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Abstract We revisit in a 2d setting the notion of energy release rate, which plays a
pivotal role in brittle fracture. Through a blow-up method, we extend that notion to
crack patterns which are merely closed sets connected to the crack tip. As an applica-
tion, we demonstrate that, modulo a simple meta-stability principle, a moving crack
cannot generically kink while growing continuously in time. This last result poten-
tially renders obsolete in our opinion a longstanding debate in fracture mechanics on
the correct criterion for kinking.
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1 Introduction

Brittle fracture is by now “old” news in mechanics, and its foundation is considered
by many as a closed subject. The basic mechanical principles governing quasi-static
evolution, i.e., an evolution for which the effect of inertia is neglected, were postu-
lated by Griffith (1920) about 90 years ago. Yet, they remain amazingly free of the
usual stigmata of old age.

In essence, Griffith’s formulation consists—in a 2-dimensional setting—in pre-
assuming a crack path Γ and in computing for each crack length (the crack is assumed
connected) the release of elastic energy associated with the infinitesimal extension of
that crack. More precisely, if, say Ω is an elastic body and Γ ⊂ Ω , and if u0(t)

is a boundary displacement applied on ∂Ω , let Wel(t, l) denote the elastic energy
associated with the elastic equilibrium of the body, with a crack of length l, submitted
to the boundary displacement u0(t). Then the energy release rate associated with the
crack length l at time t is given by

G(t, l) := − lim
h↘0

1

h

{
Wel(t, l + h) − Wel(t, l)

}
,

provided that limit exists. Of course, Griffith is not so preoccupied in Griffith (1920)
with establishing conditions on both the crack path and the evolution under which
one is at liberty to make such an assumption. Even today, haziness is the rule, and,
to our knowledge, there are no precise results in the literature that explicit sufficient
conditions on both the crack path and the evolution, and all the related results that we
could locate are based on formal asymptotics.

In any case, Griffith then proceeds to motivate the existence of a positive con-
stant k—often called fracture toughness, and to be viewed as the amount of energy
released with each bond break for the underlying atomic lattice—such that

• G(t, l(t)) ≤ k;
• l(t) ↗ t ; and
• dl

dt
(t) �= 0 ⇒ G(t, l(t)) = k.

In other words, the energy release rate G(t, l(t)) is capped and the crack cannot move,
unless the upper bound on that rate is met.

This three-pronged postulate provides the backbone of the theory of brittle frac-
ture. A few years later, Fracture (1958) used a result previously established in Sned-
don (1946) for a penny-shaped crack in an infinite domain with uniform stresses at
infinity to establish that, for an isotropic material undergoing small deformations, the
stress singularity at a crack tip is always in 1/

√
r , where r is the distance to the tip,

which led him to observe that, for a crack which is straight near its tip and points in
the direction 	e, the planar displacement field is always of the form

√
r{K1φ1 +K2φ2},

where φ1, φ2 are universal functions of the polar angle, while K1,K2, the stress in-
tensity factors, contain information about the geometry and the loads; in our setting,
we will sum up the dependency of the stress intensity factors upon the loads by the
superscript t . Note that, if the stress field σ near the crack tip is pure traction, i.e., if
σ 	e⊥ ‖ 	e⊥ in a neighborhood of the tip, then K2 = 0.
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He then proceeded to compute the energy release rate along an extending straight
crack originating at the boundary of Ω , and found that, for a crack of length l and,
say displacement loads u0(t) on ∂Ω ,

G(t, l) = C
{(

Kt
1

)2 + (
Kt

2

)2}
,

where C is explicitly given in terms of the elasticity of the material. Of course, here
again, Irwin was not so interested in precise mathematical statements. On the one
hand, establishing—and not a priori postulating—the exact nature of the singularity
at the crack tip is not an easy task; we will refer to, e.g. Dauge (1988), Theorem
15.4 (referred to henceforth as simply Dauge 1988), for the appropriate result in our
setting. On the other hand relating that singularity to a possible energy release rate
requires tools of differentiation with respect to domain variation (Murat and Simon
1974). We refer the reader to Destuynder and Djaoua (1981) for the only precise
setting we are aware of, that is, the case of a straight crack.

Remark 1.1 Many papers deal investigate the computations of the energy release
rate. To our knowledge, the first rigorous proof of the existence of G, i.e., of the
differentiable character of the potential energy as a function of crack length, is to
be found in Destuynder and Djaoua (1981). As stated above, that proof has its root
in the domain differentiation method. The underlying idea consists in mapping the
evolving domain onto a fixed domain through a smooth enough transformation. As
such, that method does not require a precise knowledge of the singularities at the
crack tip. Consequently, it can be used independently of any symmetry restrictions
on the elastic behavior; it extends to 3d domains; surface as well as body forces can
be incorporated (with the corresponding change in the formula for G). It can also be
extended to a nonlinear setting (see Knees and Mielke 2008). In Negri and Ortner
(2008), the results of Destuynder and Djaoua (1981) are improved in that G is shown
to be a continuous function of the crack length in the antiplane shear case.

However, those results cannot be used when a crack wishes to kink because of the
lack of regularity of the transformation that would map the resulting domain onto a
fixed domain.

Furthermore, linking G to the stress intensity factors, i.e., obtaining an Irwin type
formula, necessitates a precise knowledge of the crack tip singularity. That knowl-
edge seems to be lacking except for a linearly elastic material in 2d and when the
crack is smooth and straight near its tip (see Dauge 1988 and also the generalized
results in Costabel et al. 2003; see also Remark 2.1 below).

None of the above mentioned references address the ingredient that will be at the
root of the present analysis: a general crack path allowing for nonsmooth extensions
of the crack.

The mechanician involved in fracture mechanics is thus left to ponder the theoret-
ical gear exhibited above, lamenting a remarkable yet incomplete toolkit. Actually,
a mere counting of the number of unknowns versus equations makes it clear that the
theory, as it stands, cannot predict crack path. So, for the last 50 years, mechanicians
have attempted to import additional ingredients that would allow for such predictions.
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The simplest setting is that of a straight crack that wishes to kink at a given time,
that is to modify brutally its extensional direction. Assuming that the crack was prop-
agating along the x-axis, we denote by ζ the kinking angle. Two competing criteria
have been put forth. The first states that ζ will be such that the energy release rate at
the time of extension of the crack from the kinking point is maximal among all possi-
ble straight add-cracks; this is referred to as the Gmax-criterion. The second postulates
that ζ will be such that, after kinking, the limit, as the add-crack length tends to 0, of
the stress intensity factor K2 is 0; this is called the symmetry principle. Confusion is
bound to arise because not only are those criteria essentially ad hoc, but also because
they were shown in Amestoy and Leblond (1992) not to coincide.

The present study should be viewed as a contribution to the debate Gmax versus
K2 = 0. We contend that, upon adoption of a general postulate of metastability of the
total energy—the sum of the elastic and surface energies—with respect to connected
add-cracks of small length, the debate is essentially pointless because there are no
evolutions that kink along a “nice” geometric path—say with a C 1 add-crack—while
extending the crack continuously in time. This is the final result detailed in Proposi-
tion 4.6.

The suggested metastability postulate (see (4.13)) is simply stated in this paper and
elaborated upon in Chambolle et al. (2009). It finds its root in the newly developed
theory of variational fracture. We will not dwell upon that theory here and refer the
interested reader to Bourdin et al. (2000) for a detailed exposition. However, please
note that the first prong in Griffith’s criterion may be viewed as a first order necessary
condition of metastability, because it states that the derivative of the total energy along
“smooth” variations in the crack length must be nonnegative.

Our result is based on a precise computation, in a linear anisotropic setting, of
the energy release rate associated with a large class of add-cracks (essentially, all
connected add-cracks with finite length) and, in particular, add-cracks of density 1

2
(in other words, of add-cracks that look like a line segment for small enough balls
around the crack tip). This is the object of, first Lemma 2.6, then of Theorem 3.1,
which combine to prove the existence of an energy release rate for such add-cracks
in Corollary 3.7. As such, Theorem 3.1 may be viewed as the first rigorous com-
putation of an energy release rate in a finite domain under arbitrary loads and for a
large class of potential add-cracks, the consequence being that rate may be computed
through the sole knowledge of the associated stress intensity factors through Irwin’s
formula.

With that result at hand, we show that, in the more restrictive isotropic setting,
line segment add-cracks cannot maximize the energy release rate in Theorem 4.1.
That result appeals to difficult computations of expansions around the direction ζ = 0
of the stress intensity factors associated with the kinking in a given direction ζ of a
semiinfinite straight crack in R

2. Those were performed in Amestoy and Leblond
(1992). Unfortunately, the proof of Theorem 4.1 seems to require a knowledge of
those coefficients for all values of ζ , or at least of a specific combination of those,
see Conjecture 4.3. But this information cannot be derived from the sole results of
Amestoy and Leblond (1992). We state the needed relation as a conjecture, observing
that it is met near ζ = 0 and that it is numerically evident. Since the conjecture is true
if a specific nonzero universal entire function has no zeroes, we finally remark that, in
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the worst case scenario, there would be a finite number of universal kinking angles for
which a time continuous evolution could take place, hardly what one should expect
from a well-mannered kinking criterion.

We emphasize that, in all that follows, no attention is paid to the vexing issue of
(linearized) non-interpenetration.

Finally note that we systematically omit, for the sake of notational simplicity,
sets of 0-Lebesgue measure in writing integrals, i.e., if L2(Γ ) = 0, then

∫
Ω\Γ f dx

is written as
∫
Ω

f dx. Also, whenever ε, ε′ ∈ S 2×2, the space of symmetric 2 × 2-
matrices, ε · ε′ stands for tr(εε′).

2 Linear Elasticity in a Cracked Domain—The Mathematical Setting

In all that follows:

A0. Ω is a Lipschitz bounded domain of R
2 that contains the origin O := (0,0) and

	e1, 	e2 is a fixed orthonormal basis of R
2.

The domain Ω is filled with a homogeneous elastic material with elasticity C ,
a very strongly elliptic fourth order tensor with the usual symmetries of linear elas-
ticity, i.e., a tensor such that Cijkh = Ckhij = Cikjh and also such that Cijkhεij εkh > 0,
∀εij = εji �= 0. We assume the existence of a precrack γ i and will denote by Γ any
additional crack, so that the compound crack will be γ i ∪ Γ .

As far as γ i is concerned, the following is assumed:

A1. γ i is a closed C∞ curve in Ω whose intersection with ∂Ω is at most a finite
number of points;

A2. Ω \ γ i is connected;
A3. the right endpoint of γ i is the origin O;
A4. γ i is a straight line segment in direction 	e1 in a neighborhood B(O,η) of O .

In truth, it would be no essential restriction to assume, in lieu of Assumptions A1–
A4, that γ i is a straight line segment ending at O and originating either on the bound-
ary ∂Ω (a notch), or inside Ω (a slit).

For a given displacement field u0 ∈ H
1
2 (∂Ω;R

2), we wish to investigate the elas-
tic equilibrium of Ω \ γ i under the Dirichlet boundary condition u0. To this end,
we view u0 as defined on all of R

2: u0 is then in H 1(R2;R
2) and, with no loss of

generality, we may as well assume that it is compactly supported in R
2. The solution

(still denoted by u0) of the elastic equilibrium of Ω \γ i under the Dirichlet boundary
condition u0 is the minimizer for

min

{
1

2

∫

Ω

Cε(u) · ε(u)dx : u ∈ H 1
loc

(
R

2 \ γ i;R
2);u = u0 in R

2 \ Ω

}
.

Note that the adoption of Dirichlet boundary conditions is unessential in what
follows (see Remark 4.2).



J Nonlinear Sci

We still denote by u0 the unique solution; see, e.g. Chambolle (2003), Lemma 3.
Note that it satisfies in particular

{
−div(Cε(u0)) = 0, in Ω \ γ i,

Cε(u0)ν = 0, on γ i ∩ Ω,
(2.1)

with ν any normal to ∂(Ω \ γ i) at any point of the relative interior of γ i ∩ Ω .
We will assume henceforth that, in the specific case at hand,

u0 = √|x|{K1φ1 + K2φ2} + z := u0
O + z, (2.2)

with z ∈ H 2(B(O,η/2) \ γ i;R
2) ∩ H 1

loc(R
2 \ γ i;R

2); φ1, φ2 are universal func-
tions that only depend on the polar angle at O and on C , and K1,K2 depend on
Ω, C, u0, γ i . The constants K1,K2 are called the stress intensity factors, and it is not
our purpose here to describe them in any details, referring the interested reader to, e.g.
Amestoy and Leblond (1992). The following remark demonstrates that assumption
(2.2) certainly holds true at least in the isotropic case.

Remark 2.1 The conditions under which decomposition (2.2) is valid are not so easily
found in the literature in spite of a widespread belief in the square root nature of the
singularity at the crack tip. The investigation of the singular behavior of the elastic
field at corners is certainly a popular field; we refer to, e.g. Dauge (1988) for a treatise
on that topic, although there are many other relevant available references. However,
it is quite a challenge to locate a precise result like that invoked above.

For the sake of completeness, we briefly indicate in the present remark how to
derive (2.2) in the isotropic case, i.e., when

C = λi ⊗ i + 2μI,

with i the identity matrix on R
2, I that on S 2×2, and λ,μ the classical Lamé coeffi-

cients of isotropic elasticity.
To do this, we will appeal to a clearly stated result in Grisvard (1989) which ad-

dresses the case of a bounded polygonal domain with a straight crack in a 2d isotropic
setting (see Théorème I, Remarque 1.2, Théorème 6.1, and Remarque 6.4 in Grisvard
1989). Starting with a weak solution u0 of (2.1) in that case, we introduce a radial
cut-off ζ(r) with ζ ≡ 0 for r > η/2. Then it is an easy consequence of the fact that
u0 ∈ H 1(B(O,η);R

2) that wζ := ζu0 satisfies
⎧
⎪⎨

⎪⎩

−div(Cε(wζ )) = fζ , in Ω \ γ i,

Cε(wζ )ν = gζ , on γ i ∩ Ω,

wζ ≡ 0, in B(O,η) \ B(O,η/2),

with fζ ∈ L2(B(O,η);R
2), gζ ∈ H

1
2 (γ i;R

2), with suppgζ ⊂ γ i ∩ (B(O,3η/4) \
B(O,η/4)). Thus, wζ is also solution to

{
−div(Cε(wζ )) = fζ , in G,

Cε(wζ )ν = gζ , on ∂G,
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where G is a polygon made up of the union of a segment [O,M] ⊂ γ i with
M ∈ B(O,η) \ B(O,3η/4)—we emphasize that [O,M] is indeed a segment in
view of Assumption A1—and of a convex polygon with boundary inside B(O,η) \
B(O,3η/4). Since fζ ∈ L2(G;R

2) while gζ ∈ H
1
2 (∂G;R

2), while condition (1.5)
of Théorème I in Grisvard (1989) (precisely written in Remark 7.2.2.5 in Grisvard
1985) are trivially satisfied since gζ is null near all corner points. Application of that
theorem yields the desired result.

That (2.2) also holds true in the anisotropic case is undoubtedly true, although we
were unable to pinpoint the relevant result in our admittedly cursory perusal of the
literature. Many papers resort to formal asymptotics for a justification of (2.1); see,
for example Argatov and Nazarov (2002), where the authors a priori assume a power
series expansion of the elastic solution at the crack tip in a 2d anisotropic setting.

Remark 2.2 Define

Γ i := R
−	e1,

set

u0
ε(y) := u0(εy) − u0(0)√

ε
, zε(y) := z(εy) − z(0)√

ε

and note that

u0
ε(y) = u0

O(y) + zε(y).

Then for all r > 0,

u0
ε → u0

O, uniformly in B(O, r) \ Γ i and

strongly in W 1,p
(
R

2 \ Γ i;R
2), 1 ≤ p < ∞. (2.3)

Indeed, by classical Sobolev injections, ∇z ∈ Ls(B(O,η/2) \ γ i;R
2), ∀s < ∞,

so that, recalling Assumption A4 on γ i , for ε so small that εr < η/2,

∫

B(O,r)\Γ i

|∇zε|p dy = εp/2
∫

B(O,r)\Γ i

∣∣∇z(εy)
∣∣p dy

= εp/2−2
∫

B(O,εr)\γ i

∣∣∇z(y)
∣∣p dy

≤ εp/2−2(πε2r2)(q−1)/q
(∫

B(O,η/2)\γ i

∣∣∇z(y)
∣∣pq dy

)1/q

= Crε
p/2−2/q,

with Cr depending only on r . So, for any p < ∞, we can choose q large enough so
that

∇zε → 0, strongly in Lp
(
B(O, r) \ Γ i;R

2). (2.4)
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Since zε is a fortiori in Lp(B(O, r)\Γ i;R
2) for ε small enough, Morrey’s inequality

implies, upon choosing p large enough in (2.4), that for all r’s,

zε − zε(0) → 0, uniformly on B(O, r) \ Γ i.

But zε(0) = 0, hence (2.3).

Remark 2.3 Note that u0
O satisfies

{
−div(Cε(u0

O)) = 0, in R
2 \ Γ i,

Cε(u0
O)ν = 0, on Γ i.

We now wish to add a crack Γ “at the crack tip”. We assume that

A5. Γ is a compact connected set in Ω with H1(Γ ) < ∞;
A6. O ∈ Γ .

We henceforth define, for any point M ∈ R
2, AM as the set of Γ ’s that satisfy As-

sumptions A5, A6 with M in lieu of O .
Then as before, we wish to investigate the elastic equilibrium of Ω \ (γ i ∪ Γ )

under the Dirichlet boundary condition u0. We denote by uΓ a solution of

min

{
1

2

∫

Ω

Cε(u) · ε(u)dx : u ∈ H 1
loc

(
Ω \ (

γ i ∪ Γ
);R

2), u = u0 on ∂Ω

}
. (2.5)

Under Assumptions A5 and A6, proving existence of such a displacement is not an
issue—see Chambolle (2003)—while uniqueness is true if and only if Ω \ (γ i ∪ Γ )

is connected. Otherwise, uΓ is any rigid motion inside each connected component of
Ω \ (γ i ∪ Γ ) which does not touch ∂Ω .

We define, for all Γ ∈ AO,

F γ i

(Γ ) := 1

2

∫

Ω

(
Cε

(
uΓ

) · ε(uΓ
) − Cε

(
u0) · ε(u0))dx. (2.6)

The following estimate holds true

Lemma 2.4 There exists two nonnegative constants G and G such that, for l > 0
small,

−G + o(1) ≤ 1

l
inf
Γ

{
F γ i

(Γ ) : Γ ∈ AO; H1(Γ ) ≤ l
} ≤ −G + o(1). (2.7)

Proof First consider Γ = [O,I ] ∪ ∂B(O, l/(2π + 1)), with
−→
OI := −l/(2π + 1)	e1

(so that Γ ∪ γ i looks like γ i , together with a circle of radius l/(2π + 1) centered
at O). Then in view of (2.2),

F γ i

(Γ ) ≤ −1

2

∫

B(O,l/(2π+1))

Cε
(
u0) · ε(u0)dx ∼ −Gl + o(l),
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with

G := 1

2(2π + 1)

∫

B(O,1)

Cε
(
u0

O

) · ε(u0
O

)
dx.

Now, with an argument identical to that developed in Chambolle et al. (2008),
Sect. 4 (see, in particular, (4.3) of that reference), we obtain the following inequality
for any Γ ∈ AO

F γ i

(Γ ) ≥ −C

∫

Ω

∣
∣τ − Cε

(
u0)∣∣2 dx, (2.8)

for all τ ∈ L2(Ω \ γ i;R
2 × R

2) symmetric and such that

∫

Ω

τ · ε(w)dx = 0, ∀w ∈ H 1
loc

(
R

2 \ (
γ i ∪ Γ

);R
2) with

w ≡ 0 on R
2 \ Ω and ε(w) ∈ L2(

R
2 \ (

γ i ∪ Γ
); S 2×2). (2.9)

The only difference with (4.3) in Chambolle et al. (2008) is that Ω in that reference
has to be replaced with Ω \γ i here, which is no restriction in view of Assumptions A1
and A2.

Note that Γ ⊂ B(O, l) since H1(Γ ) ≤ l and O ∈ Γ . Consider ϕ ∈ C∞(R2) with
ϕ ≡ 1 outside B(O,7l/4) and ϕ ≡ 0 inside B(O,5l/4). Take τ ≡ Cε(u0) outside
B(O,2l), τ ≡ 0 in B(O, l) and τ ≡ ε(v) + ϕCε(u0) in B(O,2l) \ B(O, l) with

{
div ε(v) = −div(ϕCε(u0)) in B(O,2l) \ (B(O, l) ∪ γ i)

ε(v) · ν = 0 on ∂B(O, l) ∪ ∂B(O,2l) ∪ γ i,

with ν the exterior normal to B(O,2l) \ B(O, l), or the normal to γ i . Then τ satis-
fies (2.9).

In view of the assumed regularity of γ i , an elementary integration by parts estab-
lishes that

∫

B(O,2l)\B(O,l)

∣∣ε(v)
∣∣2 dx ≤ C

∫

B(O,2l)

∣∣ε
(
u0)∣∣2 dx,

so that, in the end, for that particular choice of τ ,

∫

Ω

∣∣τ − Cε
(
u0)∣∣2 dx ≤ C

∫

B(O,2l)

∣∣ε
(
u0)∣∣2 dx.

Recalling (2.8) and appealing once again to (2.2), we finally obtain

F γ i

(Γ ) ≥ −Gl + o(l),

with

G := C

∫

B(O,2)

∣∣ε
(
u0

O

)∣∣2 dx. �
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Remark 2.5 Note that G,G vanish if u0
O = 0 (and are positive otherwise). We assume

from now on that u0
O �= 0, or still that

K1 or K2 �= 0, (2.10)

that is, the load actually induces a singularity at the crack tip.

Finally, the following lemma holds true.

Lemma 2.6 Assume that Γ (l) ∈ AO also satisfies

Γ (l) ⊂ Γ (l′), l ≤ l′; lim
l↘0

H1(Γ (l))

l
= 1, (2.11)

and that, for some l0, Γ (l0) satisfies

A7. Γ has density 1
2 at O , i.e.,

lim
s→0

H1(Γ ∩ B(O, s))

2s
= 1

2
.

Then there exists a sequence {lj ↘ 0} and a line segment [O,M] with |−−→OM| = 1
such that

Γj := 1

lj
Γ (lj ) converge in the sense of Hausdorff to [O,M].

Further, all possible such “blow-up limits” are unit length line segments.

Proof In view of Assumptions A5, A6, and of the second item in property (2.11),
Blaschke’s selection theorem (i.e., the compactness of equi-bounded compact con-
nected sets for the Hausdorff distance; see Falconer 1985, Theorem 3.16) proves
the existence of a sequence {lj ↘ 0}, and of a compact connected set Γ0 such
that

Γj converge in the sense of Hausdorff to Γ0, with O ∈ Γ0.

Further, by application of Golab’s theorem (i.e., the lower semicontinuity of the
1-dimensional Haudorff measure for compact connected sets converging for the
Hausdorff distance; see e.g. Falconer 1985) we also have

H1(Γ0) ≤ 1. (2.12)

In view of the above, Γ0 will be of the announced form [O,M], provided that we
show that Γ0 ∩ ∂B(O,1) �= ∅.

To that effect, we consider t < 1 and remark that, if, for a subsequence of {lj } still
indexed by j , Γ (lj ) ⊂ B(O, tlj ), then, in view of Assumption A7 and of the ordering



J Nonlinear Sci

property in (2.11), for any l0 > l > 0,

1 = lim
j

H1(Γ (l) ∩ B(O, tlj ))

t lj

≥ lim sup
j

H1(Γ (lj ) ∩ B(O, tlj ))

t lj

= 1

t
lim sup

j

H1((Γj )
) = 1

t
, (2.13)

clearly a contradiction. Thus, for all t < 1, Γ (lj ) \ B(O, tlj ) �= ∅ for j large
enough. Consider xj ∈ Γ (lj ) \ B(O, tlj ); xj / lj /∈ B(O, t). But, since O ∈ Γj

and Γj is connected with length less than 1 + o(1/j), xj/ lj ∈ B(O,1 + o(1/j)).
Thus, a subsequence of {xj/ lj } converges to some point x ∈ B(O,1) \ B(O, t)

which also belongs to Γ0 because of the Hausdorff convergence of Γj to Γ0. Thus,
Γ0 ∩ (B(O,1) \ B(O, t)) is not empty and the result is achieved upon letting t tend
to 1.

Since all possible blow-up limits satisfy (2.12), the last statement of the theorem
also follows. �

Remark 2.7 Consider a connected add-crack Γ with Γ of density 1
2 at O . Then upon

setting Γ (l) := Γ ∩ B(O, l), Lemma 2.6 demonstrates that blow up limits of density
1
2 connected add-cracks at the crack tip are line segments of length 1, a fact which is
obvious if investigating add-cracks that are smooth, in which case Γ (l) can be taken
to be the connected subarc of Γ of arc length l with O ∈ Γ (l) .

Remark that, in the nonsmooth case, various blow-up subsequences may in general
converge to different unit length line segments. Just take Γ = exp (−t2)(cos t 	e1 +
sin t 	e2), t ∈ [0,∞], which has no well-defined tangent as t ↗ ∞ and for which M

will be any element of ∂B(O,1).

3 Blow-up Limits of a Converging Sequence of Finite Length Sets

In this section, we prove a general blow-up result (Theorem 3.1) on a converging
sequence of compact connected sets containing the origin O , this in the context of
Assumptions A0–A6 of Sect. 2. We then apply this result in Corollary 3.7 to the
specific sequence Γj constructed in Lemma 2.6.

Theorem 3.1 Assume that Γε is a Hausdorff-converging sequence of elements of AO,
with supε H1(Γε) < ∞. Then recalling definition (2.6) of F γ i

,

lim
ε

1

ε
F γ i

(εΓε) = F Γ i

(Γ ), (3.1)
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where Γ is the Hausdorff limit of Γε and

F Γ i

(Γ ) := min

{
1

2

∫

R2
Cε(w) · ε(w)dx

+
∫

B(O,r)

Cε
(
u0

O

) · ε(w)dx −
∫

∂B(O,r)

Cε
(
u0

O

) : (w ⊗ ν)dH1 :

w ∈ H 1
loc

(
R

2 \ (
Γ i ∪ Γ

))
, ε(w) ∈ L2(

R
2)

}
. (3.2)

In (3.2), r > 0 is any radius such that Γ ⊂ B(O, r).
In other words, 1

ε
F γ i

(ε·) converges continuously to F Γ i
.

Remark 3.2 Note that it is easily seen that the definition of F Γ i
above is independent

of r . Actually, if ŵ is a solution to the associated Euler equation—see (3.17) below—,
then

F Γ i

(Γ ) = −1

2

∫

R2
Cε(ŵ) · ε(ŵ)dx. (3.3)

Note also that the thesis of Theorem 3.1 still holds if the load u0 is applied to
only part of the boundary ∂DΩ of ∂Ω , or in the case of a “soft device,” that is, if
the boundary conditions on some part of ∂Ω are of the form Cε(u)ν = g, g being a
surface force density.

Remark 3.3 The above convergence is trivially stronger than Γ -convergence. Thus,
if Γε are minimizers—or almost minimizers, up to an error that goes to 0 with ε—of
1
ε

F γ i
(ε·), under the constraint H1(Γε) ≤ 1, then the limits Γ (in the Hausdorff sense)

of converging subsequences Γεj
are minimizers of F Γ i

under the same constraint. In
particular, since (2.7) also reads as

−G ≤ 1

ε
inf
Γ

{
F γ i

(εΓ ) : Γ ∈ AO; H1(Γ ) ≤ 1
} ≤ −G, (3.4)

and since the set

AO
1 := {

Γ ∈ AO : H1(Γ ) ≤ 1
}
, (3.5)

is sequentially compact for the topology associated to Hausdorff convergence in view
of Blaschke’s selection criterion, together with Golab’s theorem, we deduce that the
limit of the infimum in (2.7) as l ↘ 0 exists and is equal to

−G1 := min
Γ ∈AO

1

F Γ i

.

Remark 3.4 F Γ i
(Γ ) defines a generalized energy release rate, associated to a par-

ticular crack pattern Γ . Note, however, that if the minimizing Γ in Remark 3.3 is
not homogeneous, i.e., if λΓ /∈ Γ for all λ < 1, it may not be so that a continuously
growing path can follow that pattern, and the interpretation of the associated release
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rate is more delicate; see Sect. 4 for a more in depth investigation of maximal energy
release rates.

Proof of Theorem 3.1 First, fix r > 0 such that Γ ⊂ B(O, r), and observe that, for ε

small enough, Γε ⊂ B(O, r). By definition,

1

ε
F γ i

(εΓε) = 1

ε
min

{
1

2

∫

Ω

(
Cε(u) · ε(u) − Cε

(
u0) · ε(u0))dx :

u ∈ H 1
loc

(
Ω \ (

γ i ∪ εΓε

);R
2), u = u0 on ∂Ω

}
, (3.6)

and, by definition of uεΓε (see (2.5)),

1

ε
F γ i

(εΓε) = 1

2ε

∫

Ω

(
Cε

(
uεΓε

) · ε(uεΓε
) − Cε

(
u0) · ε(u0))dx.

The change of variable wε := uεΓε − u0 transforms the above expression into

− 1

2ε

∫

Ω

Cε(wε) · ε(wε)dx + 1

ε

∫

Ω

Cε
(
uεΓε

) · ε(wε)dx.

Now, it is straightforward from (2.5) that uεΓε satisfies the equation
∫

Ω

Cε
(
uεΓε

) · ε(v)dx = 0 (3.7)

for any v ∈ H 1
loc(Ω \ (γ i ∪ εΓε);R

2) with ε(v) ∈ L2(Ω; S 2×2) and v = 0 on ∂Ω .
Further, wε is an admissible test for (3.7), so that

∫

Ω

Cε
(
uεΓε

) · ε(wε)dx = 0,

and thus
1

ε
F γ i

(εΓε) = − 1

2ε

∫

Ω

Cε(wε) · ε(wε)dx. (3.8)

Recalling the lower bound in (3.4), we conclude, in view of (3.8), that

1

2

∫

Ω

Cε(wε) · ε(wε)dx ≤ Gε. (3.9)

Now, the change of variable w := u−u0 permits one to rewrite the integral in (3.6)
as

1

2

∫

Ω

Cε(w) · ε(w) +
∫

Ω

Cε
(
u0) · ε(w)dx.

But w = 0 on ∂Ω and, for ε small enough, εΓε ⊂ B(O, rε), so that, since u0 satis-
fies (2.1),
∫

Ω

Cε
(
u0) · ε(w)dx =

∫

B(O,rε)

Cε
(
u0) · ε(w)dx −

∫

∂B(O,rε)

Cε
(
u0) · (w ⊗ ν)dH1,
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where ν is the exterior normal to the disc B(O, rε). Consequently, we get that

1

ε
F γ i

(εΓε) = 1

ε
min

{
1

2

∫

Ω

Cε(w) · ε(w)dx +
∫

B(O,rε)

Cε
(
u0) · ε(w)dx

−
∫

∂B(O,rε)

Cε
(
u0) · (w ⊗ ν)dH1 :

w ∈ H 1
loc

(
Ω \ (

γ i ∪ εΓε

);R
2),w = 0 on ∂Ω

}
, (3.10)

with, by construction, wε as one of the minimizers.
Set, for y ∈ Ω/ε, ŵε(y) = wε(εy)/

√
ε. By an appropriate rescaling of the inte-

grals (replacing w by w(εy)/
√

ε), we find that, in the notation of Remark 2.2,

1

ε
F γ i

(εΓε) = min

{
1

2

∫

Ω/ε

Cε(w) · ε(w)dx +
∫

B(O,r)

Cε
(
u0

ε

) · ε(w)dx

−
∫

∂B(O,r)

Cε
(
u0

ε

) · (w ⊗ ν)dH1 :

w ∈ H 1
loc

((
Ω\γ i

ε

)∖
Γε;R

2
)

,w = 0 on ∂Ω/ε

}
, (3.11)

and that ŵε is a minimizer. We also deduce from (3.9) that
∫

Ω/ε

Cε(ŵε) · ε(ŵε)dx ≤ C. (3.12)

Hence, up to possible subsequence extraction, we may assume that ε(ŵε)—extended
by 0 outside Ω/ε—converges weakly in L2(R2; S 2×2) to some field of symmetric
matrices. Because of the Hausdorff convergence of Γε to Γ and since γ i/ε is a line
segment on any ball centered at O for ε small enough, Poincaré–Korn’s inequality ap-
plied to any compactly contained open smooth subset of R

2 \ (Γ i ∪Γ ) demonstrates
that there exists ŵ ∈ H 1

loc(R
2 \ (Γ i ∪ Γ );R

2) such that

ε(ŵε) ⇀ ε(ŵ), weakly in L2(
R

2; S 2×2),

while

ŵε + rε → ŵ, strongly in L2
loc

(
R

2 \ (
Γ i ∪ Γ

);R
2),

where rε is an ε-dependent rigid body displacement in each connected component of
((Ω \ γ i)/ε) \ Γ .

Note for future reference that, by L2-weak lower semi-continuity of ε �→ ∫
R2 Cε ·

ε dx, we deduce from (3.12) that
∫

R2
Cε(ŵ) · ε(ŵ)dx ≤ C. (3.13)

But it is immediately checked that the energy in (3.11) is invariant if any rigid
displacement is added to w in each connected component. Indeed, the first two terms
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are trivially unchanged, while the third term is also unchanged upon integration by
parts on ((Ω \ γ i)/ε) \ B(O, r) and in view of (2.1) appropriately rescaled.

Thus, we may assume, without loss of generality, that

⎧
⎪⎨

⎪⎩

ŵε → ŵ, strongly in L2
loc(R

2 \ (Γ i ∪ Γ );R
2)

ε(ŵε) ⇀ ε(ŵ), weakly in L2(R2; S 2×2)

ŵε is a rigid body displacement outside Ω/ε.

(3.14)

Since ŵε is a minimizer in (3.11), it satisfies the following weak Euler–Lagrange
equation

∫

Ω/ε

Cε(ŵε) · ε(v)dx = −
∫

B(O,r)

Cε
(
u0

ε

) · ε(v)dx +
∫

∂B(O,r)

Cε
(
u0

ε

) : (v ⊗ ν)dH1

(3.15)
for every

v ∈ H 1
loc

((
Ω \ γ i

ε

)∖
Γε;R

2
)

with ε(v) ∈ L2(R2; S 2×2) and v a rigid displacement on ∂Ω/ε. Consequently,

1

ε
F γ i

(εΓε) = 1

2

{∫

B(O,r)

Cε
(
u0

ε

) · ε(ŵε)dx −
∫

∂B(O,r)

Cε
(
u0

ε

) · (ŵε ⊗ ν)dH1
}
.

In view of convergences (2.3), (3.14), we obtain that Cε(u0
ε)ν converges strongly in

H− 1
2 (∂B(O, r);R

2) and ŵε weakly in H
1
2 (∂B(O, r);R

2) and so we can pass to the
limit in the expression above. We obtain

lim
ε

1

ε
F γ i

(εΓε) = 1

2

{∫

B(O,r)

Cε
(
u0

O

) · ε(ŵ)dx −
∫

∂B(O,r)

Cε
(
u0

O

) · (ŵ ⊗ ν)dH1
}
,

(3.16)
which is shown in the same way to be equal to F Γ i

(Γ ), provided we show first that
ŵ is a minimizer for the problem in (3.2). This is true if and only if we show that
ŵ satisfies the Euler equation for the minimization of the integral in the definition of
F Γ i

(Γ ), i.e., iff

∫

R2
Cε(ŵ) · ε(v)dx = −

∫

B(O,r)

Cε
(
u0

O

) · ε(v)dx +
∫

∂B(O,r)

Cε
(
u0

O

) : (v ⊗ ν)dH1

(3.17)
for any v ∈ H 1

loc(R
2 \ (Γ i ∪ Γ );R

2) with ε(v) ∈ L2(R2; S 2×2).
We may as well assume that the support of the test function v in (3.17) is bounded.

Indeed, if ϕ(x) is a smooth function with support in B(O,2) and equal to 1 on
B(O,1), we set, for R > 0 large enough,

vR(x) = ϕ

(
x

R

)(
v(x) − ARx − bR

)
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where ARx + bR is a rigid displacement such that the following Poincaré–Korn in-
equality holds true:

‖v −ARx − bR‖L2(B(O,2R)\B(O,R);R2) ≤ CR‖ε(v)‖L2(B(O,2R)\B(O,R);S 2×2). (3.18)

Then a.e. in R
2,

ε(vR)(x) = ϕ

(
x

R

)
ε(v) + 1

R
∇ϕ

(
x

R

)
� (

v(x) − ARx − bR

)
,

so, thanks to (3.18), ε(vR) converges strongly in L2(R2; S 2×2) to ε(v) as R → ∞.
Then we may also assume that v ∈ H 1(R2 \ (Γ i ∪ Γ );R

2), with bounded sup-
port. Indeed, Theorem 1 in Chambolle (2003) states in particular that, given any test
function v ∈ H 1

loc(R
2 \ (Γ i ∪ Γ );R

2), with ε(v) ∈ L2(R2; S 2×2) and support in-
side B(O,R) for some (large) R, there exists a sequence {vn} of displacements in
H 1(B(O,R + 1) \ (Γ i ∪ Γ );R

2) with ε(vn) → ε(v) in L2(B(O,R + 1); S 2×2).
Observe that, possibly subtracting rigid displacements, vn converges strongly to 0
in L2(B(O,R + 1) \ B(O,R);R

2). If ϕ is a smooth cut-off function equal to 1 on
B(O,R) and with support in B(O,R + 1), v′

n = vnϕ has bounded support and is
such that ε(v′

n) → ε(v) strongly in L2(B(O,R + 1); S 2×2).
We have therefore shown that it is enough to consider in (3.17) test displacements

v which are in H 1(R2 \ (Γ i ∪ Γ );R
2)—in lieu of H 1

loc(R
2 \ (Γ i ∪ Γ );R

2)—and
vanish outside some large ball B(O,R), R > r > 0.

Since Γε converges in the sense of Hausdorff to Γ , [(Ω \γ i)/ε\Γε ∩B(O,R+1)]
converges in the sense of the complementary Hausdorff topology to R

2 \ (Γ i ∪ Γ ) ∩
B(O,R + 1), so that, according to, e.g., Lemma 3.4 in Bucur and Varchon (2000),
there exist functions vε ∈ H 1((Ω \ γ i)/ε \ Γε;R

2) such that
{

vε → v, strongly in L2(B(O,R + 1);R
2)

∇vε → ∇v, strongly in L2(B(O,R + 1);R
2×2),

where the gradients are extended by 0 outside their natural domain of definition.
Since vε → 0 strongly in L2(B(O,R + 1) \ B(O,R);R

2), the same truncation by ϕ

as in the previous paragraph implies that v′
ε = ϕvε are functions in H 1((Ω \ γ i)/εj \

Γj ;R
2) which vanish on R

2 \ B(O,R + 1), and are such that vε → v, ∇vε → ∇v,
strongly in L2(R2;R

2). Moreover, for ε small enough, B(O,R + 1) ⊂ Ω/ε so that
each vε is an admissible test functions for (3.15).

We pass to the limit with v = vε in (3.15) and deduce that (3.17) holds. Hence
the right-hand side of (3.16) is F Γ i

(Γ ) and Theorem 3.1 is proved. In particular, al-
though we had to consider a subsequence to assert the convergence of ŵε to some
limit, the corresponding limit of 1

ε
F γ i

(εΓε) is independent of the choice of this
subsequence and, therefore, the convergence (3.1) of the whole sequence is estab-
lished. �

Theorem 3.1 also applies to the case where Ω = R
2, with γ i replaced by Γ i ∪

[O,M] where
−−→
OM = 	e (	e, a unit vector in R

2), provided that we adopt (3.10) as
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definition for 1
ε

F γ i
(εΓ ), with the appropriate change in the test fields. Specifically,

we obtain the following.

Theorem 3.5 Assume that Γε is a Hausdorff-converging sequence of elements of
AM, with supε H1(Γε) < ∞, and denote by Γ its Hausdorff limit. Then defining

F Γ i∪[O,M]∞ (εΓε) := (
F Γ i ([O,M] ∪ εΓε

) − F Γ i ([O,M])),

we have

lim
ε

1

ε
F Γ i∪[O,M]∞ (εΓε) = F Γ[O,M](Γ ).

The definition of F Γ[O,M](Γ ) is identical to that of F Γ i
(Γ ), provided that O is re-

placed by M as the origin, Γ i is replaced by Γ[O,M] := R
−	e, and the displacement

field u0
O by u0

M defined as follows. Consider

û0 := ŵ + u0
O, (3.19)

where ŵ is the solution to (3.17) with Γ = [O,M]. Then as in (2.2), û0 = u0
M + z,

where

u0
M = √|x|(KM

1 φM
1 + KM

2 φM
2

);
here |x| is the distance from the point M , φM

1 and φM
2 depend only on the polar

angle with respect to the direction 	e, and z is an H 2-function in a neighborhood of
the point M .

Proof For Γε ∈ AM converging in the sense of Hausdorff to Γ , we consider, for R

large enough so that [O,M] ∪ εΓε ⊂ B(O,R), with F Γ i
defined in (3.2),

F Γ i∪[O,M]∞ (εΓε) = F Γ i ([O,M] ∪ εΓε

) − F Γ i ([O,M])

= min

{
1

2

∫

R2
Cε(w) · ε(w)dx +

∫

B(O,R)

Cε
(
u0

O

) · ε(w)dx

−
∫

∂B(O,R)

Cε
(
u0

O

) · (w ⊗ ν)dH1 − 1

2

∫

R2
Cε(ŵ) · ε(ŵ)dx

−
∫

B(O,R)

Cε
(
u0

O

) · ε(ŵ)dx

+
∫

∂B(O,R)

Cε
(
u0

O

) · (ŵ ⊗ ν)dH1 :

w ∈ H 1
loc

(
R

2 \ (
Γ i ∪ [O,M] ∪ εΓε

);R
2)

}
. (3.20)
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Then setting in turn w := w − ŵ, simple algebra transforms (3.20) into

F Γ i∪[O,M]∞ (εΓε) = min

{
1

2

∫

R2
Cε(w) · ε(w)dx +

∫

B(O,R)

Cε
(
û0) · ε(w)dx

−
∫

∂B(O,R)

Cε
(
û0) · (w ⊗ ν)dH1

+ 1

2

∫

R2\B(O,R)

Cε(ŵ) · ε(w)dx

+
∫

∂B(O,R)

Cε(ŵ) · (w ⊗ ν)dH1 :

w ∈ H 1
loc

(
R

2 \ (
Γ i ∪ [O,M] ∪ εΓε

);R
2)

}
. (3.21)

Now, for any w as in (3.21),

1

2

∫

R2\B(O,R)

Cε(ŵ) · ε(w)dx +
∫

∂B(O,R)

Cε(ŵ) · (w ⊗ ν)dH1 = 0.

Indeed, according to an argument identical to that used at the end the proof of Theo-
rem 3.1, it suffices to check this equality for w ∈ H 1(R2 \ (Γ i ∪ [O,M] ∪ εΓε);R

2),
with compact support. But the equality holds true for such w’s because, according
to (3.17),

−div
(

Cε(ŵ)
) = 0, in R

2 \ B(O,R),R large enough.

Thus,

F Γ i∪[O,M]∞ (εΓε) = min

{
1

2

∫

R2
Cε(w) · ε(w)dx +

∫

B(O,R)

Cε
(
û0) · ε(w)dx

−
∫

∂B(O,R)

Cε
(
û0) · (w ⊗ ν)dH1 :

w ∈ H 1
loc

(
R

2 \ (
Γ i ∪ [O,M] ∪ εΓε

);R
2)

}
. (3.22)

Now, if r is such that Γε ⊂ B(M, r) for ε small enough, which is possible since
Γε converges to Γ in the sense of Hausdorff, then, if ε is also small enough so that
B(M, rε) ⊂ B(O,R),

∫

B(O,R)\B(M,rε)

Cε
(
û0) · ε(w)dx

=
∫

∂B(O,R)

Cε
(
û0) · (w ⊗ ν)dH1 −

∫

∂B(M,rε)

Cε
(
û0) · (w ⊗ ν)dH1. (3.23)
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Indeed, thanks to Remark 2.3 and to (3.17), and because in the case of a line segment,
û0 ∈ H 1(B(O,R) \ (Γ i ∪ [O,M]),

−div
(

Cε(û0)
) = 0, in B(O,R) \ B(M, rε).

Collecting (3.22), (3.23), we obtain

1

ε

(
F Γ i ([O,M] ∪ εΓε

) − F Γ i ([O,M])) = 1

ε
F Γ i∪[O,M]∞ (εΓε),

where, for Γ ∈ AM, F Γ i∪[O,M]∞ (Γ ) can be defined, for any r such that Γ ⊂ B(M, r),
as

F Γ i∪[O,M]∞ (Γ ) := min

{
1

2

∫

R2
Cε(w) · ε(w)dx +

∫

B(M,r)

Cε
(
û0) · ε(w)dx

−
∫

∂B(M,r)

Cε
(
û0) · (w ⊗ ν)dH1 :

w ∈ H 1
loc

(
R

2 \ (
Γ i ∪ [O,M] ∪ Γ

);R
2)

}
. (3.24)

In particular, when Γ = εΓε , we can replace r by εr .

Remark that 1
ε

F Γ i∪[O,M]∞ (εΓε) also reads as

1

ε
F Γ i∪[O,M]∞ (εΓε) = − 1

2ε

∫

R2
Cε

(
wΓ i∪[O,M]∪εΓε

) · ε(wΓ i∪[O,M]∪εΓε
)

dx,

where wΓ i∪[O,M]∪εΓε is a solution to the associated Euler equation, hence upon the
usual rescaling

{
w̌ε(y) := wΓ i∪[O,M]∪εΓε (M + εy)/

√
ε,

û0
ε(y) := û0(M + εy)/

√
ε,

as
1

ε
F Γ i∪[O,M]∞ (εΓε) = −1

2

∫

R2
Cε(w̌ε) · ε(w̌ε)dx,

where w̌ε is a solution to
∫

R2
Cε(w̌ε) · ε(v)dx = −

∫

B(M,r)

Cε
(
û0

ε

) · ε(v)dx +
∫

∂B(M,r)

Cε
(
û0

ε

) : (v ⊗ ν)dH1,

with test functions v ∈ H 1
loc(R

2 \ ((Nε + Γ i) ∪ [Nε,M] ∪ Γε);R
2) with ε(v) ∈

L2(R2; S 2×2) and where Nε is defined through
−−−→
MNε = 1

ε

−−→
MO .

The proof of Theorem 3.1 for F Γ i∪[O,M]∞ is identical, provided that the lower
bound estimate in (3.4) still holds true in this new setting. To this effect, we have to
establish the analogue of (2.8) in the present context, i.e.,

F Γ i∪[O,M]∞ (Γ ) ≥ −C

∫

R2
|τ |2 dx, (3.25)
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for all τ with τ ∈ L2(R2 \ (Γ i ∪ [O,M]);R
2 × R

2) symmetric such that
∫

R2
τ · ε(w)dx +

∫

B(M,r)

Cε
(
û0) · ε(w)dx −

∫

∂B(M,r)

Cε
(
û0) · (w ⊗ ν)dH1 = 0,

(3.26)
for all w ∈ H 1

loc(R
2 \ (Γ i ∪ [O,M] ∪ Γ );R

2) with ε(w) ∈ L2(R2 \ (Γ i ∪ [O,M] ∪
Γ ); S 2×2).

To establish (3.25), we simply note that, in view of (3.24), convex duality permits

to rewrite the expression F Γ i∪[O,M]∞ (Γ ) as

F Γ i∪[O,M]∞ (Γ ) = max
τ

[
−1

2

∫

R2
C−1τ · τ dx

+ min
w

{∫

R2
τ · ε(w)dx +

∫

B(M,r)

Cε
(
û0) · ε(w)dx

−
∫

∂B(M,r)

Cε
(
û0) · (w ⊗ ν)dH1

}]
.

Clearly, the minimum is −∞ unless τ is such that
∫

R2
τ · ε(w)dx +

∫

B(M,r)

Cε
(
û0) · ε(w)dx −

∫

∂B(M,r)

Cε
(
û0) · (w ⊗ ν)dH1 = 0,

hence the sought result (3.25).
Now, consider ϕ ∈ C∞

0 (R2) with ϕ ≡ 1 inside B(M, r) and ≡ 0 outside B(M,2r).
Take τ ≡ Cε(w̌) in B(M, r), with w̌ a minimizer in the definition (3.24) of

F Γ i∪[O,M]∞ (Γ ), and τ ≡ ε(v) + ϕCε(w̌) in B(O,2r) \ B(O, r) with
{

div ε(v) = −div(ϕCε(w̌)) in B(M,2r) \ (B(M, r) ∪ Γ i ∪ [O,M])
ε(v) · ν = 0 on ∂B(M,2r) ∪ ∂B(M, r) ∪ Γ i ∪ [O,M]

with ν the exterior normal to B(M,2r) \ B(M, r), or the normal to Γ i ∪ [O,M].
Then, τ satisfies (3.26) and is thus an admissible test in inequality (3.25).

From this point on, the proof of the lower bound is similar to that in Lemma 2.4.
The remainder of the proof is identical to that of Theorem 3.1. �

In the setting of Lemma 2.6, consider a sequence {lj ↘ 0} such that 1
l j

Γ (lj )

converges in the sense of Hausdorff with j ↗ ∞. Then we adopt the following gen-
eralization of the classical energy release rate to a path that belongs to AO (instead
of being a smooth curve).

Definition 3.6 The energy release rate associated to Γ (lj ) is the limit, if it exists of

− 1
lj

F γ i
(Γ (lj )).

According to Theorem 3.1, that limit does exist, and, if all Hausdorff limits of
Hausdorff converging subsequences are identical (in the smooth add-crack case of
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Remark 2.7, for example), then there is only one energy release rate, namely,

lim
l↘0

−1

l
F γ i (

Γ (l)
)
.

Combining Lemma 2.6 with Theorem 3.1, we immediately obtain the following.

Corollary 3.7 Assume that Γ (l) ∈ AO also satisfies Assumption A7 for some l0, as
well as (2.11). Then the energy release rate associated with (a Hausdorff converging

sequence of) Γ (l)/ l is given by −F Γ i
([O,M]) where [O,M], with |−−→OM| = 1, is

the corresponding Hausdorff limit (of that sequence).

Remark 3.8 All segments [O,M] with M ∈ ∂B(O,1) can be attained as Hausdorff
limits of a sequence of Γ (l) with Γ (l) ∈ AO, satisfying (2.11) and Assumption A7
for each l, as is obviously demonstrated by taking Γ (l) := l[O,M].

In the light of the previous corollary and of Remark 3.3, it is natural to investigate

1. The nature of the minimizers for

min
Γ ∈AO

1

{
F Γ i

(Γ )
}
,

that we now know do exist. In particular, are unit length line segments among
those?

2. The value of the maximal energy release rate among all possible Γ (l) ∈ AO that
also satisfy (2.11), but not Assumption A7.

We address these in the next section, at least in the isotropic case; see Remark 2.1.

4 Maximal Energy-Release Rates

Our first result provides a complete answer, albeit generically in the negative, to the
first question formulated at the close of the previous section. To this effect, we further
specialize (2.10) in Remark 2.5 to the case where K2 �= 0. This is the most interesting
case because it is “universally” believed that, when K2 = 0,

G1 = Gclas

(
:= min

M∈∂B(O,1)

{
F Γ i ([O,M])}

)
= −F Γ i ([O,M0]

)
, with

[O,M0] = 	e1. (4.1)

The result is the object of the following theorem, whose proof is conditional upon
a conjecture on the transfer matrix between stress intensity coefficients (see Conjec-
ture 4.3 below). In Remark 4.4, we explain why we believe that the conjecture is
correct and what could occur, should this conjecture fail.

Also, we have been unable however to locate a precise reference that proves (4.1).
For our part, we prove this in Remark 4.5, conditionally upon yet another conjecture
on the transfer matrix.
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Theorem 4.1 The notation is that of Theorem 3.1 and of Remark 3.3. Then provided
that

K2 �= 0 in (2.2), (4.2)

and also that Conjecture 4.3 holds true, then

−G1 = min
Γ ∈AO

1

{
F Γ i

(Γ )
}

< min
M∈∂B(O,1)

{
F Γ i ([O,M])} := −Gclas,

where AO
1 was defined in (3.5).

Proof Consider a point M ∈ ∂B(O,1) such that F Γ i
([O,M]) := −Gclas. Note that

such a point exists because, if Mn ∈ ∂B(O,1) is a infimizing sequence, then a sub-
sequence, still indexed by n converges to M ∈ ∂B(O,1). According to Remark 3.8,
[O,Mn] is attained as a Hausdorff limit, so that, in view of (3.12), ŵn, the solu-
tion of the Euler equation (3.17) associated with F Γ i

([O,Mn]) satisfies (3.13). But
then, ε(ŵn) converges to some ε(ŵ) weakly in L2(R2; S 2×2) with ŵ ∈ L2

loc(R
2 \

(Γ i ∪ [O,M]);R
2). For every test function v ∈ H 1

loc(R
2 \ (Γ i ∪ [O,M]);R

2) with
ε(v) ∈ L2(R2; S 2×2), it is a simple matter to construct a sequence vn of test functions
in H 1

loc(R
2 \ (Γ i ∪ [O,Mn]);R

2) with ε(v) ∈ L2(R2; S 2×2)—simply write v, then
vn in the form v(r, θ − θM), resp. v(r, θ − θMn) with obvious notation—so that both
vn and ∇vn converge strongly in L2

loc(R
2;R

2). Passing to the limit in (3.17) with
Γ = [O,Mn] and v = vn, we conclude that ŵ satisfies (3.17) with Γ = [O,M].

Now consider 1
ε

F Γ i∪[O,M]∞ (ε[M,N ]) with N ∈ ∂B(M,1). Then according to
Theorem 3.5,

1

ε
F Γ i∪[O,M]∞

(
ε[M,N ]) → F Γ[O,M]([M,N ]).

We will have proved the assertion of the theorem if we can find a point N such
that

F Γ[O,M]([M,N ]) < F Γ i ([O,M]), (4.3)

because then, for η small enough,

1

η
F Γ i∪[O,M]∞

(
η[M,N ]) < F Γ i ([O,M]),

where η[M,N ] is the η-homothetic of [M,N ] about M , hence, in view of the defin-

ition of F Γ i∪[O,M]∞ in Theorem 3.5,

1

(1 + η)
F Γ i ([O,M] ∪ η[M,N ]) < F Γ i ([O,M]).

But

1

1 + η
F Γ i ([O,M] ∪ η[M,N ]) = F Γ i

(Σ),
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with

Σ := 1

1 + η

{[O,M] ∪ η[M,N ]} ∈ AO, and H1(Σ) = 1, (4.4)

so that finally we obtain

−G1 ≤ F Γ i

(Σ) < F Γ i ([O,M]) = −Gclas.

The proof of (4.3) relies on “classical results” in the mathematical theory of stress
intensity factors in fracture mechanics. It corresponds to the computation of the en-
ergy release rate associated to a straight line segment starting from the crack tip of a
semi-infinite straight crack (Γ i , or Γ[O,M]). Set, as in Theorem 3.5,

û0 := ŵ + u0
O,

as well as

ˆ̂u0 = ˆ̂w + û0,

where ŵ, ˆ̂w are respectively the functions that satisfies (3.17) for any v ∈ H 1
loc(R

2 \
(Γ i ∪ [O,M]);R

2), resp. v ∈ H 1
loc(R

2 \ (Γ[O,M] ∪ [M,N ]);R
2), with ε(v) ∈

L2(R2; S 2×2).
According to Dauge (1988), Grisvard (1989), the singular parts of û0, ˆ̂u0 are re-

spectively

u0
M = √|x|(KM

1 φM
1 + KM

2 φM
2

)
, u0

N = √|x|(KN
1 φN

1 + KN
2 φN

2

)
,

|x| being this time the distance to the point M , resp. N , and φM
i ,φN

i being functions

of the polar angle with respect to the directions
−−→
OM,

−−→
MN , respectively. The stress

intensity factors KM
1 ,KM

2 , resp. KN
1 ,KN

2 , are different from those in (2.2), but they
satisfy

(
KM

1 ,KM
2

)T = F(θ)(K1,K2)
T,

(
KN

1 ,KN
2

)T = F(θ ′)
(
KM

1 ,KM
2

)T
, (4.5)

where θ, θ ′ are the polar angles

θ := ̂
(
	e1,

−−→
OM

)
, θ ′ := ̂

(−−→
OM,

−−→
MN

)

and the 2×2-matrix F is a universal analytic function of the polar angle (cf. Leblond
1989).

Remark 4.2 We wish to briefly elaborate on the universal character of the matrix F

established in Leblond (1989). Clearly, the field u0
O depends upon the elasticity of the

material, as well as upon the boundary conditions imposed on ∂Ω from the outset.
This is reflected in the values of the stress intensity factors K1 and K2. Then the so-
lution to the problem for γ i ∪ [O,M] is always given by (3.19) with ŵ the solution
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to (3.17), and this independently of whether we started with Dirichlet boundary con-
ditions, or any other kind of reasonable boundary condition on ∂Ω . The solution ŵ

can be in turn decomposed as ŵ = K1ŵ1 + K2ŵ2 with obvious notation.
The stress fields associated with ŵ1 or ŵ2, are in turn independent of the

elasticity of the material, or of the boundary condition imposed on ∂Ω . Indeed,
the stress fields σ1, σ2 associated to φ1, φ2 are so, thus the Airy functions ψ1,
ψ2 associated with Cε(ŵ1), Cε(ŵ2) are biharmonic functions in H 2

loc
(R2 \ (Γ i ∪

[O,M])) with boundary conditions on Γ i ∪ [O,M] that only depend on the an-
gle θ . The precise boundary conditions are obtained upon replacing τxx, τxy, τyy by
∂2ψ/∂y2,−∂2ψ/∂x∂y, ∂2ψ/∂x2, respectively, in (3.26), with Cε(u0

M) replaced by,
respectively, σ1, σ2, and by suitable integration by parts.

The determining fact that the Airy potential is biharmonic of course specific to 2d
isotropic elasticity and the result would fail in any other context.

The computation of F Γ[O,M]([M,N ]) is intimately connected to that of KN
1 ,KN

2 .
Indeed, according to Theorem 3.2 in Destuynder and Djaoua (1981), and because we
now know, thanks to Dauge (1988), Grisvard (1989), that Assumption (H1) of that
theorem is correct,

F Γ[O,M]([M,N ]) = −C(λ,μ)
((

KN
1

)2 + (
KN

2

)2)
, (4.6)

where C(λ,μ) is an explicit positive function of the Lamé coefficients that depends
on the adopted setting, i.e., plane strain, plane stress, or pure two-dimensional elas-
ticity. (In Destuynder and Djaoua 1981, the adopted setting is plane stress.)

In view of (4.6), showing (4.3) amounts to showing that the maximum value of
(KN

1 )2 + (KN
2 )2 is never obtained for θ ′ = 0. Indeed, when θ ′ = 0, Σ defined in (4.4)

is precisely [O,M], so that, if the maximal value is never attained at θ ′ = 0, then that
value is strictly greater than −F Γ i

([O,M]) = Gclas, so that (4.3) must be satisfied.
The following expansion of F(ζ ) as a function of ζ in a neighborhood of ζ = 0 is

derived in Amestoy and Leblond (1992):
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

F11(ζ ) = 1 − 3
8ζ 2 + ( 1

π2 − 5
128

)
ζ 4 + ( 1

9π4 − 11
72π2 + 119

15360

)
ζ 6 + O(ζ 8),

F12(ζ ) = − 3
2ζ + ( 10

3π2 + 1
16

)
ζ 3 + (− 2

π4 − 133
180π2 + 59

1280

)
ζ 5 + O(ζ 7),

F21(ζ ) = 1
2ζ − ( 4

3π2 + 1
48

)
ζ 3 + (− 2

3π4 + 13
30π2 − 59

3840

)
ζ 5 + O(ζ 7),

F22(ζ ) = 1 − ( 4
π2 + 3

8

)
ζ 2 + ( 8

3π4 + 29
18π2 − 5

128

)
ζ 4 + O(ζ 6).

(4.7)

For θ ′ = 0 to be a maximum of ((KN
1 )2 + (KN

2 )2)(θ ′), we must have in particular
that its derivative at 0 is 0. This implies that

(
F ′

12(0) + F ′
21(0)

)
KM

1 KM
2 = 0,

or still, since F ′
12(0) + F ′

21(0) = −1,

KM
1 KM

2 = 0.
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If KM
1 = 0, we must have F 2

12(ζ ) + F 2
22(ζ ) ≤ 1,∀ζ , which is clearly not the case

near 0 in view of (4.7), except if KM
2 is also 0. So, we may as well assume that

KM
2 = 0.

But then, since M is also such that F Γ i
([O,M]) := −Gclas, we conclude that θ

must satisfy
{

F21(θ)K1 + F22(θ)K2 = 0,

F ′
11(θ)K1 + F ′

12(θ)K2 = 0,
(4.8)

the second relation holding true because the derivative of ((KM
1 )2 + (KM

2 )2)(ζ ) must
be 0 at ζ = θ . But, this is impossible, since K2 �= 0, unless θ = 0, because by as-
sumption, we assume the validity of the following conjecture.

Conjecture 4.3 For all ζ �= 0 ∈ (−π,π), F21(ζ )F ′
12(ζ ) �= F22(ζ )F ′

11(ζ ).

We have thus reached a contradiction upon assuming that the maximum value of
(KN

1 )2 + (KN
2 )2 is obtained for θ ′ = 0, unless θ = 0.

Now, if θ = 0, then 0 is a maximizer for ((KM
1 )2 + (KM

2 )2)(θ), so that, as before,
K1K2 = 0, hence, since K2 �= 0, K1 = 0. But then, (F 2

12 + F 2
22)(θ) = 1 + (3/2 −

8/π2)θ2 + O(θ4) must be maximal at 0, which is clearly not so. �

Remark 4.4 According to formulae (4.7), the following expansion holds true:

F21(ζ )F ′
12(ζ )

F22(θ)F ′
11(ζ )

= 1 − 8ζ 4

135π2
+ O(ζ 6), (4.9)

and thus Conjecture 4.3 is certainly verified when ζ ≈ 0. For large ζ ’s, the corroborat-
ing evidence is numerical: In Amestoy (1987), the author provides numerical values
for the Fij ’s every 5° till 90°, then every 10° for larger angles, while Amestoy and
Leblond (1992) give an expansion of those coefficients, up to order 21. The fit is
rather impressive. For example, at ζ = π/2, the values given in Amestoy (1987) are

F11(π/2) = 0.371, F12(π/2) = −1.193,

F21(π/2) = 0.346, F22(π/2) = −0.195,

while those given by the expansion in Amestoy and Leblond (1992) are

F11(π/2) = 0.3719, F12(π/2) = −1.1935,

F21(π/2) = 0.3481, F22(π/2) = −0.1966.

Using the expansion of Amestoy and Leblond (1992) in the interval [−π/2,π/2],
then curve-fitting with Amestoy (1987) for larger angles yields the numerical curves
for the Fij ’s in Fig. 1.

Also, because of the expansions in Amestoy and Leblond (1992), F22 becomes 0
for ζ = ±ζ2 with ζ2 ≈ 0.430π , while F ′

12 becomes 0 for ζ = ±ζ1 with ζ1 ≈ 0.425π ;
note that ζ1 < ζ2. The ratio F ′

12(ζ )F21(ζ )/F ′
11(ζ )F22(ζ )—an even function of ζ—

is seen on Fig. 2 to be strictly decreasing as ζ grows from 0 to ζ1. In the interval
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Fig. 1 The Fij ’s computed

Fig. 2 Numerical check of the
validity of Conjecture 4.3 on
[−ζ1, ζ1]

(ζ1, ζ2), that ratio is negative and thus the conjecture must be satisfied there. Hence,
it is satisfied on (−ζ2,+ζ2).

The expansions in Amestoy and Leblond (1992) are not sufficient for an accurate
computation of that ratio over the interval [ζ2,π). However, a simple manipulation
using the signs and parity properties of the Fij ’s, F ′

ij ’s would establish that there is

no value θ outside the interval (−ζ2, ζ2) that maximizes (KM
1 )2 + (KM

2 )2 and such
that KM

2 = 0.

Remark 4.5 Arguments very similar to those used in the previous proof would
demonstrate that, when K2 = 0, then, in the notation of that proof, θ = θ ′ = 0, pro-
vided that

(
F11(ζ )

)2 + (
F21(ζ )

)2
< 1, ζ �= 0. (4.10)

Once again, this is certainly true, according to (4.7), when ζ ≈ 0. For large ζ ’s, the
corroborating evidence is, once again, numerical, cf. Fig. 3.
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Fig. 3 Numerical check that
(KM

1 )2 + (KM
2 )2 is maximal at

θ = 0 when K2 = 0, see (4.10),
according to the values in
Amestoy (1987), Amestoy and
Leblond (1992)

The answer to the second question formulated at the end of Sect. 3 is a bit more
involved. Indeed, although we have just exhibited in Theorem 4.1 a set Γε = εΣ ,
with Σ ∈ AO

1 which strictly decreases F Γ i
, so that, according to Theorem 3.1, for ε

small enough, the energy increment rate

−1

ε

{
1

2

∫

Ω

(
Cε

(
uΓε

) · ε(uΓε
) − Cε

(
u0) · ε(u0))dx

}
> Gclas, (4.11)

we have not produced a sequence li ↘ 0 with the ordering property (2.11) such that
there exists an energy release rate for that sequence, and such that energy release rate
strictly exceeds Gclas.

In order to reach a meaningful result, we must introduce a notion of metastability
during a crack evolution. Specifically, in the setting of Sect. 2, assume that there exists
a “smooth enough” evolution starting at γ i . In other words, assume that the crack will
extend from γ i along a path Γ and that

S1. Γ ∈ AOand satisfies Assumption A7;
S2. u0 is a function of the time t , such that, if Γ (t) denotes the add-crack at time t ,

and l(t) its length, the following properties hold:
S3. Γ (t) ∈ AO and satisfies the ordering property in (2.11);
S4. Γ (t) ⊂ Γ ;
S5. l(0) = 0 and l(t) is continuous and strictly increasing in a neighborhood

[0, t0), t0 > 0, of 0.

Griffith’s criterion for crack evolution states that, under such conditions, the en-
ergy release rate at time t , denoted by G(t), must be such that

G(t) = k, (4.12)

where k is a material characteristic sometimes called the fracture toughness. Accord-
ing to Lemma 2.6 and to Theorem 3.1, G(0) does exist and its value is less than or
equal to Gclas.

Now, we adopt a “natural” metastability condition and refer the reader to Bourdin
et al. (2008) for a discussion of the merits of such an assumption and of its relevance
to classical fracture mechanics. See also Larsen (2010) for a different, but related
approach to the stability of cracks.
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Metastability For all t ≥ 0, there exists 0 < εt � 1 such that

γ i ∪ Γ (t) minimizes
1

2

∫

Ω

Cε
(
uΓ

) · ε(uΓ
)

dx + kH1(uΓ
)

(4.13)

among all Γ ’s in AO, with Γ ⊃ Γ (t) and H1(Γ \ Γ (t)) ≤ εt . In the last integral,
uΓ is a solution to the elastic equilibrium on Ω \ (γ i ∪ Γ ) with boundary condition
u ≡ u0(t) outside Ω .

We use the above metastability at time t = 0. Since Γ (0) = ∅, then necessarily,

− 1

H1(Γ )
F γ i

(Γ ) ≤ k, ∀Γ ∈ AO with H1(Γ ) ≤ ε. (4.14)

However, choose Γ = Γε satisfying (4.11). Then with such an admissible Γ , we find
that

Gclas < k,

so that, in particular

G(0) < k,

a contradiction with Griffith’s criterion. We have thus reached the following conclu-
sion, which we state as a proposition.

Proposition 4.6 If a crack evolution starting from the tip of γ i satisfies metastability
in the sense of (4.13), as well as Griffith’s criterion (4.12), then it cannot satisfy
Assumptions S1 to S5.

In other words, assuming metastability, a connected add-crack cannot grow con-
tinuously in time along a path which has density 1

2 at the crack tip. If it grows con-
tinuously in time it must grow along a crack with higher density (like a branching
crack), or, if it grows along a crack of density 1

2 , it must do so brutally, i.e., with a
jump in length at time t = 0.

It is not our purpose here to expound the consequences of this result and we refer
the interested reader to Chambolle et al. (2009) for a detailed investigation of the
impact of such a result. However, note that our result prohibits, modulo metastability,
the coexistence of crack that would follow a “smooth” path and grow smoothly in
time, which is precisely the starting point of most studies on crack kinking in fracture
mechanics.

5 Concluding Remarks

As already discussed in the Introduction, this work is in part our contribution to the
Gmax versus K2 = 0 debate which has been and remains a controversial topic in the
fracture mechanics community. We do not reiterate the conclusions of the preceding
section but wish to emphasize that those conclusions hinge on three ingredients.
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First, we assume meta-stability of the crack at each time. Rejection of this pos-
tulate completely invalidates our contribution. Once again, meta-stability is a very
widespread assumption in many fields of mechanics, starting with finite elasticity
(Ball 1977), but commonality of belief is no voucher for the veracity of that belief.

Then we assume the truth of Conjecture 4.3. Numerical evidence, provided above,
seems to corroborate the conjecture. Remark that, was this conjecture to be false, an-
alyticity would imply that kinking can only occur along universal angles that would
not depend upon the elasticity or the material, the shape of the domain, or the bound-
ary conditions (see Remark 4.2). That would also fix the ratio K1/K2, provided that
K2 �= 0 for those angles, and this independently of the same parameters.

Finally, our mathematical arguments are based on the definition of an energy re-
lease rate for add-cracks that live in a family of connected 1 dimensional sets of finite
Hausdorff measure. This is the focus of Sect. 3 and represents the other part of the
work presented in this paper. That contribution is independent of the first two ingre-
dients and constitutes, to our knowledge, the first attempt at defining rigorously an
energy release rate on a finite domain by connecting it, through blow up, to a compu-
tation on an infinite domain.

As a final note, the class of add-cracks for which our energy release rate is well de-
fined is much larger that considered in the literature since it encompasses essentially
all connected add-cracks of finite length. Of course, removing connectedness would
be a great step forward. This would most likely entail a reformulation of the energy
release rate solely in terms of the kinematic variable—the displacement u—that will
then live in SBD(Ω), the crack being the jump set S(u) of u, or more precisely its
closure. None of the tools that have been developed in Chambolle (2003), Chambolle
et al. (2008) and used in the present study apply; in particular, we do not even know
that H1(S(u) \ S(u)) = 0 in such a setting.
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