Transition to chaos in wave memory dynamics in a harmonic well: Deterministic and noise-driven behavior - École polytechnique
Article Dans Une Revue Chaos: An Interdisciplinary Journal of Nonlinear Science Année : 2018

Transition to chaos in wave memory dynamics in a harmonic well: Deterministic and noise-driven behavior

Résumé

A walker is the association of a sub-millimetric bouncing drop moving along with a co-evolving Faraday wave. When confined in a harmonic potential, its stable trajectories are periodic and quantised both in extension and mean angular momentum. In this article, we present the rest of the story, specifically the chaotic paths. They are chaotic and show intermittent behaviors between an unstable quantised set of attractors. First, we present the two possible situations we find experimentally. Then, we emphasise theoretically two mechanisms that lead to unstable situations. It corresponds either to noise-driven chaos or low-dimensional deterministic chaos. Finally, we characterise experimentally each of these distinct situations. This article aims at presenting a comprehensive investigation of the unstable paths in order to complete the picture of walkers in a two dimensional harmonic potential.
Fichier principal
Vignette du fichier
1811.01709v1.pdf (2.51 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04362259 , version 1 (02-10-2024)

Identifiants

Citer

Stéphane Perrard, Matthieu Labousse. Transition to chaos in wave memory dynamics in a harmonic well: Deterministic and noise-driven behavior. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2018, 28 (9), pp.096109. ⟨10.1063/1.5032088⟩. ⟨hal-04362259⟩
41 Consultations
4 Téléchargements

Altmetric

Partager

More