Reinforcement learning with formal performance metrics for quadcopter attitude control under non-nominal contexts - École polytechnique
Article Dans Une Revue Engineering Applications of Artificial Intelligence Année : 2023

Reinforcement learning with formal performance metrics for quadcopter attitude control under non-nominal contexts

Nicola Bernini
  • Fonction : Auteur
  • PersonId : 1322571
Mikhail Bessa
  • Fonction : Auteur
  • PersonId : 1322572
Rémi Delmas
Arthur Gold
  • Fonction : Auteur
  • PersonId : 1322574
Romain Pennec
  • Fonction : Auteur
  • PersonId : 1322575
François Sillion
  • Fonction : Auteur
  • PersonId : 1322576

Résumé

We explore the reinforcement learning approach to designing controllers by extensively discussing the case of a quadcopter attitude controller. We provide all details allowing to reproduce our approach, starting with a model of the dynamics of a crazyflie 2.0 under various nominal and non-nominal conditions, including partial motor failures and wind gusts. We develop a robust form of a signal temporal logic to quantitatively evaluate the vehicle's behavior and measure the performance of controllers. The paper thoroughly describes the choices in training algorithms, neural net architecture, hyperparameters, observation space in view of the different performance metrics we have introduced. We discuss the robustness of the obtained controllers, both to partial loss of power for one rotor and to wind gusts and finish by drawing conclusions on practical controller design by reinforcement learning.
Fichier principal
Vignette du fichier
2107.12942.pdf (2.94 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04336289 , version 1 (13-12-2023)

Identifiants

Citer

Nicola Bernini, Mikhail Bessa, Rémi Delmas, Arthur Gold, Eric Goubault, et al.. Reinforcement learning with formal performance metrics for quadcopter attitude control under non-nominal contexts. Engineering Applications of Artificial Intelligence, 2023, 127, ⟨10.1016/j.engappai.2023.107090⟩. ⟨hal-04336289⟩
161 Consultations
60 Téléchargements

Altmetric

Partager

More