Dynamic fracture: an example of convergence towards a discontinuous quasi-static solution - École polytechnique Access content directly
Journal Articles Continuum Mechanics and Thermodynamics Year : 2008

Dynamic fracture: an example of convergence towards a discontinuous quasi-static solution

Pierre-Emmanuel Dumouchel
  • Function : Author
  • PersonId : 857521
Jean-Jacques Marigo
M. Charlotte

Abstract

Considering a one-dimensional problem of debonding of a thin film in the context of Griffith's theory, we show that the dynamical solution converges, when the speed of loading goes down to 0, to a quasistatic solution including an unstable phase of propagation. In particular, the jump of the debonding induced by this instability is governed by a principle of conservation of the total quasistatic energy, the kinetic energy being negligible.
Fichier principal
Vignette du fichier
07-CMT-Dynamic2.pdf (302.86 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00551075 , version 1 (03-01-2011)

Identifiers

Cite

Pierre-Emmanuel Dumouchel, Jean-Jacques Marigo, M. Charlotte. Dynamic fracture: an example of convergence towards a discontinuous quasi-static solution. Continuum Mechanics and Thermodynamics, 2008, 20, pp.1-19. ⟨10.1007/s00161-008-0071-3⟩. ⟨hal-00551075⟩
299 View
273 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More