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Abstract.

A time-explicit Runge-Kutta discontinuous Galerkin (RKDG) finite element scheme

is proposed to solve the dislocation transport initial boundary value problem in 3D.

The dislocation density transport equation, which lies at the core of this problem,

is a first-order unsteady-state advection-reaction-type hyperbolic partial differential

equation; the DG approach is well suited to solve such equations that lack any

diffusion terms. The development of the RKDG scheme follows the method of lines

approach. First, a space semi-discretization is performed using the DG approach

with upwinding to obtain a system of ordinary differential equations in time. Then,

time discretization is performed using explicit RK schemes to solve this system. The

3D numerical implementation of the RKDG scheme is performed for the first-order

(forward Euler), second-order and third-order RK methods using the strong stability

preserving approach. These implementations provide (quasi-)optimal convergence

rates for smooth solutions. A slope limiter is used to prevent spurious Gibbs

oscillations arising from high-order space approximations (polynomial degree ≥ 1)

of rough solutions. A parametric study is performed to understand the influence of

key parameters of the RKDG scheme on the stability of the solution predicted during

a screw dislocation transport simulation. Then, annihilation of two oppositely signed

screw dislocations and the expansion of a polygonal dislocation loop are simulated. The

RKDG scheme is able to resolve the shock generated during dislocation annihilation

without any spurious oscillations and predict the prismatic loop expansion with very

low numerical diffusion. These results demonstrate the robustness of the scheme.

Keywords : Discontinuous Galerkin, Runge Kutta, finite elements, FEM, dislocation,

transport, hyperbolic equations
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1. Introduction

Dislocations are line-type defects occurring in crystalline materials. They are

characterized by (i) a Burgers vector, which is obtained from the closure failure of

a Burgers circuit drawn around a dislocation in a dislocated crystal [1, 2], and (ii) their

line direction. In a continuum framework, they can be represented either as discrete

(singular) lines or as fields (finite volumes). The kinematics of dislocation fields has been

a subject of interest since the work of Nye [3], who characterized dislocations using a

second-order polar dislocation density tensor defined as the outer product of the Burgers

vector and the dislocation line vector. The main equation in the kinematic theory of

dislocation fields is the dislocation transport equation, which is a first-order unsteady-

state advection-reaction-type hyperbolic partial differential equation of the evolution of

the polar dislocation density tensor; it is obtained from the conservation of the Burgers

vector of evolving dislocations [4]. Along with this equation, the dislocation continuity

condition, dislocation in-flux and zero dislocation out-flux boundary conditions, and

the initial configuration of dislocations, constitute the dislocation transport initial

boundary value problem (IBVP). This problem can be solved to predict dislocation

motion, annihilation of two oppositely signed dislocations and expansion/contraction

of dislocation loops without using additional rules in the system of equations. The

dislocation transport IBVP has been coupled with the theory of lattice incompatibility

and internal stresses within dislocated crystals in an isothermal framework to obtain the

dynamic field dislocation mechanics model [5, 6]. More recently, the dynamic thermal

field dislocation mechanics model [7] was proposed to account for a coupling between

the field dislocation mechanics and the heat transfer problem.

A plethora of numerical techniques exist to solve hyperbolic partial differential

equations including those based on the finite element (FE) approach and the fast Fourier

transform approach. All these approaches involve discretizing the continuous domain

into a discrete (finite) set of elements or points where the solution is sought. This space

discretization induces roughness in the solution even if the initial configuration in the

continuous domain is smooth. In addition, discontinuities can be introduced in the

solution, for example, when two oppositely signed dislocations interact and annihilate.

In general, the presence of roughness in the solution can result in highly oscillatory

and incorrect approximations when standard continuous Galerkin (CG) FE method [8]

or spectral methods [9] are used. The origin of these errors is that unlike elliptic or

parabolic partial differential equations, there is no physical diffusion term present in

purely hyperbolic partial differential equations. One could envisage using the classical

artificial diffusion scheme (also known as the viscosity method) or a Least-Squares

(LS) approach to avoid such oscillations, however, the resulting solution is often highly

damped [8].

One way to overcome these problems is to use hybrid approaches to obtain a trade-

off between highly oscillatory and highly diffuse solutions. Thus far, the dislocation

transport problem has been solved using the following hybrid approaches: (i) weighted
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CG least squares (LS) FE scheme [10, 11, 12] with a streamline diffusion term [13] in the

non-linear case, and (ii) the fast Fourier transform approach with spectral filters [14].

Another approach involves solving the dislocation transport problem in two steps. The

first step focuses on solving only the flux term (related to the plastic distortion rate [6])

in the dislocation transport equation by representing it as a system of Hamilton-Jacobi-

type non-linear hyperbolic equations. These equations have been numerically solved

in a 1-dimensional (1D) and 2-dimensional (2D) setting using a Godunov-type high

resolution scheme [15, 16]; a 3-dimensional (3D) extension has not yet been proposed.

The second step involves updating the dislocation density rate, which is related to the

curl of the plastic distortion rate. Even though this approach does not directly solve

the dislocation transport equation, the results show a significant improvement over the

existing hybrid approaches [15, 16].

A more natural approach to numerically solve advection-reaction-type hyperbolic

partial differential equations is the discontinuous Galerkin (DG) FE approach. The

DG approach seeks piecewise-continuous solutions belonging to a piecewise continuous

function space, which is better equipped than continuous function spaces used in the

CG approach to deal with roughness or discontinuities in the solution. Furthermore, the

DG approach is “conservative” in the sense that the dislocation density that “flows” out

of a mesh element through one of its faces “flows” into the adjacent element through

that face, and this flow can be quantified using a flux term; this property makes the DG

approach better suited than a CG approach to solve transport problems. In addition,

the mass matrix in the DG approach is block diagonal and its inversion can be massively

parallelized resulting in significant computational gains in comparison to a CG approach

for the same mesh and order of discretization. Other advantages include the use of a

general mesh (in comparison to a simplicial mesh for the CG approach), the use of

non-standard shape functions and the ability to solve different governing equations for

different elements. However, due to the use of piecewise continuous functions, the DG

approach involves using a higher number of degrees of freedom with increased memory

and storage space requirements than the CG approach.

With respect to time discretization, thus far only first-order accurate implicit

(backward Euler) [10] and first-order accurate explicit (forward Euler) [11, 14] Runge-

Kutta (RK) schemes have been used to solve the dislocation transport equation; note

that a second-order accurate explicit (modified Euler/midpoint/Heun’s method) RK

scheme was used to solve the non-linear Hamilton-Jacobi-type hyperbolic equation

for plastic distortion rate evolution [16]. In general, explicit RK schemes are

computationally faster than implicit RK schemes, which was the main reason why [11]

adopted the forward Euler scheme over the backward Euler scheme of [10]. The time

step of an explicit RK scheme has an upper bound typically set by the usual Courant-

Frederichs-Lewy (CFL) condition [17, 18]. This condition imposes a very stringent

restriction on the time step of the forward Euler scheme whenever polynomials of degree

greater than or equal to 1 are used for the space approximation. For such problems,

using high-order (greater than 1) accurate explicit RK schemes can be better than using
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the forward Euler scheme from the point-of-view of the trade-off between computational

time and accuracy of the solution; this was also noted in [16].

In this work, we propose a time-explicit 3-dimensional (3D) RKDG FE approach

to solve the dislocation transport IBVP. The development follows the so-called method

of lines approach [19, 20]. Starting with the continuous variational formulation, this

approach involves first discretizing the spatial derivatives entering the partial differential

equation of the formulation. This space semidiscretization transforms the partial

differential equation into a system of coupled ordinary differential equations in time.

This system is then discretized in time using explicit RK schemes. We have done the 3D

numerical implementation of the RKDG method using the Strong Stability Preserving

(SSP) approach [21] for three explicit RK schemes of order 1, 2 and 3 and compared

their predictions. The RKDG approach allows using piecewise-constant functions as

well as high-order space approximations (polynomial degree greater than or equal to 1)

to approximate the solution. Using high-order space approximation, however, induces

spurious oscillations (Gibbs oscillations) whenever some roughness, discontinuities or

shocks are present in the solution [9, 22]. Slope limiters can be used to eliminate the

spurious oscillations [20]. We use the hierarchical vertex-based slope limiter developed

by Kuzmin [23, 24]. Note that Morin et al. [16] used a minmod slope limiter to eliminate

the spurious oscillations from their predicted plastic distortion solution.

An implicit RKDG scheme [25, 26, 27] has previously been used to solve the

governing equations of the so-called continuum dislocation dynamics theory [28]. This

implementation is fundamentally different from the approach proposed in the present

work in the following manner. The first difference is in the governing equations of

the dislocation transport IBVP of the present work and in the continuum dislocation

dynamics theory. There are three governing equations for dislocation evolution in the

latter theory: evolution of (i) a scalar dislocation number density, (ii) a dislocation

density vector and (iii) a scalar dislocation curvature tensor. These equations are

obtained from a reformulation of the second-order tensorial dislocation transport

equation by neglecting the temporal evolution of the Burgers vector, which is assumed

to be constant for a dislocation line at any given instant in time. While this assumption

works well in an isothermal case, however, it may not be applicable in the case of

dislocation transport in a transient heterogeneous temperature field [7]. In this regard,

it may become necessary to use the original second-order tensorial dislocation transport

equation as done in this work. The second difference comes from the manner in which

the numerical implementation of these models has been performed. The three equations

of the continuous dislocation dynamics theory [25, 26, 27] are implemented in their

conservative form, which requires dealing with numerical fluxes across element interfaces

and mesh boundaries using the flux term of this form. Each equation has its own flux

term and a corresponding numerical flux. The approach adopted in this work requires a

single expression of the numerical flux that is directly based on the dislocation density

and its velocity, making its physical interpretation rather straightforward. The third

difference is the use of explicit RK schemes in the present work and the use of implicit
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RK schemes in [25, 26, 27]; the error estimates, convergence criteria and stability of the

numerical schemes are different for both approaches. The fourth difference comes from

the use of slope limiters in the present work to eliminate spurious Gibbs oscillations

that arise when rough solutions are approximated using high order polynomials.

The remainder of this article is divided into the following sections. The tensorial

notations used in this work are presented in section 2. The dislocation transport IBVP

is briefly recalled in section 3. The explicit RKDG formulation for the dislocation

transport IBVP is proposed in section 4 and its properties are discussed. The 3D

numerical implementation of the RKDG scheme using explicit RK schemes of order 1, 2

and 3, together with the CFL condition, slope limiters and the algorithm are presented

in section 5. Simulation setup of three model problems, viz. transport of a single screw

dislocation, annihilation of two oppositely signed screw dislocations and expansion of

a polygonal dislocation loop, and the simulation results are presented and discussed

in section 6. The summary, conclusions and some future perspectives are presented in

section 7. Definitions specific to the DG implementation are presented in the appendix.

Supporting simulation videos and images are provided as supplementary material.
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2. Notations

The notations presented below are adopted from the book of Salencon [29]. Scalars

(zeroth order tensors) are denoted with regular font. First order tensors, i.e. vectors,

are denoted with bold and italic lowercase letters; unit vectors are denoted with an

additional overhead hat symbol ˆ. Second order tensors are denoted with bold and

italic uppercase letters or bold and italic Greek symbols; the only exception is the

second order identity tensor I = δij êi ⊗ êj, where δij is the Kronecker delta function.

Third order tensors are denoted with bold non-italic uppercase letters. Null non-scalar

tensorial quantities are represented by equating them to the bold font zero symbol,

i.e. 0. Whenever the Einstein notation is used, tensors are represented using a non-

bold font. The Einstein summation convention will be implied for operations between

tensorial quantities; in this section, it is used to understand different tensorial operations

considered in this work.

Consider two vectors a = aiêi and b = biêi, and two asymmetric second order

tensors A = Aij êi ⊗ êj and β = βij êi ⊗ êj in the rectangular Cartesian basis with unit

vectors ê. In this work, we will use the following operations:

Transposition:

AT = Ajiêi ⊗ êj

Tensorial (outer) product:

(a⊗ b)ij = aibj êi ⊗ êj

Inner (dot) product:

(a · b) = (b · a) = aibi

(A : β) = (β : A) = Aijβij

(A · β)ik = Aijβjkêi ⊗ êk

where “:” is the symbol for a double dot product.

Cross product between a second-order tensor and a vector:

(A× b)ij = ejklAikblêi ⊗ êj

where eijk is a component of the third order Levi-Civita permutation tensor X =

eijkêi ⊗ êj ⊗ êk.

Tensorial operations involving vector differential operator ∇ = ∂
∂i
êi:

(∇a)ij = (grad a)ij = ai,j êi ⊗ êj

(∇a)Tji = (grad a)Tji = aj,iêi ⊗ êj

(∇A)ijk = (grad A)ijk = Aij,kêi ⊗ êj ⊗ êk

(∇ · a) = (div a) = ai,i

(∇ ·A)i = (div A)i = Aij,j êi

(∇×A)ij = (curl A)ij = ejklAil,kêi ⊗ êj
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3. The dislocation transport IBVP

Consider a simply-connected body B with boundary ∂B containing dislocations that are

individually characterized by their Burgers vector b (Unit: L1) and the local dislocation

line vector l (Unit L1). The finite polar density α := 1
V
b⊗ l = b⊗ t, where V is a finite

volume within which the polar dislocation density is non-zero and t = l/V (Unit: L−2).

Let each dislocation move at a velocity v. We are interested in their transport

during a finite time span tF > 0 i.e., in the interval [0, tF ]. We restrict ourselves to an

Eulerian description i.e., derivatives with respect to time are partial time-derivatives.

In the strong form, the dislocation transport IBVP is given as follows:

α̇+α · µ+ (∇α) · v − (∇ ·α)⊗ v − S = 0 in B × (0, tF )

∇ ·α = 0 in B × (0, tF )

α (·, t = 0) = α0 in B
α = γ on ∂B− × (0, tF )

α = 0 on ∂B+ × (0, tF )

(1)

Equation (1a) is the dislocation transport equation, which is better known in the

form [5, 6]: α̇ +∇× (α× v) = S; equation (1a) is obtained by expanding the curl of

the cross-product between a tensor and a vector using the definitions in section 2. We

prefer to use the dislocation transport equation as expressed in equation (1a) in order

to develop the RKDG scheme and to understand the properties of the bilinear form.

µ is a second order tensor such that µ := (∇ · v) I − (∇v)T , or in Einstein

summation notation µlj := δljvk,k − vj,l, which gives α · µ = (∇ · v)α − α ·
(∇v)T , or αilµlj = αijvk,k − αikvj,k. S is the dislocation source term, which satisfies

∇ · S = 0.

Equation (1b) is a continuity condition, which implies that a dislocation line can

either end at ∂B, be present in B in the form of a loop or branch in to/out of other

dislocations. This continuity condition is respected at any instant in time, which can

be deduced by noting that ∇ · α̇ = 0.

The initial configuration of dislocations is given by equation (1c) where α0 is the

initial polar dislocation density field, which satisfies ∇ ·α0 = 0.

∂B− and ∂B+ are the inflow and outflow parts of ∂B, respectively, such that

∂B− := {x ∈ ∂B|v(x) · n̂(x) < 0}
∂B+ := {x ∈ ∂B|v(x) · n̂(x) > 0}

where n̂(x) is the normal to a point x on a boundary.

On the inflow boundary ∂B−, we can prescribe a polar dislocation density γ as done

in equation (1d); one can also prescribe a dislocation flux γ (v · n̂), however, this term
is simply a scaling of the dislocation density and for simplicity, but without the loss of

generality, we use the condition (1d). On the outflow boundary ∂B+, the condition (1e)

implies that dislocations should not leave the body; this condition is also a consequence

of ∇ ·α0 = 0.
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4. The RKDG approach for the dislocation transport IBVP

The type of time-explicit RKDG scheme to be used to solve the dislocation transport

IBVP (1) requires understanding the nature of equation (1a), which in turn depends

on the definition of v. Based on a mechanical dissipation analysis performed by [6],

an infinite number of expressions are permissible for the dislocation velocity as long as

they satisfy
∫
B f · v ≥ 0 everywhere in the domain; f is the Peach-Koehler force that

is related to α and the stress tensor σ as f := (σ ·α) : X. In this work, for simplicity

and without the loss of generality, we assume that v ≡ v (α). This dependence of v on

α makes equation (1a) a non-linear transport problem.

However, since we aim at obtaining a time-explicit RK scheme, we shall assume that

v is dependent on the α of the previous time step when we compute the α of the current

time step. Then, at any given time step, v can be considered as a known quantity in

the evaluation of equation set (1) i.e., it can be considered as given data. Consequently,

µ can also be considered as given data. Then, equation (1a) has the form of a linear

unsteady-state advection-reaction (no diffusion) hyperbolic partial differential equation

with: (i) (∇α) · v - the advection term, (ii) α ·µ - the zeroth-order reaction term and,

(iii) (∇ ·α)⊗ v - a first-order term.

The method of lines approach [19, 20] is used to solve equation set (1). We have

followed the procedure outlined in the work of Di Pietro and Ern [20] for hyperbolic

partial differential equations, however, a step by step derivation is not presented here;

interested readers may refer to [20] or other works.

4.1. Variational formulation of the continuous problem

The starting point of the method of lines approach in this work is the variational (weak)

formulation of the continuous problem. In order to construct the continuous variational

formulation of the dislocation transport IBVP, we need to first endow appropriate

continuity and differentiability properties to all the variables entering equation set (1).

These properties are crucial for determining the well-posedness of the problem [20].

We assume that v is a continuous and locally integrable function in space. We

further assume that µ, which is a derivative of v, exists in the weak sense and it is

uniquely defined almost everywhere. These assumptions are particularly helpful when

an expression of v allows it to be continuous but not differentiable (in the strong sense)

everywhere; this case is encountered when using equation (20). Sobolev spaces gather

the properties of locally integrable functions and weak derivatives.

Hence, formally, we assume [20] that v ∈ [Lip (Ω)]d and µ ∈ [L∞ (B)]d×d, where

d (= 2 or 3) is the space dimension, Lip (Ω) denotes the space spanned by Lipschitz

continuous functions and L∞ (B) is a Banach space of essentially bounded measurable

functions with the essential supremum norm. With this assumption for v, there also

holds v ∈ [W 1,∞ (B)]d with the condition ∥∇vi∥[L∞(B)]d ≤ Lvi , ∀i ∈ {1, ..., d}; where
[W 1,∞ (B)]d is a Sobolev vector space and Lvi is the Lipschitz module of component vi.
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These assumptions will have consequences on the CFL condition tackled in section 5.2.

Note that these assumptions do not take into account the time dependence of v

and µ. Strictly speaking, v and µ should be time-dependent, however, since they are

assumed to be given data in the proposed time-explicit RKDG scheme, we make the

concession of assuming that they are time-independent, which simplifies the derivation

of the RKDG scheme [20].

Next, we assume that S is a continuous and at least once differentiable function in

space, such that ∇ ·S exists so that ∇ ·S = 0 can be satisfied. We also assume that S

is continuous in time, however, it does not have to be differentiable in time. Formally,

we assume S ∈ C0
(
[H1(B)]d×d

)
, where H1(B) is the Hilbert space whose functions are

continuous and at least once differentiable in space, and C0(V) is the space of V-valued
functions in space that are continuous in time but may or may not be differentiable.

γ is assumed to be continuous in both space and time but not necessarily differ-

entiable in either. Formally, γ ∈ C0
(
[L2 (|v · n̂|; ∂B)]d×d

)
, where L2 (|v · n̂| ; ∂B) :={

w is Lebesgue measurable

∣∣∣∣ ∫∂B|v · n̂|w2 < ∞
}
.

The sought solution α to the continuous variational problem is assumed to be

continuous and at least once differentiable in both space and time. Formally, α ∈
C0
(
[H1(B)]d×d

)
∩ C1

(
[L2(B)]d×d

)
, where C1(V) is the space of V-valued functions in

space that are continuous and at least once differentiable in time; following [20], it can be

shown that if such a solution exists, then it is unique. Finally, it can be straightforwardly

deduced that α0 ∈ [H1(B)]d×d
.

In brief, α, S and γ are functions of both space and time, and v, µ and α0 are

functions of only space. In the remainder of the article, the dependence on space and

time of these functions will be implied and shall not be mentioned unless necessary.

Now, let η ∈ [H1(B)]d×d
be a time-independent test function. Defining x⊖ :=

1
2
(|x| − x) as the negative part of a real number x, the continuous variational problem

for equation set (1) is posed as:

For all η ∈ [H1(B)]d×d
, find α ∈ C0

(
[H1(B)]d×d

)
∩ C1

(
[L2(B)]d×d

)
such that∫

B
α̇ : η dV + a (α,η)

=

∫
B
S : η dV +

∫
∂B−

(v · n̂)⊖ γ : η dS, ∀t ∈ [0, tF ]

(2)

with initial condition α(·, t = 0) = α0. The continuous bilinear form a (α,η) is defined

as:

a (α,η) :=

∫
B
[α · µ+ (∇α) · v − (∇ ·α)⊗ v] : η dV

+

∫
∂B

(v · n̂)⊖α : η dS,

(3)

Following [20], it can be shown that the continuous variational problem (2) is
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well-posed i.e., it admits one and only one (unique) solution α ∈ C0
(
[H1(B)]d×d

)
∩

C1
(
[L2(B)]d×d

)
. Furthermore, following proposition 2.7 in [20], it can be shown that

when this α solves (2), it solves (1) almost everywhere in B and ∂B.

4.2. Space semidiscretization: DG approach

4.2.1. Domain-level variational formulation

In spirit of the method of lines approach, we first perform a space semidiscretization

of the well-posed continuous variational problem (3). This procedure primarily involves

discretizing the domain B using a mesh and choosing a local functional behavior in each

mesh element; typically, polynomial functions are used, which is also the case in this

work. Using the properties of the local functional behavior, the discrete bilinear form

and the space semidiscrete variational problem can be obtained.

In what follows, the phrases shown in italic font are defined in Appendix A. We

assume that the domain B ⊂ Rd is a polyhedron in Rd and we discretize it using a general

mesh Th = {T} having a mesh size h; T ∈ Th is an element in Th with boundary ∂T .

Let F be a mesh face, and F i
h and F b

h be the collection of all interfaces and boundary

faces , respectively. Now, for an interface F between two elements, let {{ζ}} and JζK
respectively represent the average and the jump of a second-order tensor ζ for almost

all x ∈ F ; note that the average and jump operators act individually on each component

of ζ. Let nF be the unit mesh normal to F at almost all x ∈ F for all F ∈ Fh. Now, let

Pk
d(Th) be the piecewise continuous vector space or broken polynomial space; here k ≥ 1

is an integer that represents the polynomial degree. Finally, let Vh be the piecewise

continuous test and solution space that is defined as Vh :=
[
Pk
d(Th)

]d
.

We seek the approximate solutionαh ∈ C0 (Vh) to the space semidiscrete variational

form that is presented below. Crucially, we continue to assume that v and µ have the

same functional dependencies as those presented in section 4.1; the reason is given at

the end of this subsection. However, the space semidiscrete variational problem will use

Sh := πhS, γh := πhγ and α0
h := πhα

0, where the operator πh projects a continuous

field onto Vh.

The space semidiscrete form of the continuous variational problem (2) is as follows:

For all test functions ηh ∈ Vh, find αh ∈ C0 (Vh) such that∫
B
α̇h : ηh dV + aupwh (αh,ηh) dV

=

∫
B
Sh : ηh dV +

∫
∂B

(v · n̂)⊖ γh : ηh dS, ∀t ∈ [0, tF ]

(4)

with the initial condition αh(·, t = 0) = α0
h. aupwh (αh,ηh) is the upwind DG bilinear

form that is defined as:
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aupwh (αh,ηh) :=

∫
B
(αh · µ) : ηh dV

+

∫
B
[(∇hαh) · v − (∇h ·αh)⊗ v] : ηh dV

+

∫
∂B

(v · n̂)⊖αh : ηh dS

−
∑
F∈Fi

h

∫
F

(v · n̂F ) JαhK : {{ηh}} dS

+
∑
F∈Fi

h

∫
F

κ

2

∣∣v · n̂F

∣∣JαhK : JηhK dS

(5)

where κ ≥ 0 is a user-specified penalty factor on the jumps in the trial and test functions

across interfaces.

∇h is the broken gradient . Its usage implies that the derivatives exist and can be

computed within each element of the mesh but not on the boundaries of the elements.

According to its definition (see Appendix A.8), we have the second term on the right

hand side of (5),∫
B
[(∇hαh) · v − (∇h ·αh)⊗ v] : ηh dV

≡
∑
T∈Th

∫
T

[(∇αh) · v − (∇ ·αh)⊗ v] : ηh dV

The upwind DG bilinear form (5) satisfies consistency, discrete coercivity and

boundedness properties, and it delivers error estimates and (quasi-)optimal convergence

rates for the smooth solution [20].

Note that the derivation of (5) exploits the continuity in space of the normal

component of v across interfaces, which is one of the main reasons why we have assumed

v ∈ [W 1,∞ (B)]d. If we were to assume that v belonged to the broken polynomial space

Pk
d(Th), then the bilinear form would not be the same as the one in (5) and its derivation

would be more complicated.

Note also that the property ∇ · α̇ = 0 is lost due to discretization because the

solution can be discontinuous across mesh interfaces.

4.2.2. Element-level variational formulation

Some implementations of the DG problem involve recasting the domain-level space

semidiscrete variational problem into an element-level one, which introduces the concept

of numerical fluxes. While in this work we do not use an element-level implementation,

it is nevertheless interesting to present this formulation in order to better understand

some properties of the upwind DG bilinear form (5).
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For a real number x, let x⊕ := 1
2
(|x|+ x) define its “positive” part. Then, following

the procedure outlined in [20], we obtain the following element-level space semidiscrete

variational problem:

For all ηh ∈ Vh, find αh ∈ C0 (Vh) such that∫
T

α̇h : ηh dV +
∑
F∈FT

∫
F

ϕF (αh) : JηhK dS

−
∫
T

[(
αh · (∇v)T

)
: ηh + (∇ηh · v) : αh + (∇ ·αh)⊗ v

]
dV

=

∫
T

Sh : ηh dV, ∀T ∈ Th,∀t ∈ [0, tF ]

(6)

where FT is the collection of all faces belonging to the boundary ∂T of T (see definition

in Appendix A.4), and ϕF are the numerical fluxes defined as:

ϕF (αh) :=

{
(v · n̂F ) {{αh}}+ κ

2
|v · n̂F | JαhK if F ∈ F i

h

(v · n̂F )
⊕αh − (v · n̂F )

⊖ γh if F ∈ F b
h

(7)

ϕF depends on the user-defined penalty parameter κ ≥ 0. When κ = 0, we get

the centered fluxes ϕcf
F , which are so called because the average value of αh is used in

computing them on each F ∈ F i
h. Usually, centered fluxes are not used because they

result in a sub-optimal convergence rate. Choosing κ = 1 leads to the so-called upwind

fluxes in the context of finite volume schemes. It is recommended to not use a κ ≫ 1; for

a scalar space semidiscrete variational problem, Burman et al. [30] have shown that for

matching simplicial meshes as κ → +∞, the discrete solution converges to the solution

obtained from the CG approach, which is undesirable.

For any given fixed value of κ, the numerical fluxes ϕF are single-valued. Then, at

the element-level, the space semidiscrete variational formulation is “conservative” in the

sense that the αh that “flows” out of a mesh element through one of its faces “flows”

into the adjacent element through that face. This property is one of the main reasons

why the DG approach is an attractive one to solve transport-type problems.

4.3. Time discretization: explicit RK schemes

The second and final step in the method of lines approach is to perform the time

discretization of the space semidiscrete variational problem (4). The time discretization

is performed using time-explicit RK schemes. Note that with a suitable basis for Vh,

problem (4) can be transformed into a system of coupled ordinary differential equations

for the time-dependent components of αh on the chosen basis.

Let δt be a constant time step such that tF = Nδt, where N is the total number of

time steps. For n ∈ {0, 1, ..., N} we define the discrete time tn = nδt. A superscript n

to a function indicates its value at time tn.
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Explicit RK schemes are often presented in s-stages with pth order of accuracy.

They can be formulated in many different ways. Below, we will two popular approaches

to formulate the s-stage RK scheme.

4.3.1. Conventional approach

Let Ki, i ∈ {1, ..., s}, be second order tensors such that∫
B
Ki : ηh dV =− aupwh

(
αn

h + δt

s∑
j=1

aijKj,ηh

)

+

∫
B

(
Sn+ci

h + (vn · n̂)⊖ γn+ci

h

)
: ηh dV

αn+1
h = αn

h + δt
s∑

i=1

biKi

(8)

where, Sn+ci

h = Sh (t
n + ciδt) and γn+ci

h = γh (t
n + ciδt). aij is a matrix of real numbers,

bi are real numbers such that
s∑

i=1

bi = 1, and ci are real numbers in the interval [0,1]

such that ci =
s∑

j=1

aij, with (1 ≤ i, j ≤ s).

The RK scheme is explicit whenever aij = 0 for all j ≥ i. Therefore, the summation

on j in equation set (8) is only up to i−1. The Butcher’s tableau for the s-stage explicit

RK scheme (8) is expressed as follows:

c1 0 0 · · · 0

c2 a21 0 · · · 0
...

...
. . . . . .

...

cs as1 · · · as,s−1 0

b1 · · · bs−1 bs

4.3.2. Strong Stability Preserving (SSP) approach

An alternative approach, known as the SSP approach or the Total Variation

Diminishing (TVD) approach, involves computing intermediate stages of the discrete

solution instead of increments. Based on the work of Shu and Osher [21], the s-stage

RK scheme for the dislocation transport IBVP without a source term or boundary

conditions is given as:

αn,0
h = αn

h∫
B
αn,i : ηh dV =

i−1∑
j=0

∫
B

dijαn,j
h : ηh dV − δtgijaupwh

(
αn,j

h ,ηh

)
αn+1

h = αn,s
h

(9)
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where (dij)1≤i≤s,0≤j≤i−1 and (gij)1≤i≤s,0≤j≤i−1 are lower triangular matrices. The

contributions of Sh and γh will be added later in section 5.1 for the different RK

schemes that have been numerically implemented for the simulations performed in this

work because these contributions depend on the order of the RK scheme used.

We are interested in RK schemes where dij and gij are non-negative and dij is non-

zero whenever gij is non-zero. dij has to fulfil the following consistency requirement:

i−1∑
j=0

dij = 1, ∀i ∈ {1, ..., s}

As a consequence of these rules, the intermediate stages of the discrete solution,

αn,i
h , correspond to convex combinations of forward Euler substeps with the time step

δt replaced by gij

dij
δt resulting in the so-called SSP schemes. The SSP approach involves

finding dij and gij such that (9b) has the highest order of accuracy possible for that

s-stage scheme. To that end, one approach is to use the conventional RK approach

of (8) and rewrite it in the form of (9). However, most conventional RK-schemes

result in small CFL numbers and negative gij’s, which is undesirable [21, 31]. Another

approach, proposed by Shu and Osher [21] and expanded by Gottleib and Shu [31],

involves performing and analysing Taylor expansions of equation (9b) in order to find

dij and gij. Using this approach, Shu and Osher [21] developed SSP RKDG schemes of

order 1, 2 and 3 with only positive gij. In this work, we use the dij and gij proposed by

Shu and Osher [21].
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5. Numerical implementation

In this section, we discuss the different s-stage RK schemes that have been numerically

implemented in their SSP form (9) together with source and boundary terms, their CFL

condition, slope limiting and the generic algorithm. The numerical implementation has

been performed for the 3D case in the FEniCS [32, 33] open-source FE software using

its Python interface.

5.1. Explicit s-stage RK schemes

5.1.1. 1-stage forward Euler scheme (RK1)

The 1-stage RK scheme (RK1) is known as the forward Euler scheme. The

coefficients dij and gij associated with this scheme are

d = [1] , g = [1] ,

which results in the following RK1-scheme∫
B
αn+1 : ηh dV =

∫
B
αn : ηh dV − δtaupwh (αn

h,ηh) + δt

∫
B
P n

h : ηh dV, (10)

where P n
h :=

(
Sn

h + (vn · n̂)⊖ γn
h

)
.

Note here that (10) is obtained by adding the contribution of the source term and

the boundary condition to (9). Note also that the forward Euler scheme obtained from

(8) is the same as (10).

5.1.2. 2-stage SSP RK scheme (RK2)

The RK2 scheme has the following coefficients:

d =

[
1
1/2

1/2

]
, g =

[
1

0 1/2

]
,

which gives the following generic RK2 scheme:

∫
B
αn,1

h : ηh dV =

∫
B
αn

h : ηh dV − δtaupwh (αn
h,ηh) + δt

∫
B
P n

h : ηh dV∫
B
αn+1

h : ηh dV =
1

2

∫
B

(
αn

h +α
n,1
h

)
: ηh dV − 1

2
δtaupwh

(
αn,1

h ,ηh

)
+

1

2
δt

∫
B
ψh : ηh dV,

(11)

where ψh ≡ ψh (Sh,γh) is such that it provides, for smooth Sh and γh, a 2nd-order

approximation of
(
P n

h + δt
∂Pn

h

∂t

)
; P n

h is defined just after equation (10).
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The RK2 scheme (11) corresponds to the conventional 2-stage Heun’s method when

[20, 34]

ψh =
(
Sn+1

h + (vn · n̂)⊖ γn+1
h

)
.

5.1.3. 3-stage SSP RK scheme (RK3)

The RK3 scheme [20, 34] has been implemented using:

d =

 1
1/2

1/2
1/3

1/3
1/3

 , g =

10 1/2
0 0 1/3

 ,

which gives the following generic RK3 scheme:

∫
B
αn,1

h : ηh dV =

∫
B
αn

h : ηh dV − δtaupwh (αn
h,ηh) + δt

∫
B
P n

h : ηh dV∫
B
αn,2

h : ηh dV =
1

2

∫
B

(
αn

h +α
n,1
h

)
: ηh dV − 1

2
δtaupwh

(
αn,1

h ,ηh

)
+

1

2
δt

∫
B

(
P n

h + δt
∂P n

h

∂t

)
: ηh dV∫

B
αn+1

h : ηh dV =
1

3

∫
B

(
αn

h +α
n,1
h +αn,2

h

)
: ηh dV − 1

3
δtaupwh

(
αn,2

h ,ηh

)
+

1

3
δt

∫
B
ψh : ηh dV

(12)

In this case, ψh ≡ ψh (Sh,γh) is such that it provides, for smooth Sh and γh, a

3rd-order apporximation of
(
P n

h + δt
∂Pn

h

∂t
+ 1

2
δt2

∂2Pn
h

∂t2

)
.

The RK3 scheme (12) corresponds to the conventional 3-stage Heun’s method when

[20, 34]: ∫
B
ψh : ηh dV =

∫
B

[
−5

4
P n

h +
9

4
P

n+2/3
h − 1

2
δt
∂P n

h

∂t

]
: ηh dV

− 3

2
δtAupw

h

(
P

n+1/3
h − P n

h −
1

3
δt
∂P n

h

∂t
,ηh

)
,

where P n+ci

h :=
(
Sn+ci

h + (vn · n̂)⊖ γn+ci

h

)
with Sn+ci

h and γn+ci

h defined just after

equation (8) and ci = 0, 1/3, or 2/3.

5.2. CFL conditions

In order to understand the CFL conditions for the explicit RKDG scheme for the

dislocation transport IBVP, it is important to first understand the time scale and mesh

size involved in the problem.
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There are two inherent time scales associated with the dislocation transport

problem. The first one is associated with the simulation time tF , which is finite. The

second one is associated with the steady-state part of the problem, which can be infinite.

Based on the assumptions made in section 4.1 for v and µ, we define the following

time scale for the steady-state part of the problem:

τc :=
[
max

(
∥µ∥[L∞(B)]d×d , Lv

)]−1

,

where

Lv := max
1≤i≤d

Lvi ,

with vi being the components of velocity in the Cartesian basis of Rd and Lvi being

the Lipschitz module of vi. Since µ and Lv have the units of the reciprocal of time, τc
represents the (fastest) time scale in the steady-state problem.

In the event that ∥µ∥[L∞(B)]d×d = Lv = 0, which corresponds to the case of constant

advective velocity without reaction, we get τc = ∞. To avoid dealing with infinite time,

we consider the following time scale [20]:

τ∗ := min (tF , τc) ,

which is always finite.

Next, we make the following (mild) assumption on the time step

δt ≤ τ∗ (13)

and note that the inequality δt ≤ tF is trivially understood and the inequality δt ≤ τc
means the time step resolves the reference time.

Next, we define the following velocity magnitude:

vc := ∥v∥[L∞(B)]d ,

which corresponds to the fastest speed in the steady-state problem, and assume that we

have quasi-uniform meshes with the smallest mesh size h that can be interpreted as the

diameter of a sphere (in d = 3 or circle in d = 2) inscribed in the smallest element of

the mesh. We make the following mild assumption on h:

h ≤ vcτ∗. (14)

The assumption h ≤ vcτc implies that the local Damköhler number is not too large

(avoiding strong reaction regimes) and that the mesh size resolves the spatial variations

of the advective velocity [20]. Meanwhile, the assumption h ≤ vctF means that a

dislocation advected at speed vc crosses at least one mesh element over the time interval

(0, tF ).

With the bounds (13) and (14), respectively, on δt and h, we now define the usual

or standard CFL condition [17, 18] on the time step as:

δt ≤ ρ
h

vc
, (15)
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where ρ is some positive real number.

Another useful CFL criterion is the so-called 4/3-CFL condition [20, 35]

δt ≤ ρ′τ
−1/3
∗

(
h

vc

)4/3

, (16)

where ρ′ is some positive real number.

The value of ρ (and ρ′) depends on the type of RK scheme used. For the RK1

scheme, we assume that there exists a ρEUL independent of δt, h, vc, v (consequently,

µ), S and γ such that ρ ≤ ρEUL. Under the usual CFL criterion (15), for k = 0 (finite

volume scheme), the dominant term in the error estimate for the RK1 scheme converges

as O(h
1/2) [20]. Consequently, for small h i.e., h → 0, the errors incurred when using

the RK1 scheme become significant. In addition, the error estimate deteriorates in long

time causing additional problems. Furthermore, for k ≥ 1, the CFL criterion is more

stringent, making this scheme impractical, as is evidenced later in section 6.1.1.

For the RK2 scheme with k = 1, typically the usual CFL criterion (15) is used with

a threshold ρRK2 whose properties are the same as those of ρEUL. However, for k ≥ 2,

one should use the 4/3-CFL criterion [20, 35]. For all k ≥ 1, the RK2 scheme enjoys

better stability than the RK1 scheme.

For the RK3 scheme with k ≥ 1, typically the usual CFL criterion (15) with a

threshold ρRK3, whose properties are the same as those of ρEUL, is sufficient.

5.3. Slope limiting

The upwinding SSP RKDG scheme (9) provides a stable solution for the dislocation

transport IBVP problem whenever a piecewise-constant dislocation density field (i.e.,

polynomial degree k = 0) is used. However, piecewise-constant functions are seldom

used in practice due to the poor accuracy of the solution. Typically, higher-order spatial

approximations of the solution i.e., k ≥ 1, are used. Now, the upwinding RKDG scheme

gives a stable solution for k ≥ 1 provided smooth (gradually evolving in space) fields are

used. In practice, however, space discretization induces some roughness in the solution.

When rough solutions are sought with high-order space approximation (k ≥ 1), then

spurious oscillations, known as Gibbs oscillations [22], are induced in the solution. These

oscillations result in a deterioration of the solution over time irrespective of the RK

scheme used. Slope limiters can be used to strongly diminish (or completely eliminate)

these spurious oscillations [20].

For our simulations, we use the “hierarchical vertex-based” slope limiter, which

has been originally developed by Kuzmin [23, 24] for scalar functions, and which has

been implemented in the Oscellaris library by Landet [36, 37, 38] to be used with the

FEniCS software. During a numerical simulation using any s-stage SSP RK scheme, at

any given time step, the slope limiter (denoted using an operator Λ) is applied to the

intermediate stages and the final solution.
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Note that our problem involves solving for αh, a second-order tensor field, but the

slope limiter implemented in Oscellaris has been designed for application to scalar fields.

We overcome this limitation by imposing the slope limiter independently on each of the

nine components of αh. This approach is found to work well for the cases studied in

this work; it becomes particularly relevant in the case of expansion of a polygonal loop

in section 6.3 where two non-zero dislocation density tensor components depend on the

evolution of each other. For general 3D simulations with dislocations on different slip

systems, however, it may become necessary to design slope limiters for application on a

second-order tensor field, which is beyond the scope of the present work.

5.4. Algorithm

The algorithm for a generic s-stage RKDG scheme to solve the dislocation transport

IBVP is presented in Algorithm 1. We have assumed that a FE software already exists

and it has the capability of defining CG as well as DG function spaces; e.g., FEniCS

software [33], which is used in this work. We also assume that a slope limiter library

is available for use in the FE software; e.g., the Oscellaris library [38] developed for

FEniCS, which is used in this work.
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Algorithm 1: RKDG scheme for the dislocation transport IBVP

Initialization:

Mesh, time step, CG and DG function spaces (polynomial degree k);

Define v as a function in CG vector space;

Define αh as a (trial) function in DG tensor space;

Define ηh as a (test) function in DG tensor space;

Define aupwh (αh,ηh) as done in (5);

Define S and γ as functions in CG tensor space;

Define Sh as πhS and γh as πhγ;

Define αn+1
h and αn

h, current and previous time step densities, resepctively, as

functions in DG tensor space;

Define α0
h as a function in DG tensor space;

Main code:

Set t equal to 0;

Assign α0
h to αn

h to get Λαn
h;

while t is less than or equal to tF do

Determine vn using Λαn
h;

Increment t by δt;

Assign Λαn
h to Λαn,0

h ;

Set i equal to 0;

while i is less than or equal to s-stages do

Solve (9b) with Sh and γh from section 5.1 to get αn,i
h ;

Apply slope limiter to αn,i
h to get Λαn,i

h ;

Increment i by 1;

end

Assign Λαn,s
h to Λαn+1

h ;

Write Λαn+1
h to a file;

end

Result: ΛαN
h (where N = tF/δt)
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6. Results and discussion

To demonstrate the predictive capabilities of the 3D RKDG numerical implementation

of the dislocation transport IBVP, we shall consider the following model cases: (i)

transport of a single screw dislocation, (ii) annihilation of two oppositely signed screw

dislocations and (iii) expansion of a polygonal dislocation loop.

6.1. Transport of a screw dislocation: parametric study

In this section, we perform a parametric study to obtain a qualitative understanding

of the importance of the different tunable parameters of the RKDG scheme on the

stability and accuracy (and hence, the error) of the numerical solution. The tunable

parameters include the degree of space approximation (polynomial degree k), time

approximation (RK1, RK2 and RK3), slope limiting (Λ), upwinding penalty (κ), space

discretization (mesh size h) and time discretization (time step δt). For this study, we

perform simulations for the simplest case i.e., the transport of a single screw dislocation.

We also study the role of a constant uniform velocity field and a varying non-uniform

velocity field.

Working with the Euclidean space R3 and a Cartesian coordinate system, we

consider an infinitely-long single screw dislocation with line direction parallel to ê3
such that α = α33ê3 ⊗ ê3. We assume that this dislocation is moving with a velocity

along direction ê1 such that v = v1ê1. Then, assuming that S = 0 and γ = 0 on ∂B−,

equation set (1) reduces to:

α̇33 + α33,1v1 + α33v1,1 = 0

α33,3 = 0

α33 (·, t = 0) = α0
33

(17)

Since α33,3 does not enter into equation (17a), therefore, if α0
33 satisfies (17b), then

equation (17b) is satisfied at any given time.

We assume that the initial dislocation density α0
33 is given by:

α0
33(x) :=

{
1, if |x1 − xc| ≤ rc and |x2 − yc| ≤ rc

0, otherwise,
(18)

where rc is the dislocation “core” size and xc ≡ (xc, yc) is the location of the centroid

of the dislocation density cylinder. Note that the above expression results in a rough

initial dislocation density field with a square cross-section; the square shape is chosen

to demonstrate that the RKDG scheme can also deal with sharp changes in solution.

Note also that equation (18) satisfies condition (17b) since there are no variations along

ê3; this implies that (17b) will be satisfied at any given time. Note however that in the

simulations, we use α0
h := πhα

0, which is not necessarily divergence free.
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Simulations are performed using the 3D numerical implementation of the RKDG

model for the dislocation transport IBVP. However, the current implementation of the

slope limiter (section 5.3) does not allow using the periodic boundary condition feature

with the DG approach, which means that we cannot perform simulations for infinitely-

long dislocations using the 3D code. A workaround to this problem is to significantly

increase the domain size along the dislocation line direction and to use only one element

for space discretization along that direction. To that end, we assume that the simulation

box B has the dimensions 20 nm×4 nm×100000 nm and we discretize B using only one

element along ê3. Consequently, for this transport problem the divergence-free condition

is respected even by the approximate solution. Simulations are performed using non-

symmetric (diagonally to the right) structured tetrahedral meshes. The parameters in

expression (18) are: rc = 0.5 nm, xc = 5 nm and yc = 2 nm. Therefore, α0
h33 is in nm−1.

The simulation time is tF = 1 sec.

Finally, two types of dislocation velocities are considered:

(i) Constant uniform (advective) velocity field v = v1ê1 with v1 (in nm/sec)

v1(x, t) = 10, ∀(x, t) ∈ B × (0, tF ) (19)

For this case, we have τc = ∞. Consequently, τ∗ = tF = 1 sec and δt ≤ 1 sec must

be respected together with the CFL condition (15) or (16) depending on k and the RK

scheme used. Furthermore, the term α33v1,1 in equation (17a) becomes equal to 0.

(ii) Time-varying non-uniform velocity field (in nm/sec)

v1(x, t) = 10 sign (Λαh33(x, t)) , ∀(x, t) ∈ B × (0, tF ) , (20)

where the signum function (sign) is approximated as

sign (x) ≈


−1 if x ≤ −ε

x/ε if − ε < x < ε

1 if x ≥ ε

where 0 < ε < 1 is a user-defined number. We use a continuous approximation for the

signum function because we have assumed that v ∈ [W 1,∞ (B)]d. This approximation

allows µ to exist in the weak sense and respect µ ∈ [L∞ (B)]d×d. Then, we note that

for equation (20), we get µ = 0. For all the simulations that use equation (20), we have

chosen ε = 10−12 nm. In this case, we have τc = 0.1ε sec, which leads to τ∗ = τc = 10−13

sec and δt ≤ 10−13 sec should be respected. However, since this time step restriction is

only imposed by those parts of the dislocation density field where |αh33| < 10−12 nm−1,

it is found that using a (7 or 8 orders of magnitude) higher time step that respects the

CFL condition (15) or (16) gives satisfactory results (see sections 6.1.5 and 6.2).

Note that we have used Λαh33 in equation (20). This is done to circumvent the

fluctuations in αh33 about 0 caused by the Gibbs oscillations generated when k ≥ 1 is

used to approximate the rough portions of αh33 i.e., close to the edges of the solution.
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Nevertheless, when expression (20) is used, we encounter an incompatibility in the

function spaces on the left-hand side and the right-hand side because Λαh belongs to

the DG space whereas v is a function in the CG space. There are two approaches to

overcome this problem: (i) compute sign (Λαh33 (x, t)) in DG space and then project it

to the CG space to obtain v, or (ii) first project Λαh to the CG space and then insert this

projection into (20) to get v. We have tried both approaches and found that the second

one is the most suitable. In the first approach, projecting (sign Λαh33 (x, t)) from DG

to CG space results in some of the rough parts of the dislocation density field to have

a velocity of the opposite sign from the rest simply because the projection of the sign

function with ε = 10−12 results in some undesirable fluctuations. Consequently, parts

of the same density field move in opposite directions, which is an incorrect solution. In

the second approach, the sign function is applied on the projection of the slope limited

solution. This approach works well due to the regularity of the slope limited solution

(slope limiting introduces some smoothness to the rough parts of the solution); in this

case, the impact of ε = 10−12 is unclear.

6.1.1. Space and time approximation

In this section, we focus on understanding the role of space approximation (k) and

time approximation (RK scheme) on the stability and accuracy of the solution. To that

end, we consider the transport of a single screw dislocation with initial density given by

(18) due to a constant uniform velocity field (19) in the domain. In this case, equation

(17a) reduces to α̇33 + α33,1v1 = 0, whose solution is simply a translation of the screw

dislocation line along ê1 by a distance of 10 nm.

To highlight the interplay between the space and time approximations, we perform

simulations for k = 1 and k = 2 with the RK1, RK2 and RK3 schemes while fixing

the remaining set of parameters: κ = 1, no slope limiting, space discretization using

200×40×1 elements with h = 0.05 nm, and δt = 0.001 sec, which respects the usual CFL

condition δt ≤ (ρh/v1 = 0.005) assuming ρ = 1 for all the cases; the mesh associated

with this space discretization can be visualized in Figure S1. Figures 1 and 2 show the

contour and line plots, respectively, at t = 0.001 sec and at t = 1 sec for the different

RK schemes with k = 1 and k = 2. In addition, the exact solution is plotted in Figure

2.

For k = 1 at t = 0.001 sec i.e., after the first time step, RK1 has resulted in

the transport of the dislocation density without any Gibbs oscillation. Meanwhile, for

k = 2, the RK1 scheme induces some Gibbs oscillations already at t = 0.001 sec. In both

cases, however, as the simulations progress, the RK1 predicted solution deteriorates into

rapidly increasing spurious oscillations. Furthermore, the deterioration of the solution

is faster for k = 2 than for k = 1.

Gibbs oscillations are also present in the solution predicted by RK2 and RK3

schemes throughout the simulation, however, the solutions do not deteriorate as in

the RK1 case. Between RK2 and RK3, in general, the Gibbs oscillations are higher in
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amplitude for the former in comparison to the latter. The differences are smaller for

k = 1 but much larger for k = 2.

Even though the solution of RK2 with k = 2 does not deteriorate as much as the

one from the RK1 scheme, it is nevertheless oscillatory. Furthermore, the oscillations

are significantly more than those for k = 1. The reason for this lies in the fact that

while δt = 0.001 sec may satisfy the usual CFL condition (15), it does not satisfy the

more stringent 4/3-CFL condition (16). The latter condition imposes δt ≤ 0.00086ρ′.

If we were to generously assume that ρ′ = 1, even then the 4/3-CFL condition is not

satisfied. This example demonstrates why one should use the 4/3-CFL condition when

using RK2 with k = 2.

For a fixed k, improving the time approximation by using a higher-order RK scheme

reduces the total error by reducing the error incurred from the time approximation, and

improves the numerical solution as can be seen from Figure 1. Similarly, for a fixed RK

scheme, increasing k should reduce the total error by reducing the error incurred from

the space approximation. This effect can be seen in Figure 2 by comparing the (nearly)

vertical sections of the predicted and exact solutions for k = 1 and 2. However, it is

overshadowed by the Gibbs oscillations becoming more pronounced; an increase in k

from 1 to 2 has increased the amplitude and number of cycles of the Gibbs oscillations,

as seen in Figures 1 and 2.

Despite these errors, the solutions predicted by the RK2 and the RK3 schemes

result in a translation of the axis of the dislocation density field i.e., the dislocation line,

to the right by 10 nm, which is the expected solution.
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t = 0.001 t = 1

Figure 1: Role of space and time approximations: Comparison between predictions

of RK1, RK2 and RK3 schemes for polynomial degree k = 1 and k = 2 (space

approximations) for the transport of a single screw dislocation with density α33 nm−1

(initial state defined by (18)) at a constant velocity (19) without slope limiting. The

parameters common to all these simulations are κ = 1, no slope limiting, space

discretization with (200 × 40 × 1) elements, tF = 1 sec and δt = 0.001 sec. The

black vertical lines denote the separation between the results after the first time step

(t = 0.001 sec) and the last time step (t = 1 sec). The dashed lines are the lines along

which the line plots in Figure 2 have been generated for the different RK schemes. This

plot has been generated in ParaView 5.7.0.
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Figure 2: Line plot to understand role of space and time approximations: Line

plot of α33 as a function of distance along the horizontal (dashed lines) lines bisecting

the domains in Figure 1 for different RK schemes at t = 0.001 sec and at t = 1 sec with

(a) k = 1 and (b) k = 2 in comparison with the exact solution. This plot has been

generated using Gnuplot version 5.2.8.

6.1.2. Slope limiter

In order to diminish/eliminate the Gibbs oscillations encountered in the simulations

performed in section 6.1.1, they are re-performed using the same parameters but this

time with the slope limiter applied to the solution after each intermediate stage for every

time step. Since the RK1 scheme resulted in complete deterioration of the solution, it

does not make sense to use a slope limiter with this scheme that is naturally unstable.

Therefore, only the results from RK2 and RK3 schemes are presented. The contour and

line plots of the results of these simulations are shown in Figures 3 and 4, respectively.

The exact solution is plotted in Fig. 4 only along the shorter-spaced dashed lines (i.e.,

mid-section of the solution) in Figure 3; it is 0 at the so-called “top” portion of the

solution.

Between k = 1 and k = 2, the final solution predicted using the latter is more

diffuse and has a lower amplitude than the former, however, the final solution predicted

using the former has slightly more fluctuations at the top portion of the dislocation

density field. The larger spread and lower amplitude in the solution predicted by k = 2

is a consequence of the corrections induced by the slope limiter to remove the stronger

(higher amplitude and with more cycles) Gibbs oscillations than those in the solution

with k = 1. Continuing the discussion at the end of section 6.1.1, this result shows that

after suppressing the Gibbs oscillations, increasing k from 1 to 2 makes the solution

slightly stabler but it also induces a slightly larger spread and a decrease in amplitude.

For both RK schemes, however, the bottom part of the final solution has vanished

in the case when k = 2 (Figure 3), which could be an artefact of the non-symmetric

structured tetrahedral mesh used for the simulations.

In general, however, the solutions predicted by both RK2 and RK3 have a good

match everywhere for both k = 1 and k = 2. This result implies that in this case
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not only does the slope limiter reduce the Gibbs oscillations but also it reduces the

error contribution coming from the time approximation to the overall error. It also

implies that with the slope limiter, the relative contribution from the error in space

approximation to the overall error is significantly more than that coming from the time

approximation. In order to reduce this imbalance, k, κ and/or δt/h should be increased;

it was not possible to increase k using the computing hardware available with us. The

role of changing κ is studied in section 6.1.3 and that of δt/h is studied in section 6.1.4.

An additional interesting consequence of using the slope limiter is that the 4/3-CFL

condition (16) is no longer required for the simulations performed using the RK2 scheme

with k = 2 i.e., the usual CFL-condition is sufficient, at least in this specific case.

t = 0.001 t = 1

Figure 3: Role of slope limiter: Comparison between predictions of the RK2 and the

RK3 schemes for polynomial degree k = 1 and k = 2 (space approximations) for the

transport of a single screw dislocation with density α33 nm−1 (initial state defined by

(18)) at a constant velocity (19) with slope limiting. The other simulations parameters

used are the same as those used to generate the results in Figure 1. The black vertical

lines denote the separation between the results after the first time step (t = 0.001 sec)

and the last time step (t = 1 sec). The dashed lines are the lines along which the line

plots in Figure 4 have been generated. This plot has been generated in ParaView 5.7.0.

The results of this section show that applying the slope limiter strongly stabilizes

the predicted solution for both k = 1 and k = 2. Henceforth, all the simulations will be
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performed using the slope limiter.
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Figure 4: Line plots to understand role of slope limiter: Line plot of α33 as a

function of distance along (a, b) shorter-spaced dashed lines and (c, d) wider-spaced

dashed lines in Figure 3 for the RK2 and the RK3 schemes at t = 0.001 sec and at t = 1

sec with (a, c) k = 1 and (b, d) k = 2. The exact solution is shown only where it is

relevant i.e., for (a, b).

This plot has been generated using Gnuplot version 5.2.8.

6.1.3. Upwinding penalty

The upwinding penalty term in equation (5) strengthens the stability of the DG

bilinear form to give quasi-optimal convergence rates. This term penalises the jumps

in the trial and test solutions across internal facets with the help of a user adjustable

parameter κ. In all the simulations performed so far, we have used κ = 1, which

corresponds to upwind fluxes in the context of finite volume schemes. As mentioned

in section 4.2.2, when κ = 0, we obtain the centered fluxes, and when κ → +∞, the

DG predicted solution converges to the solution obtained from the CG approach. In

general, it is recommended that κ = 0 and κ ≫ 1 should not be used. In order to find

the upper limit of κ, the simulations performed with polynomial degree k = 1 in section

6.1.2 are re-performed with κ = 0, 2 and 3. Figure 5 shows the contour plot of the final

state from each of these simulations.
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Figure 5: Role of upwinding penalty: Comparison between the final states predicted

by the RK2 and the RK3 schemes for different upwinding penalties κ = 0, 2, 3 for the

transport of a single screw dislocation with density α33 nm−1 (initial state defined by

(18)) at a constant velocity (19) with slope limiting. The common parameters are

k = 1, slope limiting, space discretization with (200× 40× 1) elements, tF = 1 sec and

δt = 0.001 sec. This plot has been generated in ParaView 5.7.0.

For all κ, the RK3 scheme results in a more accurate and less diffuse solution than

RK2. For κ = 0 i.e., centered fluxes, the solutions predicted by both schemes are less

stable than the solutions predicted using κ = 1 in Figure 3; although it is not visible in

the Figure 5, parts of the dislocation density field trail far behind the rest, which is an

incorrect solution. When κ = 2 and κ = 3 are used, both schemes transport the entire

dislocation density. However, for κ ≥ 1, the solution is increasingly unstable and diffuse
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with increasing κ. Based on these simulations, κ = 1 i.e., upwind flux, appears to be the

best choice. Note that these simulations were executed using the slope limiter, however,

if a limiter were not to be used, then the solutions would have deteriorated significantly

more and faster than with the limiter. In the limit case where κ → ∞, one can deduce

that a δt ≪ 0.001 sec would be required to obtain a more compact solution even when

using the RK3 scheme.

6.1.4. Space and time discretization

In this section, we perform two studies to understand (i) the role of space and time

discretization on the predictive capabilities of RK2 and RK3 schemes while maintaining

the same dimensionless constant vcδt/h, and (ii) how close can δt approach the upper

bound set by the standard CFL condition before the solution completely deteriorates.

• From the CFL conditions, it is clear that if the number of elements were to be kept

the same and the time step were to be decreased, then the solution predicted by

any scheme would be more stable. Meanwhile, if the time step were to be kept

the same and the number of elements were to be increased (at least along the

direction of dislocation transport), then the solution predicted by all RK schemes

would be less stable. Therefore, an approach to compare the role of space and time

discretization on the predictive capabilities of the different RK schemes is to vary

δt and h while keeping the dimensionless number vcδt/h constant and less than or

equal to ρ i.e., respect the usual CFL condition. In all the simulations performed

so far, we have used h = 0.05 nm, δt = 0.001 sec, and a constant uniform velocity

field with vc = 10 nm/sec such that the dimensionless number vcδt/h = 0.2. We

now discretize the domain into 100× 20× 1 elements (see Figure S2) with h = 0.1

nm and use δt = 0.002 sec such that vcδt/h = 0.2 is respected. The remaining

parameters are the same as those used in section 6.1.1. Figure 6 shows the results

of these simulations.

Similar to the results for space discretization with 200 × 40 × 1 elements and

δt = 0.001 sec in section 6.1.2, the RK2 and RK3 predicted solutions match

very well, which indicates that the space approximation still has a higher error

contribution than the time approximation.

While the solution is less rough (smaller spatial gradients) for the case of 100×20×1

elements in comparison to the case of 200 × 40 × 1 elements, the line plots (not

shown) reveal that the spread in the dislocation density is larger for the former set

of simulations for both RK schemes. It is indeed preferable to use a finer spatial

resolution but doing that incurs a higher computational cost. Despite the larger

spread, both schemes transport the entire dislocation density field such that the

centroid has translated by 10 nm. Therefore, if the purpose of the simulations is

only to study the conservative property of the dislocation transport equation, then

it suffices to use smaller number of elements with larger δt in such a way that the

dimensionless number vcδt/h ≤ ρ remains constant.
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t = 0.001 t = 1

Figure 6: Role of space and time discretization keeping vcδt/h constant:

Comparison between the final states predicted by the RK1, RK2 and RK3 schemes

with 100 × 20 × 1 elements (h = 0.1 nm) and δt = 0.002 sec for k = 1 and k = 2 for

the transport of a single screw dislocation with density α33 nm−1 (initial state defined

by (18)) at a constant velocity (19) with slope limiting. The parameters in common to

the simulations performed for Figure 3 include slope limiting, κ = 1, tF = 1 sec and the

dimensionless number vcδt/h = 0.2. This plot has been generated in ParaView 5.7.0.

• In section 6.1.2, it was seen that the slope limiter increases the stability of the

solutions predicted by both RK2 and RK3 in comparison to the case where no

slope limiting is performed (section 6.1.1). In all cases, however, δt respected the

usual CFL condition. In this section, we study how much can δt be increased before

the slope limited solution becomes unstable. Similar to the previous case, we use

a space discretization of 100 × 20 × 1 elements with h = 0.1 nm and perform the

simulations using (i) δt = 0.005 sec such that vcδt/h = 0.5 and (ii) δt = 0.006667

sec such that vcδt/h = 0.6667. We assume that the case of δt = 0.005 sec is the

limit case that satisfies the usual CFL condition δt ≤ 0.005ρ with ρ = 1 and the

case of δt = 0.006667 sec surpasses this limit. The remaining simulation parameters

are k = 1, κ = 1, tF = 1 sec and with slope limiting. Therefore, δt = 0.005 sec

results in 200 time steps and δt = 0.006667 sec results in 150 times steps. Figure 7

shows the results of these simulations.
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For both δt = 0.005 sec and δt = 0.006667 sec, both RK2 and RK3 result in the

transport of the dislocation density. However, there is a significantly larger spread

in the solutions with δt = 0.006667 sec than with δt = 0.005 sec. Furthermore, and

in line with the discussion in section 6.1.2, we can now clearly see the advantage of

using RK3 over RK2 in reducing the overall error in the solution.

When these simulations are re-performed without using the slope limiter (not

shown), the solution predicted by both RK schemes deteriorates completely for

both δt = 0.005 sec and δt = 0.006667 sec. On one hand, these results demonstrate

the stabilizing effect of the slope limiter. On the other hand, slope limiters must

not be used on solutions that would otherwise deteriorate entirely. The time step

to obtain a stable solution should be determined without slope limiting.

Figure 7: Effect of δt approaching the CFL limit when using the slope limiter:

Comparison between the final states predicted by the RK1, RK2 and RK3 schemes for

δt = 0.005 sec and δt = 0.006667 sec for a space discretization of 100× 20× 1 elements

and the usual CFL condition (15) imposed upper limit being 0.005ρ for the transport

of a single screw dislocation with density α33 nm−1 (initial state defined by (18)) at

a constant velocity (19). The remaining parameters common to these simulations are

k = 1, κ = 1 and tF = 1 sec. This plot has been generated in ParaView 5.7.0.

6.1.5. Non-uniform velocity field

In this section, we re-perform the simulations performed in section 6.1.2, however,
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with a non-uniform varying velocity field given by equation (20).

In this case, the transport equation to be solved is the one given by equation (17a)

and one of the two constraints on the time step is δt ≤ τ∗ = min (0.1h, 1). Since we

are using 200 × 40 × 1 elements, we have h = 0.05 nm and consequently, δt has to be

less than or equal to τ∗ = 0.005 sec, which is indeed the case since the simulations are

performed using δt = 0.001 sec.

The simulations are performed for both k = 1 and k = 2. Interestingly, k = 2

results in a negligible difference with respect to the solutions predicted with constant

velocity in Figure 3. Meanwhile, k = 1 results in some noticeable differences. Figures 8

and 9 respectively show the contour and linear plots for the simulations with k = 1.

t = 0.001 t = 1

Figure 8: Role of non-uniform velocity: Comparison between predictions of the

RK2 and RK3 schemes for polynomial degree k = 1 for the transport of a single

screw dislocation with density α33 nm
−1 (initial state defined by (18)) with non-uniform

velocity (20) and slope limiting. The parameters common to these simulations are κ = 1,

space discretization with (200 × 40 × 1) elements, tF = 1 sec and δt = 0.001 sec. The

black vertical lines denote the separation between the results after the first time step

(t = 0.001 sec) and the last time step (t = 1 sec). The dashed lines are the lines along

which the line plots in Figure 9 have been generated for the different RK schemes. This

plot has been generated in ParaView 5.7.0.

The RK2 and RK3 predicted solutions match nearly perfectly everywhere. However,

both schemes result in an overshoot at the top and bottom portions of the solution

(Figure 8), which was not present in the solutions obtained from simulations performed

with constant velocity. This difference should be a combination of the non-symmetry

of the structured tetrahedral mesh and the term α33v1,1, which was not present in

the constant velocity case. Since v1 is non-uniform and has large gradients at the

extremities of the solution, the contribution of α33v1,1 becomes significant at those

locations. Comparing Figures 4(a) and 9, it can be seen that the solution with variable

non-uniform velocity is slightly more asymmetric with respect to the exact solution

than the one with the constant uniform velocity. Nevertheless, the dislocation density

is transported by 10 nm in both simulations.



Dislocation transport via a time-explicit RKDG FE scheme 34

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  2  4  6  8  10  12  14  16  18  20

exact

α
3
3
 (

1
/n

m
)

Distance (nm)

RK2 t = 0.001

RK3 t = 0.001

RK2 t = 1

RK3 t = 1

Figure 9: Line plot to study the role of non-uniform velocity: Line plot of α33

as a function of distance along dashed lines in Figure 8 for RK2 and RK3 schemes at

t = 0.001 sec and at t = 1 sec with k = 1 in comparison with the exact solution. This

plot has been generated using Gnuplot version 5.2.8.

6.2. Annihilation of two oppositely signed screw dislocations

Consider two infinitely-long screw dislocations of opposite sign whose initial state is

given by

α0
33(x) :=


1, if |x1 − x1

c | ≤ rc and |x2 − y1c | ≤ rc

−1, if |x1 − x2
c | ≤ rc and |x2 − y2c | ≤ rc

0, otherwise

(21)

where (x1
c , y

1
c ) and (x2

c , y
2
c ) are the location of the centroids of the dislocation density

of the “positive” and “negative” screw dislocations, respectively. The simulation box

dimensions and the number of elements are the same as those given at the beginning

of section 6.1. x1
c = 5 nm, y1c = 2 nm, x2

c = 15 nm, y2c = 2 nm and rc = 0.5 nm.

Dislocation velocity is given by equation (20), which implies that the two dislocations

are moving towards each other and will annihilate after translating 5 nm towards each

other. Simulations are performed using the RK2 and RK3 schemes with at δt = 0.0001

sec. The remaining RKDG parameters are the same as those used in section 6.1.2.

Figure 10 shows the snapshots of the solution predicted by RK3 at different time

steps; the contour plot of the solution predicted by the RK2 scheme looks only slightly

different from the one predicted by the RK3 scheme, and hence it is not shown; a video

of the dislocation annihilation simulation using the RK3 approach is provided in the

supplementary material. Figure 11 shows the lineplots of the solution at different time

steps by both schemes. Both RK2 and RK3 schemes are able to resolve the shock

generated from annihilation and both result in complete annihilation of dislocations at
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the end of the simulation; residual density of magnitude less than 10−4 nm−1 is left

at the end of the simulation. However, the lineplots show that the RK2 simulation

results in an overshoot in the solution due to the shock created at the location where

the dislocation densities annihilate. Meanwhile, the solution predicted with RK3 has no

such overshoot. In other words, the shock is resolved without any spurious oscillations

by the RK3 scheme. This result highlights the importance of using a high-order RK

scheme when dealing with discontinuities or shocks in the solution.

Figure 10: Dislocation annihilation: Comparison between the states at t = 0.001 sec,

t = 0.5 sec and t = 1 sec predicted by the RK3 scheme for the dislocation annihilation

simulation at δt = 0.0001 sec. The other parameters of this simulation are k = 1, κ = 1,

slope limiting, space discretization with (200 × 40 × 1) elements and tF = 1 sec. The

dashed lines are the lines along which the line plots in Figure 11 have been generated.

This plot has been generated in ParaView 5.7.0.

6.3. Expansion of a polygonal dislocation loop

The polygonal loop lies in the same plane as its Burgers vector. Depending on the

location on the loop, the dislocation can have either a screw, an edge or a mixed

character; the character is determined by the angle between the local tangent to the

dislocation line and the Burgers vector. This loop can either grow or shrink in the plane

of its Burgers vector. In this section, we simulate the loop expansion.

In this problem, we consider an expanding dislocation loop with density α =

α11ê1 ⊗ ê1 + α12ê1 ⊗ ê2 with the velocity v = v1ê1 + v2ê2. The component α11 is

the screw component with the Burgers vector and line direction parallel to ê1 and the

component α12 is the edge component with the Burgers vector parallel to ê1 and the
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Figure 11: Line plot to study dislocation annihilation: Line plot of α33 as a

function of distance along dashed lines shown in Figure 10 from the solutions predicted

by (a) the RK2 and (b) the RK3 schemes at t = 0.001 sec, t = 0.5 sec and t = 1 sec.

This plot has been generated using Gnuplot version 5.2.8.

line direction parallel to ê2. Then, the equation set (1) becomes:

α̇11 + (α11v2 − α12v1),2 = 0

α̇12 + (α12v1 − α11v2),1 = 0

α11,1 + α12,2 = 0

α11 (·, t = 0) = α0
11

α12 (·, t = 0) = α0
12

(22)

The dislocation velocity components are assumed to be

v1 = v0
α12

∥α∥2
v2 = −v0

α11

∥α∥2

with ∥α∥2 =
√

α2
11 + α2

12

(23)

The dimensions of the domain are 40 nm × 40 nm × 0.8 nm. The domain is

discretized into 160 × 160 × 1 elements using a symmetric structured tetrahedral mesh

(see Figure S3). The dislocation loop is placed in the x− y plane as shown in Fig. 12.

The center of the loop is at (20 nm, 20 nm) and the length of the inner part of the loop

is l = 4 nm. The thickness along the vertical and horizontal directions is 2h = 0.20366

nm.

The initial state of the dislocation α0 = α0
11ê1 ⊗ ê1 + α0

12ê1 ⊗ ê2 has to be such

that equation (22c) is respected. To that end, we consider a dislocation loop having the

configuration shown in Fig. 12. The top and bottom straight portions of the loop have

(in nm−1) α0
11 = −1 and α0

11 = 1, respectively, with α0
12 = 0. The left and right straight

portions of the loop have α0
12 = −1 and α0

12 = 1, respectively, with α0
11 = 0. The corners
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of the loops have:

α0
11 = − y − (yc + b)√

(x− (xc + a))2 + (y − (yc + b))2

α0
12 =

x− (xc + a)√
(x− (xc + a))2 + (y − (yc + b))2

(24)

where (xc, yc) are the coordinates of the center of the loop and (a, b) take the values of

(l, l), (−l, l), (−l,−l) and (l,−l) in the top right, top left, bottom left and bottom right

corners, respectively. The initial dislocation density is assumed to be uniform across the

third direction.

This initial condition respects ∇ · α0 = 0 everywhere in the continuous domain.

However, unlike the simulations conducted in sections 6.1 and 6.2, this condition may not

be respected at some points (notably the corners) in the discretized domain. Therefore,

when performing the simulations for dislocation expansion, we have strongly imposed

that ∇h ·α = 0 in equation (5). Note that unlike the cases studied in sections 6.1.5 and

6.2, in the present case, µ ̸= 0.

The simulation is performed using the RK2 scheme with k = 1, κ = 1 and

slope limiting for a total time tF = 5 sec in 5000 steps such that δt = 0.0001 sec.

Since we are using k = 1, the time step should respect the usual CFL condition (15):

δt ≤ 0.010183ρRK2. Assuming that ρRK2 = 0.1, the chosen δt is smaller by an order

of magnitude than the upper limit imposed by the usual CFL condition. Hence, the

scheme is expected to yield a stable solution, which it indeed does. The results of the

simulation at different instances in time are shown in Fig. 12.

The results show that the predicted solution remains highly stable for the entire

duration of the simulation. The initial dislocation density is spread across 5 cuboid

blocks (see Figure S3) along the vertical and horizontal directions. At t = 1.45 sec (not

shown in Fig. 12), when the loop just touches the boundary of the domain, the density

is spread across 7 cuboid blocks (see Figure S4) across the straight portions along the

vertical and the horizontal directions. Furthermore, a line plot along the horizontal

line bisecting the domain reveals that the peak amplitude of the dislocation density

magnitude along the horizontal direction is 0.72 nm−1. At the end of the simulation,

the dislocation density is completely annihilated at the free boundaries, which is the

expected solution; a residue with a maximum magnitude less than 10−11 nm−1 is

obtained at the end of the simulation; a video of this simulation is provided in the

supplementary material.

Note that the very low diffusion of the solution and a highly stable loop expansion

has been obtained in spite of the slope limiter being applied individually on α11 and α12

(see section 5.3 for explanation). Design and application of a slope limiter for second

order tensors is expected to either give the same response or improve it.
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Figure 12: Expansion of a polygonal loop: Snapshots of the L2-norm of α (∥α∥2),
α11 and α12 at t = 0, 0.5, 1, 1.5 and 2 sec. This plot has been generated in ParaView

5.7.0.
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7. Summary, conclusions and perspectives

A time-explicit Runge-Kutta discontinuous Galerkin (RKDG) finite element (FE)

approach is developed using the method of lines approach to solve the dislocation

transport initial boundary value problem. Space semi-discretization is performed using

the upwinding DG approach. Then, time discretization is performed using explicit

RK schemes. The numerical implementation of the RKDG scheme is done for the 1-

stage first-order accurate RK (RK1 or forward Euler), 2-stage second-order accurate RK

(RK2) and 3-stage third-order accurate RK (RK3) schemes using the Strong Stability

Preserving (SSP) approach, also known as the Total Variation Diminishing (TVD)

approach. The hierarchical vertex-based slope limiter is used to eliminate spurious

Gibbs oscillations that always arise when rough solutions are approximated using high-

order space approximations (polynomial degree≥ 1). The RKDG scheme is then applied

to study the transport of a screw dislocation, annihilation of two oppositely signed screw

dislocations and the expansion of a polygonal dislocation loop.

A parametric study is performed to understand the influence of key parameters of

the RKDG scheme viz., space approximation (polynomial degree), time approximation

(RK1, RK2 or RK3), slope limiter, upwinding penalty, space discretization (mesh size),

time discretization (time step), and uniform constant or non-uniform variable velocity.

In general, increasing the polynomial degree, improving the time approximation,

and decreasing the time step and mesh size improved stability and accuracy of the

solution. The solution predicted by the RK1 scheme rapidly deteriorates, underlining

the importance of using higher-order accurate RK schemes for time discretization i.e.,

RK2 or RK3; due to its instability, the RK1 scheme was not used to perform other

simulations. The slope limiter prevents the formation and propagation of spurious

oscillations from the very first time step, thus stabilizing the RK2 and RK3 predicted

solutions. The upwinding penalty factor of 1 was found to yield the most stable solution

for the transport problem. Both uniform constant velocity and non-uniform variable

velocity result in the expected dislocation transport.

With appropriate choice of simulations parameters, the proposed RKDG scheme

is able to stably solve the dislocation annihilation problem. Specifically, it is able

to resolve the shock generated during dislocation annihilation without inducing any

spurious oscillations in the solution. At the end of the annihilation process, the residual

dislocation density is significantly lower (4 orders of magnitude) than the magnitude of

the initial density.

The simulated expansion of the polygonal dislocation loop is highly stable and

with very low diffusion of the solution across elements. At the end of the simulation,

the dislocation loop is annihilated at the free boundaries of the simulation domain, which

is the expected result. Furthermore, a negligibly small amount of residual is obtained

(11 orders of magnitude lower than the magnitude of the initial density).

All of these results show the accuracy and robustness of the explicit RKDG FE

approach in solving the dislocation transport IBVP. It allows accurately and robustly
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treating the short-range interactions between dislocations, which from a numerical

standpoint has been a difficult problem to solve using polar dislocation density based

approaches. One of the next steps will be to compare the simulation predictions

and computational time of the RKDG approach with those from the existing 3D

implementations of the dislocation transport IBVP via the continuous Galerkin/Least-

Squares (CG-LS) [10, 11] and the Fast Fourier Transform (FFT) [14] numerical

techniques, in order to understand the accuracy, the robustness and the domain of

applicability of each approach. Another step could be to check how much error is

being made by strongly imposing the continuity condition in the dislocation transport

equation and whether it is important to correct it, for example, by incorporating locally

divergence-free conditions into the solution space, as done in the work of Cockburn et al.

[39]. Yet another step could be to extend the current (quasi-)linear formulation to the

non-linear case where the dislocation velocity is a function of the dislocation density of

the current time step. There are many challenges associated with this extension, mainly

arising from the physical interpretation of the non-linear flux term across interfaces in

the mesh, that one would need to address prior to its implementation; another factor

to be considered is whether this extension could provide a significant improvement over

the existing approach by taking into account the robustness of the (quasi-)linear scheme

proposed in this work. Eventually, the RKDG approach will be implemented to solve

the dislocation mechanics problem in the context of the isothermal field dislocation

mechanics model [6] and then the thermal field dislocation mechanics model [7].
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Appendix A. Definitions

The definitions given below are adopted from the work of Di Pietro and Ern [20]. They

are recalled here, often times verbatimly, in order to make the article standalone.

Appendix A.1. Polyhedron

A set P is a polyhedron in Rd if it is an open, connected, bounded subset of Rd such that

its boundary ∂P is a finite union of parts of hyperplanes, say {Hi}1≤i≤nP
. A hyperplane

is a subspace whose dimension is one less than that of the space under consideration;

e.g., if a space is d-dimensional then its hyperplanes are the (d− 1)-dimensional planes.

Furthermore, for all 1 ≤ i ≤ nP , at each point in the interior of ∂P ∩Hi, the set P is

assumed to lie on only one side of its boundary.

Appendix A.2. General mesh

A general mesh T of the domain B is a finite collection of disjoint polyhedra {T}, such
that T = {T}, forming a partition of B,

B = ∪T∈T T.

Each T ∈ T is a mesh element. This definition of T includes non-degenerate

(simplicial) meshes i.e., simplicial meshes are a subset of a general mesh. While the

continuous Galerkin method is well suited for simplicial meshes, the DG method is well

suited for any general mesh.

Appendix A.3. Element diameter or meshsize

For all T ∈ T , hT denotes the diameter of the sphere (circle for d = 2) inscribed in T ,

and the meshsize is defined as the real number

h := max
T∈T

hT

The notation Th is used for a mesh T with meshsize h.

Appendix A.4. Mesh faces

A closed subset F of B is a mesh face if F has positive (d − 1)-dimensional Hausdorff

measure (in dimension 1, this means that F is nonempty) and if either one of the two

following conditions is satisfied:

(i) F is called an interface if there are distinct mesh elements T1 and T2 such that

F = ∂T1 ∩ ∂T2.

(ii) F is called a boundary face if there is a T ∈ Th such that F = ∂T1 ∩ ∂B.
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Interfaces are collected in the set F i
h, and boundary faces are collected in the set

F b
h such that F i

h ∩ F b
h is a null set. Furthermore, the set

FT :=

{
F ∈ Fh

∣∣∣∣F ⊂ ∂T

}
collects the mesh faces composing the boundary of T .

Appendix A.5. Interface averages and jumps

We now define averages and jumps across interfaces of piecewise smooth functions. Let

ζij be a second-order tensor-valued function defined on B and assume that ζij is smooth

enough on all F ∈ F i
h, a possibly two-valued face, which means that ∀T ∈ Th, the

restriction ζij|T of ζij to the open set T can be defined up to the boundary ∂T . Then,

∀F ∈ F i
h and for almost all x ∈ F , the average of ζij is defined as:

{{ζij}}F (x) :=
1

2
(ζij|T1(x) + ζij|T2(x))

and the jump of αij as

JζijKF (x) := ζij|T1(x)− ζij|T2(x)

Note that the subscript F has been dropped in the main text of this work; i.e., we

simply write {{ζij}} and JζijK.

Appendix A.6. Face normals

For all F ∈ F i
h ∪ F b

h and almost all x ∈ F , we define the (unit) normal to F at x as

(i) n̂F , the unit normal to F at x pointing from T1 to T2 if F ∈ F i
h with F = ∂T1∩∂T2;

the orientation of nF is arbitrarily depending on the choice of T1 and T2, but kept

fixed once that choice has been made. Note that nF will always point towards the

element with the higher index.

(ii) n̂, the unit outward normal to B at x if F ∈ F b
h.

Appendix A.7. The broken polynomial space

Let xa be such that for x = (x1, x2, ..., xd) ∈ Rd, xa :=
d∏

i=1

xai
i , where a = (a1, a2, ..., ad) ∈

Nd. Then, we define the space of polynomials of d variables, of total degree at most k,

as

Pk
d(T ) :=p : R ∋ x 7→ p(x) ∈ R

∣∣∣∣∃(γa)a∈Ak
d
∈ Rcard(Ak

d) s.t. p(x) =
∑
a∈Ak

d

γax
a

 ,

where Ak
d :=

{
a ∈ Nd

∣∣ |a|l1 ≤ k
}
with |a|l1 :=

d∑
i=1

|ai|.
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The dimension of the vector-space Pk
d is

dim(Pk
d) = card(Ak

d) =
k+dCk =

(
k + d

k

)
=

(k + d)!

k!d!

For example, the dimension of P2
3 is 10 because there are 10 possible combinations

of the x, y and z dimensions, namely, 1, x, y, z, x2, y2, z2, xy, yz, and xz.

The broken polynomial space is then defined as

Pk
d(Th) :=

{
x ∈

[
L2(B)

]d ∣∣∣∣∀T ∈ Th,x|T ∈ Pk
d(T )

}
(A.1)

Pk
d(T ) is spanned by the restriction to T of polynomials in Pk

d. The dimension of

Pk
d(Th) is

dim(Pk
d(Th)) = card(Th)× dim(Pk

d)

Appendix A.8. The broken gradient

The definition of the broken gradient requires defining the broken Sobolev space

Wk,p(Th) :=

{
w ∈ Lp(B)

∣∣∣∣∀T ∈ Th, w|T ∈ W k,p(T )

}
where W k,p(T ) is a Sobolev space.

We define the broken gradient ∇h : W 1,p(Th) 7→ [Lp(B)]d such that for all

w ∈ W 1,p(Th),

∀T ∈ Th, (∇hw)|T := ∇(w|T )

The subscript h in ∇h is dropped whenever this operator appears inside an integral

over a fixed mesh element T ∈ Th.
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