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ABSTRACT

In the present study, we investigate the optimal per-

turbations in plane turbulent Couette flow with turbulent

mean flow and the associated eddy viscosity at Reh = 750.

The three canonical types of optimal perturbations are com-

puted: the initial perturbations for transient energy growth,

the response to harmonic forcing and the variance to stochas-

tic excitation. In all the cases, the maximum responses are

obtained for streamwise uniform perturbations (λx = ∞).

The optimal spanwise spacings of the transient growth and

the stochastic forcing are λz = 4.2h and λz = 5.2h, re-

spectively. These values are in very good agreement with

the spanwise spacing of the large-scale streaks reported in

previous studies. Moreover, the velocity field of the re-

sponses to the optimal perturbations are strikingly similar to

that of large-scale structure obtained with direct numerical

simulation. Finally, the optimal response to the harmonic

forcing, more related to flow controls, reveals the maximum

by steady forcing with larger spanwise wavelength (7.4h).

INTRODUCTION

The fully developed turbulent plane Couette flow is one

of the first canonical cases in which very large coherent and

persistent streaky structures have been observed. Lee &

Kim (1991) observed structures elongated in the streamwise

direction with a roughly circular cross-section in their direct

numerical simulation of the fully developed turbulent Cou-

ette flow. In order to understand if the spanwise size of these

large scale structures was the largest possible, Komminaho

et al. (1996) repeated the simulations at Reh = 750 using

a huge computational box (Lx × Ly × Lz = 28π × 2× 8π).

They found that the most probable spanwise spacing of these

vortical structures is about 4h where h is the half height

of channel and that these structures can be suppressed by

rotation around the spanwise axis. Very recently, Kitoh et

al. (2005) and Kitoh & Umeki (2008) experimentally studied

these structures at Reh = 3750 and found typical spanwise

wavelengths of the order of 4 ∼ 5h.

At the same time similar large scale structures were

found in direct numerical simulations and experiments in

the plane pressure driven channel flow and in the turbu-

lent boundary layer. Recent investigations (del Álamo &

Jiménez 2006; Cossu et al. 2009; Pujals et al. 2009) have

revealed a possible connection between the observed large

scale structures and the optimal perturbations of the turbu-

lent mean flows. In all these studies, analytical expressions

that matched the mean velocity profiles and the turbulent

eddy viscosity, were used to compute the optimal perturba-

tions leading to the maximum transient growth. It was found

that there are two local peaks in maximum transient growth

with respect to the spanwise spacing. The first peak scales

well with respect to outer length scale h and the spanwise

spacing for maximum response showed good agreement with

that of large-scale streaky structures in the outer layer. The

secondary peak scales well with respect to the inner length

scale ν/uτ where ν and uτ are kinematic viscosity and fric-

tion velocity, respectively. This secondary peak corresponds

to the λ+
z ≈ 100 typical of streaks in the inner layer.

No investigation of the optimal energy amplifications sus-

tained by the turbulent Couette are currently available, even

if the presence of large-scale coherent streaks with the span-

wise spacing of 4 − 5h is a well-established feature of this

flow. Furthermore, del Álamo & Jiménez (2006), Cossu

et al. (2009) and Pujals et al. (2009) have only considered

the optimal temporal energy growth whereas the optimal re-

sponses to harmonic and stochastic forcing may be equally

relevant and their computation for laminar flows have been

extensively computed: e.g. Farrell & Ionnou (1993), Jo-

vanović & Bamieh (2005) and so on. In this respect, some

relevant questions are still opened: What are the streamwise

and spanwise spacings amplified most by the initial pertur-

bation, the harmonic forcing, and stochastic excitation in

the turbulent Couette flow ? How do they compare among

them and with analogous results found in laminar flows?

What are the spatial structures of the corresponding opti-

mal perturbations? How do these structures relate to the

large-scale coherent streaks observed in experiments and di-

rect numerical simulations? Do their spanwise spacing relate

well to coherent as found in the turbulent Poiseulle flow, or

are they larger as found in the turbulent boundary layer?

In order to answer to these questions, we have conducted

an input-output analysis with the mean velocity profile of

turbulent Couette flow by considering its optimal responses

to initial perturbation, harmonic forcing, and stochastic ex-

citation. In the last case, the more correlated structures (the

Karhunen-Loève modes) have also been computed.

BACKGROUND

Turbulent mean flow and eddy viscosity
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We consider the plane Couette flow of a viscous fluid of

kinematic viscosity ν and constant density ρ between two

parallel plates located at y = ±h, where we denote by x,

y and z the streamwise, wall-normal and spanwise coordi-

nates respectively. The plates move in opposite directions

with velocity (±Uw, 0, 0). For sufficiently high values of the

Reynolds number Re = hUw/ν, the flow is turbulent. No

analytic approximation of the turbulent mean flow and/or

of the associated eddy viscosity is currently available for the

turbulent Couette flow contrary to the turbulent Poiseulle

flow and boundary layer. We have therefore computed

the turbulent mean flow using direct numerical simulation.

Once that U(y) is known, it is straightforward to compute

the mean shear stress at the wall τw/ρ = νdU/dy|w, the

friction velocity uτ =
√
τw/ρ and the friction Reynolds

number Reτ = uτh/ν. Since the mean pressure gradi-

ent is zero in the Couette flow, the mean shear stress

τ = −ρu′v′ + ρνdU/dy (where u′ and v′ are the stream-

wise and the wall-normal velocity fluctuations, respectively)

is constant and equal to its value at the wall τw. By in-

troducing the eddy viscosity νt(y) = −u′v′/(dU/dy), it is

found that:
[
νt(y)

ν
+ 1

]
d(U/uτ )

d(y/h)
= Reτ . (1)

The (total) effective viscosity is then defined as νT = νt+ν.

Generalised Orr-Sommerfeld-Squire equations

Following the approach of Reynolds & Hussain (1972),

del Álamo & Jiménez (2006), Cossu et al. (2009) and Pujals

et al. (2009), we consider the linearised equations satis-

fied by small coherent perturbations in the presence of the

associated effective viscosity νT (y). The streamwise and

spanwise homogeneity of the problem allow to consider sepa-

rately each in-plane Fourier mode û(y, t;α, β)ei(αx+βz) and

f̂(y, t;α, β)ei(αx+βz), where α and β are the streamwise and

spanwise wavenumbers respectively. Then, the following

generalised Orr-Sommerfeld-Squire system is obtained as

∂

∂t

[
v̂

η̂

]
=

[
∆−1LOS 0

−iβU ′ LSQ

]

︸ ︷︷ ︸
A

[
v̂

η̂

]
+

[
−iα∆−1D −k2∆−1 −iβ∆−1D

iβ 0 −iα

]

︸ ︷︷ ︸
B

[
f̂u
f̂v
f̂w

]
(2)

with the generalised Orr-Sommerfeld and Squire operators,

LOS = −iα(U∆− U ′′) + νT∆2 + 2ν′T∆D
+ν′′T (D2 + k2),

LSQ = −iαU + νT∆ + ν′TD. (3)

Here, D and ′ denote ∂/∂y, ∆ = D2−k2, k2 = α2 +β2, and

η̂ is the wall-normal vorticity Fourier mode. The system is

completed by the initial condition û|t=0 = û0 and homoge-

neous boundary conditions for the velocity perturbations on

the walls, which result in v̂(y = ±h) = 0, Dv̂(±h) = 0 and

η̂(±h) = 0. The velocity components can be retrieved from

the wall-normal variables with:

[
û

v̂

ŵ

]
=

1

k2

[
iαD −iβ
k2 0

iβD iα

]

︸ ︷︷ ︸
C

[
v̂

η̂

]
. (4)

Optimal perturbations

We consider the optimal response of the system (4) to

initial conditions, harmonic forcing and stochastic forcing.

The definition of these optimals is briefly recalled below.

The optimal temporal energy growth of (α, β) modes is

found by optimizing over the shape of the initial condi-

tion the ratio of the energy of the response at a given

time t to the energy of the initial condition: G(t;α, β) ≡
maxû0 6=0 ‖û(t;α, β)‖2/‖û0(α, β)‖2, where ‖û‖2 =

∫
Ω
|û|2 +

|v̂|2 + |ŵ|2dΩ and Ω = [0, 2π/α] × [−h, h] × [0, 2π/β]. The

maximum growth is defined by further maximizing in time

Gmax(α, β) ≡ maxtG(t;α, β) and it is attained at t = tmax.

When harmonic forcing f̂(y, t) = f̃(y)e−iωf t is applied

with frequency ωf , the response û(y, t) = ũ(y)e−iωf t is

observed after the switch-on transients have decayed, as-

suming that the system is stable. In this case, the op-

timal response is the one having the maximum ratio of

the energy of the response to the energy of the forcing:

R(ωf ;α, β) = maxf̃ 6=0 ‖ũ(ωf ;α, β)‖2/‖f̃(ωf ;α, β)‖2. The

optimal response R(ωf ) is given by the norm of the resolvent

operator along the imaginary axis ζ = −iωf . The maximum

response Rmax(α, β) = maxωf R(ωf ;α, β) is obtained with

ωf,max, and is also referred to as H∞-norm of the trans-

fer function relating the forcing to the response (Zhou et

al. 2009).

The response to the stochastic forcing f̂(t, y) ei(αx+βz)

with Gaussian probability distribution and zero mean value

〈f̂〉 = 0 is finally considered. The forcing is assumed to

be delta-correlated in time: 〈f̂(y, t)⊗ f̂∗(y′, t′)〉 = Rδ(t− t′)
where ∗ denotes complex conjugation and δ(t) is the Dirac’s

delta function. We also assume, without loss of generality,

that R = I. The variance of the response, V (α, β) = 〈û·û∗〉,
also referred to as H2-norm of the transfer function relat-

ing the forcing to the output (Zhou et al. 2009), is given

by: V (α, β) = trace(CX∞C†), where the superscript † de-

notes the adjoint operator with respect to the standard inner

product (h,g) =
∫

Ω
g∗ ·h dΩ and X∞ is the solution of the

following algebraic Lyapunov equation:

AX∞ + X∞A† + BB† = 0. (5)

Since CX∞C† is Hermitian, it has real eigenvalues σj and

a set of mutually orthogonal eigenfunctions that are usu-

ally referred to as ‘empirical orthogonal functions’ (EOF) or

Karhunen-Loève (KL) or ‘proper orthogonal decomposition’

(POD) modes. The variance being V =
∑

σj , the ratio

σj/V represents the contribution of the j-th mode to the

(total) variance. The mode corresponding to the largest σj
is the optimal one in the sense that it contributes most to

the total variance of the system. The part of the stochas-

tic forcing accounting for that optimal mode is computed

by solving the dual Lyapunov problem. For further details,

the interested reader is referred to the papers by Farrell &

Ionnou (1993), Jovanović & Bamieh (2005), and so on.

Numerical tools

The direct numerical simulation of the turbulent chan-

nel flow, necessary compute the mean flow, has been per-

formed using the channelflow code (Gibson et al. 2008)

that integrates the incompressible Navier-Stokes equation

using a spectral method based on the Fourier-Galerkin dis-

cretization in the streamwise and spanwise directions, and

the Chebyshev-tau discretization in the wall-normal direc-

tion. The solution is advanced in time using a third-order

semi-implicit time-stepping. Dealiasing with the 2/3 rule is

implemented in the streamwise and spanwise directions.
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Figure 1: Turbulent mean velocity profile and shear stress

from direct numerical simulations. (a) Mean velocity pro-

file expressed in outer units, (b) Same profile expressed in

inner units U+ ≡ (U + Uw)/uτ and y+ = (y + h)uτ/ν

and compared to the curves U+ = y+ ( ) and U+ =

(1/0.4) log y++4.5 ( ), (c) Turbulent mean shear

stress −u′v′/uτ 2. Here, the present DNS ( ), Kom-

minaho et al. (1996) ( ) and Tsukahara et al. (2006)

( ); the curves are almost undistinguishable.

The generalised Orr-Sommerfeld-Squire system (4) is dis-

cretized using a Chebyshev-collocation method with Ny
collocation points in the wall-normal direction. The differen-

tiation operators are discretized using the Chebyshev differ-

entiation matrices of that include the appropriate boundary

conditions for v̂ and η̂. The optimal transient growth and

the optimal harmonic response are computed using standard

methods described. The Lyapunov equation (5), discretized

by the same method, was solved using the lyap function

in matlab. The algorithms used to compute the optimal

harmonic and stochastic responses have been validated by

comparing the results obtained for laminar Couette and

Poiseulle flows with those of Schmid & Henningson (2001)

and Jovanović & Bamieh (2005). The results in the present

study are obtained with Ny = 257.

RESULTS

Turbulent mean flow and the Reynolds stress

Perturbation max λx λz
Gmax 3.31 ∞ 4.3h

Rmax 11249 ∞ 7.4h

V 157 ∞ 5.1h

Table 1: The maximum amplification by initial perturba-

tion, harmonic forcing and stochastic excitation and the

corresponding streamwise and spanwise spacings.

The turbulent mean flow and the associated Reynolds

shear stress computed by direct numerical simulation at

Re = 750 are reported in Fig. 1. To obtain well con-

verged results we have used the same computational box

(Lx×Ly×Lz = 28πh×2h×8πh) and resolution (Nx×Ny×
Nz = 340 × 55 × 170 after dealiasing) used by Komminaho

et al. (1996). Reτ converges to the same Reτ = 52 found

by Komminaho et al. (1996) and also shows good agree-

ment with the experimental value Reτ = 50 reported by

Kitoh et al. (2005). The mean shear rate at the centreline

d(U/Uw)/d(y/h)|y=0 = 0.1865 is also in good accordance

with the 0.18 value found by Komminaho et al. (1996) and

the experimental value of 0.2. As shown in Fig. 1, the com-

puted mean flow and the associated Reynolds shear stress

are almost undistinguishable from from the ones computed

by Komminaho et al. (1996) and by Tsukahara et al. (2005).

Optimal response to initial conditions, harmonic and stochas-

tic forcing

As a preliminary step, the eigenvalues of the Orr-

Sommerfeld-Squire operator (4) have been computed and

found to be stable. The optimal response to initial condition,

harmonic and stochastic forcing have then been computed

for a set of wavenumbers α and β, and the main results

are summarized in Table 1. The optimal temporal energy

growths G(t, α, β) are computed allowing the extraction of

the respective Gmax(α, β) reported in Fig. 2a. Only elon-

gated structures, roughly the ones with α < β, are signifi-

cantly amplified, the most amplified ones being streamwise

uniform (α = 0 i.e. λx = ∞). The energy growths Gmax
are not very large, attaining a maximum value of 3.31.

For streamwise uniform perturbations, the most amplified

spanwise wavenumber is β = 1.46/h corresponding to the

spanwise wavelength λz = 4.3h. As α increases, the most

amplified β slightly increases.

The optimal response to harmonic forcing R(ωf , α, β)

is computed for the same set of wavenumbers. A set of

forcing frequencies ωf is considered, and the maximum re-

sponse Rmax(α, β) extracted from these data is reported in

Fig. 2b. Similarly to the optimal transient growth, only elon-

gated structures are appreciably amplified. For streamwise

uniform structures, the largest response (Rmax = 11249) is

obtained for β = 0.85/h (corresponding to λz = 7.4h). The

dependence of the optimal response on the forcing frequency

is shown in Fig. 2c for the most amplified wavenumbers

(α = 0, β = 0.85/h). From this figure it is seen that

the largest response is obtained when the forcing is steady

(ωf,max = 0) and that the frequency response is strongly

concentrated near ωf = 0. This indicates that the system

behaves like a strongly selective low-pass frequency filter.

Finally, the variance V (α, β) of the response maintained

by the stochastic forcing is computed for the same set of

wavenumbers, and it is shown in Fig. 3(a). The selec-

tion of elongated structures appears also in this case. The

maximum amplification of the variance (V = 157) is ob-

tained with streamwise uniform structures and the spanwise
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Figure 2: (a) Dependence of the maximum temporal energy

growth Gmax on the dimensionless spanwise wavenumber

βh for selected streamwise wavenumbers (top to bottom:

αh = 0, 0.1, 0.25, 0.5, 1, 2, 3, 4. (b) Dependence of the maxi-

mum energy amplification of harmonic forcing Rmax on the

dimensionless spanwise wavenumber βh for selected stream-

wise wavenumbers α (same values as in (a)). (c) Dependence

of the optimal energy amplification R on the dimension-

less harmonic forcing frequency ωfh/Uw for the optimal

wavenumbers (α = 0,βh = 0.85).

Flows Optimal λz/h

Gmax Rmax V

Turbulent Couette 4.3(∗) 7.4(∗) 5.1(∗)

Laminar Couette 3.9(a) 5.3(a) 4.5(b)

Turbulent Poiseulle 4.0(c) − −
Laminar Poiseulle 3.1(a) 3.9(a) 3.5(b)

Table 2: Optimal spanwise wavenumbers of the maximum

responses to initial perturbation, harmonic forcing, and

stochastic excitation. Results from: (*) the present investi-

gation, (a) Trefethen et al. (1992), (b) Jovanović & Bamieh

(2005) and (c) Pujals et al. (2009)

wavenumber β = 1.23/h (corresponding to λzmax = 5.1h).

The structures with the largest contribution to the variance

are then identified using the the Karhunen-Loève decom-

position. The twenty largest ratios σj/V , representing the

contribution of the j-th mode to the total variance, are re-

ported in Fig. 3(b) for the wavenumbers associated to the

largest variance (α=0, β = 1.23/h). We find that the most

energetic mode contributes to 79% of the total maintained

energy variance, implying that a unique coherent structure

strongly dominates the stochastic response in this case.

Comparison with previous results
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Figure 3: (a) Dependence of the variance V of the re-

sponse to stochastic forcing on the dimensionless span-

wise wavenumber βh for selected streamwise wavenum-

bers α (same values as in Fig. 2: top to bottom αh =

0, 0.1, 0.25, 0.5, 1, 2, 3, 4). (b) Contribution of the leading 20

Karhunen-Loève modes to the total variance.

-2-1012
-1

0

1

-2 -1 0 1 2
-1

0

1(a)

y
/
h

x/h

(b)

y
/
h

x/h

Figure 4: Cross-stream (y-z plane) view of the most en-

ergetic forcing (a) and response (b) modes in stochastic

forcing. The field corresponds to the optimal wavenumbers

α = 0 and βh = 1.23 (λz = 5.1h). Here, the solid and

dashed contours denote positive and negative values of the

streamwise component respectively (with increment of 0.1

the maximum value of the output) while the cross-stream

components are represented as vectors (same scales in input

and output plots).
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The fact that for all the three types of response, the

maximum energy amplification is obtained by streamwise

uniform structures (α = 0) is in accordance with the sim-

ilar analyses of other turbulent and laminar flows except

possibly only the maximum temporal growth of the laminar

Couette flow that is obtained with perturbations non stream-

wise uniform, but having a very large streamwise wavelength

(λx = 180h). The most amplified spanwise wavelength is

not the same for the different types of problem: The largest

(λz = 7.4h) is found for the harmonic forcing whereas the

shortest (λz = 4.3h) is found for the initial value prob-

lem, the stochastic forcing one being located in between

(λz = 5.1h). The same ordering of spanwise optimal wave-

lengths is observed for the laminar Couette and Poiseuille

flows (see Table 2). Moreover, the spanwise wavelength max-

imizing Gmax in the turbulent Couette case is slightly larger

than the one found for the laminar case. This is also in accor-

dance with what is observed e.g. for the turbulent Poiseuille

flow (as reported in Table 2).

At the very low Reynolds number considered here

(Reτ = 52), the small temporal energy growths that we

find (Gmax ≤ 3.3) are not surprising if compared e.g. to

the turbulent Poiseulle flow case where a maximum growth

of the order of 10 is observed for Reτ = 500 (Pujals et

al. 2009). The low Reynolds number also explains that the

Gmax curves do not show any sign of the secondary peak

associated with near-wall structures with λ+
z ≈ 90 − 100,

contrary to what is found by del Álamo & Jiménez (2006)

and Pujals et al. (2009) for the plane Poiseuille flow. In

these studies, the secondary peak appeared separated from

the primary peak only for sufficiently large Reynolds num-

bers (typically Reτ larger than ≈ 300), i.e. when the inner

and outer scales are sufficiently separated. The two scales

are not separated in the present case (Reτ = 52) where the

expected inner peak value λ+
z ≈ 100 corresponds to λz ≈ 2h,

which is well in the range of the primary peak.

Spatial structure of the optimal input and output perturba-

tions

The spatial structures of optimal perturbations and the

corresponding response are also obtained. All these optimals

reveal the essentially same physical feature. Therefore, here

we only consider the stochastic forcing. In this case, the

optimal input (Fig. 4a) and output (Fig. 4b) are the forcing

term and the associated response corresponding to the most

energetic Karhunen-Loève mode representing 79% of total

variance of the stochastically forced system respectively.

Here, note that all the considered outputs most of the en-

ergy lies in the streamwise velocity component while for the

input field most of the energy is in the cross-stream compo-

nents. This implies that the dominant physical mechanism

for the amplification is the lift-up effect by which streamwise

vortices efficiently induce streamwise streaks. This is also

in accordance with all the previous results of input-output

investigations of laminar and turbulent wall-bounded shear

flows.

The wall-normal Fourier components (v̂ and f̂v) of the

optimal inputs and the streamwise Fourier component (û) of

the optimal outputs shown in Fig. 4 are reported in Fig. 5a

and b respectively. The wall-normal components of the op-

timal inputs have almost the same shape (Fig. 5a). The

streak shapes of the corresponding optimal outputs show

two maxima at y/h = ±0.66 for the optimal temporal re-

sponse, y/h = ±0.59 for the leading KL mode while the

streaks corresponding to the (deterministic) harmonic forc-
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Figure 5: Wall-normal dependence of (a) v̂(y/h), f̂y(y/h)

corresponding to the optimal input fields and of (b) the

streamwise Fourier component û(y/h) corresponding to the

optimal output velocity fields. In (a) and (b), the maximum

values have been normalized to 1 to allow for comparison.

Data from the initial value problem ( ) and from the

stochastic ( ) and harmonic ( ) forcing prob-

lems.

ing are almost uniform in the bulk region (|y/h| ≤ 0.5).

DISCUSSION

The scales of the optimal streamwise uniform struc-

tures having the largest response to initial conditions (λz =

4.3h) and stochastic forcing (λz = 5.1h) show good agree-

ment with those of the most energetic coherent structures

observed in the numerical simulations of Komminaho et

al. (1996) (λz = 4.2h and λx > 30h at Re = 750), Tsukahara

et al. (2006) (λz = 4.2− 5h and λx ≈ 42− 64h at Re = 750

and 2150) and in the experiments of Tillmark (1994), Till-

mark & Alfredsson (1994) (λz ≈ 4 − 5h and λx > 30h

at Re = 3300) and Kitoh & Umeki (2008) (λz = 4h and

λx ≈ 40 − 60h at Re = 3750). Furthermore, Tsukahara et

al. (2006) have found that at Re = 750 the most energetic

POD modes have scales λz = 4.2−5.1h and λx ≈ 45h. This

most energetic POD mode shows a striking resemblance with

the most energetic mode of the response to stochastic forc-

ing reported in our Fig. 5b; the position of the peak in the

u response, at y+ = 15− 20, is also similar.

Our results therefore confirm the strong relation between

the optimally amplified streaks and the large-scale coher-

ent streaks measured in experiments and in direct numerical

simulations already reported for the turbulent Poiseuille flow

(del Álamo & Jiménez 2006; Pujals et al. 2009). In all these

cases, the observed coherent streaks were not artificially

forced, thus it is not surprising that the relevant scales come

from the response to stochastic forcing and to initial condi-

tions if one assumes that the effect of the nonlinear terms

and of the small-scale fluctuations can be treated either as

a stochastic forcing or as random initial conditions. From

the viewpoint of flow control and sensitivity to boundary

conditions, where the forcing is deterministic and correlated

over all times, then, the relevant scales should come from

the harmonic forcing analysis. In this case, the present re-

sults indicate that the optimal response is obtained with

the spanwise spacing λz = 7.4h, larger than the one aris-
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ing in the (unforced) observed large-scale coherent streak

(λz = 4− 5h). Furthermore, the very large response to har-

monic forcing indicates good controllability of the large-scale

structures even at low Reynolds numbers. This extreme sen-

sitivity of the turbulent Couette flow to steady forcing has

also been reported by Kitoh et al. (2005) and confirmed by

Kitoh & Umeki (2008) who artificially forced the large-scale

streaks using vortex generators.

CONCLUDING REMARKS

In the present study, we investigate the optimal perturba-

tions in plane turbulent Couette flow at Reh = 750. Direct

numerical simulation is conducted to obtain turbulent mean

flow and the associated eddy viscosity because no analytical

model of the mean flow is available unlike pressure-driven

channel flow and boundary layer. The three canonical types

of optimal perturbations are computed: the initial optimal

perturbations, the response to harmonic forcing and the vari-

ance to stochastic excitation. In all the cases, the maximum

responses are obtained for streamwise uniform perturbations

(λx = ∞). The optimal spanwise spacings of the tran-

sient growth and the stochastic forcing are λz = 4.2h and

λz = 5.2h, respectively. These values are in very good agree-

ment with the spanwise spacing of the large-scale streaks

reported in previous studies. Moreover, the velocity field

of the responses to the optimal perturbations are strikingly

similar to that of large-scale structure obtained with direct

numerical simulation. Finally, the optimal response to the

harmonic forcing, more related to flow controls, reveals the

maximum by steady forcing with larger spanwise wavelength

(7.4h).

The relationship between optimal perturbations and the

large-scale outer structure in wall-bounded turbulent flows

such as pressure-driven channel and turbulent boundary

layer have been successfully investigated by very recent stud-

ies. The present findings are further confirmations that this

relation also holds in plane turbulent Couette flow. So far,

all the investigations have focused only on finding optimal

perturbations and their maximal responses with physically

proper ‘linear’ model. Therefore, the resulting nonlinear

process such as self-sustaining cycle suggested by e.g. Hamil-

ton et al. (1995) should be an subsequent issue. The search

for such a self-sustaining cycle of the large-scale coherent

structures in turbulent wall-bounded flows and the investiga-

tion of the mechanisms selecting their scales are the subject

of current intensive investigation.
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