A NON-INTRUSIVE STRATIFIED RESAMPLER FOR REGRESSION MONTE CARLO: APPLICATION TO SOLVING NON-LINEAR EQUATIONS - École polytechnique
Article Dans Une Revue SIAM Journal on Numerical Analysis Année : 2018

A NON-INTRUSIVE STRATIFIED RESAMPLER FOR REGRESSION MONTE CARLO: APPLICATION TO SOLVING NON-LINEAR EQUATIONS

Résumé

Our goal is to solve certain dynamic programming equations associated to a given Markov chain X, using a regression-based Monte Carlo algorithm. More specifically, we assume that the model for X is not known in full detail and only a root sample X1, . . . , XM of such process is available. By a stratification of the space and a suitable choice of a probability measure ν, we design a new resampling scheme that allows to compute local regressions (on basis functions) in each stratum. The combination of the stratification and the resampling allows to compute the solution to the dynamic programming equation (possibly in large dimensions) using only a relatively small set of root paths. To assess the accuracy of the algorithm, we establish non-asymptotic error estimates in L2(ν). Our numerical experiments illustrate the good performance, even with M = 20 − 40 root paths.
Fichier principal
Vignette du fichier
GOBET-LIU-ZUBELLI.pdf (435.93 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01291056 , version 1 (20-03-2016)

Identifiants

Citer

Emmanuel Gobet, Gang Liu, Jorge Zubelli. A NON-INTRUSIVE STRATIFIED RESAMPLER FOR REGRESSION MONTE CARLO: APPLICATION TO SOLVING NON-LINEAR EQUATIONS . SIAM Journal on Numerical Analysis, 2018, 56 (1), pp.50-77. ⟨10.1137/16M1066865⟩. ⟨hal-01291056⟩
425 Consultations
672 Téléchargements

Altmetric

Partager

More