On the Convergence of Time Splitting Methods for Quantum Dynamics in the Semiclassical Regime
Résumé
By using the pseudo-metric introduced in [F. Golse, T. Paul: Archive for Rational Mech. Anal. 223 (2017) 57-94], which is an analogue of the Wasserstein distance of exponent 2 between a quantum density operator and a classical (phase-space) density, we prove that the convergence of time splitting algorithms for the von Neumann equation of quantum dynamics is uniform in the Planck constant $\hbar$. We obtain explicit uniform in $\hbar$ error estimates for the first order Lie-Trotter, and the second order Strang splitting methods.
Fichier principal
TimeSplittingCORR2.pdf (462.53 Ko)
Télécharger le fichier
Figurebis.pdf (27.18 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...