A Duality-Based Proof of the Triangle Inequality for the Wasserstein Distances
Résumé
This short note gives a proof of the triangle inequality based on the Kantorovich duality formula for the Wasserstein distances of finite exponent p≥1 in the case of a general Polish space. In particular it avoids the ``glueing of couplings'' procedure used in most textbooks on optimal transport.
Mots clés
Wasserstein distance
Kantorovich duality
Triangle inequality
Optimal transport
2020 Mathematics Subject Classification. 49Q22 49N15 (60B10) Wasserstein distance Kantorovich duality Triangle inequality Optimal transport
2020 Mathematics Subject Classification. 49Q22
49N15 (60B10) Wasserstein distance
Domaines
Mathématiques [math]
Fichier principal
IneqTriang3.pdf (139.66 Ko)
Télécharger le fichier
IneqTriang3.tex (29.23 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|