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Abstract Nonlinear optimal perturbations are defined here as those of minimum energy leading to subcritical instability. We

show that a necessary condition for an initial perturbation to be a nonlinear optimal is that the initial perturbation

energy growth is zero. The fulfillment of this condition does not depend on the disturbance amplitude but only

on the linearized operator as long as the nonlinearity conserves energy. Saddle point solutions and linear optimal

perturbations leading to maximum transient growth both satisfy the nonlinear optimality condition. We discuss these

issues on low dimensional models of subcritical transition for which nonlinear optimals and the minimum threshold

energy are computed.
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1. Introduction

The transition to turbulence in wall bounded shear flows has fascinated scientists since Reynolds’ exper-

iments in 1883 and is still not completely understood. Some of these flows, such as plane Couette flow and

pipe Poiseuille flow, experience a transition to turbulence despite the linear stability of the laminar basic

flow for all Reynolds numbers R. The fact that a turbulent state is observed for sufficiently large R is under-

stood as an example of conditional stability, where asymptotic stability is guaranteed only if the energy of

the perturbations E is lower than a threshold δ(R) which depend on the Reynolds number. For low values of

the Reynolds number R < RG, the threshold δ is infinite and the flow is said to be globally stable. However,

for R > RG, the threshold δ is finite and is thought to decrease with increasing R making the observation

of the laminar basic flow less and less likely at large R. The direct computation of the curve δ(R), which is

the scope of nonlinear hydrodynamic stability theory, is currently out of reach. Different types of stability

analyses have therefore provided, along the years, upper and lower bounds on RG and/or on δ(R) itself or

on its scaling with R as R → ∞.

Energy theory (see Joseph, 1976 for a throughout account) provides a lower bound on RG by providing

sufficient conditions for monotonic stability. The idea is to start from the evolution equation for the energy of

perturbations and then to maximize dE/dt over all admissible perturbations at given R. Through variational

calculus it is possible to find a critical Reynolds number RE such that if R < RE then dE/dt < 0 ∀u. The

lower bounds RE given by this kind of theory can however be far below the observed values of RG.

A ‘global bifurcation’ perspective, completely different from the classical nonlinear stability analysis

has emerged (Nagata, 1990, Clever and Busse, 1992 and many others thereafter) by looking for non-trivial

solutions of the Navier-Stokes equations instead of examining the stability of the basic flow itself. In this

approach, one usually looks for saddle-node bifurcations. Even if this kind of approach provide useful

informations on the complexity of the phase space, for the moment it is not very effective in helping finding

δ. The main problems are (a) that standard techniques only allow for the search of ‘simple’ limit sets such

as fixed points or limit cycles and are therefore unable for instance to provide upper bounds for δ if the

non-trivial attractors are not steady or periodic solutions, (b) that one is never sure to have found all the

nontrivial attractors and (c) that to compute δ one should compute the envelope of all the basins of attraction

of all the non-trivial attractors which may be more complicated than computing the basin of attraction of
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the laminar flow itself. This approach, appealing for the understanding of the structure of the turbulent flow

itself, may be therefore less adapted to the determination of δ(R).
A complementary approach has emerged recently (see Schmid and Henningson, 2001 for a review) and

has concentrated on the ability of linearly stable laminar shear flows, such as the Couette or Poiseuille

solutions, to sustain, in the linear approximation, transient energy growths EL(t)/E(0) whose maximum

value can attain values of order O(R2) (Gustavsson, 1991, Butler and Farrell, 1992). This huge potential

for transient growth has been related to the strongly non-normal nature of the evolution operator linearized

about the laminar basic flow (see Trefethen et al., 1993 for a review). Low-energy upper bounds on δ(R)
have been obtained by direct numerical simulation using finite amplitude linear optimal perturbations plus

noise as initial condition (Kreiss et al., 1994, Reddy et al., 1998).

The scaling of δ with the Reynolds number has been the subject of debate. Arguments based on the

balance between linear-non-normal energy growth and nonlinear energy feedback applied to model systems

suggested a scaling of the type δ ∼ Rγ with γ < −1 (Trefethen et al., 1993, Baggett and Trefethen,

1997), where the upper limit γ = −1 corresponds to the balance between nonlinear terms and viscous

diffusion (Waleffe, 1995). The scaling estimates of γ provided by direct numerical simulation (Kreiss et al.,

1994, Reddy et al., 1998) and asymptotic analyses (Chapman, 2002) for the Navier-Stokes equations are all

near the −1 value when streamwise vortices or oblique waves are given as initial conditions in the plane

Couette and the plane Poiseuille flow (for R < 5772). Recent experimental results (Hof et al., 2003)

estimate γ = −1 for pipe Poiseuille flow. On the other hand, using estimates on the scaling of the resolvent

norm with R, which is strongly related to the non-normal nature of the linear operator, lower bounds on the

threshold δ(R) have been provided (Kreiss et al., 1994) as reviewed by Henningson in these proceedings.

These analyses provide a lower bound γ > −4 for the plane Couette flow.

Despite the great progress performed in recent years, an important gap still remains between lower bounds

and upper estimates of the scaling exponent γ and of δ(R) itself. One therefore remains wondering if other

initial conditions, not considered in the cited numerical simulations asymptotic analyses and experiments,

would not be able to exhibit values of γ lower than its upper limit −1. Even if the computation of δ(R)
seems still to be out of reach for the Navier-Stokes equations, it is not for model systems that have been used

to mimic the subcritical transition and to propose new ideas for the Navier-Stokes case. The scope of the

present contribution is to compute the nonlinear stability threshold δ(R) itself and the associated nonlinear

optimal perturbations for some low-dimensional models of subcritical transition. It is expected that the

comparison of these results with those issued by previously cited approaches could induce some progress in

the computation of δ(R) in the Navier-Stokes case.

The setting and framework of the problem is laid down in Section 2 where a necessary condition for

nonlinear optimality is derived. Illustrative results, obtained for two representative low-dimensional model

systems of subcritical transition are reported and commented in Section 3. Implications for the Navier-

Stokes equations are briefly discussed and some conclusions are drawn in Section 4.

2. Mathematical formulation

Framework. We are interested in the (nonlinear) asymptotic stability of a linearly stable ‘laminar basic

state’ U with respect to perturbations u. The generic state being written as U + u, by substitution one

obtains the evolution equation for the perturbations:

du/dt = LR u+N (u), (1)

where the ‘laminar basic state’ now corresponds to u = 0. LR is a linear operator depending on the real

parameter R and on the basic flow U while N is a nonlinear operator that we assume to be homogeneous

(i.e. such that N (0) = 0). The initial value problem for equation (1) is solved by giving an initial condition

u0 at t = t0 and considering its evolution u = u(t,u0, R) which depends on time, on the given initial

condition and on the parameter R. The energy of the perturbations is defined in the standard way using a

suitable inner product

E [u(t,u0, R)] =
1

2
〈u,u〉. (2)
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We will denote the energy of the initial condition as E0(u0) = 〈u0,u0〉/2. The evolution equation for the

perturbation energy is obtained by projection of equation (1) on u:

dE
dt

= 〈u,LR u〉+ 〈u,N (u)〉. (3)

We will call ‘energy preserving nonlinear terms’ nonlinear terms with the property that 〈u,N (u)〉 = 0
∀u. This is the case for Navier-Stokes equations and for most of low-dimensional models of subcritical

transition. We will call ‘amplitude’ of u the norm ‖u‖ defined by the standard inner product (therefore

‖u‖ =
√

2 E(u)) and ‘shape’ of u the direction of the corresponding vector in phase space i.e. u/‖u‖.

Minimum threshold energy and nonlinear optimals. The basin of attraction SR of the laminar basic

flow u = 0 at fixed R is given by the set of initial perturbations u0 such that limt→∞ E [u(t,u0, R)]/E0 = 0.

As we assumed U linearly (strictly) stable, its basin of attraction has non-zero measure. The complementary

set UR is made of initial perturbations for which limt→∞ E [u(t,u0, R)]/E0 6= 0; this set has zero measure

as long as the laminar basic flow is globally stable. In the case in which UR has non-zero measure, the

minimum threshold energy can be defined as

δ(R) = min
u0∈UR

E0(u0). (4)

The nonlinear optimal perturbation (from now on abbreviated into NLOP) is the initial perturbation for

which the minimum δ is attained.

A necessary condition of nonlinear optimality. We now show that not all possible initial perturbations

are suitable candidates to be nonlinear optimals (NLOP) but only those that realize a local minimum for the

perturbation energy along the trajectory selected by u0. In fact, in a neighborhood ∆t ≪ 1 of t0, we can

develop the perturbation energy as E [u(t0 + ∆t,u0, R)] = E0 + ∆t (dE/dt)0 +
(

∆t2/2
) (

d2E/dt2)0 +
O(∆t3). If u0 ∈ UR and (dE/dt)0 < 0 then u(t0 + ∆t,u0, R), with ∆t > 0 would also belong to

UR and have a perturbation energy E < E0, and therefore u0 cannot be the NLOP because it is not a

minimum of E . In the case (dE/dt)0 > 0 the same argument with ∆t < 0 demonstrates that u0 is also

not optimal. This proves that a necessary condition for u0 to be a nonlinear optimal perturbation is that

(dE/dt) (t0,u0, R) = 0. If this condition is satisfied an additional condition, by which we make sure to

obtain a local minimum and not a maximum, is that
(

d2E/dt2) (t0,u0, R) ≥ 0.

The ZR set and some of its properties. The necessary condition of optimality allows to restrict the

search of the nonlinear optimals to the set ZR of perturbations of zero energy growth dE/dt = 0. By

substitution in Eq. (3), it is easily verified that these perturbations must satisfy the condition 〈u,LR u〉 +
〈u,N (u)〉 = 0. It is easy to verify1 that all the nontrivial steady solutions ue such as saddles or nodes

necessarily belong to ZR. For systems with energy-conserving nonlinear terms, the perturbations belonging

to ZR satisfy the simpler condition 〈u,LR u〉 = 0. For these systems the ZR set can therefore be determined

by an analysis of the linear operator LR and belonging to that set is a property independent of the amplitude,

i.e. if u0 ∈ ZR then cu0 ∈ ZR.

Linear optimal perturbations. Linear optimal perturbations are computed on the linear system du(L)/dt =
LR u

(L) by a suitable optimization on the initial conditions. We will denote by LOP1 the linear optimals

maximizing the linear transient growth E(L)/E(L)
0 (e.g. Butler and Farrell, 1992, Trefethen et al., 1993). It

can be shown2 that these linear optimal perturbations satisfy the property 〈u,LRu〉. Linear optimals LOP1

therefore also belong to ZR in the case of systems with energy preserving nonlinear terms.

Another type of linear optimal, denoted as LOP2 in the following, can be defined by maximizing the

initial energy growth rate dE(L)/dt. This second type of optimal initial condition has for instance been used

as initial condition to compute the scaling laws of the critical threshold for low-dimensional model systems

(Baggett and Trefethen, 1997). Unless the maximum energy growth rate is zero, this second type of linear

optimal initial condition does not belong to ZR in general.



4

3. Application to low dimensional models

Several low-dimensional models have been considered in order to discuss qualitative features of subcrit-

ical transitions. These models usually share properties of the Navier-Stokes equations that are thought to be

relevant to the subcritical transition: (a) They admit the linearly stable laminar fixed point u = 0 ∀R ; (b)

the linear operator LR is non-normal and is able to induce energy growths of order R2 for sufficiently large

R; (c) nonlinear terms conserve energy. In the following we will compute the minimum threshold energy

and the associated nonlinear optimal perturbations for two of these models. The first is a two-dimensional

system proposed by Dauchot and Manneville, 1997 and is briefly reviewed by Manneville in these pro-

ceedings. It has also been indipendently studied by Baggett and Trefethen, 1997 as TTRD’ model from a

different perspective. We use this simple two-dimensional model to introduce, in a simple case, the tech-

nique by which the nonlinear optimals and threshold are computed. We then apply this technique to a four

dimensional model, proposed by Waleffe, 1997, which is inspired by a low dimensional projection of the

Navier-Stokes equations.

A two-dimensional model

The model. The model is in the form of system (1) with

u =

{

u
v

}

; LR =

[ −1/4R 1
0 −1/R

]

; N (u) =

{

u v
−u2

}

. (5)

where all the variables are real. Using the standard inner product for real vectors the perturbation energy

is defined as E = (u2 + v2)/2. The equation governing the perturbation energy is readily obtained as

dE/dt = −u2/4R + u v − v2/R. The linear operator LR is non-normal and the nonlinear terms conserve

E .

Global dynamics. Many of the properties of system (5) can be computed by hand and its phase space

dynamics has already been described (Dauchot and Manneville, 1997, Manneville in these proceedings).

The laminar basic flow is represented by the trivial solution u = v = 0, coinciding with the origin O in

the phase plane, and is stable for all R. For R < 1 the laminar basic flow O is the sole attractor of the

system and is therefore globally stable. At R = 1 two additional solutions, a stable node A and a saddle S
appear through a saddle-node bifurcation at finite distance from the laminar fixed point so that for R > 1
the stability of laminar basic is only conditional because another attractor (the node A) exists.3

The ZR and the computation of δ and the nonlinear optimals. The states {u0, v0} belonging to ZR

satisfy 〈φ,LR φ〉 = −u20/4R+u0 v0− v20/R = 0 that gives the two solutions v0 = u0
(

R±
√
R2 − 1

)

/2.

The ZR is therefore defined only for R > RE = 1 and corresponds to two straight lines in the phase space

(respectively ZR
+ and ZR

− for the + or − sign of the root). In order to find the minimum threshold energy

one should in principle test the stability of all possible initial conditions with energy (u20 + v20)/2 = E0
starting from very low initial energy levels. These initial conditions corresponds to all the points on a circle

in the phase space. When all the points of the circle corresponding to the given E0 lead to stability, a new,

slightly larger, E0 can be considered and the computation repeated until the first initial condition leading to

instability is encountered (see Figure 1). The necessary condition for optimality allows us instead to test

the stability of only the four points on the circle which intersect the ZR set. To compute the threshold δ
and the corresponding nonlinear optimals we therefore start at sufficiently low E0 and then we integrate up

to tmax = 100R the equations giving as initial condition the “potentially optimal” points of energy E0, on

the set ZR and with (d2E/dt2)0 > 0, which are the two points on the ZR
+ line. For low values of E0 the

two initial conditions lead to asymptotic stability. The initial energy is therefore increased by small steps

∆E0 and the computations repeated at each step. The minimum threshold δ is found as the minimum value

of E0 for which no asymptotic decay of E is observed and the corresponding initial condition represent the

nonlinear optimal. This kind of computation has been repeated for values of R ranging from RE = 1 to

100. The nonlinear results are compared to the results that would have been found using linear optimization

and saddle point tracking in the next paragraph.
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Figure 1. Phase space image of system (5) at R = 2. The two straight lines corresponding to the set ZR are reported as

solid lines; they cross each other in origin corresponding to the laminar basic flow solution. The basin of attraction SR of the

laminar basic flow is given by the white region sourrounding the origin while its complementary UR is represented by the outside

gray-shaded region. Iso-energy initial conditions lie on circles which are also reported in the figure.

Comparison with other results. The phase portrait of system (5) for R = 2 is shown in Figs. 2 and 1. The

linear optimal perturbations maximizing the energy growth (LOP1) lie on the ZR
+ line (as already remarked

by Dauchot and Manneville, 1997) while the corresponding linear optimal response coincides with the ZR
−

line. The linear optimals maximizing the initial energy growth (LOP2) lie on the line reported in between

ZR
+ and ZR

− lines. The set of unstable initial conditions UR had been numerically computed and appears

as the external gray region while the set SR is given by the inner white region sourrounding the laminar

fixed point O. UR and SR are separated by the stable manifold of the saddle S (Dauchot and Manneville,

1997). From Fig. 2 we therefore have a geometrical interpretations of the optimality condition: the minimum

distance of UR from the laminar fixed point O is realized by the nonlinear optimal, denoted by N , which

is situated on the ZR
+ line that is orthogonal to the boundary of the basin of attraction and therefore at

the minimum distance (see also Figure 1). Furthermore, in the present case, the nonlinear optimal and

the linear optimal maximizing energy growth have the same shape. The same point N would have then

been found by checking the stability threshold of linearly-optimal-shaped initial perturbations (LOP1) by

increasing their amplitude (which is essentially the strategy followed by Reddy et al., 1998). The use of

a strategy based on the linear optimals maximizing initial energy growth (Baggett and Trefethen, 1997),

would have led to the critical point M , that, just like the saddle point S, is not only located farther from

O, but also has a shape different from that of N . In Fig. 3 we show the critical amplitudes corresponding

to the described “transition scenarios" as a function of R. The nonlinear minimum threshold amplitude
√

2δ(R) and the critical amplitude found using the LOP1-strategy coincide, while the threshold amplitude

found using the LOP2 strategy is slightly larger but they all scale as ∼ R−3 for R > 10, a scaling predicted

by Baggett and Trefethen, 1997 using non normal-nonlinear balance and by Dauchot and Manneville, 1997

using geometrical considerations. The ratio u0/v0 scales as R−1 for the nonlinear optimals (and therefore

also for the LOP1 linear optimals), while it tends to a constant for the LOP2. The saddle solution S has both
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Figure 2. Phase space portrait of system (5) at R = 2. The laminar fixed point is denoted by O, the saddle by S and the

nonlinear optimal perturbation by N . The basin of attraction SR is given by the white region sourrounding O. The two straight

lines corresponding to ZR
+ and ZR

− are reported respectively as the solid line and the dashed-dotted lines. The LOP2 linear

optimal set is reported as a dotted line.
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Figure 3. Dependence on the R of the (nonlinear) minimum threshold amplitude (2 δ(R))1/2 and of the critical amplitudes

found using the other (LOP1,LOP2 and saddle point) strategies for system (5).

an amplitude scaling ∼ R−2 and a shape u0/v0 ∼ R which are completely different from the other critical

perturbations therefore providing a less useful upper bound for critical thresholds.

Discussion. The coincidence of the shape of linear and non-linear optimal conditions is a general result

for two-dimensional systems under the assumption of sufficiently low threshold energy.4 Some of the con-

clusions that we may infer from the analysis of the two-dimensional model, however, may not extend to

models of higher dimensions. In three dimensions for instance the set ZR would not be given by two lines
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but by a cone and for instance the nonlinear optimals and the linear LOP1 optimals could be on the same

cone without necessarily being on the same line and therefore have the same ‘shape’. This is why we now

repeat our analysis on a four-dimensional model proposed by Waleffe, 1997 which has also the advantage

of including key physical ingredients of the subcritical transition in shear flows.

Waleffe’s model

The model. The four-dimensional model of Waleffe, 1997 is designed to mimic the subcritical instability

of a Couette-like shear flow by a nonlinear self-sustained process involving the amplitude of streamwise

vortices v, of streamwise streaks u, of sinuous perturbations of the streaks w, and of the mean shear m
induced by perturbations. The model can be recast in the form of system (1) with

u =















m
u
v
w















; N (u) =















σmw2 − σu u v
−σw w2 + σumv

σv w
2

(σw u− σmm− σv v)w















. (6)

LR =









−k2m/R 0 0 0
0 −k2u/R σu 0
0 0 −k2v/R 0
0 0 0 −k2w/R− σm









; (7)

The same coefficients as those considered in Waleffe, 1997 have been selected.5 The linear operator becomes

strongly non-normal when R is increased and the nonlinear terms conserve energy.

Global bifurcations. The ‘laminar basic flow’ m = u = v = w = 0 is linearly stable for all R. For

the parameters considered here, the phase space dynamics of the system has has already been investigated (

Waleffe, 1997): the laminar basic flow is the only steady solution of the system up to R = 104.84 where a

saddle node bifurcation takes place and two additional steady solutions appear. The ‘lower branch’ solution

S is a saddle while the upper branch A is an unstable fixed point which become stable at RG = 138.06 thus

rendering the stability of the laminar basic flow only conditional for R > RG.

The set ZR and the computation of δ and of the NLOPs. The perturbation energy is defined through the

standard inner product as E = (m2+u2+v2+w2)/2 and it is easily found that the vectors belonging to the

set ZR must satisfy −(k2mm2
0+k2uu

2
0+k2vv

2
0)/R+σuu0v0− (σm+k2w/R)w2

0 = 0. Non-trivial solutions of

the previous equation exist only when the monotonic stability is lost i.e. for R ≥ RE = 2kukv/σu = 4.89
and uv > 0. To compute δ(R) only initial conditions in the ZR set were considered by randomly selecting

m0, u0 and w0 and by then solving in v0 the equation for ZR, which resulted in a second order equation. Real

solutions for v0 are found when the discriminant of the equation is non-negative, which strongly reduces

the number of initial conditions to be investigated because in a large part of the phase space no solution

belonging to ZR exists. The minimum condition (d2E/dt2)0 > 0 was also checked, reducing the number of

computations even more. Then, the same E0-marching procedure described above for the two-dimensional

model, was used for the four-dimensional system. The minimum threshold energies and the corresponding

nonlinear optimals have then been computed for R ranging from RG = 138 up to R = 1000, where an

asymptotic regime seems to be attained. The results are reported in figure 4 and in table 1 and are compared

to the linear optimals and to the saddle solution in the next paragraph.

Comparison with other results. The linear optimal perturbations maximizing respectively the energy

growth (LOP1) and the initial energy growth rate (LOP2) both systematically have m0 = w0 = 0. Like in

the two-dimensional model previously considered, when R is sufficiently large, u0/v0 scales as R−1 for the

linear optimal perturbations maximizing energy growth (LOP1) while it tends to a constant for the linear op-

timals maximizing energy growth rate (LOP2). The minimum threshold amplitude
√

2δ(R) and the critical

amplitudes obtained using respectively the linear LOP1 and LOP2 optimals both with additional 10−9 noise

as initial condition, are reported in figure 4. The lower branch corresponding to the saddle node S amplitude
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Figure 4. Dependence on the R of the (nonlinear) minimum threshold amplitude (2 δ(R))1/2 and of the critical amplitudes

found using the other (LOP1,LOP2 and saddle point) strategies for system (7) with σm = 0.31.

Type v u w m (2 δ)1/2

NLOP 15R−1.07 89R−2.07 0.00176 e−0.026R 35R−1.99 15R−1.07

LOP1 25R−1.14 189R−2.18
N N 25R−1.14

LOP2 1.9R−0.75 8R−0.97
N N 11R−0.96

Table 1. Asymptotic (R > 500) scaling of the nonlinear optimal perturbations NLOP and of the critical LOP1- and LOP2-shaped

perturbations for system (7). The variables whose amplitude is at almost constant noise level have been denoted by N.

is also shown for comparison. The initial LOP1-shaped perturbations have critical amplitudes converging

to the nonlinear minimum threshold for R sufficiently large, while the LOP2-shaped perturbations, even if

leading to very low critical amplitudes, remain at finite distance from the minimum. The critical amplitudes

all scale like ∼ R−1 but only for for R > 500. The saddle amplitude tends to a constant. This behaviour

can be understood by examining the scalings observed for the critical perturbations for sufficiently large R
(R > 500) that are reported in table 1. The nonlinear optimal is essentially made of a linear LOP1 per-

turbation (remark that the ratio u0/v0 is the same for the nonlinear and for the linear LOP1 optimal) plus

an algebraically small mean shear perturbation m0 and an exponentially small w0 that, at sufficiently large

R, is of the same order of magnitude of the noise (10−9) that is added to LOP1. The linear LOP2 initial

condition is able to lead to so small critical amplitudes even if its shape is completely different from the

NLOP shape.

The case σm = 0. The results for the considered systems could lead to the belief that the nonlinear

optimals (NLOP) always asymptotically approach the linear optimals maximizing transient growth (LOP1).

A counter-example is found by setting σm = 0 in system (7), reverting to an older model of subcritical

self-sustained process (Waleffe, 1995). The thresholds obtained using initial conditions with the shape of

both types of linear optimals are now slightly larger than the minimum nonlinear threshold and are reported

in Fig. 5. This is explained by the fact that, in this case, the ratio w0/v0 of the nonlinear optimal NLOP

tends to a constant (see table 2); even if the ratios u0/v0 are almost the same, the NLOP shape remains

therefore asymptotically different from the shape of linear optimals for which w0/v0 = 0. Again, however,

the nonlinear optimal and the linear optimal strategies lead to the same asymptotic scaling of the critical

amplitude ∼ R−2 for sufficiently large R, while the saddle S amplitude has very different scaling and

shape.
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Figure 5. Same as in Fig. 4 but in the case σm = 0.

Type v u w m (2 δ)1/2

NLOP 164R−1.9 1337R−2.93 115R−1.97
N 194R−1.92

LOP1 1309R−2.00 7831R−3.00
N N 357R−1.81

LOP2 1174R−1.99 1200R−1.99
N N 1679R−1.99

Table 2. Asymptotic (R > 500) scaling of the nonlinear optimal perturbations NLOP and of the critical LOP1- and LOP2-shaped

perturbations for system (7) when σm = 0. The variables whose amplitude is at almost constant noise level have been denoted by

N.

4. Summary and conclusions

The scope of this study was to compute the minimum energy threshold δ(R) and the associated nonlin-

ear optimal perturbations for low-dimensional systems of subcritical transition. The main results may be

summarized as follows:

A necessary condition for a perturbation to be nonlinearly optimal, i.e., to be the one of minimum

energy outside of the basin of attraction of the laminar basic flow, is that it realizes a local minimum

for the perturbation energy i.e. dE/dt = 0 and d2E/dt2 ≥ 0 .

For systems with energy preserving nonlinear terms the first condition of optimality is equivalent to

the condition 〈u,LRu〉 = 0 which can be determined from the analysis of the linear operator LR and

does not depend on the amplitude of the perturbations.

Linear optimal perturbations maximizing energy growth and steady nontrivial solutions such as sad-

dles and nodes all necessarily belong to the set of perturbations satisfying the previous condition.

Using these results it has been possible to demonstrate that in nonlinear systems with two degrees

of freedom and nonlinear terms conserving energy, the nonlinear optimal perturbations coincide in

general with the linear optimal perturbations maximizing energy growth provided that the threshold

energy is sufficiently small.

This coincidence of linear and nonlinear optimals is no longer necessary in systems with more than

two degrees of freedom. However, the enforcement of the optimality condition allows one to reduce

the extent of perturbations to be investigated for the determination of δ.

The analysis of Waleffe’s models, reveals that in general nonlinear optimals do not have the same

symmetries as the linear optimals. However, the projection of nonlinear optimals in the subspace
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optimizing the linear growth has the same shape as the linear optimal. It is not clear if this result is

general or peculiar to the considered systems.

For the systems considered in this study, the minimum energy threshold asymptotically satisfy the

R scalings predicted by dominant balance of non normal growth and nonlinear-feedback (Trefethen

et al., 1993, Baggett and Trefethen, 1997). The thresholds computed using both nonlinear and linear

optimal strategies are shown to reach the asymptotic scalings only for relatively large values of R.

The next extension of this study will probably be concerned with the analysis of the Navier-Stokes equa-

tions. In that case the necessary optimality condition still applies. If the perturbation energy is defined as

E =
∫

V (u′iu
′
i/2) dV , where ui denote the velocity components of the perturbations of a basic flow Ui and

V is a control volume, then the necessary condition 〈u,LRu〉 = 0 is easily derived by making use of the

Reynolds-Orr equation6
∫

V

(

−∂Ui

∂xj
uiuj −

1

R

∂ui
∂xj

∂ui
∂xj

)

dV = 0. (8)

Only perturbation satisfying the previous property are eligible to be nonlinear optimals. The problem is that

the number of perturbations to examine may be large. The previous condition should therefore be completed

by an optimization algorithm and/or some supplementary condition. This is subject of current investigation.
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Notes

1. A nontrivial steady solution ue must satisfy the equilibrium equation LR ue + N (ue) = 0. By projecting this equation on ue it follows

that ue ∈ ZR.

2. The linear optimal perturbations are the initial conditions for which the maximum transient growth of linear solutions u
(L) is reached:

Gmax = maxt max
u0

(L) E[u(L)(t,u0
(L), R)]/E

(L)
0 (u0

(L)). The two maximizations (in time and over the initial condition) may be swapped

and therefore one is reduced to a problem which is very similar to the nonlinear one for the finding of δ, except that now we have to jointly maximize

E(L) and minimize E
(L)
0 and the trajectories is phase space are given by the linear evolution operator. It is however clear that if u0

(L) is not located

at a local minimum of E(L) along the trajectory then one could find another initial condition on the same trajectory with lowest E
(L)
0 which therefore

could realize a better growth. A necessary condition therefore for u0
(L) to be a linear optimal is that at t = 0

(

dE(L)/dt
)

(0,u0
(L), R) = 0 and

that if this condition is satisfied, furthermore
(

d2E(L)/dt2
)

(0,u0
(L), R) ≥ 0. As the evolution equation here is linear, the first condition can be

recasted in the form 〈u0
(L),LR u0

(L)〉 = 0

3. The picture is essentially given by Figure 9 in the contribution by Manneville in these proceedings. In his notations, u is called X1, v is

X2, the saddle point is denoted by M+ and the stable node by M−.

4. The nonlinear optimal has to belong to the ZR set which is formed of two lines. It therefore has essentially the choice between having

the shape of the linear optimal maximizing energy growth (LOP1) or the shape of the linear optimal response. The linear optimal perturbation

is distinguished from the optimal response by the sign of d2E(L)/dt2 which is positive for the optimal perturbation and negative for the optimal

response. The nonlinear optimal perturbation also has a positive d2E/dt2 but now computed with the full nonlinear equation. By deriving

equation (3) with respect to t and then eliminating du/dt using equation (1), it is possible to show that d2E/dt2 = d2E(L)/dt2 + O(E1+β)
where the order of the derivative computed with linear theory is proportional to E while the additional terms, due to the nonlinear contributions, are

of order E1+β with β > 0 and therefore larger than E . For sufficiently small E therefore the second derivative computed by including nonlinear

terms has the same sign as the second order derivative computed with the linear terms.

5. They correspond to a streamwise wavenumber α = 1.3 and a spanwise wavenumber γ = 2.28 and are: [km, ku, kv , kw] = [1.57, 2.28, 2.77, 2.67],
and [σm, σu, σv , σw] = [0.31, 1.29, 0.22, 0.68].

6. Here one may want to assume a priori that the enstrophy of the nonlinear optimals is finite so as to ensure, at finite R, the integrability of

the dissipation term 1
R

∂ui

∂xj

∂ui

∂xj
appearing in Eq. (8).
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