Polarization-resolved Second Harmonic microscopy in anisotropic thick tissues
Résumé
We thoroughly analyze the linear propagation effects that affect polarization-resolved Second Harmonic Generation imaging of thick anisotropic tissues such as collagenous tissues. We develop a theoretical model that fully accounts for birefringence and diattenuation along the excitation propagation, and polarization scrambling upon scattering of the harmonic signal. We obtain an excellent agreement with polarization-resolved SHG images at increasing depth within a rat-tail tendon for both polarizations of the forward SHG signal. Most notably, we observe interference fringes due to birefringence in the SHG depth profile when excited at π/4 angle from the tendon axis. We also measure artifactual decrease of ρ = χxxx/χxyy with depth due to diattenuation of the excitation. We therefore derive a method that proves reliable to determine both ρ and the tendon birefringence and diattenuation. © 2010 Optical Society of America
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|