Biharmonic Coordinates and their Derivatives for Triangular 3D Cages - École polytechnique
Article Dans Une Revue ACM Transactions on Graphics Année : 2024

Biharmonic Coordinates and their Derivatives for Triangular 3D Cages

Jean-Marc Thiery
Élie Michel

Résumé

As a natural extension to the harmonic coordinates, the biharmonic coordinates have been found superior for planar shape and image manipulation with an enriched deformation space. However, the 3D biharmonic coordinates and their derivatives have remained unexplored. In this work, we derive closed-form expressions for biharmonic coordinates and their derivatives for 3D triangular cages. The core of our derivation lies in computing the closed-form expressions for the integral of the Euclidean distance over a triangle and its derivatives. The derived 3D biharmonic coordinates not only fill a missing component in methods of generalized barycentric coordinates but also pave the way for various interesting applications in practice, including producing a family of biharmonic deformations, solving variational shape deformations, and even unlocking the closed-form expressions for recently-introduced Somigliana coordinates for both fast and accurate evaluations
Fichier sous embargo
Fichier sous embargo
0 0 23
Année Mois Jours
Avant la publication
dimanche 19 janvier 2025
Fichier sous embargo
dimanche 19 janvier 2025
Connectez-vous pour demander l'accès au fichier

Dates et versions

hal-04812859 , version 1 (01-12-2024)

Licence

Identifiants

Citer

Jean-Marc Thiery, Élie Michel, Jiong Chen. Biharmonic Coordinates and their Derivatives for Triangular 3D Cages. ACM Transactions on Graphics, 2024, 43 (138), pp.17. ⟨10.1145/3658208⟩. ⟨hal-04812859⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More