THE SCHRÖDINGER EQUATION IN THE MEAN-FIELD AND SEMICLASSICAL REGIME - École polytechnique
Pré-Publication, Document De Travail Année : 2015

THE SCHRÖDINGER EQUATION IN THE MEAN-FIELD AND SEMICLASSICAL REGIME

Thierry Paul
  • Fonction : Auteur
  • PersonId : 878449
  • IdRef : 158973372

Résumé

In this paper, we establish (1) the classical limit of the Hartree equation leading to the Vlasov equation, (2) the classical limit of the N-body linear Schrödinger equation uniformly in N leading to the N-body Liouville equation of classical mechanics and (3) the simultaneous mean-field and classical limit of the N-body linear Schrödinger equation leading to the Vlasov equation. In all these limits, we assume that the gradient of the interaction potential is Lipschitz continuous. All our results are formulated as estimates involving a quantum analogue of the Monge-Kantorovich distance of exponent 2 adapted to the classical limit, reminiscent of, but different from the one defined in [F. Golse, C. Mouhot, T. Paul, arXiv:1502.06143]. As a by-product, we also provide bounds on the quadratic Monge-Kantorovich distances between the classical densities and the Husimi functions of the quantum density matrices.
Fichier principal
Vignette du fichier
NSchroVlasov.pdf (285.46 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01219496 , version 1 (22-10-2015)
hal-01219496 , version 2 (17-07-2016)

Identifiants

  • HAL Id : hal-01219496 , version 1

Citer

François Golse, Thierry Paul. THE SCHRÖDINGER EQUATION IN THE MEAN-FIELD AND SEMICLASSICAL REGIME. 2015. ⟨hal-01219496v1⟩
389 Consultations
284 Téléchargements

Partager

More