of T (q), and adapt
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to actual server states, HLB uses Kalman filters F to smoothly update server processing duration
estimations µ̃i(n) at step n:

µ̃i(n) =

{
µ̃i(0) n = 0
F (z̃i, µ̃i(n− 1)) n > 0

,

where µ̃i(0) is initialised as 0.5 on all servers.
The Kalman filter takes streams of measurements observed over time and tracks the estimated

system state as well as the level of uncertainty. It works in the following 2-step process:

• Prediction update:

µi(n) = µ̃i(n− 1)

P (n) = P̃ (n− 1),

• Measurement update:

K(n) = P (n)(P (n) +R)−1

µ̃i(n) = µi(n) +K(n)(zi(n)− µi(n))

P̃ (n) = (1−K(n))P (n),

where µi is the predicted processing duration, P is the expected prediction error, R is the mea-
surement variance, P̃ is the expected estimation error, and K is the Kalman gain.

The only parameter to be tuned is the measurement variance R, which can be configured based
on the expected noise in measurements zi. The value of R can be increased if the flow durations
of input traffic vary a lot. To avoid manual configuration, R can be adaptively estimated using
the variance of measurements σ2(zi), and can be smoothly updated as R(n) = (1− α)R(n− 1) +
ασ2(zi(n)), where α = 0.01 helps regularize the variation in zi.

Merging Occupancy and Processing Speed

The server processing duration estimation from the latest step µ̃i(n) is used to calculate the
weight w̃i assigned to each server in the following form:

w̃i(n) =
e−µ̃i(n)∑

si∈S e
−µ̃i(n)

∈ (0, 1),

which normalizes the negation of server processing duration estimations, and creates a probability
distribution centered around the servers with higher estimated processing speeds.

After obtaining both measurements, i.e., server occupancy l̃i and inferred processing speed
w̃i(n), a score is computed from these two factors using SED. During the time interval of a step
n, the target server si is selected by:

argmin
si∈S

l̃i + 1

w̃i(n)
,

where the added 1 on the numerator takes the new incoming flow into account. This form gives
priority to servers with high estimated processing speeds and low occupancies.

6.4 Experimental Setups

To evaluate load balancing performance in different realistic setups, subject to both partial
traffic observations and potential server weights misconfigurations as described in section 6.2, a
physical testbed similar to the one used in chapter 3 is configured and deployed, and an event-based
simulator is implemented. This allows testing with realistic network traces – when available – and
large-scale simulated scenarios.

6.4.1 Testbed

Experiments are conducted on a testbed running network traces on physical servers. The
experimental platform consists of VMs representing clients, an edge router, load-balancers, and
Apache HTTP server agents as depicted in figure 6.4.
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Figure 6.4: An example of network topology with two groups of 7 servers.

Load-Balancers

HLB, along with other LB algorithms, is implemented as a plugin to VPP [121], a performant
packet-processing stack that runs on commodity CPUs. The number of buckets (160 bits/entry)
in the flow table for stateful LB algorithms is set to 65536. Each load balancer is connected to all
application servers.

Apache HTTP Servers

Running on each server VM, an Apache HTTP servers gather two metrics every 200ms as
“ground truths” for the occupancies: CPU utilisation, and the number of busy Apache worker
threads5. The server configurations are the same as in section 3.2.3. Servers are organized into 2
groups, where server capacities within a group are identical, yet may be different between the 2
groups.

System Platform

The system platform is similar to the configuration described in section 3.2.3. Depending on
the scale of experiments, the testbed resides on 2 to 4 physical machines, each with a 48-CPU
Intel Xeon E5-2690 CPU. An 8-CPU traffic generator, representing the clients, and a 4-CPU edge
router device, run on one machine. The other machine hosts 4-CPU VMs running LB instances
on VPP. The number of CPUs of Apache HTTP servers may vary from 2 to 8 using different
configurations. All VMs are on the same Layer-2 link, with statically configured routing tables.
The mean round-trip-time (RTT) between 2 network devices is 0.322ms and the standard deviation
of RTT is 0.037ms.

Wikipedia Replay

In order to evaluate LB performance using realistic workloads, LB algorithms are evaluated in
a data center setup that provides typical Web services. To emulate Wikipedia server clusters, the
same Wikipedia 24 hour replay trace as in section 3.2.3 is applied. The sizes of Wiki pages follow a
long-tail distribution, whose average and standard deviation are both 12KiB. The traffic generator
is used to generate a MediaWiki access trace and to record page response times.

6.4.2 Simulator

To compare and contrast the performance of load balancing algorithms in various scenarios, in
particular those difficult or where no network trace exists to evaluate in testbeds (e.g., large-scale
data center networks), an event-driven simulator is implemented, based on hypotheses described
in section 6.1. The simulator implements the network topology as in figure 6.4, where each load
balancer is connected to all servers.

Real-world network applications can be CPU-bound or IO-bound [271,272]. The simulator al-
lows configuring applications that require multi-stage processes switching between CPU/IO queues
(figure 6.5). For instance, a flow request for a 2-stage application is first processed in the CPU
queue, then in the IO queue, before being sent back to the client.

5CPU utilization is calculated from the file /proc/stat and the amount of Apache busy threads is assessed via
Apache’s scoreboard shared memory.
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Figure 6.5: Illustration of the processing states of flow requests. Solid and dashed arrows represent
deterministic and non-deterministic procedures respectively.

Two different processing models are used for CPU and IO queues, respectively. A FIFO model
is defined for CPU queues, and flows that arrive when no CPU is available will be blocked in
a backlog queue until there is an available CPU. IO is simulated as a simple processor sharing
model, in which the instantaneous processing speed is the inverse of the number of flows in the IO
queue. The backlog queue length of each server is configured as 64. Connections that arrive when
the backlog queues are full will be rejected, with 40s timeout. Communication latency between 2
devices is uniformly distributed between 0.1ms and 1ms.

6.4.3 Benchmark LB Algorithms

All the 6 LB algorithms described in section 6 are implemented to be evaluated in the simulator.
Similarly to SED, AWCMP is implemented to be aware of the server speed difference ratio, and
with the server occupancies (i.e., queue lengths) on each server polled periodically. The default
update frequencies of server weights are the same for AWCMP and HLB (every 0.5s).

In the simulator, an Oracle LB algorithm is implemented, which distributes flows to the server
which is expected to finish all its job with the lowest delay (including the new flow). The Oracle
LB is aware of the remaining time of each flow, which is otherwise not observable for layer-4 LBs.
By adding the Oracle LB, the load balancing performance of HLB and other LB algorithms can be
compared to the potential upper bound of performance, corresponding to “perfect” network and
server state observations.

For algorithms that consider instant server occupancies, power-of-2-choices can be applied ad-
ditionally. In addition to GSQ2, the simulator thus also implements LSQ2, SED2, HLB2, and
Oracle2, to study the impact of partial observations and suboptimal load balancing decisions.

6.5 Evaluation

Simulations and experiments are conducted (≥ 10 runs for each setup) to answer the following
questions:

• How does the performance of HLB, when subjected to different traffic rates, compare with
existing LB algorithms (section 6.5.1);

• What is the impact of heterogeneity in server capacities on load-balancing performance (sec-
tion 6.5.2);

• Are partially observed server occupancies representative of server load states (section 6.5.3);

• How does HLB perform using different configurations of system parameters (section 6.5.4);

• Can HLB adaptively react to dynamic networking environments (section 6.5.5);

• What is the performance overhead (section 6.5.6).

6.5.1 Performance with Different Traffic Rates

This section presents an overall performance evaluation of HLB, compared to other LB algo-
rithms, when subjected to different traffic rates with both a real-world network trace replay and a
large-scale simulation.



102 CHAPTER 6. HLB: APP-AWARE LOAD BALANCING WITH KALMAN FILTER

Figure 6.6: [Testbed] 24-hour Wikipedia trace replayed using different LB algorithms. Average FCTs
(top), ratio between weights assigned to the 2 groups of servers by HLB (middle), and traffic rate (bottom)
are depicted.
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Figure 6.7: [Testbed] FCT CDF comparisons for two types of requests in the 24-hour Wikipedia replay.

24-Hour Trace Evaluation

Samples of 600s duration are extracted from the 24-hour Wikipedia trace and replayed on the
testbed. The results are depicted in figure 6.6.

During the off-peak period from 5:00 to 11:00 UTC when servers are under-utilized, all LB al-
gorithms show similar performance. As traffic rates grow, HLB sees less increase in FCT compared
with other LB algorithms, which is indicative of improved resource utilization and performance
gains achieved by the load-balancing decisions using HLB. LSQ and GSQ2 assume all servers have
the same processing capacities, and aim at maintaining equal queue lengths on all servers. When
subjected to heavier traffic, servers with less processing capacities receive more workloads than
they can process, and their queues grow full. LSQ and GSQ2 thus become less performant than
SED and HLB during the peak periods.
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Figure 6.8: [Testbed] Comparison on server resource utilizations using network traces from hour 20:00
(800 queries/s) in the 24-hour Wikipedia replay.

As depicted in the middle plot in figure 6.6, HLB has no a-priori knowledge of server capacity
differences (the ratio of CPU numbers between the 2 server groups is 2), yet it can passively
learn these differences from observations, and achieve similar performance as that of SED. During
off-peak hours, as servers have enough processing capacities, thus no additional queuing delay
occurs, HLB does not differentiate server processing speeds. When subjected to heavier traffic
rates, less powerful servers become “overloaded” and see higher queuing delays, which increase
their corresponding flow durations. The increased flow durations thus inform HLB of the server
processing speed differences.

Figure 6.7 depicts the FCT CDF of each LB algorithm for two types of requests: (i) static
pages, and (ii) Wiki pages6. For both types of requests, HLB, SED, LSQ, and GSQ2 show notable
performance gains when compared with other LB algorithms. For Wiki pages, which are more
computationally expensive (CPU-bound) to load than static pages, HLB achieves 23.66% and
26.43% less 90p FCT than LSQ and GSQ2 respectively. Of particular note is, that HLB achieves the
same performance as SED, but does not require manual configurations of server weights. For static
pages, which are IO-bound, HLB achieves 38.22% less 90p FCT than SED, which demonstrates
that HLB can effectively achieve improved performance.

Workloads Distribution

To understand the workload distribution, this section studies 6 resource utilization metrics:
mean CPU usage, fairness, overprovision factor, mean number of busy threads, fairness of number
of busy threads, and finally the average FCT. Given a random variable X, the fairness of X is

defined as F = E(X)2

E(X2) ∈ [0, 1] [252]. The overprovision factor of X is computed as the maximum

load over the average load at each time step max(X)

X
∈ [1,∞) [65].

The performance of the 4 best performing LB algorithms in the 24-hour trace evaluation, are
further analysed – still on a test platform with servers of different capacities. As depicted in
figure 6.8, SED achieves balanced average CPU usage between the 2 server groups, thus SED
balances the average FCT, since it is aware of both server occupancies and processing speeds,
thus assigns 2.3x flows to 4-CPU servers than to 2-CPU servers. Unlike SED, LSQ and GSQ2
balance queue lengths between the two server groups. They ignore the capacity differences, and
overload 2-CPU servers which experience FCTs increased by 71% and 131%, using LSQ and GSQ2
respectively, over FCTs on 4-CPU servers. HLB learns to give less aggressive weights than SED
without any a-priori knowledge and assigns 35% more requests to 4-CPU servers than to 2-CPU
ones. The queue lengths between the 2 groups of servers are less imbalanced than SED yet more
proportional to their processing speeds than LSQ and GSQ2.

6Wiki pages are identifiable by the string /wiki/index.php/ in URLs.
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Capacity Ratio n 1x 2x 4x

Testbed Group 1 5× 2-CPU 4× 2-CPU 2× 2-CPU
Testbed Group 2 5× 2-CPU 3× 4-CPU 2× 8-CPU
Simulator Group 1 64× 1-CPU 64× 1-CPU 64× 1-CPU
Simulator Group 2 64× 1-CPU 64× 2-CPU 64× 4-CPU

Table 6.3: Configurations with different server capacity ratios.
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Figure 6.9: [Simulator] FCT comparison using 2x server capacity ratio when subjected to different traffic
rates.

Large-Scale Simulation

To study LB performance in large-scale data center networks, simulations are conducted in a
setup with 4 LBs and 128 servers, half of which has 1 CPU each, while the other half has 2.

The input traffic is a Poisson stream of single-stage CPU-bound application queries. The
exponential distribution of FCTs, T (q) ∼ Exp(0.5), has an average of 500ms. Traffic rates are
normalized concerning the total provisioned resources. Results are obtained from multiple runs,
each consisting of 80k network flow requests7.

As depicted in figure 6.9, server occupancy is the dominant factor of LB performance when
traffic rates are heavier, and LB algorithms that are occupancy-aware achieve better performance.
Consistent with the testbed experiments in section 6.5.1, HLB yields a lower FCT than other LB
algorithms – even though HLB has no a-priori knowledge about the server capacity difference.
HLB achieves similar performance to the Oracle from moderate traffic rates up to 90% expected
resource utilization – when the average FCT becomes more than 5x higher than the expected
FCT (200ms) – which covers most cases in data center networks [69]. When subjected to 88.5%
expected resource utilization, HLB achieves 24.64% and 25.59% less 90p FCT than LSQ and SED
respectively.

The take-away for these experiments, and the subsequent simulations, is that, even without

7There are 5 runs in total. From each run, only results from the interquartile range of the simulation time are
used for analysis, to guarantee that all the metrics are collected using the Poisson stream of input traffic.
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Figure 6.10: [Testbed] Comparison using different server capacity ratios using trace from hour 23:00

(680 queries/s). Figure (a) compares FCT CDF using 3 ratio configurations of CPU capacity differences
with different LB algorithms. Figure (b) compares the server weights ratio between the two server groups
generated by HLB with the actual provisioned server capacity ratios.

manual a-priori configurations, HLB achieves better load-balancing performance by learning server
capacity differences, which allows fair distribution of workloads to servers. Tracking server occu-
pancies further allows HLB to improve load-balancing performance, when the servers are subjected
to heavy traffic rates.

6.5.2 The Impact of Heterogeneity in Server Capacities

Given the results from section 6.5.1, this section will further explore the impact of heterogeneity
in server capacity.

Testbed Experiments

Three different configurations of servers, with a total of 20 CPUs as per table 6.3, are tested
with all the different LB algorithms.

As depicted in figure 6.10, for larger differences between server processing capacities, SED
and HLB outperform LSQ and GSQ2. The ratio of server weights computed by HLB between
the two groups of servers8 are lower than the ratio of provisioned resources. This is because the
estimation of server processing capacities is based on flow durations, which capture not only the
server processing time, but also the queuing delays, which are not proportional to server processing
capacities. This causes HLB to “under-estimate” the server processing speed differences between
the two groups of servers, yet HLB still achieves lower FCT than SED, since the traffic rate does
not push the resource utilization to the limit.

Large-Scale Simulation

Two Poisson streams of input traffic with T (q) ∼ Exp(0.5) are applied and consume respectively
70% and 90% provisioned resources on average. Three setups are configured as per table 6.3, with
the results of the simulation depicted in figure 6.11.

8If not specified, the ratios used in this chapter are calculated as the average value of the second group of servers
over the average value of the first group of servers.
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Figure 6.11: [Simulator] Comparison using different server capacity ratios when subjected to 70% (top)
and 90% (bottom) expected resource utilization. Figure (a) compares the FCT distribution and figure (b)
compares the ratio of weights and load distribution between two groups of servers.

The results, when the testbed is subjected to moderate traffic rates, show similar trends as
the experiments in section 6.5.1. As depicted in figure 6.11a9, when all servers have the same
processing capacity, SED exhibits performance equivalent to LSQ.

With a moderate traffic rate (70% expected resource utilization), HLB and SED are the optimal
LB algorithms, especially when the server capacity differences grow. With a heavy traffic rate (90%
expected resource utilization), however, LSQ becomes better than SED. This is because the FCT
is composed of the network delay, the queuing delay, and the server processing delay. At high
resource utilization, the queuing delay becomes dominant, whereas, at low resource utilization, the
server processing time becomes significant.

Another observation from figure 6.11a is the performance degradation of SED at high resource
utilization. This is because the partial observations on network traffic in presence of 4 LBs, make
the server load state evaluation function of SED de-correlated from the actual server load state.
For instance, when the provisioned resource difference ratio is 1 : 4, SED assigns 12.14 times more
workloads to powerful servers, causing them to be overloaded. This will be studied further in
section 6.5.3.

As depicted in figure 6.11b, HLB achieves better performance in all the tested scenarios, by
dynamically adjusting weights based on the inferred server states: the ratio of server weights
calculated by HLB between the two server groups is correlated to, yet lower than, the actual
ratio of provisioned resources. When comparing the number of distributed network flows, while
HLB uses a different strategy than the Oracle, and prioritizes the servers with higher processing
capacities, HLB is adaptive and achieves good performance in different scenarios.

The take-away from this set of experiments and simulations is, that when an LB algorithm
considers server processing capacities when making decisions, it is important that this information
is accurate – at least in as much as the provisioned resource difference ratio is accurate. This can
be done either through a-priori configurations (as in SED), or through observing and learning (as
in HLB). Likewise, as the simulations showed that the impact of the provisioned resources (number
of CPUs) on a server on the FCT depends on the overall resource utilization, it is important that
the weight for a given server can be adaptive also to the traffic rate; especially when LBs have only
partial observations on server load states.

9The boxplots used in this chapter are standard boxplots, showing the interquartile ranges and the medians.
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Figure 6.12: [Simulator] The impact of the application of power-of-2-choices on load-balancing perfor-
mance under 90% expected resource utilization.

Figure 6.13: [Simulator] Different numbers of LBs give different levels of partial observations, which
impact the weights ratio between the two groups of servers computed by HLB (left), and the ratio of queue
lengths between the two groups of servers when subjected to different traffic rates (middle and right).

6.5.3 The Representativeness of Partial Observations

As seen in section 6.5.2, when there are multiple LBs, the performance of SED degrades. This
section, therefore, studies the representativeness of partial observations of the server occupancies
and suboptimality of power-of-2-choices.

Partial Observations on a Large-Scale

Following section 6.5.2, this section uses the 2x simulator configuration in table 6.3 to study
the impact of partial observations in a large-scale data center network. Two configurations with
4 and 8 LBs are applied to compare different degrees of partial observations. The FCT of the
input traffic has the same distribution as in section 6.5.2, i.e., T (q) ∼ Exp(0.5). In addition to the
studied LB algorithms, this section also studies the power-of-2-choices variants of LB algorithms,
that take the server occupancies into consideration: GSQ, HLB, LSQ, SED, and the Oracle, since
they may be potentially impacted by partial observations.

Figure 6.12 depicts the FCT distributions using different LB algorithms. As expected, the
application of power-of-2-choices degrades the performance of GSQ, LSQ, and HLB for saving
compute cycles. SED, however, shows the opposite results and achieves lower FCT with SED2
when there are 8 LBs.

Understanding Workloads Distribution for SED and HLB

Figure 6.13 depicts the queue length ratios between the two groups of servers when using SED
and HLB, along with the server weights computed by HLB. SED prioritizes, and steers most
workloads to servers with higher weights.
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Figure 6.14: [Simulator] With 8 LBs, when subjected to a traffic rate that consumes 90% resource
utilization, the correlation between normalized residual processing time and computed server scores using
SED and HLB.
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Figure 6.15: [Testbed] Comparison using different number of LB devices.

With more LB devices, the server occupancy observations become more partial and less repre-
sentative of the actual server occupancies, and the estimations computed by SED are not correlated
to the actual workloads on the servers (figure 6.14a). Based on this incorrect estimation, SED as-
signs 74.2% network traffic to more powerful servers in presence of 8 LBs, leading to worse results
than the randomness induced by the power-of-2-choices of SED2. The estimations by HLB, on the
other hand, are more accurate and make the two groups of servers subject to similar workloads
(figure 6.14b).

Partial Observations on Experimental Testbed

To verify the observations obtained from section 6.5.3 and section 6.5.3, the 2x testbed config-
uration in table 6.3 is used with various numbers of LBs. This section applies a 600s Wikipedia
trace with an average traffic rate of 680 queries per second. As depicted in figure 6.15a, the per-
formance of SED and LSQ degrades when the presence of more LBs make their observations on
server occupancies more partial and less representative of the actual server occupancies.
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Figure 6.16: [Simulator] Comparison using different weights updating frequency when subjected to 90%
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Figure 6.17: [Simulator] Different input traffic FCT distributions when subjected to 90% expected
resource utilization.

AWCMP obtains better performance since the presence of more LBs increases the polling
frequency of the group of LBs thus making observation granularity finer. Normalizing statistically
significant measurements across servers, HLB is less impacted by the factor of partial observations
among all LB algorithms. In a setup withM LBs passively observingN servers, denote zij =

xij∑
j xij

where xij is the measurement of server j made by LB i at a given time step. The distribution
of M

zij∑
i zij

is compared in figure 6.15b, to quantify the HLB observation homogeneity across LBs

w.r.t. global measurement distribution. The homogeneity of the number of ongoing flows is less
centered and has increased outliers with more LBs, yet the homogeneity of flow durations is less
sensitive to the growth of LB numbers, which helps HLB gainfully use observed information for
server load ranking.

The take-away from these experiments and simulations is that, more partial observations can
be less representative of the measured system. When having only partial observations on server
occupancies available, such as is the case for a multi-LB set-up, the superiority of combined metrics
when using HLB emerges. Using Kalman filters, HLB accumulates reliable observations on server
processing speeds over time in the history, and predicts the server processing speeds at the next
time-step. Integrating both server occupancy and processing speed, HLB is less sensitive to partial
observations.
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Figure 6.18: [Simulator] Comparison using different flow table bucket size.

6.5.4 Sensitivity Analysis

This section studies the potential impacts on LB performance of different conditions and system
parameters, namely, (i) weights update frequency, (ii) flow table size, and (iii) RTT between clients
and servers.

Weights Update Frequency

AWCMP and HLB periodically update server weights. The time interval between two consec-
utive updates is a system parameter. In this section, 5 periods are applied to study their impacts.
Figure 6.16 shows that higher weight updating periods degrade AWCMP performance. Since
AWCMP uses the same set of weights during a complete time interval, the correlation between
server weights and server load states decreases, until the next update. HLB on the other hand, is
less affected by the update interval because of its adaptive Kalman gain. When the update interval
is short, HLB generates higher Kalman gains, and assigns more weights to the newly computed
load state estimations to catch up with the dynamics of the environment.

The adaptive Kalman filter also allows adapting server weights accordingly when facing input
traffic with different FCT distributions. Three lognormal distributions of FCTs are applied on the
2x simulator configuration as in table 6.3 with 4 LBs. As depicted in figure 6.17, when facing input
traffic with different FCT distributions, HLB can achieve performance close to the Oracle, without
manual configuration or additional control messages. The measurement noise R of HLB-FIX is
configured as 0.5 while HLB has no hard-coded R. As depicted in figure 6.17b, HLB has different
convergence of Kalman gain corresponding to different FCT distributions. It helps HLB achieve
better performance than HLB-FIX when the average FCT of input traffic is higher.
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Figure 6.19: [Testbed] FCT (avg. ± stddev) comparison using different RTT distributions between
clients and servers.

Pitfalls of Statefulness

LSQ, SED, and HLB track flow states in flow tables, and the number of buckets in flow tables
is another system parameter. Flow tables with more buckets can store more flow states, and
can therefore enable higher observation accuracy. Untracked flows will be statelessly forwarded
to a random server by looking up ECMP bucket tables, without considering server load states.
However, managing large flow tables consumes more memory space, which is costly on dedicated
hardware [190,217].

To quantify the performance degradation when memory space is limited, simulations are con-
ducted on a data center network with 4 LBs and 256 servers. Half of the servers have 2 CPUs while
the other half have 4 CPUs. Reducing bucket sizes from 65536 to 1024 leads to more untracked
flows, and thus degraded load-balancing performance. Figure 6.18 shows that HLB is more robust
to traffic rate changes and less sensitive to the flow table size than is LSQ and SED. LSQ and
SED use only the observations of server occupancies, while HLB can infer server processing speeds
based on measured flow durations, and thus it is less impacted by untracked flows. HLB achieves
the best performance with the minimal bucket size, which makes it an interesting candidate for
hardware implementations.

RTT Between Clients and Servers

The evaluations above have demonstrated that HLB can improve load-balancing performance
for intra-data-center services, where clients locate within the same data center network. To under-
stand whether HLB can benefit the use cases where clients connect to servers through the Internet,
this section studies the impact of different distributions of RTT between clients and servers. Intu-
itively, given a request from a client, the load-balancing decision is not biased by the RTT between
this client and the server cluster. HLB makes load-balancing decisions and assigns servers based
on its estimations of server load states, which depend on the distribution of sampled flow dura-
tions. The flow duration measurements consist of server processing time and RTT between clients
and servers. Since requests with different RTTs are indiscriminately distributed across servers yet
server processing time varies depending on instant server load states, HLB normalizes flow dura-
tions across servers and reserves the variance of server processing speeds. Therefore HLB is not
sensitive to different RTT distributions.

To provide an empirical study, using the same setup as in Secion 6.5.1, the RTT between clients
and the edge router is shaped using netem to follow Pareto normal distributions with different
means and standard deviations [273]. Added delays have 25% dependency on their previous values.
As depicted in figure 6.19, the FCT grows linearly with the increase of the mean RTT.

With the combination of reservoir sampling and Kalman filters, HLB removes the unimodal
RTT distribution so that the processed flow durations still reflect server processing speed differ-
ences. In all scenarios, HLB remains superior to LSQ and SED. This shows that HLB is not
sensitive to the change of RTT between clients and servers.

The take-away in this section is, that HLB is less sensitive to server weights updating frequency
than are active LB algorithms. It also requires less memory space than other stateful LB algorithms,
which makes it more hardware-friendly. HLB is not sensitive to RTT between clients and servers
thus it can potentially benefit more than just intra-data-center applications.
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Figure 6.20: [Testbed] Comparison with different types of network applications.
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Figure 6.21: [Simulator] Simulation results with 3-stage application queries when subjected to 90%
expected resource utilization.

Application
Type

Pure
CPU

CPU
Intensive

Balanced
IO

Intensive
Avg. CPU Time (s) 1. 0.75 0.5 0.25
Avg. IO Time (s) 0. 0.25 0.5 0.75

Table 6.4: Four configurations with different application types.

6.5.5 Response to Heterogeneous and Dynamic Environments

This section studies the adaptability of HLB when facing heterogeneous traffic and dynamic
data center setups.

Adaption to Different Types of Input Traffic

In addition to Wikipedia traces, two types of Poisson traffic are injected. A PHP for-loop
script that runs for a given number of iterations, simulates CPU-bound applications with T (q) ∼
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Exp(0.2). To simulate IO-bound applications, a farm of static files with different sizes10 are
created and queried. Moderate and high traffic rates are applied for the 3 types of applications in
the testbed as in figure 6.4. As depicted in figure 6.20, LSQ achieves similar performance as that
of SED and HLB for for-loop trace but does not perform better than ECMP for the file trace.
AWCMP achieves lower FCT when subjected to CPU-bound traffic, especially when the traffic
rate is high. SED and HLB have the best performance for all traces.
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Figure 6.22: [Testbed] HLB is able to adapt to changed environments without manual configurations or
additional control messages.

10The sizes of files are 100KB, 200KB, 500KB, 750KB, 1MB, 2MB, and 5MB. 50 files are randomly generated
for each size.
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Figure 6.23: [Testbed] Overhead analysis.

Though flow duration is affected by many factors including expected workloads, instant server
occupancy, and different types of provisioned resources (e.g. CPU, IO, networking conditions),
by collecting multiple samples (128 per server) of flow durations for the same VIP (and thus
for the same application), we obtain a statistical representation of the flow duration distribution
on each server. This allows to derive and compare the overall server processing speed for the
given application. Using flow duration as an indicator of server load states saves us from profiling
different applications (e.g. resource dependencies) and allows to generalize to different types of
applications.

On a larger scale, simulations are conducted with 4 LBs and 128 servers using the 2x config-
uration as in table 6.3. In this section, a 3-stage application whose queries follow CPU-IO-CPU
processing stages is compared with a pure CPU application. Both CPU and IO processing time
follow exponential distributions and the aggregated average FCT is 1s. The four different types
of network applications are configured as in table 6.4. As depicted in figure 6.21, with different
provisioned resource ratios for CPU (2x) and IO (1x) queues, HLB has better performance for all
types of applications, with weights adaptive to the requirements of different types of applications.

Adaption to Processing Speed Changes

This section shows the ability of HLB to detect changes in server processing speeds, e.g., when
VMs are migrated to a new server. Using the 2x testbed configuration with 2 LBs, additional
CPU-bound workloads are applied on the 4-CPU server group starting from 30s. As depicted in
figure 6.22, when subjected to heavy Wikipedia traffic, HLB adapts server weights over time and
achieves better performance than other LB algorithms. It can infer that the processing speeds of
the two groups of servers become similar to each other after 30s.

6.5.6 Overhead Analysis

To compare the additional processing latency of HLB, one 4-CPU LB, and a 176-CPU server
cluster are deployed on 4 physical machines. The number of CPU cycles per packet and resource
consumption are compared in figure 6.23a, using 10 runs of 2000 queries/s of Poisson traffic (more
than 1150.76 average concurrent flows). The first packets are those that register new-coming flows
in the flow table while the data packets are the subsequent packets that are matched in the flow
table. As HLB calculates and compares the score of each server when assigning servers to flows,
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it consumes on average 871 cycles (0.34µs on 2.6GHz CPU) more than does ECMP for each flow.
Compared with ECMP, HLB incurs on average 8% additional CPU usage and 31MiB additional
RAM usage. Assuming LBs see one SYN packet, one data packet and one FIN packet in each flow,
the average packet throughput for each LB algorithm on a 2.6GHz CPU are compared as depicted
in figure 6.23b. HLB achieves 87.38% throughput of ECMP.

6.6 Summary

Workload distribution fairness, as one of the main expectations for network load balancers
in data center networks, requires load balancers to balance incoming traffics to its associated
application servers so that its downstream resources can be efficiently utilized. However, as already
discussed in chapter 1, the virtualization technologies including virtual machines (VMs) [60] and
containers [63] have largely improved the elasticity of data center architectures and make automatic
resource orchestration feasible [274–276]. The assumption that all application instances share the
same configuration (e.g., number of cores, memory capacities etc. ) no longer holds, and replicates
of application instances may even run in heterogenous hardwares [72]. Following the study in
chapter 5, which aims to improve load-balancing fairness with ML algorithms, this chapter has
proposed, and studied the performance of HLB – a load-aware Layer-4 load balancer using classical
statistical learning methods with 2 selected networking features.

Implemented based on Aquarius, HLB can estimate both server occupancy and processing
speed, which are identified in this chapter as two key factors in load-balancing performance. Using
passively gathered networking observations extracted from the data plane, HLB can infer available
server processing capacities in real-time, with no a-priori knowledge or manual configurations. HLB
can be deployed with no modification on the network stack of the target data center networks,
since it requires no additional management traffic or active signaling. Therefore, this makes HLB
an interesting candidate for autonomous service management and orchestration in the cloud, which
helps avoid error-prone manual configurations.

Extensive evaluations and sensitivity analysis have been conducted by way of both simulations
and real-world testbed experiments. Evidences have been provided that HLB offers better load-
balancing performance than state-of-the-art LB algorithms, not only in terms of load-balancing
fairness, but also in terms of performance overhead (no additional communication overhead). HLB
outperforms load-balancing algorithms that do not consider both server occupancy and processing
speed when making load-balancing decisions in different scenarios. When compared with SED,
which considers these 2 key factors using manual configurations, HLB can learn from passive ob-
servations autonomously. It is also able to adapt to dynamic data center environments and variant
workloads and achieve better load-balancing performance, especially when servers are subject to
additional co-located workloads, which make manual configurations fail to capture the actual sys-
tem states. The limitation of HLB is that, when the server cluster is heavily loaded, it is not able
to distribute workloads as effectively as SED, which is aware of the exact server processing speed
differences.

The work and results from this chapter have been published in [196]. The source code and
data of simulation results are available under an open-source license at: https://github.com/

ZhiyuanYaoJ/SimLB/tree/hlb.

https://github.com/ZhiyuanYaoJ/SimLB/tree/hlb
https://github.com/ZhiyuanYaoJ/SimLB/tree/hlb
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Chapter 7

Load Balancing with
Reinforcement Learning

As discussed in chapter 5, network LBs rely on heuristic mechanisms [65, 135, 186, 236], and
are subject to the low-latency and high-throughput constraints of the data plane. However, these
heuristics are not adaptive to dynamic environments and require human interventions, and, as
such, to misconfigurations, as shown in experiments in section 6.5.5. To improve load-balancing
performance under such constraints, HLB has been proposed in chapter 6, and it is shown to be
able to achieve similar performance to SED with no prior knowledge about the server configu-
rations. As an “open-loop” control mechanism, HLB infers server load states only based on the
measurements and does not evaluate the outcome of the load-balancing actions. It is less computa-
tionally expensive, yet it may take longer to stabilize when faced disturbances, as demonstrated in
section 6.5.5. As the counterpart of “open-loop” control, “close-loop” control mechanisms consider
both measurements as input signals and the output of the system as feedback signals, to update the
control policy to the desired condition, with high resilience to disturbances. This chapter explores
a “closed-loop” control mechanism – Reinforcement Learning (RL) – that aims at outperforming
state-of-the-art load-balancing mechanisms, e.g., SED.

Application
Servers
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Load
Balancer
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Figure 7.1: Network load balancing in the context of RL.

Related Work

Network Load Balancing Algorithms.
As introduced already in chapter 5, the goal of network LBs is to fairly distribute incoming

requests across servers. As a reminder, the system transition protocol of the network load-balancing
system is described in algorithm 4 and depicted in figure 7.1, in the context of RL.

The results in section 6.2 have shown that, existing load-balancing algorithms are sensitive to
partial observations and inaccurate server weights.
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Algorithm 4 LB System Transition Protocol

1: Initialise server load, Xj(0)← 0,∀j ∈ [N ]
2: for each time step t do
3: for each LB agent i ∈ [M ] do
4: Choose action αij(t) for coming tasks wi(t)

5: for each server j do
6: Update workload:
7: Xj(t) = Xj(t− 1) +

∑M
i=1 wi(t)αij(t)− vj(t− 1)

Equal-Cost Multi-Path (ECMP) LBs [190, 193, 243] randomly assign servers to new requests,
which makes them computationally efficient yet agnostic to server load state differences.

Weighted-Cost Multi-Path (WCMP) LBs [65, 221, 235, 241] assign weights to servers, propor-
tional to their provisioned resources (e.g., CPU power), however, the statically assigned weights
may not correspond to the actual server processing capacity.

Active WCMP (AWCMP) is a variant of WCMP and it periodically probes server utilization
information (CPU/memory/IO usage) [143, 186]. However, active probing can cause delayed ob-
servations and incur additional control messages, which degrades the performance of distributed
networking systems.

Local Shortest Queue (LSQ) assigns new requests to the server with the minimal number of
ongoing networking flows that are locally observed [144,261]. It does not concern server processing
capacity differences.

Shortest Expected Delay (SED) derives the “expected delay” as locally observed server queue
length divided by statically configured server processing speed [236]. However, LSQ and SED are
sensitive to partial observations and misconfigurations, as discussed in section 6.2.

This chapter formulates the network load-balancing problem as a multi-agent RL (MARL)
problem and aims at proposing a new algorithm that outperforms the existing LBs mentioned
above.

Multi-Agent RL.

MARL [277] is an important avenue for solving different types of games. For cooperative
settings, a line of work based on joint-value factorisation have been proposed, involving VDN [278],
COMA [279], MADDPG [280], and QMIX [281]. For these works, a global reward is assigned to
players within the team, but individual policies are optimized to execute individual actions, known
as the CTDE setting. However, deploying CTDE RL models in real-world distributed system
incurs additional communication latency and management overhead for synchronising agents and
aggregating trajectories. These additional management and communication overhead can cause
substantial performance degradation – constrained throughput and increased latency – especially
in data center networks. The communication overhead will be quantitatively studied further in this
chapter. This chapter proposes an independent MARL framework that outperforms CTDE RL
models with no additional control messages. To that end, this chapter applies the characteristics
of Markov Potential Games (MPG).

Markov Potential Games. A potential game (PG) [282–285] has a special function called
potential function, which specifies a property that any individual deviation of the action for one
player will change the value of its own and the potential function equivalently. A desirable property
of PG is that pure NE always exists and coincides with the maximum of potential function in norm-
form setting. Self-play [286] is provably converged for PG. Markov games (MG) is an extension
of normal-form game to a multi-step sequential setting. A combination of PG and MG yields
the Markov potential games (MPG) [287, 288], where pure NE is also proved to exist. Some
algorithms [287, 289, 290] lying in the intersection of game theory and reinforcement learning are
proposed for MPG. In particular, independent nature policy gradient is proved to converge to Nash
equilibrium (NE) for MPG [287]. By leveraging this characteristic of MPG, an independent learning
approach can be more efficient due to the decomposition of the joint state and action spaces, which
is leveraged in the proposed methods. Methods like MATRPO [291], IPPO [292] follow a fully
decentralized setting, but for general cooperative games. MPG satisfies the assumptions of the
value decomposition approach, with the well-specified potential function as the joint rewards.
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Figure 7.2: Existing network load-balancing algorithms are sub-optimal in real-world setups.

Application
Type

Pure
CPU

CPU
Intensive

Balanced
IO

Intensive
Avg. CPU Time (s) 1. 0.75 0.5 0.25
Avg. IO Time (s) 0. 0.25 0.5 0.75

Table 7.1: Four configurations with different application types.

Motivation

RL has shown performance gains in distributed system and networking problems [25–27, 184],
yet applying RL to the network load-balancing problem remains challenging.

Limited Observations

Unlike traditional workload distribution or task scheduling problems [26,27], network LBs have
limited observations of the system. In particular, a network LB does not know task sizes, actual
server load states, or server processing capacities. Being aware of only the number of tasks an LB
has assigned to a server on receipt of new flows, servers with lower processing capacities can be
overloaded – by e.g., serving “elephant flows” assigned to the same server – and provide degraded
quality of service (QoS).

Partial Observations

Second, to guarantee high service availability, multiple LBs are deployed within the servers in
data center. Network flows are split among these LBs. This condition makes thus each LB has
only a partial view of the state of the system, which is known as the multi-agent setup [293]. This
has been investigated both in section 3.3.3 and in section 6.5.3.

Inaccurate Weights

Assigning weights to servers according to server processing speeds has been proposed as an
alternative way of making informed load-balancing decisions [65,143,186,221,235,241]. As discussed
in chapter 5, however, modern data centers are built, and contain heterogeneous hardware and
elastic infrastructures [72], where server capacities vary. That condition makes it challenging to
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Figure 7.3: Communication overhead for CTDE grows linearly during training.

assign weights to servers according to their actual processing capacities. Not to mention that
this process conventionally requires human intervention – which, again, can lead to error-prone
configurations [65,186].

In real-world systems, not only error-prone manual configuration, but also different applica-
tion profiles can lead to inaccurate server weight assignments. This has been already evaluated
extensively in section 6.5.5. As a reminder, 2 clusters of 4 servers were configured with the same
IO processing speed but 2x different CPU processing speeds. Four different application profiles
(e.g., CPU-bound and IO-bound) are compared to derive the actual server processing capacity
differences, as in table 7.1. As depicted in figure 7.2a, with different provisioned resource ratios for
CPU (2x) and IO (1x) queues, to guarantee the optimal workload distribution fairness, and make
each server have the minimized maximal remaining time to finish among all servers at all time,
the weights to be assigned for servers with different provisioned capacities depend on different
application profiles. For instance, servers with the same IO speed yet different CPU capacities
have different actual processing speeds when applications have different resource requirements.
Therefore, it is a sub-optimal solution for existing load-balancing algorithms to statically configure
server weights based on computational resources. In addition, as analyzed in section 6.2, the QoS
performance of each load-balancing algorithm degrades from the ideal setup (global observations
and accurate server weight configurations, as depicted in figure 7.2b) when network traffic is split
across multiple LBs or server weights are mis-configured1, which prevails in the real-world cloud
data center.

Performance Overheads

Last but not least, as already discussed in chapter 4, given the low-latency and high-throughput
constraints that network LBs must operate with, the interactive training procedure of RL models
and the centralized-training-decentralized-execution (CTDE) scheme [279] can incur additional
communication and management overhead. The communication overhead of the CTDE RL scheme
in data center networks has been discussed in section 3.1 already in two folds: throughput and
latency.

1. Thoughput: Active signaling (e.g., periodically probing, or sharing messages) is an intrin-
sic way to observe and measure system states so that informed decisions can be made to
improve performance [293, 294]. Higher communication frequency gives more relevant and
timely observations yet there is a trade-off between communication frequency and additionally
consumed throughput. Management traffic among different networking devices can cascade
and plunder the throughput for data transmission in high-tier links.

As depicted in figure 7.3, CTDE RL scheme requires agents to communicate and share
their trajectories, which include the observed states and actions. This leads to linearly
increasing replay buffer size with the growth of number of episodes. The replay buffer size also
grows with the number of agents which makes CTDE RL scheme not a scalable mechanism.
Transmitting and synchronising replay buffer among agents incur additional communication

1The stochastic Markov model of the simulation is detailed in section 6.2
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overhead in the networking system, reducing the throughput for data transmission channel
– which can break full-bisection bandwidth (an important throughput related performance
metric, as discussed in section 1.1) in data center networks [295] – thus decreasing the QoS.

2. Latency: When a single controller VM periodically transmit different amount of bytes via
TCP sockets towards the agents, the latency overhead increases with the number of servers,
which diminishes the QoS. While normal per-packet round trip time (RTT) between two
directly connected network devices is 0.099ms± 0.014ms in the setup, with additional com-
munication overhead, RTT can grow more than 10x (as depicted in figure 3.1 in chapter 3).
This is not considered as low additional latency, especially not in high performance network-
ing systems. In elastic and cloud computing context and real-world setups, load balancers
can be deployed in different racks [58]. There can be multiple hops between two devices and
one flow consists of tens of hundreds of packets, which can lead to cascaded high latency.

Statement of Purpose

This chapter studies the network load-balancing problem using a multi-agent game theoretical
approach, by formulating it as a Markov potential game, and by specifying the proper reward
function, namely variance-based fairness. This chapter proposes a distributed Multi-Agent RL
(MARL) network load-balancing mechanism – Distr-LB , which can exploit asynchronous actions
based only on local observations and inferences. Distr-LB considers dynamically changing queue
lengths (e.g., sub-ms in modern data center networks [229]), and autonomously adapts to actual
server processing capacities, with no additional communications among LB agents or servers. Load
balancing performance gains are evaluated based on both event-based simulations and real-world
experiments.

Chapter Outline

The remainder of this chapter is organized as follows. Section 7.1 formulates the network load-
balancing problem in data centers, and revisits key concepts and constraints in load-balancing
problems. Section 7.2 proposes and discusses two different fairness indexes that will be further
used as reward functions in this chapter. Section 7.3 introduces the characteristics of the Markov
Potential Game (MPG), to which the network load-balancing problem is translated. Then, sec-
tion 7.4 presents the proposed MARL framework for network load balancers, and section 7.5
describes the implementation details as well as experimental setups. Section 7.6 compares and
contrasts different load-balancing algorithms, by way of both simulation and realistic experiments
in physical testbeds. Section 5.5 finally concludes this chapter.

7.1 Problem Formalization

The load-balancing problem can be formulated into a discrete-time dynamic game, with strong
distributed and concurrent settings, and where no centralized control mechanism exists among
agents. M denotes the number of LB agents. [M ] denotes the set of LB agents {1, . . . ,M}. N
denotes the number of servers, and [N ] denotes the set of servers {1, . . . , N}. At each time step (or
round) t ∈ H in a horizon H of the game, each LB agent i receives a workload wi(t) ∈ W , where W
is the workload distribution. Then the LB agent assigns a server to the task using its load-balancing
policy πi ∈ Π, where Π is the load-balancing policy profile. At each time-step t, a LB agent i takes
an action ai(t) = {aij(t)}Nj=1, according to which the tasks wi(t) are assigned with distribution

αi(t). αij(t) is the probability of assigning tasks to server j,
∑N

j=1 αij(t) = 1. Therefore, at each
time step, the workload assigned to server j by the i-th LB is wi(t)αij(t). During each time interval,
each server j is capable of processing a certain amount of workload vj , based on the property of
each server (e.g., provisioned resources including CPU, memory, etc. ). The server load state

(remaining workload to process) can be expressed as Xj(T ) =
∑T

t=0 max{0,∑M
i=1 wi(t)αij(t) −

vj} = max{0,∑T
t=0

∑M
i=1 wi(t)αij(t) − vjT} =

∑M
i=1 Xij(T )

2. lj denotes the time for a server j
to process all remaining workloads, which is also the potential queuing time for new-coming tasks,

then, lj(t) =
Xj(t−1)+

∑M
i=1 wi(t)αij(t)

vj
=

∑M
i=1 Xij(t−1)+wi(t)αij(t)

vj
=

∑M
i=1 lij(t). The transition from

2Xij(T ) =
∑T

t=0 max{0, wi(t)αij(t)−
vj
M
}
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time step t to time step t+1 is then given in algorithm 4. The reward is ri(t) = R(l(t), ai(t), δi(t)),

where R is the reward function. Finally, l(t) =
∑N

j=1 lj(t) =
∑M

i=1 li(t) denotes the estimated
remaining time to process on each server, and δi(t) is a random variable that makes the process
stochastic.

Definition 7.1. (Makespan) In the selfish load-balancing problem, the makespan is defined as:

MS = max
j

(lj), lj =
∑

i

lij (7.1)

The network load-balancing problem can be expressed as a multi-commodity flow problem
(NP-hard [296]). This makes it hard to solve using algorithmics within the micro-second timing
constraints. The problem can be formulated as a constrained optimization problem for minimizing
the makespan over a horizon t ∈ [H]:

minimize

H∑

t=h

max
j

lj(t) (7.2)

s.t. lj(t) =

∑M
i=1(Xij(t− 1) + wi(t)αij(t))

vj
,

M∑

i=1

wi(t) ≤
N∑

j=1

vj , wi, vj ∈ (0,+∞) (7.3)

Xij(T ) =

T∑

t=0

max{0, wi(t)αij(t)−
vj
M

},
N∑

j=1

αij(t) = 1, αij ∈ [0, 1] (7.4)

The arrival of network requests is assumed in realistic network load-balancing system [1, 65]
to be unpredictable, in both its arriving rate and the expected workload, which introduces non-
negligible stochasticity into the problem. Moreover, due to the existence of noisy measurements
and partial observations, the estimation of makespan may not indicate the actual server load states
or available processing capacities. For instance, collisions of “elephant” flows, or bursts of “mouse”
flows, can happen [1,27]. For simplicity and clarity, this chapter uses the term “task” to designate
generically a network flow handled by an application server. Counting the number of ongoing tasks
on the server does not indicate server processing capacity. To solve this issue, the fairness of task
completion time is proposed as a replacement for the original objective makespan. Specifically,
makespan is estimated on a per-server level based on the partial observation of each LB, i.e., the
number of ongoing tasks observed from each LB on the (locally perceived) most heavily loaded
server is derived as the makespan. The estimation of fairness, however, can be decomposed to the
LB-level, i.e., overloaded servers yield longer task completion time, which can be reflected in the
fairness estimations. This allows evaluating the individual LB performance. This is practical in
load-balancing systems due to the partial observability of LBs.

7.2 Distribution Fairness

This chapter introduces two types of load-balancing distribution fairness: (1) variance-based
fairness (VBF) and (2) product-based fairness (PBF). This section will show that optimization
over either VBF or PBF will be, sufficient but not necessary, for minimizing the makespan.

Definition 7.2. (Variance-based Fairness) For a vector of time to finish all remaining tasks l =

[l1, . . . , lN ] on each server j ∈ [N ], let l(t) = 1
N

∑N
j=1

∑M
i=1 lij(t), the variance-based fairness for

workload distribution is just the negative sample variance of the task time, which is defined as:

F (l) = − 1

N

N∑

j=1

(
lj(t)− l(t)

)2

= − 1

N

N∑

j=1

l2j (t) + l
2
(t). (7.5)

VBF defined per LB is: Fi(li) = − 1
N

∑N
j=1 l

2
ij(t) + l

2

i (t), where li(t) =
1
N

∑N
j=1 lij(t).

Lemma 7.1. The VBF for load-balancing system satisfies the following property:

Fπi,−πi

i (li)− F π̃i,−πi

i (̃li) = Fπi,−πi(l)− F π̃i,−πi (̃l) (7.6)
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Proof. The definition of the variance-based fairness (as definition 7.2) gives the following for ∀i ∈
[M ], j ∈ [N ],

Fπi,−πi(l) = − 1

N

N∑
j=1

(lj − l)2 (7.7)

Fπi,−πi
i (li) = −

1

N

N∑
j=1

(lij − li)
2 (li =

1

N

N∑
j=1

lij) (7.8)

By indexing the agent i as the one to change its strategy (and slightly abusing notation), lj = lij + l−ij ,
where l−ij =

∑
k ̸=i lkj .

Fπi,−πi(l) = − 1

N

N∑
j=1

(lij + l−ij − (li + l−i))
2 (where (li + l−i) =

1

N

∑
j

(lij + l−ij)) (7.9)

= − 1

N

N∑
j=1

[lij + l−ij − (li + l−i)]
2 (7.10)

= − 1

N

N∑
j=1

[(lij − li)
2 + (l−ij − l−i)

2 − 2(lij − li)(l−ij − l−i)] (7.11)

= − 1

N

N∑
j=1

(lij − li)
2 − 1

N

N∑
j=1

[(l−ij − l−i)
2 − 2

N

N∑
j=1

(lij − li)(l−ij − l−i)] (7.12)

= Fπi,−πi
i (li)−

1

N

N∑
j=1

(l−ij − l−i)
2 (

N∑
j=1

(lij − li) = 0) (7.13)

where the second term is a common term not depend on the changing policy πi. Therefore, the second
term will be cancelled in Fπi,−πi(l) − F π̃i,−πi (̃l) = Fπi,−πi

i (li) − F π̃i,−πi
i (̃li), thus finishes the proof.

This property makes VBF a good choice for the reward function in load-balancing tasks, since it
satisfies the requirement of being a potential function in the MPG, which will be discussed further
in section 7.3.

Proposition 7.1. Maximizing the VBF is sufficient for minimizing the makespan, subjective to
the load-balancing problem constraints (equation (7.3) and (7.4)):

maxF (l) ⇒ minmax
j

(lj) (7.14)

this also holds for per-LB VBF as maxFi(li) ⇒ minmaxj(li).

Proof. Given the stability constraint in equation (7.3)
∑M

i=1 wi(t) ≤
∑N

j=1 vj , denote the total amount

of workload in the system C =
∑N

j=1 lj , and lk = maxj∈[N ] lj . The constraint in equation (7.4) gives
C ≥ 0, lj(t) ≥ 0.

maxF (l)⇔ min−F (l) (7.15)

−F (l) =
1

N

N∑
j=1

((lj)− l)2 (7.16)

=
1

N

N∑
j=1

(lj −
C

N
)2 (7.17)

=
1

N

N∑
j=1

l2j −
2C

N2

N∑
j=1

lj +
C2

N2
(7.18)

=
1

N

N∑
j=1

l2j −
C2

N2
(7.19)

≤ [(max
j

lj)
2 − C2

N2
] (by means inequality) (7.20)
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with the equivalence achieved when lj = lk, ∀j ̸= k, j ∈ [N ] holds. Therefore,

maxF (l)⇒ min(lk)
2 − C2

N2
(7.21)

⇔ min lk (7.22)

⇔ minmax
j∈[n]

lj (7.23)

and the condition is sufficient but not necessary because min(lk)
2 − C2

N2 is essentially minimizing the
upper bound of −F (l).

Definition 7.3. (Product-based Fairness [28]) For a vector of time to finish all remaining tasks
l = [l1, . . . , lN ] on each server j ∈ [N ], the product-based fairness for workload distribution is

defined as: F (l) = F ([l1, . . . , lN ]) =
∏

j∈[N ]
lj

max(l) . The PBF defined per LB is: Fi(li) =

F ([li1, . . . , liN ]) =
∏

j∈[N ]
lij

max(li)
. Similarly, the product-based fairness for each LB agent (e.g.,

the i-th) li = [li1, . . . , liN ] can be defined as:

Fi(li) = F ([li1, . . . , liN ]) =
∏

j∈[N ]

lij
max(li)

. (7.24)

Proposition 7.2. Maximizing the product-based fairness is sufficient for minimizing the makespan,
subjective to the load-balancing problem constraints (equation (7.3) and (7.4)):

maxF (l) ⇒ minmax(l) (7.25)

Proof. For a vector of workloads l = [l1, . . . , lN ] on each server j ∈ [N ], by the definition of fairness,

maxF (l) = max

∏
j∈[N ] lj

maxk′∈[N ] lk′
(7.26)

WLOG, let lk = maxk′∈[N ] lk′ , then,

maxF (l) = max
∏

j∈[N ],j ̸=k

lj (7.27)

Similar to the proof of proposition 7.1, given the stability constraint in equation (7.3)
∑M

i=1 wi(t) ≤∑N
j=1 vj , denote the total amount of workload in the system C =

∑N
j=1 lj . The constraint in equa-

tion (7.4) gives C ≥ 0, lj(t) ≥ 0. By means inequality, ∏
j∈[N ],j ̸=k

lj

 1
N−1

≤
∑

j∈[N ],j ̸=k lj

N − 1
=

C − lk
N − 1

. (7.28)

with the equivalence achieved when li = lj ,∀i, j ̸= k, i, j ∈ [N ] holds. Therefore,

maxF (l)⇒ max
C − lk
N − 1

(7.29)

⇔ min lk (7.30)

⇔ min max
j∈[N ]

lj (7.31)

The inverse may not hold, since max C−lk
N−1

does not indicate maxF (l). Thus, maximizing the linear
product-based fairness is sufficient but not necessary for minimizing the makespan. This finishes the
proof.

Propositions 7.1 and 7.2 show that the two types of fairness can serve as an effective alternative
objective for optimizing the makespan, which will be leveraged in the proposed MARL method as
valid reward functions.
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7.3 Game Theory Framework

A Markov decision game is defined as MG(H,M,S,A×M ,P,Π×M , r×M ), Π = {Πi}, i ∈ [M ],
where H is the horizon of the game, M is the number of player in the game, S is the state space,
A×M is the joint action space of all players, Ai is the action space of player i, P = {Ph}, h ∈ [H] is
a collection of transition probability matrices Ph : S ×A×M × S → [0, 1], r×M = {ri|i ∈ [M ]}, ri :
S ×A×M → R is the reward function for i-th player given the joint actions. The stochastic policy
space for the i-th player in MG is defined as Πi : S ×Ai → [0, 1].

For the Markov decision game MG, the state value function V π
i,h : S → R and state-action

value function Qπ
i,h : S ×A → R for the i-th player at step h under policy π ∈ Π×M is defined as:

V π
i,h(s) := Eπ,P

[ H∑

h′=h

ri,h′(sh′ ,ah′)

∣∣∣∣sh = s

]
, Qπ

i,h(s,a) := Eπ,P

[ H∑

h′=h

ri,h′(sh′ ,ah′)

∣∣∣∣sh = s, ah = a

]
.

(7.32)

Definition 7.4. (ε-approximate Nash equilibrium) Given a Markov decision game:

MG(H,M,S,A×M ,P,Π×M , r×M ),

let π−i be the policies of the players except for the i-th player, the policies (π∗
i , π

∗
−i) is an ε-Nash

equilibrium if ∀i ∈ [M ],∃ε > 0,

V
π∗
i ,π

∗
−i

i (s) ≥ V
πi,π

∗
−i

i (s)− ε, ∀πi ∈ Πi. (7.33)

If ε = 0, it is an exact Nash equilibrium.

Definition 7.5. (Markov Potential Game) A Markov decision game:

MG(H,M,S,A×M ,P,Π×M , r×M )

is a Markov potential game (MPG) if ∀i ∈ [M ], πi, π̃i ∈ Πi, π−i ∈ Π−i, s ∈ S,

V
πi,π−i

i (s)− V
π̃i,π−i

i (s) = ϕπi,π−i(s)− ϕπ̃i,π−i(s), (7.34)

where ϕ(·) is the potential function, independent of the player index.

Lemma 7.2. Pure NE (PNE) always exists for PG, local maximizers of potential function are
PNE. PNE also exists for MPG. [282]

Theorem 7.6. Multi-agent load balancing is an MPG with the VBF Fi(li) as the reward ri for
each LB agent i ∈ [M ], then suppose for ∀s ∈ S at step h ∈ [H], the potential function is time-

cumulative total fairness: ϕπi,−πi(s) =
∑H

t=h F
πi,−πi(l(t)).

The proof of the theorem is based on lemma 7.1:

Proof.

V
πi,π−i

i (s)− V
π̃i,π−i

i (s) = Eπi,π−i

[ H∑
t=h

ri,t(st,at)

∣∣∣∣sh = s

]
− Eπ̃i,π−i

[ H∑
t=h

ri,t(st, ãi,t, a−i,t)

∣∣∣∣sh = s

]
(7.35)

= Eπi,π−i

[ H∑
t=h

Fi(li(t))

]
− Eπ̃i,π−i

[ H∑
t=h

Fi(̃li(t))

]
(7.36)

=

H∑
t=h

(
Fπi,−πi(l)− F π̃i,−πi (̃l)

)
(lemma 7.1) (7.37)

= ϕπi,−πi(s)− ϕπ̃i,−πi(s) (7.38)

Notice that s is the ground truth state of the environment, therefore involving the expected time l to
finish remaining tasks.
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Figure 7.4: Overview of the proposed distributed MARL framework for network LB.

This theorem is essential for establishing the proposed Distr-LB, since it proves that the multi-
agent load-balancing problem can be formulated as an MPG with the time-cumulative VBF as
its potential function. Also, the choice of per-LB VBF as the reward function for each individual
agent is critical for making it an MPG. Whereas, PBF does not provide such property. Lemma 7.2
shows that the maximizer of potential function is the NE of MPG, and from proposition 7.1 it
is known that maximizing the VBF gives the sufficient condition for minimizing the makespan.
Therefore, an effective independent optimization with respect to the individual reward function
specified in the above theorem will lead the minimizer of makespan for load-balancing tasks. The
effective independent optimization, in this context, means that the NE of MPG is achieved.

Lemma 7.3. NE for MPG is ε-approximate NE for ε-approximate MPG. [297]

Proof. Given the NE (π∗
i , π

∗
−i) for an MPG,

V
π∗
i ,π∗

−i

i (s)− V
π̃i,π

∗
−i

i (s) = ϕπ∗
i ,π∗

−i(s)− ϕπ̃i,π
∗
−i(s) ≥ 0 (7.39)

the policies can be ε-approximate NE for another game with a different value function V̂ but the same
potential function,

V̂
π∗
i ,π∗

−i

i (s)− V̂
π̃i,π

∗
−i

i (s) ≥ ε, ∀i ∈ [N ], π̃i ∈ Πi, s ∈ S (7.40)

thus, ∣∣∣∣(V̂
π∗
i ,π∗

−i

i (s)− V̂
π̃i,π

∗
−i

i (s)

)
−

(
ϕπ∗,π∗

−i(s)− ϕπ̃,π∗
−i(s)

)∣∣∣∣ ≤ ε (7.41)

which satisfies the definition of ε-approximate MPG.

7.4 Distributed LB Method

With the above analysis, the load-balancing problem can be formulated as an episodic version
of a multi-player, partially observable, Markov game, denotes POMG(H,M,S,O×M ,O×M , r×M ).
M is the number of LB agent in the game. O×M contains the observation space Oi for each
player. O = {Oh}, h ∈ [H] is a collection of observation emission matrices, Oi,h : S × Oi → [0, 1].
r×M = {ri|i ∈ [M ]}, ri : Oi × A×M → R is the reward function for i-th LB agent given the joint
actions. The stochastic policy space for the i-th agent in POMG is defined as Πi : Oi×Ai → [0, 1].
As discussed in section 7, the partial observability comes from the fundamental configuration of
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Algorithm 5 Distributed LB for MPG

1: Initialise:
2: LB policy πθi and critic Qϕi

networks, replay buffer Bi, ∀i ∈ [M ];
3: server processing speed function vj , ∀j ∈ [N ];
4: initial observed instant queue length on server j by the i-th LB: qij = 0,∀i ∈ [M ], j ∈ [N ].
5: while not converge do
6: Reset server load state Xj(1)← 0,∀j ∈ [N ]
7: Each LB agent i (i ∈ [M ]) receives individual observation oi(1)
8: for t = 1, . . . , H do
9: Initialise distributed workload mij , wi(t)← 0, i ∈ [M ], j ∈ [N ]
10: Get actions ai(t)← {aij(t)}Nj=1 = πθi (oi(t)), i ∈ [M ]

11: for task w̃ arrived at LB i between timestep [t, t+ 1) do

12: LB i assigns w̃ to server j = argmink∈[N ]
qik(t)+1
aik(t)

13: mij ← mij + w̃, wi(t)← wi(t) + w̃

14: αij(t)←
mij

wi(t)

15: for each server j do
16: Update workload: Xij(t+ 1)← max{Xij(t) + wi(t)αij(t)−

vj
M

, 0}
17: Xj(t+ 1)←

∑M
i=1 Xij(t)

18: Each agent receives individual reward ri(t)
19: Each agent i collects observation oi(t+ 1), i ∈ [M ]
20: Update replay buffer: Bi = Bi

⋃
(ai(t− 1), oi(t), ai(t), ri(t), oi(t+ 1)), i ∈ [M ]

21: Update critics with gradients: ∇ϕi
E(oi,ai,ri,o

′
i)∼Bi

[(
Qϕi

(oi, ai)− ri − γVϕ̃i
(o′i)

)2]
22:
23: where Vϕ̃i

(o′i) = E(o′i,a
′
i)∼Bi

[Qϕ̃i
(o′i, a

′
i)− α log πθi (a

′
i|o′i)], i ∈ [M ]

24: Update policies with gradients: -∇θiEoi∼Bi
[Ea∼πθi

[α log πθi (ai|oi)−Qϕi
(oi, ai)]], i ∈ [M ]

return final models of learning agents

network LBs in data center networks, which allows LBs to observe only a part of network traffic
and does not give LBs information about the tasks (e.g., expected workload) distributed from each
LB. The reward functions in the experiments are variants of distribution fairness introduced in
section 7.2. The potential functions can be defined accordingly based on the VBF and the PBF.
The overview of the proposed distributed MARL framework is shown in figure 7.4.

In MPG, an independent policy gradient allows finding the maximum of the potential function,
which is the PNE for the game. Leveraging the policy optimization in a decomposed manner, RL
is distributed on each LB agent for policy learning. However, due to the partial observability of the
system and the challenge of directly estimating the makespan (equation (7.1)), each agent cannot
have direct access to the global potential function. To address this problem, the aforementioned
fairness (section 7.2) can be deployed as the reward function for each agent, which makes the value
function as a valid alternative for the potential function as an objective. This also transforms
the joint objective (makespan or potential) to individual objectives (per LB fairness) for each
agent. Proposition 7.1 and 7.2 verify that optimizing towards these fairness indices is sufficient for
minimizing the makespan.

Algorithm 5 shows the proposed distributed LB for the load-balancing problem, which is
a partially observable MPG. The distributed policy optimization is based on Soft Actor-Critic
(SAC) [298] algorithm, which is a type of maximum-entropy RL method. It optimizes the ob-
jective E[

∑
t γ

trt + αH(πθ)], whereas H(·) is the entropy of the policy πθ. Specifically, the

critic Q network is updated with gradient ∇ϕEo,a

[(
Qϕ(o, a) − r(o, a) − γEo′ [Vϕ̃(o

′)]

)2]
, where

Vϕ̃(o
′) = Ea′ [Qϕ̃(o

′, a′)−α log πθ(a
′|o′)] and Qϕ̃ is the target Q network; the actor policy πθ is up-

dated with the gradient ∇θEo[Ea∼πθ
[α log πθ(a|o)−Qϕ(o, a)]]. Other key elements of RL methods

involve the observation, action and reward function, which are detailed as following.

Observation. Each LB agent partially observes the network flows that traverse through itself,
including per-server and LB-level measurements. For each LB, per-server observations consist of
the number of ongoing tasks, sampled task duration, and task completion times (TCT). Specifically,
in algorithm 5 line 12-14, wi is the coming workload on servers assigned by i-th LB, and it is not
observable for any LB. qik + 1 is the locally observed number of tasks on k-th server, that are
placed by i-th LB. The “+1” is for taking into account the newly arrived task. Observations of
task duration and TCT samples, along with LB-level measurements which sample the task inter-
arrival time as an indication of overall system load state, are reduced to 5 scalars – i.e., average,
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Related Work Testbed Scale Note

6LB [135] 2 LB + 28 servers (2-CPU each) This chapter uses the same network trace as input traffic.

Ananta [64] 14 LBs for 12 VIPs
The exact number of servers per VIP and the in-production
traffic is not documented in the paper.

Beamer [192]
2 LB + 8 servers (small)
4 LB + 10 servers (large)

Large scale experiments are conducted with 700 active
HTTP requests max.

Duet [58]
3 software LB + 3 hardware LB
+ 34 servers

Synthetic traffic is applied so that the server cluster
behind VIP processes 60k (identical) packets per second.

SilkRoad [190]
1 hardware LB or 3 software LB
per VIP

Real-world PoP traffic is applied, where one server cluster
behind VIP processes on average 309.84 active flows
per second.

Cheetah [144] 2 LB + 24 servers A Python generator creates 1500-2500 synthetic requests/s.

Table 7.2: Survey on real-world testbed configurations.

90th-percentile, standard deviation, discounted average, and weighted discounted average3 – as
inputs for LB agents.

Action. To bridge the different timing constraints between the control plane and data plane,
each LB agent assigns the j-th server to newly arrived tasks using the ratio of two factors, j =
argmink∈[N ]

qik+1
aik

, where the number of ongoing tasks, qik helps track dynamic system server
occupation at a per-flow level. This allows making load-balancing decisions at µs-level speed – and
aik is the periodically updated RL-inferred server processing speed. As in line 14 of algorithm 5,
αij(t) is a statistical estimation of workload assignment distribution at time interval [t, t+ 1).

Reward. The individual reward for distributed MPG LB is chosen as the VBF (as Def. 7.2)
of the discounted average of sampled task duration measured on each LB agent, such that the
LB group jointly optimize towards the potential function defined in equation (7.6). Task duration
information is gathered as the time interval between the end of flow initialization (e.g., 3-way
handshake for TCP traffic) and the acknowledgment to the first data packet (e.g., the first ACK
packet for TCP traffic). Given the limited and partial observability of LB agents, task duration
information approximates the remaining workload l by measuring the queuing and processing delay
for new-coming tasks on each server. These PBF- and MS-based rewards are also implemented for
the CTDE MARL algorithm as a comparison.

Model. The architecture of the proposed RL framework is depicted in figure 7.4. Each LB
agent consists of a replay buffer, and a pair of actor-critic networks, whose architecture is depicted
on the top right. There is also a pair of guiding actor-critic networks, with the same network
architectures but updated in a delayed and soft manner. Each LB agent takes observations oi(t)
extracted from the data plane (e.g., numbers of ongoing tasks {qij}, task duration, TCT) and
actions from the previous timestep ai(t − 1) as inputs, and periodically generates new actions

ai(t), which is used to update the server assignment function argminj∈[N ]
qij+1
aij

in the data plane.

The gated recurrent units (GRU) [299] are applied for all agents to leverage the sequential history
information for handling partial observability.

7.5 Implementation

This chapter uses an event-based simulator (as in section 6.4.2) to study the distance be-
tween the NE achieved by the proposed algorithm and the NE achieved by the theoretical optimal
load-balancing policy (with perfect observation). This chapter uses a realistic testbed (as in sec-
tion 6.4.1) deployed on physical servers in a data center network, and providing Apache web ser-
vices, with real-world network traffic [226], to evaluate the real-world performance of the proposed
algorithm, in comparison with in-production state-of-the-art LB [65].

To justify the setups of the experiment reflect the “real-world” scenarios, a brief survey of
real-world data center setup is presented based on a set of state-of-the-art load-balancing research
papers, which are summarized below (table 7.2). The configuration using 2 physical servers (48
CPUs each) allows conducting experiments similar to real-world setups. Based on the survey, the
experiments conducted in this chapter have reasonable scale – not only in terms of the number

3Discounted average weights are computed as 0.9t
′−t, where t is the sampled timestamp and t′ is the moment

of calculating the reduced scalar.
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Hyperparameter
Simulation Experiments
Small-Scale Small-Scale Large-Scale

Distributed LB

Learning rate 3× 10−4 1× 10−3 1× 10−3

Batch size 25 25 12
Hidden dimension 64 64 128
Hypernet dimension 32 32 64
Replay buffer size 3000 3000 3000

Episodes 500 120 200
Updates per episode 10 10 10

Step interval 0.5s 0.25s 0.25s
Target entropy −|A| −|A| −|A|

LB System

TCT Distribution Exponential Real-world trace Real-world trace
Average TCT 1s 200ms 200ms

Average bytes per task - 12KiB 12KiB
Traffic rate 20.28tasks/s [650, 800]tasks/s 2000tasks/s

Number of LB agents 2 2 6
Total number of servers 8 7 20

Server group 2 4 (1-CPU) 3 (2-CPU) 10 (2-CPU)
Server group 1 4 (2-CPU) 4 (4-CPU) 10 (4-CPU)

Episode duration 60s 60s 60s

Table 7.3: Hyperparameters in MARL-based LB.

of agents (2/6 LBs) and servers (7/20 servers), but also in terms of traffic rates – more than 2k
queries per second per VIP and more than 1150.76 concurrent flows in large scale experiments —-
and are representative of real-world circumstances.

7.5.1 Hyperparameters

MARL-based load-balancing methods are trained in both simulator, and small- and large-scale
testbed setups for various amounts of episodes. At the end of each episode, the RL models are
trained and updated for 10 iterations. Given the total provisioned computational resource, the
traffic rates of network trace for training are carefully selected so that the RL models can learn
from sensitive cases where workloads should be carefully placed to avoid overloaded less powerful
servers. The set of hyper-parameters is listed in table 7.3.

7.5.2 Benchmark Load Balancing Methods

To compare load-balancing performance, 4 state-of-the-art workload distribution algorithms
are implemented. Equal-cost multi-path (ECMP) randomly assigns servers to tasks with a server
assignment function P(j) = 1

n , where P(j) denotes the probability of assigning the j-th server [193].
Weighted-cost multi-path (WCMP) assigns servers based on their weights derived, and has an
assignment function as P(j) =

vj∑
vj

[65]. The local shortest queue (LSQ) algorithm assigns the

server with the shortest queue, i.e., argminj∈[n] |wj(t)| [261]. The shortest expected delay (SED)
algorithm4 assigns a task to server the shortest queue normalized by the number of processors,

i.e., argminj∈[n]
|wj(t)|+1

vj
[236], and is expected to have the best performance among conventional

heuristics. In the simulator, an Oracle LB algorithm is implemented, which distributes flows to
the server which is expected to finish all its tasks with the lowest delay (including the new flow).
The Oracle LB is aware of the remaining time of each flow, which is otherwise not observable for
network LBs in real-world setups. When receiving a new flow, the Oracle LB algorithm calculates
the remaining time to process on each server (assuming the newly received flow is assigned on the
server as well) and assigns the server with the lowest remaining time to process the new-coming
flow, to make sure that the makespan is always minimized with the global observation, which is
not possible to be achieved in a real-world system. The load-balancing decisions for the Oracle
algorithm are also made immediately for the Oracle LB algorithm. This Oracle LB is representative

4As studied in Chapter 6, HLB is able to achieve similar performance as SED without pre-configure server
weights. However, HLB fails to map to the performance of SED under heavy traffic (e.g., > 90% expected resource
utilization). Therefore, for clarity, SED is selected as the benchmarked algorithm, which is superior to HLB.
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Figure 7.5: Experimental results show that the proposed distributed RL framework (Distr-LB) using
proposed VBF as rewards converge and effectively achieves better load-balancing performance (lower TCT
and better QoS) than existing LB algorithms and CTDE RL algorithms.

of the application-layer load balancers [263, 300, 301], which makes more informed load-balancing
decisions based on their observations with finer granularity.

Method
Period I (796.315 queries/s) Period II (687.447 queries/s) Period III (784.522 queries/s) Period IV (784.522 queries/s)

Wiki Static Wiki Static Wiki Static Wiki Static
WCMP 0.435± 0.083 0.171± 0.055 0.254± 0.087 0.073± 0.056 0.412± 0.101 0.134± 0.059 0.834± 0.323 0.492± 0.276
LSQ 0.141± 0.073 0.023± 0.030 0.143± 0.040 0.023± 0.011 0.620± 0.442 0.339± 0.316 0.357± 0.373 0.173± 0.299
SED 0.137± 0.076 0.020± 0.023 0.131± 0.067 0.027± 0.035 0.215± 0.210 0.051± 0.081 0.346± 0.496 0.169± 0.330

RLB-SAC [28]
Jain 0.137± 0.020 0.009± 0.006 0.125± 0.035 0.012± 0.008 0.193± 0.073 0.026± 0.022 0.204± 0.084 0.039± 0.047
G 0.140± 0.053 0.015± 0.019 0.103± 0.022 0.010± 0.007 0.149± 0.049 0.015± 0.011 0.155± 0.052 0.011± 0.011

QMix-LB

MS 0.258± 0.174 0.071± 0.087 0.142± 0.073 0.030± 0.034 0.217± 0.157 0.048± 0.069 0.263± 0.202 0.073± 0.092
logMS 0.167± 0.031 0.009± 0.004 0.132± 0.034 0.011± 0.008 0.844± 1.376 0.635± 1.249 0.278± 0.130 0.041± 0.038
VBF 0.128± 0.052 0.014± 0.017 0.132± 0.075 0.016± 0.025 0.141± 0.025 0.008± 0.004 0.286± 0.162 0.068± 0.066

logVBF 0.106± 0.011 0.007± 0.001 0.109± 0.032 0.011± 0.009 0.171± 0.043 0.022± 0.013 0.223± 0.045 0.026± 0.017
VBF+logVBF 0.112± 0.005 0.005± 0.002 0.101± 0.010 0.005± 0.001 0.187± 0.090 0.024± 0.029 0.201± 0.080 0.021± 0.020

PBF 0.142± 0.035 0.012± 0.006 0.099± 0.011 0.004± 0.001 0.211± 0.153 0.047± 0.078 0.181± 0.042 0.018± 0.009
CV 0.407± 0.505 0.201± 0.340 0.113± 0.036 0.009± 0.008 0.203± 0.089 0.039± 0.037 0.219± 0.072 0.031± 0.017

Centr-LB
VBF 0.690± 0.211 0.284± 0.181 0.152± 0.041 0.016± 0.011 1.068± 0.386 0.570± 0.378 1.378± 0.377 0.867± 0.350

logVBF 0.676± 0.231 0.265± 0.151 0.160± 0.023 0.013± 0.005 0.938± 0.200 0.446± 0.179 0.972± 0.288 0.495± 0.268
VBF+logVBF 0.520± 0.034 0.167± 0.017 0.192± 0.040 0.019± 0.014 0.759± 0.254 0.306± 0.222 1.013± 0.168 0.520± 0.167

Distr-LB

VBF 0.106± 0.013 0.007± 0.002 0.090± 0.016 0.007± 0.005 0.159± 0.054 0.017± 0.009 0.196± 0.091 0.032± 0.033
logVBF 0.139± 0.021 0.011± 0.004 0.129± 0.032 0.012± 0.011 0.250± 0.156 0.057± 0.077 0.226± 0.059 0.038± 0.019

VBF+logVBF 0.126± 0.038 0.009± 0.006 0.094± 0.023 0.006± 0.006 0.108± 0.022 0.004± 0.001 0.104± 0.013 0.006± 0.003
CV 0.150± 0.040 0.011± 0.009 0.149± 0.060 0.026± 0.025 0.301± 0.146 0.066± 0.072 0.267± 0.156 0.051± 0.052

Table 7.4: Complete results of average QoS (s) for comparison in small-scale real-world network setup
(data center network and traffic).

In addition to these rule-based heuristic load-balancing algorithms, multiple RL-based load-
balancing algorithms are implemented and compared. As an instance of CTDE-RL-based load
balancer, QMix [281] is employed as the learning agent for the load balancer – QMix-LB, using the
same framework as depicted in figure 7.4. The only difference between QMix-LB and Distr-LB is
that, QMix-LB requires communications among LB agents to collect all transitions for training. As
an instance of single-agent load balancer, a centralized RL agent for load balancing (Centr-LB) is
implemented also using the framework depicted in figure 7.4. Finally, a state-of-the-art distributed
RL-based load balancer without using the MARL framework [28] is implemented and compared
with Distr-LB .
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Figure 7.6: Experimental results with real-world network traces from different periods of time during a
day demonstrate the effectiveness of the proposed distributed RL framework with VBF as rewards.

Method
Period I (796.315 queries/s) Period II (687.447 queries/s) Period III (784.522 queries/s) Period IV (784.522 queries/s)

Wiki Static Wiki Static Wiki Static Wiki Static
WCMP 5.801± 4.519 4.462± 3.867 4.019± 3.601 3.192± 3.543 3.239± 2.721 2.305± 2.700 8.066± 7.025 6.733± 5.329
LSQ 0.722± 0.487 0.195± 0.314 0.814± 0.478 0.288± 0.259 1.846± 1.915 1.168± 1.575 1.257± 1.921 0.831± 2.002
SED 0.706± 0.399 0.208± 0.246 0.697± 0.460 0.217± 0.291 0.726± 0.554 0.203± 0.261 0.909± 1.180 0.450± 1.112

RLB-SAC [28]
Jain 0.858± 0.240 0.159± 0.125 0.830± 0.358 0.227± 0.186 1.227± 0.489 0.354± 0.246 1.283± 0.594 0.408± 0.374
G 0.945± 0.495 0.185± 0.214 0.682± 0.255 0.177± 0.162 1.003± 0.459 0.225± 0.176 0.973± 0.389 0.166± 0.156

QMix-LB

MS 1.469± 0.789 0.584± 0.547 1.095± 0.694 0.444± 0.423 1.182± 0.801 0.420± 0.483 1.447± 0.885 0.751± 0.772
logMS 0.985± 0.264 0.117± 0.043 0.909± 0.388 0.172± 0.142 7.043± 12.237 6.427± 12.479 1.326± 0.584 0.371± 0.305
VBF 0.732± 0.395 0.159± 0.239 0.665± 0.550 0.157± 0.278 0.744± 0.278 0.123± 0.093 1.028± 0.694 0.279± 0.365

logVBF 0.682± 0.100 0.124± 0.019 0.772± 0.313 0.205± 0.159 1.174± 0.323 0.382± 0.183 1.426± 0.323 0.327± 0.153
VBF+logVBF 0.664± 0.057 0.087± 0.056 0.611± 0.097 0.055± 0.027 1.171± 0.568 0.302± 0.293 1.206± 0.501 0.278± 0.239

PBF 0.661± 0.193 0.087± 0.099 0.505± 0.119 0.048± 0.029 0.768± 0.728 0.205± 0.465 0.726± 0.433 0.128± 0.136
CV 1.928± 2.228 1.281± 2.095 0.708± 0.405 0.131± 0.130 1.331± 0.593 0.481± 0.297 1.344± 0.329 0.451± 0.218

Centr-LB
VBF 3.101± 1.582 1.985± 1.790 0.903± 0.350 0.328± 0.353 4.409± 2.693 3.629± 3.219 6.649± 4.562 6.120± 4.721

logVBF 2.715± 0.444 1.718± 0.547 1.016± 0.229 0.264± 0.092 3.247± 0.725 2.136± 0.832 4.286± 2.091 3.459± 2.323
VBF+logVBF 2.459± 0.101 1.309± 0.063 1.243± 0.358 0.285± 0.189 2.796± 0.900 1.702± 1.287 3.466± 0.820 2.628± 1.142

Distr-LB

VBF 0.651± 0.151 0.119± 0.072 0.571± 0.237 0.133± 0.136 1.039± 0.302 0.298± 0.125 1.187± 0.594 0.355± 0.318
logVBF 0.923± 0.162 0.193± 0.086 0.933± 0.415 0.243± 0.302 1.491± 0.764 0.579± 0.531 1.481± 0.473 0.558± 0.286

VBF+logVBF 0.745± 0.316 0.185± 0.152 0.385± 0.094 0.023± 0.003 0.595± 0.199 0.051± 0.030 0.563± 0.180 0.100± 0.073
CV 0.865± 0.261 0.147± 0.121 1.109± 0.668 0.433± 0.431 1.730± 0.468 0.612± 0.420 1.383± 0.666 0.446± 0.345

Table 7.5: Complete results of 99th percentile QoS (s) for comparison in small-scale real-world network
setup (data center network and traffic).

7.6 Evaluation

Small-Scale Real-World Testbed: As depicted in figure 7.5a, in a small-scale real-world
data center network setup with 2 LB agents and 7 servers, after 120 episodes of training, the
proposed distributed LB (Distr-LB) algorithm can learn from the environment based on VBF
as rewards, and it converges to offer better QoS than QMix. Centralized RL agent (Centr-LB)
has difficulties learning within 120 episodes because of the increased state and action space. An
empirical finding is that, by adding a log term to the VBF-based reward for Distr-LB, LB agents
become more sensitive to close-to-0 VBF during training (∇x log f(x) > ∇xf(x) when f(x) < 1),
therefore achieving better load-balancing performance.

As depicted in figure 7.5b, when comparing with in-production LB algorithms (WCMP, LSQ,
SED), Distr-LB shows clear performance gains and reduced TCT for both types of web pages –
Wikipedia pages require making queries to the SQL databases thus they are more CPU-intensive,
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50%-CPU+50%-IO 75%-CPU+25%-IO 100%-CPU
Oracle 6.437 ± 1.006 1.469 ± 0.102 1.291 ± 0.075

QMix-LB
PBF 10.230 ± 0.108 1.828 ± 0.054 2.200 ± 0.288
VBF 10.936 ± 0.470 2.023 ± 0.255 2.125 ± 0.074

Distr-LB
VBF 10.335 ± 0.362 1.695 ± 0.104 1.643 ± 0.016

VBF+logVBF 8.797 ± 0.459 1.873 ± 0.328 2.004 ± 0.042

Table 7.6: Comparison of average QoS (s) in simulator for different types of applications.

while static pages are IO-intensive. The comparison of average TCT using different LB algorithms
is shown in table 7.4 (99th percentile TCT in table 7.5). The proposed Distr-LB also shows superior
performance than the RL-based solution (RLB-SAC) [28] because of (i) a critically-designed MARL
framework, and (ii) the use of a recurrent neural network to handle load-balancing problem as a
sequential problem.

Reward Engineering: To verify the effectiveness of the proposed potential function VBF, it is
compared with a set of different reward functions, including makespan (MS), PBF, and coefficient
of variation (CV). During the study based on a real-world testbed, it is found that, when using
VBF as the reward, the convergence is fast at the beginning of the training process and the sample
variance of average flow duration (as an estimation of the queuing and processing delay) on each
server becomes close to zero. However, it does not necessarily mean that the load-balancing policy
is optimal and the NE is achieved. To capture the small variance which is close-to-zero, the
logarithm of VBF (logVBF) is calculated as reward. And the combination of VBF + logVBF is
an empirical design aiming at faster convergence towards the NE policy. The complete comparison
results are shown in table 7.4 (average QoS) and in table 7.5 (99th percentile QoS), where the
proposed distributed MARL framework achieves the best performance for most cases. To provide
a complete view of all comparison results besides the one shown in figure 7.5b, the CDF of task
completion time under all test cases is depicted in figure 7.6 Accompanying the evaluaion results
of average QoS in large-scale testbed in table 7.7, table 7.8 also shows the 99th percentile QoS in
a large-scale testbed.

NE Gap Evaluation with Simulation: To evaluate the gap between the performance of
Distr-LB and the theoretical optimal policy, an Oracle LB is implemented in the simulator, which
has perfect observation (inaccessible in the real world) over the system and minimizes makespan
for each load-balancing decision. The configurations of the simulation are the following. There are
2 LB agents and 8 servers. 4 servers have 1 CPU worker-thread each while the other 4 servers have
2 CPU worker-threads each, to simulate the different server processing capacities. Three types of
applications are compared. 100%-CPU application is a single-stage application, whose expected
time to process is 1s in the CPU queue and 0s in the IO queue. 75%-CPU+25%-IO application
is a two-stage application, whose expected time to process is 0.75s in the CPU queue and 0.25s
in the IO queue, simulating the CPU-intensive applications. 50%-CPU+50%-IO application is a
two-stage application, whose expected time to process is 0.5s in both the CPU and IO queue.
The actual time to process of each task follows an exponential distribution. The traffic rate is
normalized to consume on average 84.5% resources.

Table 7.6 shows that, for different types of applications, Distr-LB can achieve closer-to-optimal
performance than is QMix. As the simulator is implemented based on the load-balancing model
formulated in this chapter, the theoretical analysis can be directly applied, and VBF – as a potential
function – helps independent cooperative LB agents to achieve good performance. The additional
log term shows empirical performance gains in a real-world system, yet it is not necessarily the
case in these simulation results. First, the generated traffic of tasks in the simulation has a higher
expected workload (> 1s mean and stddev), while the log terms are more sensitive to close-to-0
variances, which is the case in real-world experimental setups. In addition, though the simulator
models the formulated LB problem, it fails to capture the complexity in the real-world system –
e.g., Apache backlog, multi-processing optimization, context switching, multi-level cache, network
queues etc. For instance, batch processing [121] helps reduce cache and instruction misses, yet yields
similar processing time for different tasks, thus the variance of task processing delay decreases and
becomes closer to 0 in the real-world system. The additional log term exaggerates the low variance
differences to better evaluate load-balancing decisions.
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Method
Period I (2022.855 queries/s) Period II (2071.129 queries/s)

Wiki Static Wiki Static
WCMP 0.473 ± 0.102 0.194 ± 0.090 0.460 ± 0.241 0.239 ± 0.212
LSQ 0.266 ± 0.127 0.063 ± 0.065 0.218 ± 0.246 0.082 ± 0.152
SED 0.169 ± 0.062 0.020 ± 0.025 0.166 ± 0.141 0.050 ± 0.070

RLB-SAC-G [28] 0.182 ± 0.049 0.013 ± 0.009 0.111 ± 0.029 0.010 ± 0.009

QMix-LB
VBF 0.181 ± 0.062 0.019 ± 0.020 0.188 ± 0.147 0.052 ± 0.075
PBF 0.210 ± 0.041 0.013 ± 0.006 0.104 ± 0.009 0.005 ± 0.003

Distr-LB
VBF 0.228 ± 0.055 0.019 ± 0.011 0.174 ± 0.102 0.035 ± 0.039

VBF+logVBF 0.161 ± 0.033 0.008 ± 0.003 0.094 ± 0.015 0.004 ± 0.001

Table 7.7: Comparison of average QoS (s) in large-scale real-world network setup.

Method
Period I (2022.855 queries/s) Period II (2071.129 queries/s)

Wiki Static Wiki Static
WCMP 3.014 ± 0.612 2.152 ± 0.907 4.290 ± 3.593 3.300 ± 3.308
LSQ 1.863 ± 0.888 0.843 ± 0.773 1.243 ± 1.389 0.675 ± 1.223
SED 0.891 ± 0.475 0.208 ± 0.251 1.074 ± 0.751 0.592 ± 0.650

RLB-SAC-G [28] 1.064 ± 0.283 0.210 ± 0.132 0.739 ± 0.317 0.186 ± 0.214

QMix-LB
VBF 1.104 ± 0.481 0.241 ± 0.264 1.223 ± 1.169 0.634 ± 0.983
PBF 1.201 ± 0.321 0.196 ± 0.112 0.583 ± 0.103 0.071 ± 0.050

Distr-LB
VBF 1.350 ± 0.311 0.263 ± 0.139 1.180 ± 0.702 0.448 ± 0.371

VBF+logVBF 0.890 ± 0.250 0.103 ± 0.064 0.531 ± 0.149 0.057 ± 0.039

Table 7.8: Comparison of 99th percentile QoS (s) in large-scale real-world network setup (data center
network and traffic).

Wiki Static
Mean 95th-percentile 99th-percentile Mean 95th-percentile 99th-percentile

WCMP 1.792 ± 0.393 7.534 ± 1.817 2.366 ± 1.685 1.512 ± 0.385 6.571 ± 1.996 1.084 ± 1.842
LSQ 0.453 ± 0.178 1.958 ± 0.827 3.482 ± 1.257 0.202 ± 0.130 0.975 ± 0.617 1.801 ± 1.064
SED 0.340 ± 0.268 1.225 ± 0.812 30.600 ± 6.718 0.130 ± 0.206 0.519 ± 0.571 29.893 ± 7.042

QMix-LB

MS 0.373 ± 0.177 1.621 ± 0.830 4.046 ± 6.632 0.144 ± 0.112 0.663 ± 0.523 2.655 ± 6.899
PBF 0.368 ± 0.375 1.529 ± 1.581 2.436 ± 1.468 0.159 ± 0.338 0.733 ± 1.437 0.974 ± 1.204
VBF 0.282 ± 0.166 1.186 ± 0.799 3.187 ± 1.479 0.081 ± 0.104 0.395 ± 0.518 1.654 ± 1.181

VBF+logVBF 0.533 ± 0.179 2.525 ± 0.913 4.864 ± 1.635 0.266 ± 0.129 1.409 ± 0.680 3.374 ± 1.626

Distr-LB
VBF 0.262 ± 0.100 1.086 ± 0.454 2.190 ± 0.792 0.057 ± 0.044 0.305 ± 0.234 0.683 ± 0.510

VBF+logVBF 0.221 ± 0.112 0.895 ± 0.530 1.903 ± 0.976 0.039 ± 0.057 0.197 ± 0.284 0.480 ± 0.650

Table 7.9: Comparison of QoS (mean, 95th-percentile, and 99th-percentile task completion time in s)
when server processing capacity changes over time.

Large-Scale Real-World Testbed: To evaluate the performance of Distr-LB in large-scale
data center networks in the real world, the testbed is scaled up to have 6 LB agents and 20 servers
and apply heavier network traffic (> 2000 queries/s) to evaluate the performance of the LB algo-
rithms that achieved the best performance in small scale setups, in comparison with in-production
LB algorithms. The test results after 200 episodes of training are shown in table 7.7, where Distr-
LB achieves the best performance in all cases. The QMix-LB also outperforms in-production LB
algorithms. But as a CTDE algorithm, similar to the Centr-LB, it requires agents to communicate
their trajectories, which – after 200 episodes of training – become 221MiB communication overhead
at the end of each episode (episodic training), whereas 95%-percentile per-destination-rack flow
rate is less than 1MiB/s [1].

7.6.1 MARL Robustness

Given elastic and server-less computing environments, where tenants in data center networks
can share physical resources (e.g., CPU, disk, memory), servers can have different processing
capacities, which may also change over time dynamically —- because of e.g., updated server con-
figuration (upgrading an Amazon EC2 a1.xlarge instance to a1.4xlarge) or resource contention
(co-located workloads) [69]. According to [190], there are 32% of server clusters in data center
networks that update more than 10 times per minute based on the measurements collected over
432 minutes up time in a month. 3% of clusters have more than 50 updates perf minute. Therefore,
dynamic changes prevail in real-world data center networks.

Therefore, this section illustrates the robustness of the proposed distributed RL-based LB
framework to react to dynamic changes in server processing speeds, e.g., when server VMs are
migrated to a new physical architecture. Using the same small-scale real-world testbed with 2 LB
agents, additional CPU-bound workloads are applied on the 4-CPU server group starting from 25s.
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Figure 7.7: Load balancing performance comparison in dynamic environments.

As depicted in figure 7.7a, when subjected to heavy Wikipedia traffic, MARL-based LB agents
adapt server weights over time and achieve better performance than heuristic LB algorithms –
finishing the same amount of workloads faster, maintaining a lower amount of active number of
threads, even when server processing capacity is reduced. As depicted in figure 7.7b, over multiple
runs (10 runs for each LB algorithm), RL-based LB algorithms effectively achieve lower task
completion time in dynamic environments. They help avoid human intervention and make the LB
agents autonomously adapt to the changes in the system. Table 7.9 lists the performance of all
LB algorithms in terms of the QoS (measured as the average and 95th-percentile task completion
time).
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7.7 Summary

Load balancing problems have been formalized as cooperative games, yet this chapter provided
the first study of their applications in real-world networking systems. Based on the Markov po-
tential game formulation, this chapter provided a formal description of the network load-balancing
problem in the context of RL. While RL models using the centralized-training-decentralized-
execution (CTDE) scheme have achieved superior performance on different applications, this chap-
ter has shown that these CTDE RL models incur significant communication overhead in networking
systems. To avoid additional performance overhead, chapter proposed a distributed multi-agent RL
(MARL) approach for the network load-balancing problem. Using a critically designed variance-
based fairness as the reward function, as well as the potential function of the Markov potential
game, each LB agent can achieve the pure Nash equilibrium by optimizing its local reward. Through
this setting, the redundant communication overhead among LB agents is removed, thus improving
the overall training and deployment efficiency in real-world systems, with local observations only.

Under such formulation, both the effectiveness of the proposed distributed LB algorithm, and
the proposed fairness evaluation function, are theoretically justified and experimentally validated.
The proposed load-balancing algorithm – Distr-LB – outperforms state-of-the-art load balancers.
When compared with other learning-based algorithms, including centralized training methods
(QMix-LB), centralized RL agent, or fully distributed RL-based load balancer (RLB-SAC), Distr-
LB has demonstrated superior performance in both simulation and realistic experiments in physical
testbeds of different scales. While chapter 6 has shown that the load-balancing algorithm based on
“open-loop” control can achieve performance similar to heuristics with given information (SED),
this chapter has shown that “closed-loop” control helps achieve visible performance gains than
SED.

This work paves the way for interdisciplinary studies that involve both advanced learning
algorithms and realistic application scenarios in the cloud. The results from this chapter have been
published in [28,183,185]. The source code and data of both simulation and real-world experiment
are available under an open-source license at: https://github.com/ZhiyuanYaoJ/MARLLB.

https://github.com/ZhiyuanYaoJ/MARLLB
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Chapter 8

Conclusion

Applications and services have become more complex, while the Internet has become increas-
ingly difficult to evolve both regarding its physical infrastructure, and its protocols and perfor-
mance. Being responsible for policy configurations as well as network management and perfor-
mance tuning, network operators are shifting towards the use of more and more automated tools
to accomplish these tasks. The concept of “programmable networks” has emerged to alleviate these
challenges, and to facilitate network evolution. This includes paradigms such as (i) software-defined
networking (SDN) and (ii) network function virtualization (NFV), which decouple the forwarding
hardware into control plane and data plane, and which seek to abstract network forwarding, and
other networking functions, from the hardware. In support of cloud computing, these paradigms
have enabled rich network traffic processing services, while having also reduced the granularity
of task allocation in data centers. It has been recognized that shifting controllers from logically
centralized to distributed will increase not only scalability, but also robustness to inconsistency.
Machine-Learning (ML)-based approaches have been proposed to deploy more intelligence in net-
works, when using decoupled control and data planes. However, the increasing scale, complexity,
and heterogeneity of networking infrastructure, and protocols, as well as the demand for virtual-
ization and cloud support services in terms of efficient resource management, rapid provisioning,
and scalability presents a set of new challenges in effective network organization, management, and
optimization, which are addressed in this manuscript.

This thesis has, in part II investigated, how to design and implement a feature collection
and exploitation framework in real-world networking systems that enables data-driven network
functions. Networking features and system state information help VNFs make informed decisions,
and intelligently manage and update networking policies in cloud data centers. Actively collect-
ing features and system state information entails substantial control signaling and management
overhead, in particular in large-scale data center networks. Specifically, chapter 3 has proposed
Aquarius, a framework that collects, infers, and supplies accurate networking state information
with little additional processing latency, in a scalable buffer layout. It has illustrated significant
performance gains of using of Aquarius for various ML-based VNFs and evaluated experimentally
the impact of Aquarius on the system performance.

This thesis has also, in part III explored, how network load balancers can be optimized with
the advance of hardware capacities and learning algorithms. Specifically, chapter 4 set the basis for
the part, by exploring the feasibility of a hardware implementation of a load-aware load balancer.
Using covert channels in packet headers to embed task queue lengths and server processing speed,
Charon statelessly tracks server load states, and fairely distributes workloads, while guaranteeing
PCC. Simulation results show that Charon helps network load balancers achieve an improved qual-
ity of service. Implemented as a prototype on the NetFPGA-SUME platform, it shows line-rate
performance with high throughput and negligible per-packet processing latency. And then, this is
followed by, the description of HLB, in chapter 6, which used Aquarius for systematically study-
ing the factors that impact workload distribution fairness of different load-balancing algorithms.
A stateful open-loop load-balancing algorithm called HLB has been proposed, taking 2 key fac-
tors – server occupancies and processing speeds – into account. With no a-priori knowledge or
manual configurations and no additional control traffic, HLB has shown optimized performance
in both simulations and testbed experiments. Finally, the possibility of applying reinforcement
learning to network load-balancing problems has been explored in chapter 7. A distributed MARL
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approach for multi-agent load-balancing problems has been studied, based on Markov potential
game formulation. Under such formulation, the effectiveness of the proposed distributed RL-based
LB algorithm together with the proposed fairness index as the reward function is both theoreti-
cally justified and experimentally verified. With no communication overhead among LB agents, it
demonstrates a performance gain over state-of-the-art load-balancing algorithms in both simulation
and real-world tests with different scales.

In sum, the work and the results, presented in this thesis consist of:

1. Aquarius, a framework that enables the deployment of different data-driven network func-
tions on commodity hardware, out of which 2 papers have been published in a conference
(best paper recipient) and a journal, with open-sourced code1;

2. Charon, a stateless, line-rate, load-aware load balancer based on a heuristic algorithm, im-
plemented on programmable hardware (NetFPGA), out of which 1 paper has been published
in a workshop and 1 US patent has been filed, with open-sourced code2;

3. MLB, a stateful, Machine-Learning-based load balancer based on Aquarius, that investi-
gated in the use of networking features and different models, and showcased the potential
performance gains when data-driven algorithms, out of which 1 paper has been published in
a workshop;

4. HLB, a stateful load-aware load balancer based on a statistical learning algorithm, by way
of “open-loop” control, that has been extensively evaluated, out of which 1 paper has been
published in a journal and 1 US patent has been filed, with open-sourced code3;

5. Distr-LB, a stateful load-aware load balancer based on a multi-agent reinforcement learning
(MARL) framework, by way of “closed-loop” control, out of which 1 paper has been published
in a workshop and 2 papers have been published in 2 conferences, with open-sourced code4.

The results achieved in this thesis have demonstrates that it is possible to provide generic data-
center primitives where data-driven decisions are taken directly in the data plane in a distributed
way, rather than by a centralized controller. This, therefore, complements the traditional software
defined networking architectures, wherein the data plane would be constantly updated to reflect
the last decisions taken by the controller, by going one level further in granularity and realtime-
ness. The results presented in this thesis have shown this, which provides better resource usage
and lower network usage, while requiring less monitoring and centralization.

To conclude, such an approach provides greater scalability in data center premises, both (i) by
unifying the network layer and decreasing the need for out-of-band monitoring, and (ii) by providing
better resource utilization as a result of this ability to take local decisions. Such architectures are
therefore desirable, for reasons concerning both operational complexity and reduction of energy
consumption.

As a consequence, the next research questions arise at the intersection of (i) scalable and high
performance networking systems, and (ii) adaptive, robust, and resilient data-driven algorithms.
Both the Aquarius framework and the data-driven load-balancing algorithms serve as a cornerstone
that supports more scalable and intelligent network functions for autonomous service management
in the cloud.

1https://github.com/ZhiyuanYaoJ/Aquarius
2https://github.com/ZhiyuanYaoJ/SimLB/tree/charon
3https://github.com/ZhiyuanYaoJ/SimLB/tree/hlb
4https://github.com/ZhiyuanYaoJ/MARLLB

https://github.com/ZhiyuanYaoJ/Aquarius
https://github.com/ZhiyuanYaoJ/SimLB/tree/charon
https://github.com/ZhiyuanYaoJ/SimLB/tree/hlb
https://github.com/ZhiyuanYaoJ/MARLLB


Appendix A

Résumé en français

Cette thèse étudie l’utilisation de méthodes basées sur les jeux de données afin d’optimiser
certaines fonctions réseau — par exemple l’équilibrage de charge — et d’améliorer les performances
dans les réseaux de centres de données. Elle comprend 4 parties et 8 chapitres, structurés comme
suit.

La partie I fournit une discussion d’introduction. Le chapitre 1 introduit des informations
générales sur les architectures de centre de données, ainsi que sur les protocoles réseau associés
et les architectures correspondantes. Ensuite, le chapitre étudie l’exigences croissantes d’intégrer
davantage de programmabilité directement dans le réseau, ce qui permet de prendre des décisions
plus éclairées et d’appliquer des politiques de configuration réseau basées sur les jeux de données.
Quatre fonctions réseau d’intérêt sont présentées (passerelle VPN, adaptation automatique du
nombre de serveurs, équilibrage de charge et classification du trafic) afin de démontrer le rôle des
différentes fonctions réseau, ainsi que leur comportement attendu dans les réseaux de centres de
données modernes. Enfin, le chapitre discute la Enfin, le chapitre discute la façon dont l’utilisation
de différents types de méthodes basées sur les jeux de données peut aider ‘a améliorer les centres
de données, en fournissant des primitives directement au niveau de la couche réseau. Le chapitre 2
résume comment ce concept a été appliqué tout au long de cette th‘ese et décrit les grandes lignes
et les contributions de cette th‘ese.

Pour relever les défis susmentionnés, la partie II présente un outil pour collecter et exploiter des
caractéristiques (features) réseau dans les centres de données. Le chapitre 3 (publié dans [179,194])
présente une architecture qui permet de mettre en place des fonctions réseau utilisant efficacement
des jeux données. Afin de gérer et de mettre à jour dynamiquement les politiques de configura-
tion réseau dans les centres de données cloud, les fonctions virtuelles de réseau (VNF) utilisent,
en les collectant activement, les informations sur l’état du réseau. Ce faisant, cela entrâıne des
coûts supplémentaires en termes de trafic de signalisation, en particulier dans les grands centres
de données. Pour palier à cela, les VNF en production préfèrent des heuristiques simples et dis-
tribuées plutôt que des algorithmes d’apprentissage avancés, afin d’éviter une latence de traitement
supplémentaire, indésirable dans les réseaux à haute performance et faible latence. Ce chapitre
identifie les défis du déploiement d’algorithmes d’apprentissage dans le contexte des centres de
données cloud, et propose Aquarius pour faire le pont entre l’application des techniques d’ap-
prentissage automatique (ML) et la gestion des services réseau. Aquarius rassemble passivement
mais efficacement des observations fiables et permet l’utilisation de techniques ML pour collecter,
déduire et fournir des informations précises sur l’état du réseau, sans entrâıner de trafic de signali-
sation supplémentaire. Il offre une visibilité fine et programmable aux VNF distribuées et permet
un contrôle en boucle ouverte et fermée sur les systèmes réseau. Ce chapitre illustre l’utilisation
d’Aquarius avec un classificateur de trafic, un système d’adaptation automatique du nombre de ser-
veurs, et unéquilibreur de charge. Il démontre ainsi l’utilisation de trois paradigmes ML différents -
apprentissage non supervisé, supervisé et par renforcement - au sein d’Aquarius, pour l’inférence de
l’état du réseau. Les évaluations sur une implémentation réelle montrent qu’Aquarius améliore de
manière appropriée la visibilité de l’état du réseau et apporte des gains de performances notables
pour divers scénarios, et ce à un faible surcoût.

La partie III étudie le problème de l’équilibrage de charge dans les réseaux de centres de données.
Dans le chapitre 4 (publié dans [195]), un mécanisme d’équilibrage de charge basé sur NetFPGA est
proposé. Le suivi des états de connexion permet aux équilibreurs de charge de déduire les états de
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charge du serveur et de prendre des décisions éclairées, mais au prix d’une consommation d’espace
mémoire supplémentaire. Cela le rend difficile à mettre en œuvre sur du matériel programmable,
qui a une mémoire limitée mais offre un débit élevé. Ce chapitre présente Charon, un équilibreur
de charge implémenté dans P4-NetFPGA, prenant en compte l’état de charge des applications sans
pour autant maintenir d’état, et qui peut atteindre le débit maximal. Charon collecte passivement
les états de charge des serveurs d’applications et utilise un schéma de “power-of-2-choices” pour
prendre des décisions d’équilibrage de charge en fonction de la charge, et ainsi améliorer l’utilisation
des ressources. Le maintien de la cohérence des connexions est garanti, et ce sans garder d’état,
en encodant l’ID du serveur dans un canal caché. Le chapitre décrit la conception d’un prototype,
avant de fournir les résultats de simulations. Ceux-ci montrent des gains de performances en termes
d’équité de répartition de la charge, de qualité de service, de débit et de latence de traitement.

Le chapitre 5 (publié dans [152]) décrit la première tentative connue d’appliquer des algorithmes
ML pour optimiser leséquilibreurs de charge réseau. Les algorithmes de répartition de la charge
utilisent normalement des heuristiques, par exemple Equal-Cost Multi-Path (ECMP), Weighted-
Cost Multi-Path (WCMP) ou des algorithmes näıfs de ML, par exemple la régression ridge. Les
approches avancées basées sur ML permettent d’obtenir des gains de performances dans différents
problèmes de réseau et de système. Cependant, il est difficile d’appliquer des algorithmes ML à
des problèmes de réseau dans des systèmes réels. Cela nécessite une connaissance du domaine,
afin d’être en mesure de collecter les bonnes caractéristiques dans des réseaux à faible latence et
à haut débit, évolutifs, dynamiques et hétérogènes. Ce chapitre effectue tout d’abord une analyse
de données hors ligne et la conception d’un modèle. Il décrit ensuite un déploiement en-ligne dans
un système réel basé sur Aquarius. Les résultats montrent que les modèles ML améliorent les per-
formances d’équilibrage de charge, mais ils révèlent également des défis à résoudre pour appliquer
ML aux réseaux, y compris le manque de généralisation dans les environnements dynamiques.

Dans le chapitre 6 (publié dans [196]), un algorithme d’équilibrage de charge en boucle ouverte
basé sur un filtre de Kalman est proposé pour obtenir une répartition de la charge de travail prenant
en compte l’état de charge des applications, avec une bonne généralisation. Ce chapitre propose
unéquilibreur de charge hybride (HLB) distribué et indépendant des applications sous-jacentes qui,
sans surveillance ni signalisation explicites, déduit les taux d’occupation et les vitesses de traite-
ment des serveurs, ce qui permet de prendre des décisions de placement de charge optimisées. Cette
approche est évaluée à la fois par des simulations et des expériences approfondies, y compris des
charges synthétiques, mais aussi une trace issue de Wikipedia, également basé sur Aquarius. Les
résultats montrent des gains de performances significatifs, en termes de temps de réponse et d’uti-
lisation du système, par rapport aux algorithmes d’équilibrage de charge existants. En collectant
des caractéristiques réseau passivement, HLB est capable d’atteindre des performances similaires à
celles de l’algorithme Shortest Expected Delay (SED), qui lui nécessite une configuration manuelles
pour informer les équilibreurs de charge des capacités de traitement des serveurs.

Dans le chapitre 7 (publié dans [28,183,185]), un algorithme d’équilibrage de charge en boucle
fermée basé sur l’apprentissage par renforcement (RL) est proposé. Les équilibreurs de charge clas-
siques fonctionnent dans des environnements dynamiques avec une surveillance limitée des charges
des serveurs d’applications. Bien que HLB soit capable d’atteindre des performances similaires sans
aucune connaissance préalable de la configuration du système, les équilibreurs de charge récents
reposent toujours sur des algorithmes heuristiques qui nécessitent des configurations manuelles
pour obtenir une bonne équité de répartition de charge. Pour palier à cela, ce chapitre propose
un mécanisme d’apprentissage par renforcement distribué et asynchrone pour améliorer l’équité
de la répartition de la charge obtenue par unéquilibreur de charge, et ce sans observation ac-
tive de l’état du réseau et des serveurs. Étant donné que les centres de données utilisent souvent
plusieurséquilibreurs de charge pour la redondance, l’apprentissage par renforcement multi-agents
(MARL) est utilisé. Les défis de ce problème sont une architecture de traitement hétérogène et un
environnement dynamique. De plus, chaque agent LB a une observabilité limitée et partielle du
réseau, ce qui peut largement dégrader les performances des algorithmes d’équilibrage de charge
dans des configurations réelles en production. L’algorithme Centralised Training and Distributed
Execution (CTDE) a déjà été proposé pour améliorer les performances MARL, mais il entrâıne -
en particulier dans les systèmes de réseau distribués - des côuts supplémentaires en termes de com-
munication et de gestion. Nous formulons le problème d’équilibrage de charge multi-agents comme
un jeu potentiel de Markov, avec pour fonction potentielle, un fonction d’équité de distribution
de charge bien conçue. Un algorithme MARL entièrement distribué est proposé pour approximer
l’équilibre de Nash du jeu. Les évaluations expérimentales impliquent à la fois des simulations et un
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déploiement en conditions réelles. L’algorithme d’équilibrage de charge MARL proposé montre des
performances proches de l’optimum dans les simulations, et des résultats supérieurs par rapport
aux LB en production dans les déploiements en conditions réelles.

Enfin, la partie IV conclut ce manuscrit.
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management of virtualized resources for cpu-bound database services,” IEEE Transactions
on Parallel and Distributed Systems, vol. 26, no. 5, pp. 1441–1451, 2015.

[140] S. Kundu, R. Rangaswami, A. Gulati, M. Zhao, and K. Dutta, “Modeling virtualized applica-
tions using machine learning techniques,” in Proceedings of the 8th ACM SIGPLAN/SIGOPS
conference on Virtual Execution Environments, 2012, pp. 3–14.

[141] S. Rezaei and X. Liu, “Deep learning for encrypted traffic classification: An overview,” IEEE
communications magazine, vol. 57, no. 5, pp. 76–81, 2019.

[142] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H. Katz, S. Shenker,
and I. Stoica, “Mesos: A platform for fine-grained resource sharing in the data center.” in
NSDI, vol. 11, no. 2011, 2011, pp. 22–22.

[143] A. Aghdai, C.-Y. Chu, Y. Xu, D. Dai, J. Xu, and J. Chao, “Spotlight: Scalable transport
layer load balancing for data center networks,” IEEE Transactions on Cloud Computing,
2020.
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[193] J. T. Araújo, L. Saino, L. Buytenhek, and R. Landa, “Balancing on the edge: Transport
affinity without network state,” in 15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18), 2018, pp. 111–124.

[194] Z. Yao, Y. Desmouceaux, J. A. C. Fuertes, M. Townsley, and T. H. Clausen, “Efficient data-
driven network functions,” in 30th International Symposium on the Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS 2022), 2022.

[195] C. Rizzi, Z. Yao, Y. Desmouceaux, M. Townsley, and T. Clausen, “Charon: Load-aware load-
balancing in p4,” in 2021 17th International Conference on Network and Service Management
(CNSM). IEEE, 2021, pp. 91–97.

[196] Z. Yao, Y. Desmouceaux, J.-A. Cordero-Fuertes, M. Townsley, and T. Clausen, “Hlb: Toward
load-aware load balancing,” IEEE/ACM Transactions on Networking, 2022.

[197] M. Ahmed, A. N. Mahmood, and J. Hu, “A survey of network anomaly detection techniques,”
Journal of Network and Computer Applications, vol. 60, pp. 19–31, 2016.

[198] OPNFV, “Open Platform for NFV (OPNFV) Project Portal,” https://www.opnfv.org/,
2019.

[199] OpenStack, “OpenStack Project Portal,” https://www.openstack.org/, 2019.

[200] Y. Jie, Y. Lun, H. Yang, and L.-y. Chen, “Timely traffic identification on p2p streaming
media,” The Journal of China Universities of Posts and Telecommunications, vol. 19, no. 2,
pp. 67–73, 2012.

[201] K. Lalitha and V. Josna, “Traffic verification for network anomaly detection in sensor net-
works,” Procedia Technology, vol. 24, pp. 1400–1405, 2016.

https://www.opnfv.org/
https://www.openstack.org/


BIBLIOGRAPHY 165

[202] R. Cziva and D. P. Pezaros, “Container network functions: Bringing nfv to the network
edge,” IEEE Communications Magazine, vol. 55, no. 6, pp. 24–31, 2017.

[203] V. S. Pai, P. Druschel, and W. Zwaenepoel, “Io-lite: a unified i/o buffering and caching
system,” ACM Transactions on Computer Systems (TOCS), vol. 18, no. 1, pp. 37–66, 2000.

[204] C. C. Aggarwal, “On biased reservoir sampling in the presence of stream evolution,” in
Proceedings of the 32nd international conference on Very large data bases, 2006, pp. 607–
618.

[205] D. Zhou, Z. Yan, Y. Fu, and Z. Yao, “A survey on network data collection,” Journal of
Network and Computer Applications, vol. 116, pp. 9–23, 2018.

[206] N. Schottelius, “High speed nat64 with p4,” Master’s thesis, ETH Zurich, 2019.

[207] F. Ruffy, M. Przystupa, and I. Beschastnikh, “Iroko: A framework to prototype reinforcement
learning for data center traffic control,” arXiv preprint arXiv:1812.09975, 2018.

[208] N. Jay, N. Rotman, B. Godfrey, M. Schapira, and A. Tamar, “A deep reinforcement learning
perspective on internet congestion control,” in International Conference on Machine Learn-
ing. PMLR, 2019, pp. 3050–3059.

[209] M. Hutter, A. Szekely, and J. Wolkerstorfer, “Embedded system management using wbem,”
in 2009 IFIP/IEEE International Symposium on Integrated Network Management. IEEE,
2009, pp. 390–397.

[210] J. Yu, H. Lee, M.-S. Kim, and D. Park, “Traffic flooding attack detection with snmp mib
using svm,” Computer Communications, vol. 31, no. 17, pp. 4212–4219, 2008.
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Titre : La Gestion Autonome des Services dans le Cloud

Mots clés : Réseau de Centre de Données, Fonctions Réseau, Équilibrage de Charge, Algorithmes d’Apprentis-
sage

Résumé : Les applications et services sont deve-
nus plus complexes, rendant la configuration et la ges-
tion des politiques de mise en réseau plus difficiles
pour des performances optimisées. Les paradigmes de
réseau programmable, tels que le réseau définie par
logiciel (SDN) et la virtualisation des fonctions réseau
(NFV), ont émergé pour faciliter l’évolution du réseau
et permettre des services riches de traitement du trafic
réseau. Cette thèse explore comment offrir des fonc-
tions de mise en réseau génériques basées sur les
données dans les réseaux de centres de données pour
construire des systèmes autonomes qui optimisent les
performances de mise en réseau avec un minimum d’in-
tervention humaine et complexité opérationnelle. Elle
étudie également comment les fonctions et primitives
du réseau peuvent être améliorées par des algorithmes
basés sur les données, tout en gardant à l’esprit les

exigences de production des réseaux de centres de
données. Pour relever les défis de la collecte de me-
sures et du déploiement de politiques de mise en
réseau basées sur les données, un outil générique est
construit pour extraire les fonctionnalités de mise en
réseau du plan de données et déployer des algorithmes
basées sur l’apprentissage automatique (ML) pour di-
verses fonctions de mise en réseau dans des systèmes
de mise en réseau du monde réel. Cette thèse se
concentre sur les problèmes d’équilibrage de charge
réseau dans les réseaux de centres de données, sur
lesquels un état de l’art des équilibreurs de charge est
fourni. Des algorithmes d’équilibrage de charge d’ap-
prentissage sont proposés sur la base d’algorithmes
d’apprentissage, montrant de meilleures performances
que les méthodes d’équilibrage de charge de pointe.

Title : Autonomous Service Management in the Cloud

Keywords : Data-Center Networking, Data-Driven, Network Functions, Load Balancing, Learning Algorithms

Abstract : Applications and services have become
more complex, while the Internet has become increa-
singly difficult to evolve both regarding its physical in-
frastructure, and its protocols and performance. Being
responsible for policy configurations as well as network
management and performance tuning, network opera-
tors are shifting towards the use of more and more au-
tomated tools to accomplish these tasks. The concept
of “programmable networks” has emerged to alleviate
the challenges, and to facilitate network evolution. This
includes paradigms such as (i) software-defined net-
working (SDN) and (ii) network function virtualization
(NFV), which decouple the forwarding hardware into the
control plane and data plane, and seek to abstract net-
work forwarding, and other networking functions, from
the hardware. In the era of “big data” on cloud compu-
ting, these paradigms have enabled rich network traffic
processing services, while having also reduced the gra-
nularity of task allocation in data centers. It has been
recognized that shifting controllers from logically cen-
tralized to distributed will increase not only scalability
but also robustness to inconsistency. Machine-Learning

(ML)-based approaches have been proposed to deploy
more intelligence in networks, when using decoupled
control and data planes. In this context, the question
explored in this thesis is whether, and how, it is pos-
sible to offer generic, data-driven networking functions
in data center networks as services, for constructing
autonomous networking systems which optimize net-
working performances with minimal human intervention
and operational complexity. This thesis investigates the
increasing scale, complexity, and heterogeneity of net-
working infrastructure, and protocols, as well as the de-
mand for virtualization and cloud support services in
terms of efficient resource management, rapid provisio-
ning, and scalability present a set of new challenges in
effective network organization, management, and opti-
mization. This is accomplished by studying how certain
network functions and primitives (traffic classification,
auto-scaling, load balancing) can be reliably enhanced
by various data-driven algorithms, while bearing in mind
the in-production requirements in data center networks
– high scalability, high throughput, low latency, and low
overheads.
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