Quantization of Measures and Gradient Flows: a Perturbative Approach in the 2-Dimensional Case - École polytechnique
Article Dans Une Revue Annales de l'Institut Henri Poincaré C, Analyse non linéaire Année : 2018

Quantization of Measures and Gradient Flows: a Perturbative Approach in the 2-Dimensional Case

Résumé

In this paper we study a perturbative approach to the problem of quantization of measures in the plane. Motivated by the fact that, as the number of points tends to infinity, hexagonal lattices are asymptotically optimal from an energetic point of view (see [Morgan, Bolton: Amer. Math. Monthly 109 (2002), 165-172]), we consider configurations that are small perturbations of the hexagonal lattice and we show that: (1) in the limit as the number of points tends to infinity, the hexagonal lattice is a strictly minimizer of the energy; (2) the gradient flow of the limiting functional allows us to evolve any perturbed configuration to the optimal one exponentially fast. In particular, our analysis provides a solid mathematical justification of the asymptotic optimality of the hexagonal lattice among its nearby configurations.
Fichier principal
Vignette du fichier
Quantiz2Dhexa.pdf (1.78 Mo) Télécharger le fichier
Triangle (1).pdf (33.26 Ko) Télécharger le fichier
TriangleRect (1).pdf (12.78 Ko) Télécharger le fichier
Voronoi (1).pdf (18.71 Ko) Télécharger le fichier
figure1ema (1).pdf (448.41 Ko) Télécharger le fichier
figure2ema (1).pdf (476.48 Ko) Télécharger le fichier
figure3ema (1).pdf (477.37 Ko) Télécharger le fichier
quantiz2Dhexagons3.pdf (1.78 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01341841 , version 1 (05-07-2016)

Identifiants

Citer

Emanuele Caglioti, François Golse, Mikaela Iacobelli. Quantization of Measures and Gradient Flows: a Perturbative Approach in the 2-Dimensional Case. Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 2018, 35, pp.1531-1555. ⟨10.1016/j.anihpc.2017.12.003⟩. ⟨hal-01341841⟩
266 Consultations
473 Téléchargements

Altmetric

Partager

More