Branching diffusion representation of semi-linear elliptic PDEs and estimation using Monte Carlo method - École polytechnique
Article Dans Une Revue Stochastic Processes and their Applications Année : 2020

Branching diffusion representation of semi-linear elliptic PDEs and estimation using Monte Carlo method

Résumé

We study semi-linear elliptic PDEs with polynomial non-linearity and provide a probabilistic representation of their solution using branching diffusion processes. When the non-linearity involves the unknown function but not its derivatives, we extend previous results in the literature by showing that our probabilistic representation provides a solution to the PDE without assuming its existence. In the general case, we derive a new representation of the solution by using marked branching diffusion processes and automatic differentiation formulas to account for the non-linear gradient term. In both cases, we develop new theoretical tools to provide explicit sufficient conditions under which our probabilistic representations hold. As an application, we consider several examples including multi-dimensional semi-linear elliptic PDEs and estimate their solution by using the Monte Carlo method.
Fichier principal
Vignette du fichier
nonlinellipticbranching_v20_arXiv.pdf (562.04 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01709033 , version 1 (14-02-2018)

Identifiants

Citer

Ankush Agarwal, Julien Claisse. Branching diffusion representation of semi-linear elliptic PDEs and estimation using Monte Carlo method. Stochastic Processes and their Applications, 2020, ⟨10.1016/j.spa.2020.02.009⟩. ⟨hal-01709033⟩
201 Consultations
344 Téléchargements

Altmetric

Partager

More