Reconnection Inside a Dipolarization Front of a Diverging Earthward Fast Flow
Résumé
Abstract We examine a Dipolarization Front (DF) event with an embedded electron diffusion region (EDR), observed by the Magnetospheric Multiscale (MMS) spacecraft on 08 September 2018 at 14:51:30 UT in the Earth's magnetotail by applying multi‐scale multipoint analysis methods. In order to study the large‐scale context of this DF, we use conjunction observations of the Cluster spacecraft together with MMS. A polynomial magnetic field reconstruction technique is applied to MMS data to characterize the embedded electron current sheet including its velocity and the X‐line exhaust opening angle. Our results show that the MMS and Cluster spacecraft were located in two counter‐rotating vortex flows, and such flows may distort a flux tube in a way that the local magnetic shear angle is increased and localized magnetic reconnection may be triggered. Using multi‐point data from MMS we further show that the local normalized reconnection rate is in the range of R ∼ 0.16 to 0.18. We find a highly asymmetric electron in‐ and outflow structure, consistent with previous simulations on strong guide‐field reconnection events. This study shows that magnetic reconnection may not only take place at large‐scale stable magnetopause or magnetotail current sheets but also in transient localized current sheets, produced as a consequence of the interaction between the fast Earthward flows and the Earth's dipole field.
Domaines
Planète et Univers [physics]
Fichier principal
Reconnection Inside a Dipolarization Front of a Diverging Earthward Fast Flow.pdf (7.14 Mo)
Télécharger le fichier
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|