On the Mean Field and Classical Limits of Quantum Mechanics - École polytechnique
Pré-Publication, Document De Travail Année : 2015

On the Mean Field and Classical Limits of Quantum Mechanics

Résumé

The main result in this paper is a new inequality bearing on solutions of the $N$-body linear Schrödinger equation and of the mean field Hartree equations. This inequality implies that the mean field limit of the quantum mechanics of $N$ identical particles is uniform in the classical limit and provides a quantitative estimate of the quality of the approximation. This result applies to the case of $C^{1,1}$ interaction potentials. The quantity measuring the approximation of the $N$-body quantum dynamics by its mean field limit is analogous to the Monge-Kantorovich (or Wasserstein) distance with exponent $2$. The inequality satisfied by this quantity is reminiscent of the work of Dobrushin on the mean field limit in classical mechanics [Func. Anal. Appl. 13 (1979), 115-123]. Our approach of this problem is based on a direct analysis of the $N$-particle Liouville equation, and avoids using techniques based on the BBGKY hierarchy or on second quantization.
Fichier principal
Vignette du fichier
MFCQM2.pdf (312.36 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01119132 , version 1 (20-02-2015)
hal-01119132 , version 2 (22-04-2015)
hal-01119132 , version 3 (11-08-2015)
hal-01119132 , version 4 (13-11-2015)

Identifiants

  • HAL Id : hal-01119132 , version 1

Citer

François Golse, Clément Mouhot, Thierry Paul. On the Mean Field and Classical Limits of Quantum Mechanics. 2015. ⟨hal-01119132v1⟩
637 Consultations
345 Téléchargements

Partager

More